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Small Molecule Accurate 
Recognition Technology (SMART) 
to Enhance Natural Products 
Research
Chen Zhang  1, Yerlan Idelbayev2, Nicholas Roberts2, Yiwen Tao3,4, Yashwanth Nannapaneni2, 

Brendan M. Duggan  5, Jie Min6, Eugene C. Lin7,8, Erik C. Gerwick9, Garrison W. Cottrell2 & 

William H. Gerwick  3,5

Various algorithms comparing 2D NMR spectra have been explored for their ability to dereplicate 
natural products as well as determine molecular structures. However, spectroscopic artefacts, 
solvent effects, and the interactive effect of functional group(s) on chemical shifts combine to 
hinder their effectiveness. Here, we leveraged Non-Uniform Sampling (NUS) 2D NMR techniques 
and deep Convolutional Neural Networks (CNNs) to create a tool, SMART, that can assist in natural 

products discovery efforts. First, an NUS heteronuclear single quantum coherence (HSQC) NMR pulse 
sequence was adapted to a state-of-the-art nuclear magnetic resonance (NMR) instrument, and data 
reconstruction methods were optimized, and second, a deep CNN with contrastive loss was trained on a 

database containing over 2,054 HSQC spectra as the training set. To demonstrate the utility of SMART, 
several newly isolated compounds were automatically located with their known analogues in the 

embedded clustering space, thereby streamlining the discovery pipeline for new natural products.

As a discipline, natural products research (NPR) enables and bene�ts numerous downstream research �elds, such 
as chemical biology, chemical ecology, drug discovery and development, pharmacology and the total chemical 
synthesis of natural products (NPs). In this regard, approximately 70% of all approved drugs are NPs, their ana-
logues, or a chemical modi�cation of an existing NP1. In addition to these academic and societal bene�ts, NPR 
provides a powerful incentive for the conservation and sustainable use of biodiversity and biodiverse habitats2.

An important step in NPR is dereplication, the process of assessing the uniqueness of a new compound in 
relationship to all known ones. In most NPR, traditional compound dereplication practices have entailed the 
collection and analysis of nuclear magnetic resonance (NMR) spectra, including running 1D and 2D NMR 
spectroscopic experiments for the purposes of molecular framework construction, assembly, and relative stere-
ochemistry determination. More recently, mass spectrometric approaches and mass spectrometry (MS)-based 
molecular networking3, in part stimulated by integration with DNA sequencing and genome mining4,5 have been 
integrated into NPR work�ows. Nevertheless, conventional NMR practices are still indispensable to the char-
acterization and dereplication of NPs. Unfortunately, 2D NMR experiments can be time consuming, especially 
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when the sample is relatively scarce. Furthermore, 2D NMR-based structural assignments can sometimes take 
protracted periods of time to accomplish due to the inherent structural complexity of some NPs.

Along with relatively recent improvements in mass spectrometry, circular dichroism and infrared spectros-
copy techniques, state-of-the-art cryoprobe NMR instruments have reduced the sample requirements for NPs 
discovery to just a few nanomoles6. Nevertheless, acquisition of NMR spectra may still require a relatively large 
number of time consuming scans before Fourier transformation of the data. Furthermore, conventional 2D 
NMR spectroscopy relies upon linear sampling of the frequency evolution in the indirect dimension (usually 
the 13C dimension). When generating high frequency resolution in the indirect dimension, extensive sampling 
is required and the experiments become very time consuming. Modi�cation of conventional uniform sampling 
to non-uniform sampling (NUS)7–13 allows the number of experiments in the indirect dimension to be reduced, 
thereby reducing the overall time of the experiment. �e NUS method is designed to reduce the number of data 
collection experiments while at the same time delivering an accurate estimation of the fully sampled spectrum.

To streamline compound dereplication or even structure determination, algorithms have been applied for 2D 
NMR spectra comparisons, such as the 2D NMR peak alignment algorithm14,15. However, these techniques are 
not powerful enough to accurately classify 2D NMR spectra into the correct NP family. �is arises for several rea-
sons, such as compound concentration, solvent e�ects, and the interactive e�ect of a single functional group alter-
ation on 1H and 13C NMR chemical shi�s, all of which combine to increase the di�culty for computer assisted 
2D NMR data analysis. At the same time, artefacts are o�en introduced into NMR spectra, and this makes it dif-
�cult for existing pattern recognition or overlap methods to distinguish genuine peaks from artefacts. However, 
arti�cial intelligence technologies, such as deep learning16,17, have generated new approaches for meeting these 
challenges. Compared with conventional machine learning methods, which require the cumbersome process 
of selecting and creating features that might be suboptimal for a given task, deep learning allows creation of the 
most suitable set of features within the process of training, without any design or involvement by the investigator. 
Moreover, some deep learning methods work well even when the number of categories is very large and unknown 
during the training process. �us, deep learning is an ideal method by which to analyse and categorize 2D NMR 
spectra of NPs. For NPs, there are an essentially unlimited number of categories for di�erent compound families, 
with many being unknown at the present time. Additionally, it is quite common for each category to contain fewer 
than 50 di�erent members; in the work of our laboratory with marine cyanobacterial NPs, this is the case for all 
of the molecular families we have encountered over the past 40 years, including the curacins18–20, apratoxins21, 
lyngbyabellins22 and majusculamides23–25.

Other approaches for automatic recognition of NMR spectra have appeared in the literature or private sector. 
�e typical approach is to create grids over the data and then compute similarities based on how many points fall 
into the same grid cells26. �is approach can miss peaks that are near one another that happen to fall in di�erent 
grid cells, so an enhancement of this approach is to use multiple grid resolutions and o�sets before computing the 
similarities27. Our convolutional network approach automatically does this by using overlapping convolutions 
combined with increasing-sized receptive �elds through pooling the results from previous layers. However, our 
method of deciding similarity is learned by the network through nonlinear dimensionality reduction via training 
it to map together those compounds it recognizes as being from the same family, and to map di�erent families to 
di�erent locations in the underlying space.

Another method involves computer-aided structure elucidation (CASE, ACD/Labs) which is largely based 
on applying a least-squares regression (LSR) approach for comparing NMR chemical shi�s; this tactic is not 
powerful enough to satisfactorily accommodate solvent e�ects, instrumental artefacts, or weak signal issues14,15. 
An early e�ort using machine learning applied to NMR spectra was reported in (Wolfram et al., 2006)28. �ey 
used Probabilistic Latent Semantic Indexing (PLSI), a method usually applied to text documents for informa-
tion retrieval purposes. PLSI maps documents into a lower dimensional space using a probabilistic analogue to 
Singular Value Decomposition (SVD) applied to a document by word count matrix. To apply PLSI to compounds, 
the typical multi-scale and shi�ed grid cell approach was used, treating each grid cell as a “word” in the com-
pound. �is is essentially learning a linear mapping from the feature space to a reduced space, and thus is not as 
powerful as using a nonlinear deep network.

In our approach, heteronuclear single quantum correlation (HSQC)29 spectra are recorded using a 2D NMR 
pulse sequence that uses the large heteronuclear coupling between directly bonded nuclei within an organic 
molecule to correlate directly bonded atoms (e.g. 1H and 13C, with 1H being de�ned as the direct dimension 
and 13C the indirect dimension). �e peaks of those correlated nuclei in the 2D HSQC spectra are generated by 
detecting coherences that connect states whose total z-angular momentum quantum numbers di�er by one order 
(i.e. single-quantum coherences). In this regard, an HSQC spectrum is deemed as the ‘�ngerprint’ or ‘face’ for a 
natural product molecule, and thus is highly discriminating. Speci�cally, within a 2D HSQC spectrum, signals in 
the direct dimension can be distinguished if they have shi�s of 0.02 ppm or greater, and in the indirect dimension 
if they have shi�s of 0.1 ppm or greater. Furthermore, most 1H chemical shi�s occur between 0.5 and 9.5 ppm, 
whereas in the 13C dimension chemical shi�s typically occur between 10 and 215 ppm, which gives rise to 922,500 
distinguishable positions within a 2D HSQC spectrum. When summed over all protonated carbons in a mole-
cule of 20 carbons with attached protons, the number of potential combinations is in the tens of millions, and is 
thus highly discriminatory. In addition, this technique avoids detection of double-quantum coherence, resulting 
in relatively few artefacts. In contrast, the commonly used heteronuclear multiple bond correlation (HMBC) 
experiment detects two and three bond correlations by selecting smaller multiple bond heteronuclear coupling 
constants (around 5–10 Hz for 1H-13C versus one bond of 125–170 Hz) for double-quantum and zero-quantum 
transfer. �erefore, while the HMBC experiment produces an even larger amount of theoretical information, it 
is prone to introducing artefacts and its complexity makes it more di�cult to interpret. In addition, the HSQC 
when performed with NUS discussed above is a relatively quick and e�cient experiment for data accumulation.
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Here, we report the development of the Small Molecule Accurate Recognition Technology (SMART) proto-
type, a system that integrates the bene�ts of NUS NMR with advances in deep learning to enhance and improve 
the e�ciency of NP dereplication. To create SMART, a database of training examples containing 2D HSQC spec-
tra of 2,054 compounds was compiled. �ese examples were used to train a deep network that learns to map the 
spectra into a cluster space where similar compounds are near one another and dissimilar compounds are far 
apart. To perform this function, we use a deep convolutional neural network (CNN) employing a siamese archi-
tecture30 as described in the methods section. A siamese network ampli�es the number of training examples by 
training on pairs of spectra that are labelled “same” or “di�erent,” rather than training on individual examples. 
�e network then learns features of the spectra that are relevant to their similarities and di�erences, and uses this 
to create the cluster space. �e resulting mapping then generalizes to new compounds, placing them in the space 
near compounds with similar HSQC spectra. We evaluate SMART by holding back several known NPs from dif-
ferent families from the training set, and then show that SMART maps them into their proper location within the 
cluster space. We also present here the rapid identi�cation of a newly isolated natural product compound family 
as a result of SMART’s ability to cluster similar compounds together. HSQC spectra were collected for several 
nonribosomal peptide synthetase (NRPSs)-derived NPs that had been isolated from two marine cyanobacteria. 
�ese novel spectra were accurately mapped by SMART into the ‘viequeamide’ subfamily of NPs.

Results and Discussion
The SMART prototype. SMART is a user-friendly, AI-based dereplication and analysis tool that uses 2D 
NMR data to rapidly associate newly isolated NPs with their known analogues. SMART has been designed to 
mimic the normal path of experiential learning in that additional 2D NMR spectral inputs can be used to enrich 
its database and improve its performance. In short, SMART aims to become an experienced associate to natural 
products researchers as well as other classes of organic chemists. �e SMART work�ow consists of three steps, 
1) 2D NMR data acquisition by NUS HSQC pulse sequence, 2) 2D NMR spectral analysis by deep CNN, result-
ing in an embedding of the spectra into a similarity space of NPs, and 3) molecular structure dereplication or 
determination by the user (Fig. 1). �is process gives users rapid access to a well-organized map of structurally 
determined NPs, and helps ensure that SMART’s insights are chemically rational. In this regard, SMART capital-
izes on the wealth of molecular �ngerprints, namely 2D HSQC spectra, built over the past four decades31,32, and 
reciprocally, we anticipate that 2D HSQC spectral databases will experience an accelerating expansion as a result 
of SMART’s application.

�e work�ow (Fig. 1) of SMART begins with recording the NUS HSQC spectrum for a pure small organic 
molecule; in the case of NPR, this is a substance extracted and puri�ed from an organism of interest, but just as 
easily could be a small molecule produced from organic synthesis, biosynthesis or from a metabolomic study. A 
small molecule is de�ned here as one whose transverse relaxation time constant (T2) is on the same order of mag-
nitude as its longitudinal relaxation time constant (T1) when dissolved in liquid solution. In other words, the 
nuclear spins of a small molecule should be synchronized between 107 to 108 Larmor precession cycles during a 
liquid state 2D HSQC experiment33. Nevertheless, the SMART concept is not inherently con�ned to small mole-
cule NUS NMR spectra, considering the ability of NMR to structurally characterize molecules of many sizes and 
types. NUS HSQC experiments are highly advantageous for small molecule structure elucidation compared with 
conventional pulse sequences due to their rapid acquisition, few spectral artefacts, and intrinsic high resolution. 
Nevertheless, as discussed below, conventional 2D HSQC spectra can be provided to the AI system and spectral 
recognition achieved. In fact, the initial database of HSQC spectra that were compiled to train the SMART system 
was acquired in this manner.

Due to lower sampling density, NUS HSQC requires alternative approaches to convert the indirectly sampled 
time domain into visual spectra of the frequency domain, and thus methods other than the Discrete Fourier 
Transform are required. To this end, Iterated So� �resholding (IST)34,35 followed by the Maximum Entropy 
Method (MEM)36,37 was applied to NUS data collected for the model compound strychnine. In order to achieve 
convergence to a local minimum, a Lagrange multiplier was applied to weight the regularization function, the L1 
norm, in the IST routine. Previous studies12 have shown that IST is superior to Maximum Entropy Reconstruction 
(MaxEnt)38 (not to be confused with MEM) in NUS NMR data reconstruction, owing to the simplicity of IST 
with fewer adjustable parameters and the resultant ease of application. Nevertheless, IST su�ers slower conver-
gence compared to MaxEnt for spectra with a high dynamic range. However, it has been shown that changing 
the step sizes in IST can achieve visualization of the �nal spectra indistinguishable from those reconstructed by 
a well-tuned MaxEnt process39. �e MEM can then be applied a�er Fourier Transformation of the IST recon-
structed data in the direct dimension, resulting in an improvement that derives from the fact that MEM is biased 
towards the enhancement of smaller line widths40. For the model compound, the HSQC correlation signals of 
the C-11 methylene protons (3.11 ppm and 2.67 ppm) to their subtending carbon were visibly strengthened a�er 
sequentially applying IST (400 iterations) and MEM (3 iterations) compared with application of IST (400 itera-
tions) with Linear Predictions (LP) during data reconstruction of the non-uniformly sampled 2D NMR spectra 
(Fig. 2).

Our deep learning method is based on a siamese neural network architecture41. A siamese network is com-
prised of a pair of identical networks that are trained with pairs of inputs. �ese are mapped to a representational 
space where similar items are near one another and di�erent items are further apart. As a result, it produces a 
clustering of the input space based on a similarity signal. In our case, it �rst maps the input HSQC spectra into 
a ten dimensional space, which then can be mapped into a two dimensional space by Principal Components 
Analysis (PCA) for visualization purposes.

Because HSQC spectra are inherently a visual input, we used convolutional neural networks (CNNs)42 as the 
components of our siamese network. CNNs are currently the best method for image processing in the computer 
vision community, and have revolutionized the �eld of computer vision42–44. Like standard neural networks, they 
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are trained by backpropagation of errors45. CNNs are structured to learn local visual features that are replicated 
across the input, hence the term “convolutional”. �e local maximum of these features are then input to another 
layer that learns local features over the previous layer of features, and this process is repeated for several layers. In 
previous work, it has been shown that the feature maps resulting from each convolutional layer become more 
abstract as the layers of the network are traversed. We show the �rst layer features in Fig. 3. By using the local 
maxima of feature responses over nearby locations in the input, the network will generalize to patterns that are 
shi�ed in the f f( , )

1 2
 plane of the spectra, i.e., it achieves some translation invariance. �us, the network is inher-

ently hierarchical, like the mammalian visual system, and learns more and more abstract features in deeper layers 
of the network. In a siamese network, the �nal layer is not trained to classify the inputs; instead, a set of units are 
trained to give similar patterns of activation for similar inputs (as given in the teaching signal) and di�erent pat-
terns of activation for inputs that are labelled as di�erent. Hence, they produce a clustering in the space of unit 
activations46.

Figure 1. Work�ow for the Small Molecule Accurate Recognition Technology (SMART). Experimental HSQC 
spectra of newly isolated pure natural product molecules collected using either NUS HSQC pulse sequences 
or conventional HSQC techniques, are automatically embedded by SMART into a cluster space near similar, 
previously-characterized compounds. �e resultant embedding in the cluster map is visualized using the Bokeh 
visualization package72, where each node represents an HSQC spectrum processed by SMART. �e node 
colours in a local area of the clustering map designate compounds from the same journal articles and thus of 
the same natural product family. �is facile method allowed tracking of compounds into SMART, but is not of 
paramount signi�cance in that some compounds reported in di�erent publications display closer relationships 
in SMART and by structural comparison than to compounds within the same article. When available, the 
node labels are the compound names; otherwise, the labels are for the organism from which the compound 
derives. Node distance is proportional to relatedness, a quanti�cation of molecular structural similarity. �e 
2D cluster map is created by performing Principal Component Analysis (PCA) of the 10D space outputs to 
reduce to 2D. Optionally, the top 5, 10 and 20 closest nodes in the 10D space are available in text format. �e 
proof-of-concept experiments are illustrated: Dereplication (solid blue arrow) of viequeamides A (1) and B (4), 
and determination (dashed orange arrow) of viequeamides A2 (2), A3 (3), C (5) and D (6), isolated from 1) 
Rivularia sp., collected in Vieques, Puerto Rico and 2) Moorea sp., collected in American Samoa.
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As a result, molecules that are similar in HSQC spectra will be mapped to nearby locations in the output space. 
If the network generalizes well, it will place novel molecules near known ones that have similar NMR spectra. �is 
allows the system to rapidly identify candidate known molecules that may have similar chemical features to the 
novel molecule, allowing the user to search through a small subset of known molecules for similar compounds. In 
our initial approach, we used ten output units (i.e., a 10 dimensional space), which can be visualized by applying 
Principal Components Analysis (PCA) to reduce the 10 dimensions to two.

Network training and results. �e neural network was trained using stochastic gradient descent47 with 
the Adagrad48 update rule. To speed the training, we employed batch normalization49, which reduces the internal 
covariance shi� by standardizing the distribution of features on each layer. �e network was found to train 7 times 
faster (wall clock time) using batch normalization.

When training the CNN, the datasets (see the Methods section for details) were divided into three subsets; 
the training set containing 80% of the spectra, used to adjust the parameters of the network, the validation set 

Figure 2. Data reconstruction results of a non-uniformly sampled (NUS) HSQC experiment. All of the three 
full HSQC spectra were recorded with a 50 nmole strychnine sample in CDCl3 on a 600 MHz Bruker 1.7 mm 
cryoprobe instrument, using 32 out of a total 128 increments (25% sampling density) in the indirect dimension 
and 8 scans. �e di�erences between the three spectra were that (a) was transformed with the maximum 
entropy method (MEM) alone, (b) was transformed with the iterative so� thresholding (IST) alone, and (c) was 
transformed with IST followed by MEM. �e doublet (see black arrows and circles in (b) and (c)) associates 
with the protons on the methylene (C-11) adjacent to the ketone in strychnine (see text for discussion).
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containing 10% of the data used for early stopping, and a test set containing the remaining 10% of the data (for 
details, see Methods). �e test set consisted of HSQC spectra that were not used during the training process. 
�e error from the validation set was monitored to prevent over�tting on unseen data. �e test spectra were 
then embedded in the cluster map to locate their nearest neighbours. In this way, the test HSQC spectra were 
matched with other structurally similar compounds (e.g., from the same compound family or by possessing a 
high Tanimoto similarity score).

To produce visually comparable results, the outputs of both the training and the test sets in SMART were vis-
ualized in a two dimensional map (Fig. 4). Each node represents an HSQC spectrum processed by SMART. �e 
node colours designate compounds originating from di�erent research articles (e.g. usually di�erent compound 
families). When available, the node labels are the compound names; otherwise, the labels are for the organism 
from which the compound derives. Here the dimension of embedding refers to the dimensions of the cluster 
space into which the siamese network maps the compounds. For example, if the siamese network had two out-
puts, we would be embedding the compounds into 2D. However, we have found that this is too restrictive, and 
does not perform well. Rather, in preliminary work we found that 10 dimensions provides optimal accuracy 
and precision-recall performance. Our illustrations in Fig. 4 are constructed by taking the 10D output of the 
network and applying PCA to map the 10D cluster space into 2D for illustration purposes. To evaluate the train-
ing algorithm, a smaller dataset containing 400 HSQC spectra was �rst mapped into node clusters with 4,800 

Figure 3. Features learnt by the �rst convolutional layer of the CNN. Feature maps were extracted from 
convolution layer 1 in Table 1, with the eight blocks of 4 × 4 pixels in this �gure corresponding to the results of 
each of the eight �lters applied to the HSQC dataset.

Layer 
Number Layer Type

Number of Filters 
(Stride 1) Size

Additional 
Information

1. convolutional 8 4 × 4
maxpool 4 × 4 
stride 2

2. convolutional 16 4 × 4
maxpool 4 × 4 
stride 2

3. convolutional 16 4 × 4
maxpool 4 × 4 
stride 2

4. convolutional 16 4 × 4
maxpool 4 × 4 
stride 2

5. fully connected — 128 dropout 0.5

6. fully connected — 128 dropout 0.5

7. fully connected — 128 dropout 0.5

8. fully connected — K
K-dimensional 
embedding layer

Table 1. �e Architecture of the Deep CNN Used in �is Studya. a�e dimensionality of the input data is 
512 × 512.



www.nature.com/scientificreports/

7SCIENTIFIC REPORTS | 7: 14243  | DOI:10.1038/s41598-017-13923-x

training iterations (Figures S1 and S2 in the Supplementary Information for the cluster map with analysis), and 
subsequently, we trained on a larger dataset of 2,054 for a total of 83,000 iterations. �e tight structural similarity 
between the compounds and their locations in the cluster map is evident (Fig. 4).

Structurally similar NPs were found to form distinct clusters in the map. �ree clusters are discussed here to 
highlight this distinct clustering of di�erent molecular entities, one for a terpenoid family, and two for aromatic 
alkaloid groups (Fig. 4). A cluster comprised of 40 nodes (red box, Fig. 4) was found to contain three sapo-
nin variants together with other corresponding triterpenoids. �e three saponin variants, parisyunnanosides50, 
macaosides51, and astrosteriosides52, are of di�erent geographic origins and are produced by organisms from 
di�erent biological orders. �e parisyunnanosides were isolated from the rhizomes of the terrestrial plant Paris 
polyphylla Smith var. yunnanensis originating in Lijiang, Yunnan Province, mainland China. �e macaosides 
were obtained from the aerial parts of the terrestrial plant Solanum macaonense collected in Kaohsiung, Taiwan. 
Finally, the astrosteriosides were isolated from the marine star�sh, Astropecten monacanthus found around Cát 
Bà island, Haiphong, Vietnam. �e parisyunnanosides have been reported to be toxic to leukaemia cells50 whereas 
the macaosides and astrosteriosides have been found to be anti-in�ammatory51,52. A second cluster consisting of 
42 nodes (blue box, Fig. 4) was comprised of poly-heterocyclic aromatic alkaloids. Within this cluster there are 
four major molecular families (Table S1 in Supplementary Information) with the heterocyclic components being 
a pyrrole, imidazole, pyridine, or pyrazine, or a combination of these. Notably, several congeners of aaptamine, 
isolated from two varieties of Aaptos species collected in di�erent geographic locations, are found in this cluster. 
A third cluster was composed of phenolic amides known as the teuvissides53 (orange box, Fig. 4); these latter 
compounds are reported to possess anti-hyperglycaemic properties and were isolated from Teucrium viscidum 
collected in Fujian Province, mainland China. �e above discussion highlights the alternate basis for compound 
clustering by SMART as compared with geographical, pharmacological or source organism methods.

To explore the signi�cance of cluster-to-cluster distance in the clustering map, we evaluated the types of struc-
tures present in three clusters that were well de�ned and in varying proximity to one another (green boxes A, B 
and C of Fig. 4). Cluster A was composed of oxidized steroids of highly similar structure to one another from the 
plants Aphanamixis polystachya54 and A. grandifolia55, whereas nearby cluster B was formed from a series of trit-
erpene glycosides56. �e more distant cluster C contained several diterpenoids57. Visually, it seems generally cor-
rect that oxidized steroids are more similar to triterpenes than they are to diterpenoids. In comparison, the 
averaged 2D Tanimoto score58 (a distance measure based on planar structures of compounds) between com-
pounds in the cluster A and B, T 44AB = , slightly exceeded the value =T 43AC  between compounds in the cluster 
A and C (Figure S3 in the Supplementary Information for molecular structures), which indicates that the deep 
CNN method is better at quantifying and representing structural di�erences among compound subfamilies than 

Figure 4. �e SMART cluster map based on training result of 2,054 HSQC spectra over 83,000 iterations, with 
inset boxes representing di�erent compound classes discussed in the text.

http://S1
http://S2
http://S1
http://S3
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the algorithm used to generate 2D Tanimoto scores. �e average intra-cluster Tanimoto score of the cluster con-
taining uralsaponins A, B, C, F, M, T, V, W, X and Y is 96.3 whereas the cluster containing aphanamixoids C, D, E, 
F and G is 95.7. �e average intra-cluster Tanimoto score of the cluster containing ebractenoids A, B, C, D, E, F, 
G, H, I and J is 69.4. All of these intra-cluster Tanimoto scores are higher than the inter-cluster Tanimoto score 

=T 44AB  or =T 43AC . �erefore, it is apparent that the SMART clustering map not only recognizes closely similar 
compounds, but also appropriately places clusters of di�erent compounds in their proper context relative to one 
another.

Related work. Again, the aforementioned grid-cell approaches28 are similar to ours in that the shi�ed grid 
positions can be thought of as corresponding to the �rst layer of convolutions, which have small receptive �elds 
(like grid cells), and they are shi�ed across the input space like shi�ed grids. Also, our approach uses layers of 
convolutions that can capture multi-scale similarities. �e grid-cell approaches, however, use hand-designed fea-
tures (i.e. counts of peaks within each grid cell), and the similarities are computed by simple distance measures. 
In particular, PLSI and LSR are linear techniques applied to hand-designed features. Furthermore, other rep-
resentations, for example the ‘tree-based’ method59, also rely on data structures designed by the researcher. Our 
approach, using deep networks and gradient descent, allows higher-level and nonlinear features to be learned 
in the service of the task. �is approach is similar to modern approaches for computer vision, which since 2012 
has shi�ed away from hand-designed features to deep networks and learned features, and has led to orders of 
magnitude better performance. Similarly to how deep networks applied to computer vision tasks have learned to 
deal with common problems, such as recognizing objects and faces in di�erent lighting conditions and poses, our 
CNN pattern recognition-based method can overcome solvent e�ects, instrumental artefacts, and weak signal 
issues.

It is di�cult to directly compare Wolfram et al.’s results to ours because they used a much smaller dataset 
(132 compounds) from 10 well-separated families. �is is not enough data to train the deep network. To further 
compare our approach with other NMR pattern recognition approaches, we generated precision-recall curves 
(Fig. 5) using SMART trained with the SMART5 and SMART10 databases (Fig. 6). Considering SMART as a 
search engine, precision recall curves help evaluate the SMART’s performance to �nd the most relevant chemical 
structures, while taking into account the non-relevant compounds that are retrieved. In our approach to HSQC 
spectra recognition/retrieval, precision is a measure of the percentage of correct compounds over the total num-
ber retrieved, while recall is the percentage of the total number of relevant compounds. �erefore, higher preci-
sion indicates a lower false positive rate, and higher recall indicates a lower false negative rate. �e precision-recall 
curves of our approach show high precision peaks at low recall rates, suggesting that SMART retrieves at least 
some relevant structures in the �rst 10–20% of compounds retrieved, and thus indicates that SMART returns 
accurate chemical structures. To compare this to a linear embedding, we performed PCA on the SMART5 and 
SMART10 databases separately. �e precision recall curves of those PCA results are much worse than those pro-
cessed by the CNN (Fig. 5).

SMART recognition of noisy HSQC spectra. Because white Gaussian noise is o�en seen in experimental 
HSQC spectra, we investigated the robustness of the SMART to recognize HSQC spectra in the presence of sig-
ni�cant noise. By adding noise to HSQC spectra in the SMART10 database and measuring the Euclidean distance 
of those noisy spectra to their original ones, we were able to observe that as noise intensity increases so does the 
distance increase from the original location in the 2D cluster map. However, the noisy spectra were still e�ectively 
recognized as being closely related to their original compounds (Fig. 7 and Supplementary Information).

SMART characterization of Viequeamides of NRPS origin. As a practical example of the functional 
use of the SMART work�ow to discover new NPs, we used it to rapidly characterize a group of unknown marine 
cyclic depsipeptides from two marine cyanobacteria: 1) Rivularia sp. collected in Vieques, Puerto Rico and 2) 
Moorea sp. collected in American Samoa. �ese compounds were isolated in the course of our ongoing e�orts to 
discover marine cyanobacterial NPs with anti-cancer properties60. Metabolites from these two collections were 
puri�ed by high performance liquid chromatography (HPLC), and then 1H-13C HSQC data were collected with 
100% sampling density, but using the NUS pulse sequence in the indirect dimension for all six puri�ed com-
pounds. Data reconstruction as described above for the six samples yielded HSQC spectra, and these were sub-
jected to the SMART work�ow to embed them in the cluster map. We found that the six nodes clustered with 
nodes for the previously characterized viequeamides A (1) and viequeamides B (4). A�er an analysis of various 
2D NMR spectra, and MS, IR and UV data, the planar structures of the four new compounds were determined 
(Fig. 1, compounds 2, 3, 5, 6). �e absolute con�gurations of these compounds were then elucidated by Marfey’s 
analysis and/or X-ray crystallography, completing their structure determination. Evaluation of the toxicity of 
the pure compounds to H-460 human lung cancer cells revealed that two possessed relatively potent cancer cell 
toxicity properties; viequeamide A2 (2) had an IC50 = 0.62 µM and viequeamide A3 (3) had an IC50 = 1.98 µM. 
Viequeamides B (4), C (5) and D (6) showed no appreciable H-460 human lung cancer cytotoxicity.

Methods
Training set collection and processing. �e dataset of HSQC spectra was compiled from available online 
sources. We removed spectra that showed no peaks (i.e., the spectra in the publication appeared blank). We 
collected all usable1H-13C HSQC spectra (4,105 in total), including a few cases of the same compound in di�er-
ent deuterated solvents, from the supporting information of the Journal of Natural Products, years 2011, 2012, 
2013, 2014 and 2015. In addition, the HSQC spectra of somocystinamide A61 and swinholide A62 in the support-
ing information of Organic Letters were also included in the dataset. Around 2,056 spectra were removed from 
this series, because their molecular class had less than 5 HSQC spectra. All spectra were collected and initially 
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processed by the following steps: (1) �e HSQC spectra were saved as png format grayscale images at a resolu-
tion of 512 × 512 pixels (the minimum resolution in the proton dimension is 51.2 pixels per ppm and in the 13C 
dimension it is 2.8 pixels per ppm.); (2) lines surrounding spectral edges, annotations, chemical structures, and 
other annotations were deleted using Photoshop such that only the HSQC signals and noise were present in the 

Figure 5. Precision-recall curves measured across 10-fold validation for di�erent dimensions (dim) of 
embeddings. (a) and (b) Mean precision-recall curves on test HSQC spectra for SMART5 and SMART10 
datasets, respectively. (c) and (d) Mean precision-recall with error curves (grey) for SMART5 and SMART10, 
respectively. (e) and (f) Mean precision-recall curves for SMART5 and SMART10 clustered by Principal 
Component Analysis (PCA) without use of the CNN. AUC: area under the curve.
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images; (3) images were rotated and/or �ipped when necessary to ensure that the horizontal dimension was the 
direct1H dimension with chemical shi�s increasing from right to le�, and the vertical dimension was the indi-
rect13C dimension with chemical shi�s increasing from top to bottom; (4) images were uniformly converted into 
black (signal and noise) and white (spectral background); (5) images from the same publication were pooled and 
labelled as the same training class, as all of the publications we used reported compounds from a single family; 
(6) a cross shaped 3 × 3 median �lter63 was applied to remove unwanted salt-and-pepper noise; however, no other 
enhancements were applied (Figure S4 in the Supplementary Information for an example of spectra input prepa-
ration). Essentially, in this study, the relevant quantity for measuring similarity was the positions and shapes of 
the various peaks relative to one another, rather than their absolute positions.

Figure 6 shows the distribution of spectra number within each compound family in the complete dataset. 
From Fig. 6, we observe that the dataset has a skewed distribution of images per class. Hence, in order to make 
the training stable and comparison fair, we created two di�erent datasets: SMART5 and SMART10, containing all 
spectra of compound families (e.g. veraguamides64, ebractenoids57, naphthomycins65, viequeamides, etc.) with at 
least 5 and 10 HSQC spectra, respectively, per family. In total we have 238 categories (2,054 spectra) for SMART5, 
the largest having 25 and the lowest having 5 spectra per compound family. Further restricting the data to contain 
at least 10 spectra per molecular class results in only 69 categories (911 spectra) in SMART10, which we found to 
be too few for e�ective training. Hence, all of our experiments used SMART5.

When training the neural network (see below for description), we used a 10-fold cross-validation scheme, 
randomly shu�ing the dataset and then splitting it into training, validation, and test sets in proportions 8:1:1. We 
repeated the procedure 10 times such that all images became part of a test set one time. �e results we report here 
were averaged across these ten networks

NUS 2D NMR data generation. In order to generate an independent test set, we developed an optimized 
NUS pulse sequence using an NMR standard (strychnine, 50 nmole TCI America, Catalog No. S0249). �is opti-
mized method was then applied to several newly isolated NPs (e.g., the viequeamides). �e viequeamides were 
isolated from two di�erent marine cyanobacteria; Rivularia sp. collected in Vieques, Puerto Rico60 and Moorea sp. 
collected in American Samoa. Detailed isolation and structural elucidation of these compounds will be published 
separately. �e 2D NMR spectra were recorded on a 600 MHz Bruker Avance III spectrometer with a 1.7 mm 
Bruker TXI MicroCryoProbeTM using TopSpin 2.1. �e solvent CDCl3 contained 0.03% v/v trimethylsilane (δH 
0.0 and δC 77.16 as internal standards using trimethylsilane and CDCl3, respectively). All spectra were recorded 
with the sample temperature at 298 °K.

�e data shown in Fig. 2 were acquired using the NUS edited hsqcedetgpsisp2.3 HSQC pulse sequence. Data 
were acquired as 4096 × 32 points (32 out of 128 t1 increments, 25% NUS) in direct and indirect dimensions, 
respectively, giving a total acquisition time of a quarter of its conventional counterpart. Spectral windows in direct 
and indirect dimensions were 7183.9 and 24118.9 Hz respectively. Data in both Fig. 2(b) and (c) were processed 
using NMRPipe66 by applying zero �lling (round �nal size to power of 2) in both dimensions. Spectra in Fig. 2(b) 
were processed by applying IST as implemented in hmsIST12 with 400 iterations followed by forward-backward 
LP sequentially, while spectra in Fig. 2(c) were processed by applying IST with 400 iterations followed by MEM 

Figure 6. Distribution in the Training Dataset of Numbers of Families Containing Di�erent Numbers of 
Individual Compounds. �e SMART5 training set contains 238 compound subfamilies, giving rise to 2,054 
HSQC spectra in total. (Blue and Green) �e SMART10 training set contains 69 compound subfamilies and is 
composed of 911 HSQC spectra in total. (Green only).

http://S4
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with the standard deviation of time-domain noise set to 200. �e viequeamides spectra were acquired and pro-
cessed the same way as Fig. 2(c), except that the indirect dimension was sampled with 100% NUS (256 out of 256 
t1 increments).

The deep siamese network. As depicted in Table 1, the overall deep CNN siamese architecture used in this 
study is similar to AlexNet42, and consists of 8 layers comprised of 4 convolutional layers followed by 4 fully con-
nected layers. �is network is used as the two “twins” in the siamese network. �e output layer contains vectors in 
K. Here, K is the embedding dimension. �e energy loss function de�ned in equation 2 (below) is applied to the 

Figure 7. Distance of the noisy spectra measured against the original spectra of ebractenoid C and hyphenrone 
I. �e distance measure in the y axis of the ebractenoid plot (a) and hyphenrone plot (b) is the same as the 
cluster map in Figs 4 and 7(f). �e noise level is de�ned by dividing pixels altered over the total number of 
pixels of the HSQC spectra. �e results visualized in the 2D cluster maps with each node representing one noisy 
spectra, and with node color intensity as a function of the noise level, for the ebractenoids (c) and hyphenrones 
(d). �e original image without added noise is shown as the black node in these 2D cluster maps. We then 
embedded the nodes for the ebractenoids in (c) to a global view of the 2D cluster map in (f), and zoom in on the 
red box in (f) as shown in (e). Note, larger node sizes are used to depict compounds in (e) versus (c).
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outputs of the embedding layer (layer 8). We ran several experiments to �nd the best K and measured the accu-
racy on the validation set. Empirically, for the given dataset, =K 10 gave us the best results.

Loss function. Siamese networks are trained with an energy function that is minimized by gradient descent. 
�e design of the energy function determines the way in which pairs of items are pushed together or pulled apart. 
�ere are at least two such functions that have been used30 in the literature; here, we used a modi�ed version of 
the spring model developed by Hadsell et al.41. �e energy function is described with the following notation; for 
example i, the input vector is represented as xi, and the output label as yi. �e output label is de�ned as a “one hot” 
vector, where if there are k categories, yi is a k-dimensional binary vector, and if the category is c, yi is 1 at the cth 
position and 0 everywhere else. Meanwhile, xi, the input HSQC spectra, is treated as a vector.

We treat our neural network as a function GW, where W is the weights of the network. �en the output of the 
neural network is G x( )W . G x( )W  is a vector of dimension K, a hyperparameter of the system. We then de�ne the 
distance function d between images xi and xj:

= −d x x G x G x( , ) ( ) ( ) (1)i j W i W j

where ⋅  is the Euclidean distance function.
Now we can de�ne the energy function L to be minimized as41:
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where m is a hyperparameter that de�nes a margin. In this case, if y
i
 and y

j
 are the same category and the squared 

distance between the output representations of xi and xj is more than a margin, then this distance is minimized, 
otherwise it is unchanged. If they are di�erent, then we should increase the distance between them up to the mar-
gin m. Once they are pushed at least m distance apart, the loss becomes 0. �is loss function penalizes large dis-
tances between pairs of outputs for images in the same category (first line), but for outputs from different 
categories, a penalty is assigned only if they are within m units. �is loss function ensures that the output space 
forms well-behaved clusters during training. �e di�erence between this objective function and the one used in 
Hadsell et al.41. is that no margin was used within the same category. Empirically, we �nd this objective function 
gives superior results.

Training details of the siamese network. We implemented our system using the �eano67 and Lasagne 
(http://tinyurl.com/hl9dy9y) deep network packages. �e siamese network was trained using mini-batch stochas-
tic gradient descent with the Adagrad45 update rule, following the protocol introduced by Hadsell et al.41. 
Speci�cally, 50% of each mini-batch has negative samples x x y y(( , , , )i j i j

 s.t. y y( ))
i j
≠ , and 50% has positive sam-

ples . . =x x y y y y(( , , , ) s t ( ))i j i j i j
. �e Adagrad update rule tunes the step size automatically in real time, making 

learning stable in later iterations. We used hyperbolic tangent as the activation function for all layers including the 
output layer. �e weights were initialized using Xavier initialization68. �e initial learning rate was 0 001α = . , and 
the mini-batch size was 256. We applied dropout regularization69 on layers 5, 6, and 7 of the network, and batch 
normalization49. We found that applying batch normalization speeds convergence by a factor of 7. �e total num-
ber of parameters in the network is 399,102, considering that the number of parameters triples when batch nor-
malization is applied. We used Amazon EC2 instances to run our experiments.

We recorded precision-recall curves (Fig. 5) of SMART’s performance by randomly selecting HSQC spectra 
from the test dataset and retrieving known compounds according to their distance to the test compound in the 
cluster map. In this regard, precision was calculated by dividing the number of true positives over the combina-
tion of the number of true positives and the number of false positives. Recall was calculated as the number of true 
positives over the combination of the number of true positives plus the number of false negatives. At each level 
of recall, there is a di�erent level of precision. �e area under the precision recall curve (AUC) is then a standard 
measure of performance (larger is better). In our case, for each compound in the test dataset, we measured a 
precision recall curve by calculating precision (the number of retrieved compounds that are relevant) and recall 
(the number of relevant compounds that are retrieved) of the retrieved HSQC spectra from the training dataset 
within an expanding hypersphere centred at the compound in the test dataset. �ese �nal precision recall curves 
were averaged over the test dataset. �e CNNs that we used in this regard were trained for 10,000 iterations on 
the SMART5 and SMART10 datasets with 10-fold cross validation for embedding dimensions k = 2, 4, 8, and 
10 (Fig. 5). To compare our results to a linear embedding, we separately performed PCA on the SMART5 and 
SMART10 databases. Speci�cally, we embedded the PCA results in high dimensional Euclidean space (k = 10, 
chosen to match the number of dimensions used in the CNN training). �e precision recall curves of the rand-
omized results are also shown in Fig. 5.

We also used 10-fold cross validation to estimate performance (Figs 8 and 9). Speci�cally, a di�erent 10% of 
the training set was held out as a test set 10 times, and the results were averaged to report performance. For each 
fold of the cross validation, we held out 10% of the data for early stopping. In this way, all of our HSQC spectra 
were used for testing. Here, the complete split was 8:1:1, training:validation:test. �e iterations stop at the point 
in training where the error on the hold-out set is minimized. Here, the error was a measure of average precision 
on the hold-out set.

http://tinyurl.com/hl9dy9y
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We employed the Tensor�ow package (https://tinyurl.com/y9lz45sa) to visualize the features that were learnt 
by the �rst layers of the CNN. �e results of the �rst convolutional layer are shown in Fig. 3.

Validation of the model on “novel” categories. To evaluate whether the system performs properly with 
new categories of molecules, we performed the following three experiments. In SMART5, we removed the HSQC 
spectra of three categories of compounds (ebractenoids, naphthomycins, and veraguamides) from each of three 
common NP families (terpenoids, polyketides, and peptides, respectively), for each experiment, and used those 
removed spectra as a test set. During training, each subfamily was given a di�erent label, however, this informa-
tion was only provided to the training algorithm in the sense of “same/di�erent category” as in Equation 2. �is 
experiment thus tested whether a subfamily of terpenoids that was unfamiliar to the network would be mapped 
close to the other terpenoids. For example, there are 10 compounds in the terpenoid subfamily of ebractenoids 
that were not used during training. During testing, they were presented to the network, and their distance to the 
other terpenoids measured. �is experiment was repeated for the naphthomycins, and veraguamides, and their 
location in the embedding space was evaluated for whether they were properly mapped to their respective fami-
lies (e.g. polyketides and peptides, respectively). �is experiment revealed that the ebractenoids clustered with the 
terpenes and terpenoids in the 10-dimensional space (Table S2). Similarly, the naphthomycins and veraguamides 
were subjected to a similar experiment (Table S3,S4) and con�rmed that SMART was able to properly place com-
pounds to which it was naive.

Finally, we trained the siamese network using all of SMART5, supplemented with HSQC spectra for viequeam-
ide A (1) and B (4) (2 spectra), parguerene, precarriebowmide, palmyrolide and three isomers (4 spectra), somo-
cystinamide and a derivative (2 spectra), and columbamides A, B and C (3 spectra). �is was exposed to the six 
newly collected HSQC spectra [subsequently identi�ed as the viequeamides, e.g., the two known viequeamides A 
(1) and B (4) and four new viequeamides A2 (2), A3 (3), C (5) and D (6)] using the 100% NUS sampling method. 
Training was stopped a�er a �xed number of iterations. �e 10-dimensional output of this test is presented in the 
Supplementary Information (Table S5).

Tanimoto score calculation. Averaged Tanimoto Score for compounds between the three clusters in Fig. 1 
was calculated using the PubChem Score Matrix Service70.

Recognition of noisy HSQC spectra. Using Matlab 2013, we created a 2D matrix of white Gaussian noise 
to simulate the noise in real-time measurements. Next, we applied 2D Fast Fourier Transform (FFT) to this 2D 
noise matrix. �e transformed FFT results for these noisy spectra were sized to match those of two randomly 
selected compounds (hyphenrone I and ebractenoid C) from the SMART10 database57,71. We also calculated 
the noise intensity in the spectra by dividing the number of noisy pixels by the total number of pixels. �e noise 
matrix was then added to the two HSQC spectra, and the intensity of the noise was then increased consecutively 
in a �nite arithmetic progression of 140 steps, rendering 140 noisy spectra for each compound. In addition, at 
each noise level, the white noise was again randomized 100 times, rendering a total of 14,000 noisy spectra. �ese 
noisy HSQC data were then processed by the convolutional neural networks pre-trained with SMART10 for over 
10,000 iterations. �e results are shown as two distance vs. noise plots in Fig. 7(a) and (b). �e distance measure 
displayed in the vertical axis of these two plots was in the same units as the cluster map in Fig. 4. �e results were 
also visualized in 2D cluster maps with each node representing one noisy spectrum, with the intensity of the 
node color representing the noise level (Fig. 7(c) and (d)). �e original image without added noise is shown as 
the black node in those 2D cluster maps. In order to further visualize the internode distance between nodes that 
represent noisy spectra and those that represent our training dataset, we embedded the nodes of the noisy spectra 

Figure 8. Plot of the Accuracy of SMART as the radius around a project point increases. �is �gure shows 
the fraction of correct families captured by a hypersphere of the given radius around each node in the cluster 
map. �e distances between nodes in the cluster map has no physical meaning, but is a quanti�cation of HSQC 
spectral similarity. SMART can achieve good accuracy (proper placement in the map of a new compound 
to its correct compound family) within 0.5 radius of a 2-dimensional cluster map, and even better for a 
10-dimensional map.

https://tinyurl.com/y9lz45sa
http://S2
http://S3
http://S4
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in Fig. 7(c) in a global view of the 2D cluster map shown in Fig. 7(f), and provided a zoomed-in view of the 
ebractenoids clusters in Fig. 7(e). Figure 7(e) shows that noisy HSQC spectra are clustered close to their original 
spectrum, and thus, noise to the levels we have evaluated, has little e�ect on the ability of SMART to accurately 
place compounds into their appropriate location (ebractenoids in this case). Selected noise maps are provided in 
the Supplementary Information.”

Conclusions and Future Work
SMART is the �rst combination of NUS 2D NMR and deep CNNs. �is tool streamlines dereplication and deter-
mination of natural product families from multiple organisms and facilitates their isolation and structural elu-
cidation. While compound families represented the metadata associated with HSQC spectra in this study, it is 
very possible to associate and integrate biological, pharmacological and ecological data with SMART, and thereby 
create new tools for enhanced discovery and development of biological active NPs as well as other small mole-
cules. Ultimately, this leads to an increased appreciation for the structural diversity and therapeutic potential of 
natural products.

By both quantitative and qualitative inspection of SMART's cluster space, the following properties were sug-
gested by the results: 1) the distance between nearby nodes of a clustering map is a measure of the structural 
similarity between compounds that share molecular moieties (e.g., functional groups, carbon skeletons, etc.), 2) 
chimeric compounds with structural features comprised of two independent families of compounds reside near 

Figure 9. Closest retrieval curves measured across 10-fold validation for di�erent dimensions (dim) of 
embeddings. For (a) and (b), mean closest retrieval curves on test sets for SMART5 and SMART10 datasets, 
respectively. For (c) and (d), mean closest retrieval curves with error curves (µ σ± , dashed lines) for SMART5 
and SMART10, respectively. In (c) and (d), the black plot (MO, most frequently occurring) is a baseline 
prediction of random compound associations on the basis of the number of members in a compound family. 
Speci�cally, the category with the most members is picked as the �rst compound association, the second most 
members as the second one, etc. �is order is the same irrespective of the compound being considered.
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or in between the component clusters (for example, saponins are located near and between other glycosides and 
terpenoids, in Fig. S2), 3) this accuracy of placement of new compounds in SMART should be enhanced as the 
size of the training set grows, 4) as the size of the training set increases for a given compound class, the accuracy 
of placement of a new test compound in that family improves, 5) even in the presence of random spectral noise, 
spectra are strongly associated to their structural chemical analogues. Nevertheless, the accuracy of recognition 
correlating to the signal-to-noise ratio of HSQC spectra remains to be determined, as does the impact of solvent 
e�ects on chemical shi�s or extraneous peaks appearing in the spectrum from electronic sources or impurities. 
As more compounds are added to the training set, the SMART system will naturally improve in accuracy and 
robustness, thereby accelerating natural product structural elucidation and thus drug discovery.

SMART has an immediate value in NP drug discovery e�orts by providing rapid and automatic compound 
dereplication and assignment to molecular structure families. With further re�nement of the SMART work�ow, 
such as training for spectra of the same compound with di�erent S/N ratios, deeper understanding of other 
parameters that impact spectral recognition, combining with other fast NMR techniques, SMART has the poten-
tial to enhance NPR and enable new directions of experimentation at the chemistry-biology interface.
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