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Abstract

We propose a novel object detection framework for

partially-occluded small instances, such as pedestrians in

low resolution surveillance video, cells under a microscope,

flocks of small animals (e.g. birds, fishes), or even tiny in-

sects like honeybees and flies. These scenarios are very

challenging for traditional detectors, which are typically

trained on individual instances. In our approach, we first

estimate the object density map of the input image, and then

divide it into local regions. For each region, a sliding win-

dow (ROI) is passed over the density map to calculate the

instance count within each ROI. 2D integer programming is

used to recover the locations of object instances from the set

of ROI counts, and the global count estimate of the density

map is used as a constraint to regularize the detection per-

formance. Finally, the bounding box for each instance is es-

timated using the local density map. Compared with current

small-instance detection methods, our proposed approach

achieves state-of-the-art performance on several challeng-

ing datasets including fluorescence microscopy cell images,

UCSD pedestrians, small animals and insects.

1. Introduction

Usually, in the computer vision community, object de-

tection and counting are two related but also different re-

search topics. The objective of object detection is to lo-

calize individual instances and find their bounding boxes,

while object counting aims to estimate the total number

of instances. Typically, detection approaches [1, 2] train

a sliding window detector for an individual object using a

supervised learning algorithm with labeled input images of

positive and negative samples. However, such detection ap-

proaches tend to be less accurate when objects are overlap-

ping. On the other hand, counting methods [3, 4] tend to do

better at estimating the total number of objects in such sce-

narios, as they model groups of objects locally in a segment

[4], or globally in the whole image [3]. However, the output

of counting methods is only the number of objects in the
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Figure 1. Examples of small object detection: a) synthetic cells; b)

pedestrians; c) fish; d) seagulls; e) honeybees; f) flies. Objects are

only ∼10-30 pixels tall in the image.

image or segment, leaving the locations of each individual

object unknown.

In many real world applications, accurate total counts

and locations of objects are equally important. The total

number of objects in a region of interest (ROI) can only

show a macro-level description of the crowd, which omits

the micro-level information for each instance. Usually, the

objects are not distributed evenly in an ROI, and the loca-

tions of each instance may provide more information for

further object behavior analysis. For example, in scenarios

such as a crowded street, cells under a microscope, flocks

of migrating birds or fishes, and insects moving together,

the total count can show a global trend for the whole scene,

while the locations of each instance indicate the grouping



structure and the relationship among them. To meet the

needs of various vision tasks for crowded scene understand-

ing, solving the counting and detection tasks together in

a unified framework can provide more accurate output in

terms of both counting and detection.

Most previous detection approaches [1, 2, 5–10] are not

suitable for counting-detection task, especially for partially

occluded small instances, such as those in Fig. 1. These ob-

jects are usually very small in the image or video, perhaps

consisting of only a few pixels. A large number of small

instances grouped together is neither a pure texture nor a

high-resolution object. Compared with a high-resolution

object, for groups of small instances, many discriminative

details and features are blurred or hidden due to the small

object size. Scene perspective makes the problem worse, as

the instances with larger distance from the camera tend to be

even smaller. For most detection-based methods, the low-

resolution training examples of small-instances results in

poor detector performance, since there are not enough dis-

criminative features for each individual. Moreover, heavy

overlapping between objects moving in a group is very fre-

quent. Although some detection approaches [7–10] aim to

handle the occlusion problem by modeling each component

of the object, it is challenging to reasonably divide small

objects (e.g. tiny flies in a glass tube, small fishes) into

discriminative local parts. Finally, different poses and view-

points make the object’s appearance look very different (e.g.

flying birds and honeybees). All these factors are challenges

of using the traditional detection-based methods for small-

instance detection.

Rather than individual-centric detection methods, count-

ing approaches [3, 4, 11] avoid individual-level detection,

and instead model all the objects as a whole at the image-

level [3, 11] or model small groups of objects at the blob-

level [4]. These methods achieved very good results in

terms of counting, at the price of losing the local informa-

tion for each individual. Even the blob-level counting algo-

rithm cannot be used for the detection task, since given the

count estimate of a large crowded blob it is still difficult to

find the locations of each small instance within it. Recently,

[12] achieves state-of-the-art counting performance by es-

timating an object density map from an input image. The

object density map indicates the distribution of the objects

within the image, and integrating over an ROI in the density

maps yields an estimate of the object count within the ROI.

Inspired by [12], we propose a novel detection frame-

work for small-instances using object density maps, which

takes full advantage of counting methods and avoids the po-

tential drawbacks of using traditional detection methods on

small-instances. This is a new joint counting and detec-

tion framework, which can output both counting and detec-

tion results. The contributions of this paper are four-fold.

First, we develop a 2D integer programming method that

recovers 2D object locations from an object density map.

Our framework is unique in that there is no non-maximum

suppression or detector threshold to select. Second, to take

full advantage of the accurate counting results from [12], a

global count constraint is added to the integer programming

objective function. The constraint regularizes the detection

results by suppressing false positive errors and increasing

recall when there is heavy occlusion. Third, given a de-

tected object location, we propose a method to estimate the

bounding box of the object using the density map. Last,

the proposed detection method achieves state-of-the-art re-

sults on several quite different and challenging small-object

datasets, including pedestrians, cells, fish, flies, honeybees,

and seagulls.

2. Related Work

Most previous methods fall into two classes: individual-

centric detection or global/blob-centric counting. In [1, 2,

5, 6] a supervised model is trained with labeled individual

object samples, and the learned detector is applied to a slid-

ing window over the image to form the confidence map.

Since the detector might fire on the same object twice, non-

maximum suppression is typically applied to the confidence

map. However, this can decrease recall on crowded scenes

when several small objects are close to each other. Beyond

non-maximum suppression, [7–10] apply stochastic match-

ing between object parts and instances. These methods re-

quire expensive stochastic inference in the image space, and

are limited to situations with small numbers of objects. In

contrast, our method uses integer programming on the den-

sity space, and works well for crowded scenes with large

numbers of objects.

Typical counting methods use a regression model or neu-

ral network to learn the mapping of global or blob-level fea-

tures to the number of people in the whole image [3, 11]

or blob [4]. These methods focus on object counting but

not localization of the objects. [13] combines a head de-

tector, Fourier analysis, and interest point counts to esti-

mate the number of people in image patches of extremely

crowded scenes. However, in their framework, the detec-

tion method is only used to improve the local patch count-

ing results. [12] estimates the object count using pixel-wise

density maps. The crowd density at each pixel is regressed

from the feature vector, and the number of objects in an ROI

is obtained by integrating over the crowd density map.

The boundary between detection and counting is blurred

by [14] (and its precursor [15]), which proposed a unified

framework for estimating both the number of objects in a

local group and their individual locations. Their approach is

based on extremal regions. Low-level features are extracted

from these candidate regions, and a structured-output SVM

is used to predict the instance counts for the regions (each

class corresponds to a count). Given the number of people
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Figure 2. The proposed small-instance object detection framework. The object density map is estimated from the input image or video

frame. The density map is divided into several local regions. For each region, the global count is calculated. Then, integer programming

with a global count constraint is used to recover the locations of each object from the density map. Finally, the object bounding boxes are

estimated from the density map.
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Figure 3. (a) a cell image; (b-d) output features when the codebook

size is 10, 40, and 256. The superpixel size depends on the number

of codewords, with larger codebooks yielding smaller superpixels.

in a local region, the locations of each individual are esti-

mated using K-means clustering on the image coordinates

of all pixels in that region. While the detection performance

of [14] is much better than other existing detection methods,

the counting performance is not better than [12]. In con-

trast to [14], which focuses on group-level localization, our

approach is formulated as a detection problem for individ-

ual instances, and is based on using integer programming

to directly recover the individual object locations from the

estimated density map. Our method obtains better detec-

tion performance than [14], while still maintaining the high

counting accuracy of [12]. Also, unlike [14], our approach

also estimates the bounding box of each object.

Finally, [16] proposed a method for counting the number

of people passing a fixed line in a video – integer program-

ming was used to estimate the number of people in each

vertical line of the temporal slice image from the regression-

based counts in a large temporal sliding window. In contrast

to [16], in this paper we use integer programming to esti-

mate the spatial locations of objects in an image or video

frame from an object-density map. We also estimate the

bounding boxes of each object.

3. Detection Framework

In this section, we present our proposed object detection

framework for small instances, which is illustrated in Fig. 2.

3.1. Feature Extraction

Given the input image, dense pixel-wise features are ex-

tracted in a local image patch, which are centered at each

image pixel. In this paper, dense SIFT [17] or random for-

est features [12] (for pedestrians) are used. Sending the fea-

ture directly to the density learning process, which learns

the mapping of local feature to a density at a single pixel,

is not wise, because of the high dimension of the feature

vectors (e.g. the length of SIFT is 128). Therefore, fol-

lowing [12], we first do feature quantization. A codebook

of K codewords is learned on 20 training images using the

K-means algorithm. Then the local features are quantized

using the learned codebook. Finally, the feature vector of

each pixel is the canonical unit vector ej ∈ R
K , where j is

the index of the codeword assigned to that location.1 Thus,

all the pixels in a small local region may share the same

feature value, resulting in a superpixel segmentation of the

input image (e.g., see Fig. 3). The segment sizes depend on

the codebook size and the level of local similarity.2

3.2. Density Map Estimation

To estimate the object density map, we use the method

from [12], which learns the mapping from the extracted im-

age feature to the density value for each pixel. To learn

the mapping requires a ground-truth density image. In the

training images, the ground-truth object locations are la-

beled manually as a dot at the center of each object. This

type of annotation is more efficient and less labor inten-

sive, compared with rectangular box annotations. Using the

ground-truth locations, [12] defines the ground truth density

for training image Ii as (e.g., Fig. 4)

F 0
i (p) =

∑

P∈Pi

N (p;P, σ2I), ∀p ∈ Ii (1)

1This is equivalent to a bag-of-words representation with 1 sample.
2In our experiments, we use a codebook size of K = 256.
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Figure 4. Examples of ground truth densities. (a & c) input images

with object location annotations; (b & d) the corresponding ground

truth densities.

where p is a pixel location of image Ii, N (p;P, σ2I) is a

2D Gaussian distribution centered at P , and Pi is the set

of ground-truth object locations in image Ii. The covari-

ance σ2 is set as a small value (e.g., 1 to 4), which does not

significantly affect the performance in practice [18].

The object density at each pixel is estimated by

Fi(p;w) = wTxi
p, ∀p ∈ Ii, (2)

where xi
p ∈ R

K is the feature vector for pixel p of image Ii,

and w ∈ R
K is the parameter vector. Since the feature vec-

tors we use here are the canonical unit vectors, each weight

wj can be interpreted as the density value for codeword j.

The parameter w is learned by minimizing the sum of

the mismatches between the ground truth and the estimated

density functions over the training set

w∗ = argmin
w

‖w‖2 + λd

N
∑

i=1

D(F 0
i (·), Fi(·|w)), (3)

where λd is a hyperparameter controlling the regularization.

The function D(F 0
i (·), Fi(·|w)) measures the distance be-

tween the estimated density and its corresponding ground

truth density. In [12], this distance is selected as the maxi-

mum error over all box regions in the image,

DMESA(F1, F2) = max
B∈B
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∣
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∑
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∣

∣

∣

∣

, (4)

where B is the set of all box subarrays of I. After reformu-

lating the loss function properly, the solution turns into a

regression problem with w estimated by a QP-solver [19].

3.3. Localization by Integer Programming

We propose a 2D integer programming method to re-

cover the locations of objects in the estimated density map.

Given the input density map F (p;w) for an image I, the

objective is to find the object indicator map S(p), ∀p ∈
I, where the value S(p) indicates the number of objects

present at location p (e.g., 0 means there is no object at lo-

cation p, and 1 means there is 1 object at p). Here, we de-

note the vector s ∈ Z
|I|
+ as the vectorized matrix S, where

|I| is the number of pixels in the image I.

Next, we define a set of N sliding windows over the

density map. The sliding windows are centered at a pixel

in the image, and move at a fixed step vertically or hor-

izontally.3 The sliding window size is set as the average

object size. Each window is represented as a mask vector

wi ∈ {0, 1}|I|, where the entries are 1 for pixels in the ROI

of the window, and 0 otherwise.

Using the density map, the number of objects in the slid-

ing window wi is estimated as

ni ≈ w
T
i f , (5)

where the vector f ∈ R
|I| is the vectorized density map

F (p;w). On the other hand, the number of objects in the

same window according to the object indicator map is

ni = w
T
i s. (6)

Hence the optimal s can be obtained by minimizing the dif-

ference between (5) and (6) over all the sliding windows.

Here we use the L1-norm as the distance measure in order

to make the solution robust to outliers. In addition, we also

add a global count constraint term to ensure that the total

number of detected objects nc = 1
T
s is close to the num-

ber predicted by the density map nc ≈ 1
T
f , where 1 is the

vector of ones. The final optimization problem is

s
∗ = argmin

s∈Z
|I|
+

N
∑

i=1

|wT
i s− ni|+ λ|1T

s− nc| (7)

= argmin
s∈Z

|I|
+

‖Ws− n‖1 + λ|1T
s− nc|, (8)

where λ is the regularization parameter, and we define

a matrix W = [w1, · · · ,wN ]T containing all the slid-

ing window mask vectors, and the vector of counts n =
[n1, · · · , nN ]T . Note that n is calculated from the density

map and W is fixed for an image, and hence finding s is

a signal reconstruction problem with non-negative integer

constraints on its entries. The formulation in (7) is a lin-

ear integer programming problem, which we solve using

CPLEX [20].

3.4. Search Space Reduction

To reduce the search space (number of variables) in the

2D integer programming problem, the input image is di-

vided into several sub-images according to the estimated

density map (see Fig. 5). Then, detection is performed on

these regions separately. This will significantly reduce the

size of matrix W, which depends on the input image size.

For each region, we also remove some entries in s that have

low corresponding density values (see Fig. 6), only keep-

ing the locations associated with high-density values as the

candidate object locations.

3In our implementation, the step size was 2 pixels.
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Figure 5. (a) Local regions of the density map (green boxes). The

global count for each region according to the density map and the

ground-truth counts (in square brackets) are shown above each re-

gion. The global counts are used as constraints to improve the

detection results. (b) The corresponding image with ground-truth

locations marked as red crosses.

(a) (b) (c)

Figure 6. (a) The input image with ROI (labeled by green line);

(b) The estimated density map; (c) The density map is divided into

three parts: density > 0.007 (red), 0 < density ≤ 0.007 (blue) and

density = 0 (black). The high-density values make up 26% of the

non-zero values, while contributing 60% of the total count, and are

distributed in the center of the segmentation.

3.5. Bounding Box Estimation

Once the object locations have been estimated, their

bounding boxes are estimated from the density image. Let

{lj}
D
j=1 be the estimated locations of the objects. Ideally,

for the object at lj , the optimal bounding box Bj should be

placed so that the density map integrates to 1. However, the

density map is uneven and noisy, and there are occlusions

between objects. To mitigate the effects of this noise, we

formulate the cost function for finding the optimal bound-

ing box Bj to include a prior term, which depends on a

reference box B0
j for location lj ,

B∗
j = argmin

Bj

∥

∥

∥

∥

∥

∥

∑

p∈Bj

F (p;w)− Cb

∥

∥

∥

∥

∥

∥

+ λb∆(Bj , B
0
j ) (9)

where ∆(Bj , B
0
j ) measures the total difference between the

dimensions of the estimated bounding box and the reference

box. Parameter λb controls the weight of the prior, and Cb

is the target density value, whose typical value is between 1
and 0.8 resulting in a looser or tighter bounding box. The

reference box B0
j is set as the average ground-truth bound-

ing box at location lj (see Fig. 7), e.g., by using the perspec-

tive information of the scene [3].

4. Experiments

In this section, we test our proposed small-instance ob-

ject detection framework on six challenging datasets con-

taining quite disparate objects. We compare our detection

(a) (b)

Figure 7. (a) Estimating bounding boxes from the density map.

The estimated box is green, the prior box is dashed-red, and the

estimated box without using prior information is dashed-blue. (b)

The corresponding image.

results with other small-instance detection methods, such as

the counting-detection approach from [14] (Region-SVM),

and the SIFT-SVM detection baseline introduced in [12].

We also consider five other baseline methods that local-

ize objects using the density map. The first method uses

a sliding window (SW) to find regions of the density map

that sum to 1. The size of the sliding window is set as

the average size of the object. A confidence map is gen-

erated where, for each window B, the confidence value is

e−|
∑

p∈B
F (p;w)−1|, i.e., windows with densities that sum to

1 have higher confidence. The objects are then detected by

applying non-maximum suppression to the confidence map.

The second baseline method (LM) assumes each local max-

imum in the density map indicates the location of an object.

In particular, the density map is blurred by a Gaussian ker-

nel, then the local maximum values are captured as the out-

put detection results. The final 3 baseline methods perform

clustering on the image coordinates in each density region,

and the resulting cluster centers are the object locations. We

use K-means (KM), Gaussian mixture models (GMM), and

mean-shift (MS) clustering. For KM and GMM, the number

of clusters is set using the estimated count on the region.

The detection performance is evaluated using precision,

recall, and F1 score as defined in [15]. Precision P is the

fraction of detections that are matched with ground-truth

locations within matching distance d, recall R is the frac-

tion of ground-truth locations that are paired with detec-

tions within matching distance d, and F1 = 2PR/(P +R).
The estimated locations and the ground-truth locations are

matched 1-to-1 using the Hungarian algorithm, and the

matching distance d is set as [14] (i.e., the minimum object

radius). When there is a large perspective change in the im-

age (e.g. UCSD dataset), we weight the matching distance

by the perspective map of the scene.

4.1. Pedestrian Dataset

We first test on the UCSD pedestrian dataset [21], which

is captured by a stationary digital camcorder with an an-

gled viewpoint over a walkway at UCSD. There are 2000

frames in this video (frame size of 238×158 at 10 fps) sup-

plemented with an approximate perspective map and the re-



Table 1. Detection results on UCSD pedestrian dataset. λ = 0 means no global count constraints are used.

Method

Split

‘max’ ‘downscale’ ‘upscale’ ‘min’

R% P% F1% R% P% F1% R% P% F1% R% P% F1%
Region-SVM [14] - - 89.53 - - 89.99 - - 89.21 - - 86.64

SIFT-SVM [12] 64.16 73.37 68.46 60.97 78.99 68.82 66.57 64.46 65.50 61.76 68.07 64.76

SW / density map 76.69 81.56 79.05 78.19 81.33 79.73 81.48 76.38 78.85 77.07 79.99 78.50

LM / density map 81.01 86.58 83.70 82.85 84.75 83.79 81.18 88.80 84.82 85.39 79.89 82.55

KM / density map 85.34 81.75 83.50 88.07 89.19 88.63 83.21 80.88 82.03 87.98 86.81 87.39

GMM / density map 81.55 78.78 80.14 85.84 86.52 86.18 79.33 77.18 78.24 85.57 84.15 84.85

MS / density map 58.30 78.97 67.08 56.29 89.52 69.12 58.23 79.30 67.15 52.33 91.05 66.47

Ours / density map (λ = 0) 89.22 94.15 91.62 87.65 95.48 91.40 86.89 94.71 90.63 89.71 92.23 90.95

Ours / density map 92.39 91.18 91.78 91.35 91.95 91.65 90.71 91.07 90.89 91.97 89.37 90.65

23 [22]
hits=20 miss=2 FP=3

20 [22]
hits=14 miss=8 FP=6

22 [22]
hits=17 miss=5 FP=5

22 [22]
hits=18 miss=4 FP=4

(a) Ground Truth (b) Density (c) Ours (d) SW (e) LM (f) KM

Figure 8. Examples of detection results on the UCSD dataset using various methods based on the object density map.
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Figure 9. Precision-recall curves of detection approaches using

density maps on UCSD (‘max’ split).

gion of interest. Due to the viewpoint of the camera, there

is a large perspective effect in this video. Thus the furthest

pedestrians are only a few pixels tall. Moreover, pedestrians

walking in a group frequently occlude each other, and the

video frames are in low resolution. These challenges make

the detection task very hard. Therefore the UCSD dataset

is usually used as a benchmark for people counting rather

than detection.

We use the four training/testing splits in [4, 12]:

1. ‘maximum’ – train with 160 frames and test on 1200;

2. ‘downscale’ – train on the most crowded frames (80

frames) and test on less crowded frames (1600 frames);

3. ‘upscale’ – train on the less crowded frames (60

frames) and test on more crowded frames (1700);

4. ‘minimum’ – use only 10 training frames from ‘maxi-

mum’, while testing on the same test set.

The ‘downscale’ and ‘upscale’ settings test the generaliza-

tion of the detection method on crowd levels not seen in the

Table 2. Detection results on synthetic cell dataset. N denotes the

number of training images.

N Method R% P% F1%

32

Region-SVM [14] 94.62 94.58 94.60

SIFT-SVM [12] 80.37 85.44 82.83

SW / density map 71.87 62.76 67.01

LM / density map 76.47 91.51 83.32

KM / density map 89.77 94.21 91.93

GMM / density map 87.62 92.44 89.96

MS / density map 87.52 81.61 84.46

Ours / density map (λ = 0) 92.45 94.57 93.50

Ours / density map 92.60 94.77 93.67

5 Ours / density map 90.47 93.71 92.06

- Ours / GT density map 97.20 98.14 97.67

training set, where as the ‘max’ and ‘min’ settings test the

accuracy and practicality of the method.

The detection results on UCSD are presented in Table 1.

Fig. 8 shows example results of different localization meth-

ods, and Fig. 9 plots the Precision-Recall curves and points

resulting in maximum F1 scores. Our detection F1 scores

on all four splits are higher than Region-SVM [14]. Note

that when there are only 10 frames for training (‘min’ split),

[14] has fewer samples to train the structured-SVM, and

its F1 score decreases to 86.64. In contrast, our detection

method remains at high-level of 90.95. Finally, except for

the ‘min’ split where the estimated density map is noisier,

adding the global count constraint to the objective function

increases F1. In particular, the recall is increased at the ex-

pense of some precision – when the count is low, the con-

straint encourages detections when the density map is noisy.

4.2. Cell Dataset

The synthetic cell dataset [12] includes 200 cell images

with an average number of 171±64 cells per image. Partial

cell occlusion and image saturation, which are very com-



Table 3. Detection results on small object datasets. The large/small training sets have 32/5 images for {Fly, Honeybee, Fish}, and 1/ 1
4

image for Seagull.

Training
Method

Fly Honeybee Fish Seagull

set R% P% F1% R% P% F1% R% P% F1% R% P% F1%

Large

SIFT-SVM [12] 74.55 85.69 79.73 78.99 84.31 81.57 89.82 87.27 88.53 93.86 92.61 93.23

SW / density map 64.67 62.58 63.61 50.74 48.74 49.72 76.42 65.74 70.68 75.60 71.50 73.49

LM / density map 85.24 83.82 84.53 87.45 68.72 76.96 88.18 93.68 90.85 85.26 90.33 87.73

KM / density map 64.77 95.20 77.09 77.38 76.41 76.89 81.28 98.74 89.16 87.07 80.39 83.60

GMM / density map 64.33 94.55 76.57 87.85 63.24 73.54 80.70 98.80 88.84 86.83 80.17 83.37

MS / density map 65.92 79.90 72.24 76.91 74.27 75.57 90.83 94.22 92.50 85.49 80.58 82.96

Ours / density map (λ = 0) 81.39 93.71 87.12 78.39 91.39 84.39 91.73 92.34 92.03 91.51 96.78 94.07

Ours / density map 82.47 93.34 87.57 78.72 92.14 84.91 92.11 95.12 93.59 91.47 98.88 95.03

Small
SIFT-SVM [12] 38.83 37.06 37.92 12.08 58.25 20.01 90.72 82.93 86.65 72.21 98.72 83.41

Ours / density map 78.18 94.52 85.58 81.68 86.62 84.08 81.91 94.37 87.70 80.22 98.92 88.59

Table 4. Evaluation of detection bounding boxes in terms of F1%.

Method Fly Honeybee Fish Seagull

SIFT-SVM [12] 79.71 64.45 87.61 92.74

Ours 86.37 81.65 90.88 92.84

mon for fluorescence cell microscopy images, blur the cell

boundaries resulting in several single cells merging into one

group. Following [12], the first 100 cell images are used for

training, while the second 100 images are for testing. In this

experiment, the density map function is trained on the first

32 or the first 5 training images. The results are shown in

Table 2. Our results are comparable to (but slightly worse

than) the Region-SVM [14]. In addition, the F1 score re-

mains high (92) when only using 5 training images.

When using the ground-truth density, the F1 for our de-

tector is 97.67, which upper bounds our detection frame-

work. The difference between detection scores when us-

ing the ground-truth and estimated density maps suggests

that the estimated density maps for cell images are some-

what noisy. Improving the density map estimator would

improve our detection results. Finally, from the viewpoint

of a joint detection-counting framework, counting with the

density map [12] is more accurate than [14].

We also test our method on a real cell dataset [22], which

includes 6 embryonic cell fluorescence images (500×500

pixels). The F1 score for our algorithm is 87.09, compared

to 87 for Region-SVM [14] and 86 for [22].

4.3. Other Small Object Datasets

We collect four datasets of small objects from im-

ages/videos on the Internet (e.g.YouTube or Google).

Fly Dataset: contains 600 video frames with an average

of 86 ± 39 flies per frame (648×72 @ 30 fps). 32 images

are used for training (1:6:187) and 50 images for testing

(301:6:600).

Honeybee Dataset: contains 118 images with an average

of 28 ± 6 honeybees per image (640×480). The dataset is

divided evenly for training and test sets. Only the first 32

images are used for training.

Fish Dataset: contains 387 frames of video with an aver-

age of 56±9 fish per frame (300×410 @ 30 fps). 32 images

are used for training (1:3:94) and 65 for testing (193:3:387).

Seagull Dataset: contains three high-resolution images

(624×964) with an average of 866±107 seagulls per image.

The first image is used for training, and the rest for testing.

Examples of the detection results are shown in Fig. 10.

The detection results of our proposed method and SIFT-

SVM [12] are presented in Table 3. On all four datasets,

our detection results are better than SIFT-SVM. In addi-

tion, the detection performance of SIFT-SVM suffers sig-

nificantly when a small training set is used, whereas our

approach is less affected.

Finally, we evaluate the bounding boxes using the stan-

dard overlap ratio (Jaccard index) between the predicted and

ground-truth bounding boxes [23]. A detection is consid-

ered correct when the ratio is larger than 50%. Table 4

shows the evaluation of the detection bounding boxes using

F1 score. On all 4 datasets, the bounding box results using

our method are better than those of the baseline SIFT-SVM.

5. Conclusion

In this paper, we propose joint object detection and

counting framework using object density maps that is

based on 2D integer programming. In our experiments, we

achieve very good results on several challenging datasets

of very different small crowded objects, including cells,

pedestrians, flies, honeybees, fish and seagulls. These ex-

periments suggest that our framework is robust to different

visual appearances, object structures and poses, as well as

partial-occlusion that is common with crowded scenes. In

addition, our method is less affected by small training sets

than traditional sliding window detectors (e.g. SIFT-SVM)

and other counting-detection approaches (Region-SVM).
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Figure 10. Results of the proposed detection method on (a) UCSD pedestrians, (b) Synthetic cells, (c) Fish, (d) Honeybees, (e) Flies, and

(f) Seagulls. The red dots are the ground truth locations and the green boxes/circles are the detection results.
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