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Abstract

Guanine-rich DNA sequences that can adopt non-Watson-Crick structures in vitro are prevalent in

the human genome. Whether such structures normally exist in mammalian cells has, however,

been the subject of active research for decades. Here, we show that the G-quadruplex interacting

drug pyridostatin promoted growth arrest in human cancer cells via inducing replication- and

transcription-dependent DNA damage. Chromatin immunoprecipitation sequence (ChIP-Seq)

analysis of the DNA damage marker γH2AX provided the genome-wide distribution of

pyridostatin-induced sites of damage, and revealed that pyridostatin targets gene bodies containing

clusters of sequences with a propensity for G-quadruplex formation. As a result, pyridostatin

modulated the expression of these genes, including the proto-oncogene SRC. We observed that

pyridostatin reduced SRC protein levels and SRC-dependent cellular motility in human breast

cancer cells, validating SRC as a target. Our unbiased approach to define genomic sites of action

for a drug establishes a framework for discovering functional DNA-drug interactions.

Chemical genetics seeks to create small molecule modulators of gene function to elucidate

the complex cellular mechanisms that underlie human diseases1-3. The targeting of specific

DNA loci to alter the expression of particular genes has been particularly challenging4
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owing to the difficulty in identifying well-defined druggable sites. G-quadruplex nucleic

acids may provide structural variations in the genome5,6 suitable for selective recognition by

small molecules7-9 and have thus emerged as an attractive paradigm for chemical genetics

despite the lack of functional evidence for their prevalence in human cells10. For example,

drugs that induce dysfunctional telomeres11,12 or perturb ribosome biogenesis13 in human

cells have been proposed to act via stabilizing clusters of G-quadruplex motifs at the ends of

chromosomes and in regions containing clusters of ribosomal RNA genes, respectively.

Furthermore, biologically relevant G-quadruplex motifs have been identified in several

organisms14-16 suggesting that functional alternative DNA structures may also occur in

human cells. However, a comprehensive genome-wide analysis of these motifs accessible to

small molecules has not hitherto been described.

Here we provide an analysis of the genomic targets of the G-quadruplex binding small

molecule pyridostatin (1). We found that cells treated with pyridostatin exhibit transcription

and replication-dependent DNA damage, resulting in cell cycle arrest. High throughput

sequencing and genome-wide analysis of the DNA associated to the DNA damage marker

γH2AX demonstrated that pyridostatin targets gene bodies containing clusters of sequences

able to adopt a G-quadruplex conformation. Cellular labelling of a pyridostatin analogue to

visualize the localization of the small molecule revealed a striking overlap with a human

DNA helicase known to exhibit G-quadruplex binding properties, lending support for the

existence of functional alternative DNA structures in human cells. Finally, we determined

that the proto-oncogene SRC is a target for pyridostatin, providing additional support for the

druggability of certain cancer genes by G-quadruplex binding small molecules.

RESULTS

Pyridostatin induces DNA damage and cell cycle arrest

Pyridostatin is a highly selective G-quadruplex binding small molecule (Fig. 1a)17,18 that

was designed to target polymorphic G-quadruplex structures regardless of sequence

variability9. Consistent with our previous work indicating that pyridostatin exhibits anti-

proliferative effects and induces dysfunctional telomeres17, we found that the drug

decreased the proliferation of SV40-transformed human MRC5 fibroblasts (Fig. 1b) and

various cancer cell lines (Supplementary Results, Supplementary Fig. 1). Moreover, we

observed that, upon treatment with pyridostatin, cells predominantly accumulated in the G2

phase of the cell cycle (Fig. 1c) and exhibited markers indicating DNA damage response

(DDR) activation19,20, including phosphorylation of histone H2AX on Ser-139 (termed

γH2AX), the transcriptional repressor KAP1 (Ser-824), the checkpoint effector kinase Chk1

(Ser-345) and replication protein A (RPA Ser-4/8; Fig. 1d,e). Similar responses were

observed in several cancer cell lines. Although treating cells with pyridostatin for 72 hours

or longer caused apoptosis in some cells as evidenced by PARP-1 protein cleavage (Fig. 1d),

most cells survived long-term pyridostatin incubation. Indeed, even after 10 days of

treatment, cells still exhibited DDR signalling. However, a detectable proportion of long-

term treated cells were arrested in G1, likely reflecting p21 protein induction at later time

points (Supplementary Fig. 3a,b). Regardless of the duration of pyridostatin treatment,

pharmacological inhibition of the DNA damage effector kinases Chk1 and Chk2 with

AZD7762 (Chk1/Chk2i)21, or inhibition of the apical DNA double strand break (DSB)-

sensing kinase ATM with KU55933 (ATMi)22, rapidly triggered the appearance of mitotic

cells and the resumption of DNA replication (Fig. 1f and Supplementary Fig. 3c,d).

Collectively, these results demonstrated that cell cycle arrest induced by pyridostatin arises

primarily through DNA damage checkpoint activation.

The production of γH2AX and other cellular markers of ATM activation after pyridostatin

treatment suggested the induction of DSB. Consistent with this notion, pyridostatin activated
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the DSB repair protein kinase DNA-PKcs, as revealed by its auto-phosphorylation on

Ser-2056 (Fig. 2a). Furthermore, incubating pyridostatin treated cells with the DNA-PKcs

inhibitor NU7441 (DNA-PKi)23 markedly enhanced γH2AX production in a manner that

was largely prevented when cells were additionally incubated with the ATMi or with

caffeine (Caf), which inhibits ATM and the related DNA damage-responsive kinase ATR

(Fig. 2b). It is noteworthy that DNA-PKcs inhibition triggered increased γH2AX production

after short and long-term pyridostatin treatments (Fig. 2b and Supplementary Fig. 3e),

suggesting that DNA-PKcs mediates ongoing DSB repair during exposure to pyridostatin. In

agreement with this, DNA-PKcs deficient MO59J cells were considerably more sensitive to

pyridostatin treatment than DNA-PKcs proficient MO59K cells (Fig. 2c). Neutral comet

assays confirmed the presence of DSB in cells treated with pyridostatin and showed that

these were enhanced upon DNA-PKcs inhibition (Fig. 2d).

Transcription- and replication-dependent DNA damage

To determine whether DSB formation induced by pyridostatin was affected by cell cycle

status, we carried out immunofluorescence analyses of pyridostatin treated cells with anti-

γH2AX antibodies to detect DNA damage, in conjunction with EdU (5-ethynyl-2′-
deoxyuridine) staining to detect DNA replication in S phase, anti-Cyclin A antibodies to

detect S and G2 cells, and DAPI (4′,6-diamidino-2-phenylindole) to stain double stranded

DNA. We anticipated that this approach would enable a direct comparative analysis of all

cell cycle phases simultaneously. Indeed, it revealed that the drug induced the appearance of

DNA damage in G1, S and G2 cell cycle phases (Fig. 2e). Strikingly, pre-treating cells with

the transcription inhibitor DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole) prevented

pyridostatin from inducing γH2AX foci only in EdU negative G1 and G2 cells (arrows in

Fig. 2f; quantified in g). Moreover, pre-treatment with DRB plus the DNA replication

inhibitor aphidicolin (Aph) markedly reduced both the number and intensity of γH2AX foci

induced by pyridostatin in all cells (Fig. 2f; quantified in g). These data showed that

pyridostatin induces DNA damage in G1 and G2 cells through transcription-dependent

mechanisms, while damage in S phase cells also arises through ongoing DNA replication.

Genomic localization of sites of DNA damage

Previous studies have shown that treating cells with G-quadruplex interacting molecules can

induce DNA damage signals at telomeres, suggesting the existence of such motifs at the

ends of chromosomes11,12. However, we observed that, while relatively low concentrations

of pyridostatin were able to inhibit proliferation and induce γH2AX foci in MRC5-SV40

cells, very few of these γH2AX foci co-localized with the telomere binding protein TRF1

(Fig. 3a; quantified in b). In contrast, higher concentrations increased the incidence of

γH2AX-positive TRF1 foci and decreased the total numbers of TRF1 foci, thus indicating

competition for binding at telomeres. We also found that the total numbers of γH2AX foci

per cell did not increase proportionally with increasing concentrations of pyridostatin,

suggesting that the drug targets defined DNA sites (Fig. 3b). Taken together, these data

indicated that pyridostatin predominantly interacts with non-telomeric DNA loci at low

concentrations, before targeting telomeres at higher doses. Indeed, immunofluorescence

analyses of mitotic chromosomes following treatment revealed that most sites of γH2AX

staining did not localize to chromosome ends (Fig. 3c,d). In line with our other data, DNA-

PKcs inhibition increased the number of γH2AX domains on mitotic chromosomes

following treatment with pyridostatin.

In cellulo chemical labelling of pyridostatin

The inability to directly detect most small molecules in cells prompted us to develop a

protocol enabling in cellulo covalent labelling of a pyridostatin analogue following
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treatment. Thus, we synthesized pyridostatin-α (2) that is structurally similar but contains an

orthogonal alkyne fragment allowing selective chemical modification in cells via “click

chemistry”, as depicted Fig. 4a. The copper-catalyzed alkyne-azide cycloaddition24 was

chosen for its bio-compatibility and effectiveness in introducing the fluorophore. By using a

well established Fluorescence Resonance Energy Transfer-melting protocol25, we observed

that pyridostatin and pyridostatin-α promoted similar melting profiles to one another in vitro

for a set of known G-quadruplex DNA motifs (Supplementary Fig. 5)9,18, demonstrating

that the introduction of an alkyne fragment did not alter the recognition properties of the

drug. Furthermore, pyridostatin-α exhibited growth inhibitory properties on cells and

promoted DNA damage to extents that were comparable to those induced by the parent

molecule, thus validating the suitability of this compound for this study. Chemical labelling

performed on cells treated with 1 μM of pyridostatin-α for 12 h revealed small nuclear foci

of fluorescently labelled pyridostatin (3) together with larger fluorescent patterns consistent

with staining of nucleoli that contain abundant putative G-quadruplex forming sequences

(PQS)6,13. Moreover, a similar staining pattern of labelled pyridostatin was observed when

cells were first chemically fixed with formaldehyde to cross-link proteins with nucleic acids

and freeze biochemical processes, then incubated with pyridostatin-α followed by chemical

labelling (Fig. 4b). Only a few of these foci overlapped with TRF1 staining, which is in

agreement with pyridostatin targeting non-telomeric genomic DNA sites. These data thereby

pointed towards the existence of pre-folded G-quadruplex structures in human cells since

cell fixation was performed prior to drug exposure.

The Saccharomyces cerevisiae DNA helicase Pif1 binds to and resolves G-quadruplexes

during DNA replication26. Genome-wide analyses have revealed a correlation of Pif1

binding to genomic sequences containing PQS and to highly transcribed genes suggesting

that Pif1 may also regulate transcription27. Furthermore, human Pif1 (hPif1) was recently

shown to exhibit similar biochemical properties28. To establish whether hPif1 associates

with pyridostatin at G-quadruplex-containing genomic loci, we developed a U2OS human

osteosarcoma cell line that stably expresses the nuclear isoform of hPif1 (hPif1α) fused to a

green-fluorescent protein (GFP; see Supplementary Methods) and studied the distribution of

the protein as compared to the labelled small molecule by high-resolution microscopy. This

revealed that, in the absence of drug treatment, GFP-hPif1α formed small nuclear foci

whose pattern was comparable to that observed for the labelled small molecule

(Supplementary Fig. 6). Moreover, in an independent experiment where cells were fixed

prior to addition of pyridostatin-α, we observed a considerable overlap between the labelled

small molecule and GFP-hPif1α foci (Fig. 4c). These data therefore demonstrated that the

small molecule pyridostatin and the helicase hPif1 target overlapping genomic structures in

human cells, and also indicated that such structures pre-exist prior to drug addition. These

experiments thereby provided evidence for the existence of pre-folded G-quadruplex

structures at non-telomeric locations within human genomic DNA, and suggested a role for

hPif1 in the resolution of these structures in vivo.

ChIP-Seq analyses of sites of DNA damage

While PQS occur on average once per ten kilobases of the human genome6, with a

propensity for them occurring in oncogenes29, structured G-rich sequences that are bona fide

targets for pyridostatin are unknown. Our analyses suggested that the small molecule has

relatively defined sites of interaction within the human genome; and furthermore, the

transcription dependency of γH2AX foci implied that pyridostatin has a propensity for

interacting with PQS within certain active genes. To explore these hypotheses, we carried

out chromatin immunoprecipitation of γH2AX followed by high throughput sequencing

(ChIP-Seq) analyses30,31 of samples obtained from cells treated with the compound and

untreated control cells. Comparing the ensuing data sets across the human genome for each
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individual chromosome identified ~60 γH2AX domains induced by the small molecule. For

example, Fig. 5a depicts a domain on chromosome 20, while γH2AX domain distribution

across the whole genome is shown in Supplementary Fig. 7. Furthermore, consistent with

our other data, while some of the γH2AX domains lay towards chromosomal ends (25%),

75% of them localized to interstitial chromosome regions. Additionally, although γH2AX

domains occurred on most chromosomes, further analyses revealed that these domains were

enriched on chromosomes that contained higher numbers of mapped PQS than would be

expected for their respective sizes (Supplementary Fig. 8 and Supplementary Dataset 1). For

example, chromosomes 16, 17, 19 and 20 have high PQS frequencies and displayed higher

numbers of γH2AX domains than would have been predicted based on chromosome size.

To assess the effects of pyridostatin at specific genomic loci, we focused on a gene set

comprising 385 designated oncogenes and 763 tumor suppressors32. As anticipated, γH2AX

domains were not identifiable with standard peak finding protocols due to the broad

coverage of γH2AX signatures33. Consequently, we manually scored the gene set to

identify those that displayed γH2AX enrichment in treated versus untreated ChIP-Seq

libraries across the entire gene length (Supplementary Dataset 2). For example, Fig. 5b

depicts γH2AX enrichment for the proto-oncogene SRC. This analysis identified 25

γH2AX-positive genes from our chosen gene set (Supplementary Fig. 9,10). As shown in

Supplementary Fig. 11, γH2AX induction by pyridostatin was further validated by ChIP-

qPCR analyses on some genes. We next calculated the percentage of bases that were located

within PQS (% PQS in gene) for each individual gene of the human transcriptome (Fig. 5c

and Supplementary Dataset 3), which yielded a median value of 0.257%. Markedly, all 25

genes of the gene set that we identified as γH2AX-positive after treatment with pyridostatin

exhibited PQS contents that were higher than this median value and contained PQS on both

coding and non-coding strands of each target. For example, the SRC and MYC genes

contained 12-fold and 7-fold increased PQS levels across their lengths as compared to the

median PQS value. It is also noteworthy that in the absence of treatment, the basal level of

DNA damage for some of the genes studied showed a good correlation with PQS clustering

compared to γH2AX-negative control genes that contained no PQS (Fig 5a,b and

Supplementary Fig. 7,9). For these genes, we found that pyridostatin treatment enhanced the

pre-existing γH2AX-enrichment at these loci. These results were therefore in agreement

with there being G-quadruplex clusters that promote DNA damage in untreated cells, with

this effect being amplified upon treatment with the G-quadruplex targeting drug. These data

were also in line with our observation that hPif1 and pyridostatin target overlapping

genomic sites that contain structured PQS clusters. It is noteworthy that our analyses also

identified genes containing PQS clusters that were γH2AX-negative. For example, the

HRAS gene exhibited high PQS content with a % PQS value of 9.484, but did not display

detectable γH2AX-enrichment in cells treated with pyridostatin. Thus, while there was a

good correlation between PQS density and γH2AX formation for particular genes, PQS

density alone was not an accurate predictor of DNA damage induction through pyridostatin

targeting. This revealed that additional local features of individual loci must contribute to

rendering them responsive to pyridostatin.

Pyridostatin alters mRNA levels of damaged genes

Since local DNA damage within a genomic locus can trigger transcriptional inhibition in

cis34, we explored whether pyridostatin affected the mRNA levels for MYC and the top ten

γH2AX-positive genes that contained the highest PQS densities identified in the above

analyses. We also analyzed the housekeeping genes ALAS1 and B2M as controls to

normalize gene expression levels since these genes contain low levels of PQS clusters and

were γH2AX-negative (Supplementary Fig. 12). Additional γH2AX-negative controls we

used were HRAS, DDX1 that contains moderate PQS content, and DDX51 that exhibits a

Rodriguez et al. Page 5

Nat Chem Biol. Author manuscript; available in PMC 2012 September 05.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



contiguous PQS of over 1400 nucleotides (Supplementary Fig. 12). We found that while the

expression levels of control genes were mostly unaffected by pyridostatin, all the γH2AX-

positive target genes analyzed were down-regulated after 8 hours of drug treatment (Fig.

5d). Of these, the proto-oncogene SRC was most strongly affected, with its RNA levels

being reduced by over 95% after 8 hours of treatment. These data therefore demonstrated a

strong correlation between DNA damage induced by the small molecule and transcriptional

repression at specific gene loci.

Pyridostatin interacts with G-quadruplexes in SRC

Since SRC responded particularly strongly to pyridostatin treatment, we performed circular

dichroism spectroscopy (CD) and nuclear magnetic resonance (NMR) to establish whether

individual PQS in this gene adopted stable G-quadruplex conformations in vitro. Out of 25

PQS identified in SRC (Fig. 6a and Supplementary Fig. 13), we observed that 23 of them

adopted stable folded structures. As previously shown for other G-quadruplexes14, these

sequences displayed a molar ellipticity that is characteristic of G-quadruplex structures, with

maxima at 265 nm for parallel conformations, 298 nm for antiparallel conformations, or

both patterns highlighting the polymorphic nature of some sequences (Supplementary Fig.

14)9. NMR spectroscopy revealed signals between 10.5 and 12.5 parts per million (ppm),

demonstrating the occurrence of Hoogsteen hydrogen bond base-pairing, characteristic of

stacked G-quartets that represent the core structure of G-quadruplex motifs (Fig. 6b and

Supplementary Fig. 15). Similarly, some sequences displayed 12 distinct imino proton

signals, showing the formation of a single species, whereas others exhibited additional

signals, highlighting the presence of multiple conformers in agreement with the CD data.

We next selected a PQS that formed a single folded species in vitro according to NMR

spectroscopy and titrated the structured DNA with pyridostatin that was then monitored by

NMR. After incubation of the DNA with 1.1 mole equivalents of the compound, we

observed a global line broadening of the signals, associated with an up-field shift of the

imino proton signals from 11.0-12.0 ppm to 10.6-11.5 ppm, which was particularly

pronounced for four of the most shielded protons (Fig. 6b). Similar results were also

observed for other PQS found in SRC. These data demonstrated that pyridostatin interacts

selectively with the top G-quartet of the G-quadruplex via a stacking mode as depicted Fig.

6b35. These findings thus provided additional evidence that pyridostatin targets the common

structural feature shared by G-quadruplex motifs regardless of the nature of the loop

sequences, and highlighted the versatility of this small molecule. Together, the data also

showed that G-quadruplex structures are prevalent in SRC, and that pyridostatin strongly

interacts with such motifs, thus providing a rationale for the responsiveness of this gene to

the drug.

Pyridostatin reduces SRC-dependent cell motility

Since SRC mRNA levels were most strongly affected by the small molecule in the above

analyses, we sought to confirm this result and to explore potential biological consequences.

In line with pyridostatin down-regulating SRC at the mRNA level, we found that SRC

protein levels were also reduced by ~60% after 24 hours of treatment in MRC5-SV40 cells

(Fig. 7a; quantified in Fig. 7b). SRC is a non-receptor tyrosine kinase that plays critical roles

in various cellular processes, including cell motility and invasion36-38. To evaluate whether

the compound could affect cellular activities reliant on SRC, we used wound healing assays

to analyze SRC-dependent cellular motility in the MDA-MB-231 breast cancer cell line39.

This revealed that pyridostatin treatment greatly reduced the motility of MDA-MB-231 cells

compared to untreated cells, as detected by pyridostatin strongly impairing the ability of

these cells to occupy the wound space (Fig. 7c,d). Importantly, this effect did not simply

reflect the ability of the small molecule to induce DNA damage and cell cycle arrest because

the topoisomerase poison and DSB inducer doxorubicin (Dox) did not affect wound healing
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in these experiments, despite pyridostatin and doxorubicin preventing cell proliferation to

similar extents (Fig. 7c,d). Furthermore, and consistent with our results with MRC5-SV40

cells, pyridostatin also reduced SRC mRNA levels in MDA-MB-231 cells, while

doxorubicin did not (Fig. 7e). As shown in Fig. 7f, this occurred despite the small molecule

producing lower levels of DNA damage than doxorubicin in these experiments, as revealed

by analyzing the DNA damage marks γH2AX and Ser-824 phosphorylated KAP1. These

findings, together with our observation that pyridostatin and doxorubicin inhibited cell

growth to similar extents, suggested that pyridostatin affects wound healing at least in part

through its targeting of SRC and not through DNA damage induction per se. Collectively,

these data demonstrated that this small molecule targets not only SRC but also impairs SRC-

dependent cellular processes. Since SRC oncogenic activities can promote tumorigenesis

through effects on cellular motility38, these results suggested that pyridostatin, like bona fide

SRC inhibitors37, could offer therapeutic opportunities for certain cancers.

DISCUSSION

This study has identified novel genomic targets of the small molecule pyridostatin through

the use of ChIP-Seq, thereby providing a new, unbiased approach that can be employed for

identifying druggable targets of other potential therapeutic agents acting at the DNA level.

We have shown that pyridostatin generates DNA damage at specific genomic loci, leading

to cell cycle arrest and transcriptional down-regulation of several genes that contain PQS

clusters on both of their DNA strands. Our data are consistent with the compound mediating

these events by interacting with multiple G-quadruplex motifs in gene bodies during

transcription and replication, thereby preventing subsequent gene expression from the

affected loci. Whether the drug exerts its effects strictly through producing DNA damage

and/or acts as a physical barrier to transcription and replication, however, remains to be

determined. Recent physical data have shown that pyridostatin stabilizes G-quadruplexes

with mechanical forces able to withstand the load forces generated by RNA and DNA

polymerases40. In light of this and given the requirement for dynamic events such as

transcription and replication for pyridostatin to yield DNA damage, it is possible that

pyridostatin stalls polymerases during transcription and replication. These processes could in

turn result in DNA breakage through physical forces imposed on the DNA substrate. In

addition, DNA damage production in response to the small molecule could be mediated by

the action of endonucleases, perhaps through mechanisms linked to transcription-coupled-

repair poisoning as shown previously41 for the anticancer drug ecteinascidin 743.

Our use of the copper-catalyzed Huisgen reaction to fluorescently tag the drug in cells has

allowed us to evaluate the cellular localization of the drug, thereby highlighting how this

novel methodology could be used to trace and assess the distribution of any small molecule

in cells. In our system, this approach has provided evidence for G-quadruplex structures

naturally occurring in unperturbed human cells. The characteristic staining-pattern we

observed for hPif1 in the absence of pyridostatin treatment, and the overlap of hPif1 staining

with the labelled small molecule further demonstrated the existence of G-quadruplexes in

unperturbed cells, and also implicated hPif1 in resolving these secondary structures that are

known to be difficult to transcribe and replicate.

A key finding from our work is that, while pyridostatin can target telomeric loci, its most

prevalent sites of genomic interaction are non-telomeric at low concentrations. Although we

found that genes containing high PQS contents are more likely to be affected by the small

molecule, and despite all the genes affected having higher than average PQS frequencies,

not all genes with high PQS levels were demonstrably targeted by the compound in our

assays. For example, we did not detect any effect on HRAS expression, even though HRAS

contains one of the highest number of PQS of any human gene. Thus, in addition to there
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being a requirement for alternative DNA structure formation, additional mechanisms must

impact on G-quadruplex folding and/or on the binding of the compound to certain G-

quadruplexes. For instance, the local supercoiled nature of DNA at a particular locus is

likely to modulate the dynamics of G-quadruplex folding and G-quadruplex interactions

with pyridostatin, as previously reported42. Since we determined that pyridostatin acts

during both transcription and replication, it is tempting to speculate that mechanisms

regulating these processes might impact G-quadruplex dynamics and small molecule

binding. Indeed, as double stranded DNA becomes transiently open during transcription and

replication, PQS are prone to form G-quadruplexes during these processes. Consequently,

the rate of transcription or replication through a particular DNA locus and/or changes in

chromatin structure triggered by such events could have a marked impact on the ability of

PQS in the locus to form G-quadruplex structures that can then be targeted. The propensity

of PQS to form G-quadruplex structures could also depend on whether they are on the

transcribed or non-transcribed strand of a gene. Similarly, whether a PQS is replicated by

leading- or lagging-DNA strand synthesis could affect its propensity to form G-quadruplex

structures and pyridostatin targeting43. Our studies have provided a framework upon which

future work can generate more accurate predictors of whether or not particular PQS form G-

quadruplex structures in vivo and what determines the druggability of these structures in

cells.

It will clearly be of interest to explore whether pyridostatin affects the activities of proteins

that operate on G-quadruplex structures and, conversely, whether the actions of such

proteins influence the targeting of the small molecule to certain PQS regions. In this regard,

we note that DNA helicases have been proposed to regulate G-quadruplex formation and

processing because these enzymes are known to catalyze the unwinding of duplex DNA. For

example, DNA helicases including hPif1, BLM, WRN and FANCJ can unwind G-

quadruplex motifs in vitro28,44-46, while the ATR-X helicase interacts with PQS clusters and

has been linked to transcriptional regulation of genes containing these sequences47. By

establishing a genome-wide map of pyridostatin target sites, our work provides a basis for

further defining the molecular mechanisms and consequences of G-quadruplex binding by

these and other cellular proteins. Our findings will also facilitate future studies assessing

how these enzymes might influence G-quadruplex formation and thereby affect these

structures during transcription, replication and potentially DNA damage signalling and

repair. Finally, our results highlight the potential druggability of G-quadruplex structures

and suggest how pyridostatin, as well as other compounds with similar modes of action,

could be exploited as tools for genomic studies and for therapeutic benefit. In particular, the

observation that this small molecule can selectively down-regulate the proto-oncogene SRC

and induce DNA damage suggests that pyridostatin and its derivatives could exhibit

potential as anticancer agents.

METHODS

Chemical synthesis of 1 and 2

Pyridostatin was synthesized as described17. Pyridostatin-α was synthesized as described in

Supplementary Methods.

Cell culture, reagents and treatments

Detailed information is provided in Supplementary Methods.

Cell growth assays

Cells were plated at equal confluence and either untreated or treated with 2 μM 1
continually for 72 h. Cells from individual plates were trypsinized and counted in a
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Coultercounter (Beckman Coulter, Inc). Graphs represent total cell numbers at each time

interval and error bars represent S.E.M. Data represent three independent experiments.

Protein extracts and western blotting

Whole cell extracts were prepared and analyzed as described in Supplementary Methods.

Immunofluorescence analyses

Cells were grown on poly-L-lysine-treated coverslips. Coverslips were washed twice with

PBS at room temperature (rt). Cells were pre-extracted by incubating coverslips in cold CSK

buffer (10 mM PIPES pH 6.8, 100 NaCl, 300 mM sucrose, 3 mM MgCl2, 1 mM EGTA,

0.5% (v/v) Triton X-100) for 5 min at rt. Cells were washed twice with PBS and fixed with

2% (v/v) formaldehyde (PFA) for 12 min at rt followed by two washes with PBS. For non-

extracted samples, cells were fixed with PFA for 12 min and then treated with 0.2% Triton-

X100 for 10 min at rt. Primary antibodies were incubated for 1 h at rt in PBS with 5% fetal

bovine serum (FBS). Cells were then washed twice with PBS before incubation with Alexa

Fluor-conjugated secondary antibodies (Molecular Probes) in PBS + 5% FBS for 30 min at

rt. Cells were again washed twice with PBS. Coverslips were then mounted on slides in

Vectashield containing DAPI (Vector Laboratories). Cells were imaged with an inverted

FV1000 confocal microscope (Olympus). Primary antibodies used were γH2AX (Upstate),

TRF1 (Abcam) and Cyclin A (Santa Cruz Biotechnology, Inc). EdU staining was performed

using Invitrogen Click-iT Alexa Fluor 594 or 647 imaging kit according to the

manufacturer’s instructions (Invitrogen). EdU was pulsed at 10 μM for 10 min before

incubation with 1 and for another 10 min before harvesting the cells. In cellulo labelling of 2
was performed with a novel protocol adapted for the Invitrogen Click-iT reagents to yield 3.

In a typical experiment, cells were first CSK treated (5 mins), fixed with 2% PFA (12 mins),

incubated with 2 in PBS containing 5% FBS (1 h), and Alexa Fluor 594 was clicked using

Invitrogen Click-iT reagents. For IF analysis of mitotic spreads, MRC5-SV40 cells were

untreated or treated with 2 μM 1 for 24 h in 6 cm dishes. Cells were treated with 0.1 μg/ml

colcemid (Gibco) for 1 h followed by incubation with Chk1/Chk2i for 2 h to abrogate the

G2/M checkpoint. Cells were then processed and analyzed as described in Supplementary

Methods.

Neutral comet assays

MRC5-SV40 cells were analyzed essentially as described48 with detailed information

provided in Supplementary Methods.

FRET-melting assay, CD and NMR spectroscopy

Detailed information is provided in Supplementary Methods.

Chromatin immunoprecipitation (ChIP)

ChIP analyses were performed as previously described48.

ChIP-Sequencing and bioinformatics

ChIPed DNA was amplified using an Illumina ChIP-Seq DNA sample prep kit

(IP-102-1001) according to the manufacturer’s protocol. Sequences were generated using

the Illumina HiSeq 2000 genome analyzer. Resulting 36 bp reads were mapped against the

Human genome (GRCh37) with bwa49. Reads with bwa quality scores > 13 were extended

to the average library length (300bp). Only one representative read per genomic location

(unique reads) was considered. The resulting data was binned to 50 bp regions for display on

the UCSC Genome Browser50. PQS were mapped using QuadParser6 with default settings
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against the GRCh37 release. A bed file was created from this data (source data in

Supplementary Dataset 1) for display on the UCSC Genome Browser50. ChIP-Seq libraries

of γH2AX were analyzed as described in Supplementary Methods.

RNA analysis

MRC5-SV40 or MDA-MB-231 cells were untreated or treated with 2 μM 1 or 100 nM

doxorubicin (Dox) for the indicated times. Total RNA was purified and analyzed by

quantitative Real-Time PCR (qRT-PCR) as described in Supplementary Methods. For qRT-

PCR analysis, all individual samples were analyzed in duplicate and the mean CT (cycle

threshold) values were first normalized to the value of two housekeeping genes, ALAS1 and

B2M, and then to the untreated sample. Values are expressed as the geometric mean of both

ALAS1 and B2M normalized to the untreated sample. Data from three independent

experiments for each time point are graphed and error bars are S.E.M.

Cell migration assays

Cell migration was measured in MDA-MB-231 cells by wound healing assays. Cells were

grown to 80% confluency before being streaked with a sterile pipette tip followed by

addition of new media containing 2 μM 1 or 100 nM doxorubicin. Representative images

were captured 48 hours post-treatment. Cells were counted from an equal area within the

wound for each treatment. Data is normalized to untreated cell samples and the graph

represents 3 independent experiments with error bars representing S.E.M. Identical dishes

for each treatment were trypsinized and counted to determine cell numbers. Cell number and

wound healing data are normalized to untreated cell samples and the graph represents data

collected from 3 independent experiments with error bars representing S.E.M.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pyridostatin-induced DNA damage and checkpoint-dependent cell cycle arrest
(a) Molecular structure of 1; trifluoromethanesulfonate counter anions are omitted for

clarity. (b) 1 inhibited cell proliferation (N=3; error bars represent S.E.M.). (c) 1 caused cell

accumulation in G2; cells were analyzed by FACS with cell count (y-axis) and DNA content

(x-axis) as indicated. (d) 1 activated DDR signalling; western blots were performed with the

indicated antibodies. Full gel images are displayed in Supplementary Fig. 2. (e) γH2AX foci

induced by 1; cells were treated and analyzed by immunofluorescence (IF); dotted white

lines indicate nuclear peripheries. (f) G2/M checkpoint-dependent arrest induced by 1; cells

were analyzed as in Fig. 1c 2h after addition of Chk1/Chk2i. MRC5-SV40 cells were used

throughout all Figures and were either untreated or treated with 2 μM 1 during 24 h unless

otherwise stated. Scale bar, 10 μm.
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Figure 2. Pyridostatin-induced transcription- and replication-dependent DNA damage
(a) 1 activated DNA-PKcs; cells were analyzed as in Fig. 1d. (b) DNA-PKcs inhibition

enhanced γH2AX formation in cells treated with 1 in an ATM-dependent manner; cells

were pre-treated with the indicated inhibitors for 1 h before treatment with 1. Full gel

images are displayed in Supplementary Fig. 4. (c) DNA-PKcs deficient MO59J cells were

hypersensitive to 1; analysis was as in Fig. 1b. (d) DSB induced by 1; neutral comet assays

were done in the presence or absence of 1 and DNA-PKi, tail moments were determined as

described in Methods (N=3; error bars represent S.E.M.). (e) DNA damage in G1, S and G2

phases; cells were treated with 20 μM 1 for 4 h and analyzed as indicated, cell cycle phases

are indicated with white arrows and labels, dotted white lines indicate nuclear peripheries; S

phase cells are positive for EdU and Cyclin A, G2 cells are positive for Cyclin A only, while

G1 cells are negative for EdU and Cyclin A. Scale bar, 20 μm. (f) DNA damage was

prevented by transcription (DRB) and replication (Aph) inhibition; cells were pre-treated

with inhibitors prior to addition of 20 μM 1 for 4 h; white arrows in cell treated with DRB

and 1 indicate G1/G2 cells that are γH2AX-negative; dotted white lines indicate nuclear

peripheries. Scale bar, 20 μm. (g) Quantification of cells in experiment Fig. 2f (N=3; >100

cells scored/condition/replica; error bars represent S.E.M; note that Aph prevents EdU

incorporation).
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Figure 3. Visual analysis of pyridostatin targets
(a) DNA damage signals induced by 1 were mainly non-telomeric; cells were analyzed as in

Fig. 1e; areas within dotted lines denote nuclear DNA. Scale bar, 10 μm; zoomed images

correspond to 4X magnifications of main images. (b) Quantification of experiment in Fig.
3a. N=3; >100 cells scored/condition/replica; error bars represent S.E.M. (c) γH2AX foci

induced by 1 mainly marked non-telomeric sites on mitotic chromosomes; yellow arrows

indicate chromosomes corresponding to the magnified images in the zoom column. Scale

bar, 20 μm; zoomed images correspond to further 8X magnification (d) Zoomed images of

damaged mitotic chromosomes from cells treated with 1 as in (c).
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Figure 4. Pyridostatin and hPif1 targeted overlapping sites in cells
(a) Molecular structure of 2 and synthetic scheme for generating 3 in cells; a single isomer is

shown for clarity, Alexa Fluor 594 is marked in red and newly formed chemical bonds are

marked in blue. (b) 3 formed nuclear foci mainly at non-telomeric sites in MRC5-SV40

cells, fixed with formaldehyde prior to incubation with 2 followed by chemical labelling;

dotted white lines indicate nuclear peripheries; zoomed images correspond to further 4X

magnification. (c) GFP-hPif1α expressing U2OS cells display small nuclear foci of GFP-

hPif1α that co-localizes with 3 in cells fixed with formaldehyde prior to incubation with 2
followed by chemical labelling; dotted white lines indicate nuclear peripheries; zoomed

images correspond to further 5X magnification. Note that cells were first pre-extracted with

CSK buffer as described in Supplementary Methods, then fixed with formaldehyde and

stained with the indicated antibody. Scale bar, 10 μm.
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Figure 5. ChIP-Seq analysis identified genomic targets of pyridostatin
(a) ChIP-Seq (Supplementary Methods) identified γH2AX regions in oncogenes and tumor

suppressors containing PQS clusters; cells were treated with 2 μM 1 during 24h; γH2AX

ChIP-Seq of chromosomal region containing SRC is shown (zoomed view in b);

chromosome locations and transcripts are shown; purple bars represent mapped PQS

(Supplementary Methods). (c) γH2AX-positive oncogenes and tumor suppressors;

transcriptome was plotted; purple-dashed line indicates the median % PQS value; yellow

bars represent genes below median value and blue bars the genes above median value. Note

that all γH2AX-positive genes exhibit higher PQS contents compared to the median value.

(d) 1 down-regulated the mRNAs of genes in which it induces γH2AX. Total RNA was

purified then reversed transcribed and analyzed by quantitative qRT-PCR for the indicated

genes. Expression data for each gene are graphed, with the y-axis indicating expression data

for each gene normalized to the housekeeping genes ALAS1 and B2M, and then normalized

to untreated samples (N=3; error bars represent S.E.M.). Data from untreated, 8 h and 24 h

treated samples are shown for each gene.

Rodriguez et al. Page 17

Nat Chem Biol. Author manuscript; available in PMC 2012 September 05.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Figure 6. Pyridostatin interacted with G-quadruplex motifs in SRC
(a) Sequence of a PQS identified in SRC; guanines able to form G-quartet highlighted in

bold. Below is a CD spectrum of this sequence pre-annealed in potassium-containing buffer;

the molar ellipticity exhibits a positive signal at 265 nm and a negative signal at 240 nm

characteristic of a folded parallel G-quadruplex structure (Supplementary Methods). (b) The

lower panel displays the NMR spectrum of the free sequence pre-annealed in potassium

containing buffer, which exhibits 12 imino proton signals between 11.0 and 12.0 ppm

characteristic of a G-quadruplex structure (Supplementary Methods); red arrows indicate

proton signals characteristic of the top G-quartet; schematic representation of a free parallel

G-quadruplex with loops in black lines and G-quartets in purple. The upper panel displays

the NMR spectrum of the G-quadruplex DNA obtained after addition of 1.1 mole

equivalents of 1, which exhibits a shift up-field of the imino proton signals compared to

untreated sample; schematic representation of 1 (grey) bound to the top G-quartet of the G-

quadruplex motif.
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Figure 7. Pyridostatin targeted the proto-oncogene SRC
(a) Treatment with 1 reduced SRC protein levels; cells were analyzed as in Fig. 1d; cross-

reacting bands and tubulin provide loading controls. Full gel images are displayed in

Supplementary Fig. 16. (b) Quantification of SRC protein levels upon treatment with 1.

SRC quantification from 3 independent experiments was performed using LI-COR Odyssey

infrared imaging (LI-COR Biosciences) as described in Supplementary Methods. Error bars

represent S.E.M. (c) 1 reduced migration of MDA-MB-231 cells. Migration was assessed by

wound healing; dotted red lines denote the edges of the wound area; cells were analyzed 48

h after creating the wound for untreated, 1 (2 μM) and doxorubicin (Dox, 100 nM)

treatments, images were captured at 20X with a light microscope. (d) Quantification of

experiment in Fig. 7c; cells within equal wound areas for each treatment were trypsinized

and counted in duplicate dish for each treatment; data are normalized to untreated samples

and represent 3 independent experiments (error bars = S.E.M.). (e) 1 reduced SRC mRNA

levels in MDA-MB-231 cells. Untreated, and cells treated with 1 (2 μM) and Dox (100 nM)

were taken at 24 h and SRC RNA levels determined as in Fig. 5d. (f) 1 and Dox triggered

DNA damage in MDA-MB-231 cells. Untreated, and cells treated with 1 (2 μM) and Dox

(100 nM) were collected 48 h post-treatment; proteins were analyzed as in Fig. 1d with the

indicated antibodies. Full gel images are displayed in Supplementary Fig. 16.
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