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Abstract 

The United States Food and Drug Administration (US FDA) has always been a forerunner in drug evaluation and 
supervision. Over the past 31 years, 1050 drugs (excluding vaccines, cell-based therapies, and gene therapy products) 
have been approved as new molecular entities (NMEs) or biologics license applications (BLAs). A total of 228 of these 
1050 drugs were identified as cancer therapeutics or cancer-related drugs, and 120 of them were classified as thera-
peutic drugs for solid tumors according to their initial indications. These drugs have evolved from small molecules 
with broad-spectrum antitumor properties in the early stage to monoclonal antibodies (mAbs) and antibody‒drug 
conjugates (ADCs) with a more precise targeting effect during the most recent decade. These drugs have extended 
indications for other malignancies, constituting a cancer treatment system for monotherapy or combined therapy. 
However, the available targets are still mainly limited to receptor tyrosine kinases (RTKs), restricting the development 
of antitumor drugs. In this review, these 120 drugs are summarized and classified according to the initial indications, 
characteristics, or functions. Additionally, RTK-targeted therapies and immune checkpoint-based immunotherapies 
are also discussed. Our analysis of existing challenges and potential opportunities in drug development may advance 
solid tumor treatment in the future.
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Background
Cancer is the first or second leading cause of premature 
death in all countries except Africa, second only to car-
diovascular disease [1]. An estimated 19.3 million new 
cancer cases and almost 10 million cancer-related deaths 
occurred in 2020 worldwide [2]. Solid tumors represent 
more than 90% of human cancers and cancer-related 

mortalities [2]. For unresectable locally advanced or 
metastatic solid tumors, therapeutic drugs have always 
been the mainstream strategy. Profound changes have 
occurred in therapeutic drugs for solid tumors during 
the past 31 years. Both the number of solid tumor drugs 
and their proportion among all FDA-approved drugs 
increased in this period, especially in the most recent 
decade (Fig.  1a, b). More importantly, cytotoxic drugs 
have evolved into drugs with more precise targeting 
effects, including small-molecule targeted drugs, mono-
clonal antibodies (mAbs), and antibody–drug conju-
gates (ADCs), and the proportion of biological drugs has 
increased accordingly (Fig. 1c).
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During the past three decades, the FDA granted 120 
approvals for novel solid tumor therapeutic drugs (Addi-
tional file 1: Table S1–S3), and these drugs treat the most 
high-incidence solid tumors, including lung cancer, 
breast cancer, prostate cancer, gastrointestinal cancers, 

etc. These drugs constitute the mainstay of the modern 
cancer treatment system for solid tumors and hematolog-
ical malignancies. Despite extraordinary achievements, 
the effective application of these drugs is still limited 
by great challenges, such as drug resistance [3], adverse 
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effects [4], and even hyperprogressive disease with pro-
grammed death receptor-1 (PD1)/programmed death-
ligand 1 (PDL1)-based immunotherapy [5].

This review describes the properties of 120 therapeutic 
drugs for solid tumors, summarizes the main biological 
mechanisms of their antitumor activity, and analyzes the 
target distribution of these drugs. Additionally, we elabo-
rate on the challenges and opportunities in developing 
solid tumor therapeutic drugs and provide constructive 
suggestions and helpful solutions for the further study of 
solid tumor treatment.

FDA‑approved therapeutic drugs for lung cancers
Lung cancer accounted for 11.4% of cancer cases and 
18.0% of cancer-related deaths worldwide in 2020. 
Although the incidence rate of lung cancer was surpassed 
by that of breast cancer in 2020, its mortality rate still far 
exceeded that of any other type of cancer [2]. Over the 
past 31 years, the FDA has granted approvals for 22 novel 
therapeutic drugs (including 20 small molecules and two 
mAbs) for lung cancer.

Non‑small cell lung cancer
Non-small cell lung cancer (NSCLC) includes adenocar-
cinoma, squamous cell carcinoma (SCC), and large-cell 
carcinoma (LCC) and accounts for approximately 85% 
of all lung cancer cases [6]. The majority of diagnosed 
NSCLC cases present as locally advanced or metastatic 
diseases [7]. Twenty of the 22 therapeutic drugs are 
approved for NSCLC as the initial indication, and most 
of them are classified as epidermal growth factor receptor 
(EGFR) and anaplastic lymphoma kinase (ALK) inhibi-
tors. Therefore, EGFR mutation and ALK rearrangement 
tests are recommended for NSCLC before EGFR- or 
ALK-directed therapies [8, 9] (Fig. 2a and Table 1).

Vinorelbine is recommended as an ingredient of sys-
temic therapy regimens for neoadjuvant and adjuvant 
therapy of NSCLC. As a derivative of vinca alkaloid, 
it binds to tubulin in a complex with the RB3 protein 
stathmin-like domain (RB3-SLD), heavily overlapping the 
binding site of vinblastine [10, 11], thereby destabilizing 
α/β-tubulin heterodimers and leading to mitotic arrest 
and cell death [12] (Fig. 2b).

EGFR mutations occur in approximately 50% of Asian 
patients and 11 ~ 16% of patients in European countries 
with NSCLC [13–15]. Exon 19 deletion and exon 21 
L858R point mutation make up the majority (> 90%) of 
all EGFR mutation-positive NSCLC [16, 17], which fre-
quently leads to lung tumorigenesis and sensitivity to 
EGFR-targeted therapies [18]. The FDA has approved six 
EGFR tyrosine kinase inhibitors (TKIs) which have been 
the first-line standard of care for patients with NSCLC 
harboring EGFR mutations [19]. These TKIs include the 

first-generation reversible EGFR inhibitors (gefitinib [20] 
and erlotinib [21]), the second-generation irreversible 
EGFR inhibitors (afatinib [22] and dacomitinib [23]), and 
the third-generation irreversible EGFR inhibitor (osimer-
tinib [24]). First-generation EGFR inhibitors exert their 
clinical efficacy by targeting the ATP-binding pocket of 
the kinase domain [20, 21]. However, despite the initial 
response, patients almost invariably develop primary 
resistance to gefitinib and erlotinib and relapse after 
several months [25, 26]. The most common resistance 
mechanism is associated with the T790M ‘gatekeeper’ 
mutation at exon 20 of EGFR [27], which blocks reversi-
ble ATP competitive inhibitors from binding and, in turn, 
increases ATP binding [28]. Second-generation irreversi-
ble EGFR TKIs are highly active against the T790M point 
mutation of EGFR [26, 29] and exert their effect by irre-
versibly alkylating Cys797 and forming a covalent bond 
with Cys797 at the ATP-binding pocket [30], thus avoid-
ing the increased ATP affinity conferred by the T790M 
gatekeeper mutation. However, EGFR T790M shares a 
similar ATP affinity with wild-type (WT)-EGFR, which 
limits the ability to achieve plasma concentrations suffi-
cient to inhibit  EGFRT790M and results in skin rash and 
diarrhea in patients, thereby failing to overcome T790M-
mediated resistance [31]. The third-generation irrevers-
ible EGFR inhibitor osimertinib shares a similar binding 
mechanism with second-generation irreversible EGFR 
inhibitors but exhibits lower activity against  EGFRWT, 
thereby overcoming the T790M-mediated TKI resist-
ance [32]. As expected, osimertinib significantly prolongs 
median progression-free survival (PFS) by almost nine 
months compared with first-generation EGFR inhibi-
tors [24]. However, acquired EGFRC797S point mutation-
induced impairment in the covalent binding between 
 EGFRCys797 and osimertinib and acquired MET ampli-
fication induced activation of the bypass pathway [33] 
lead to resistance to osimertinib [34]. Additionally, neci-
tumumab is a fully human anti-EGFR IgG1κ that binds 
specifically to EGFR domain III, which overlaps with the 
EGF binding site, thereby preventing EGF ligands from 
binding to EGFR [35]. Thus, necitumumab was approved 
for first-line treatment (in combination with gemcitabine 
and cisplatin) for patients with metastatic squamous 
NSCLC [36] (Fig.  2c). Notably, necitumumab binds to 
most cetuximab- and panitumumab-resistant EGFR vari-
ants, such as  EGFRS440L and  EGFRS468R [37].

EGFR exon 20 insertion (EGFRex20ins) is clustered 
between codons 762–775, such as A767_V769dup 
(V769_D770insASV) and S768_D770dup (D770_N771in-
sSVD) [38, 39]; it represents approximately 6 ~ 12% of 
EGFR mutations in NSCLC cases [40–43] and frequently 
leads to the constitutive activation of EGFR [38]. Most 
EGFRex20ins driver mutations in NSCLC are insensitive 
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to first- and second-generation EGFR inhibitors [44–46], 
except osimertinib, which exhibits partial activity against 
some EGFRex20ins driver mutations in preclinical studies 
[39, 45, 47]. However, the clinical trials of osimertinib are 
inadequate and yield contradictory results [48, 49].

Amivantamab is a bispecific IgG1 that targets both 
EGFR and MET produced from the two purified biva-
lent parental antibodies by controlled Fab-arm exchange, 
each containing single matched point mutations in the 
CH3 domains (K409R and F405L) [50, 51]. The amivan-
tamab EGFR H-arm shares an epitope identical to that 
of zalutumumab and binds to EGFR domain III, which 
overlaps with the EGF binding site, while the MET arm 
of amivantamab binds to the MET Sema region, which 

overlaps with the hepatocyte growth factor (HGF) bind-
ing site [52]. Amivantamab exhibits antitumor efficiency 
through the Fc-dependent antibody-dependent cellular 
cytotoxicity (ADCC) mechanism, Fc-independent EGFR/
MET inactivation/degradation and blockade of down-
stream signaling transduction, and increased interferon-γ 
(IFNγ) secretion [44, 53, 54]. It yielded robust and dura-
ble responses with tolerable safety in patients with 
EGFRex20ins mutations who progressed on or after plati-
num-based chemotherapy [55].

Designing a novel EGFR inhibitor is another strategy 
to address EGFRex20ins mutations. However, the confor-
mation of EGFRex20ins mutants largely resembles that 
of EGFRWT proteins because there are no amino acid 

Table 1 FDA-approved therapeutic drugs for lung cancers

ALK Anaplastic lymphoma kinase; EGFR Epidermal growth factor receptor; HER2/4 Human epidermal growth factor receptor 2/4; IGF1R Insulin-like growth factor-1 
receptor; INSR Insulin receptor; NSCLC Non-small-cell lung cancer; NTRK Neurotrophic tyrosine receptor kinase; O Orphan; P Priority; RET Rearranged during 
transfection; ROS1 ROS proto-oncogene 1; S Standard; SCLC Small-cell lung cancer; TKI Tyrosine kinase inhibitor; TRKs Tropomyosin receptor kinases

Drug (brand name) Sponsor Properties Indication Approval date Review

Vinorelbine tartrate
(Navelbine)

Pierre Fabre Microtubule-destabilizing 
agent

NSCLC 12/23/1994 P

Gefitinib (Iressa) AstraZeneca EGFR inhibitor NSCLC 05/05/2003 P

Erlotinib HCl (Tarceva) OSI Pharmas EGFR inhibitor NSCLC 11/18/2004 P

Afatinib dimaleate (Gilotrif ) Boehringer Ingelheim EGFR, HER2, and HER4 inhibitor Metastatic NSCLC with EGFR 
exon 19 deletion or exon 21 
(L858R) mutation

07/12/2013 P, O

Osimertinib mesylate (Tagrisso) AstraZeneca EGFR inhibitor NSCLC with EGFRT790M muta-
tions

11/13/2015 P, O

Dacomitinib (Vizimpro) Pfizer EGFR inhibitor EGFR-mutated NSCLC 09/27/2018 P, O

Necitumumab (Portrazza) Eli Lilly EGFR-directed mAb NSCLC 11/24/2015 S, O

Amivantamab (Rybrevant) Janssen Biotech EGFR- and MET-bispecific 
antibody

EGFR exon 20-mutated NSCLC 05/21/2021 P

Mobocertinib succinate (Exkiv-
ity)

Takeda EGFR inhibitor EGFR exon 20-mutated NSCLC 09/15/2021 P, O

Crizotinib (Xalkori) Merck & Co Multitarget TKI (ALK, ROS1, and 
MET)

ALK-positive advanced or meta-
static NSCLC

08/26/2011 P, O

Ceritinib (Zykadia) Novartis Multitarget TKI (ALK, IGF1R, 
INSR, and ROS1)

ALK-positive metastatic NSCLC 04/29/2014 P, O

Alectinib HCl (Alecensa) Roche ALK inhibitor NSCLC 12/11/2015 P, O

Brigatinib (Alunbrig) Takeda Multitarget TKI (ALK, EGFR, 
IGF1R, FLT3, and ROS1)

ALK-positive NSCLC 04/28/2017 P, O

Lorlatinib (Lorbrena) Pfizer Multitarget TKI (ALK and ROS1) ALK-positive NSCLC 11/02/2018 P, O

Capmatinib HCl (Tabrecta) Novartis MET inhibitor NSCLC 05/06/2020 P, O

Tepotinib HCl (Tepmetko) Emd Serono MET inhibitor NSCLC 02/03/2021 P, O

Selpercatinib (Retevmo) Loxo Oncology RET inhibitor RET fusion-positive NSCLC and 
thyroid cancer

05/08/2020 P, O

Pralsetinib (Gavreto) Genentech RET inhibitor RET fusion-positive NSCLC 09/04/2020 P, O

Entrectinib (Rozlytrek) Genentech Multitarget TKI (TRKs, ROS1, 
and ALK)

NTRK fusion-positive solid 
tumors and ROS1-positive 
NSCLC

08/15/2019 P, O

Sotorasib (Lumakras) Amgen KRASG12C inhibitor KRASG12C-mutated NSCLC 05/28/2021 P, O

Topotecan HCl (Hycamtin) Novartis DNA topoisomerases inhibitor Relapsed SCLC 05/28/1996 P

Lurbinectedin (Zepzelca) Jazz DNA alkylating drug SCLC 06/15/2020 P, O
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substitutions in the binding site [39, 56]. Mobocertinib 
is an irreversible EGFR inhibitor that is structurally simi-
lar to osimertinib. It targets potential structural nuances 
between the EGFRex20ins and EGFRWT proteins in the 
vicinity of the α C-helix to gain selectivity by binding to 
the portions of the binding site that are not exploited 
by osimertinib [39]. Mobocertinib demonstrates greater 
activity against EGFRex20ins mutants than  EGFRWT and 
more potent efficacy than erlotinib, gefitinib, afatinib, 
or osimertinib against EGFRex20ins mutants, except 
EGFRC797S-containing triple mutants [39, 57]. In subse-
quent clinical trials, mobocertinib exhibited potent activ-
ity with manageable toxicity in patients with advanced 
previously treated EGFRex20ins NSCLC [58, 59] (Fig. 2d).

Both aberrant ALK expression caused by ALK rear-
rangements [60] and ALK amplification are oncogenic 
driving factors of NSCLC [61]; for example, gene fusion 
of EMAP-like protein 4 (EML4) and ALK induced by 
ALK rearrangements encodes a cytoplasmic chimeric 
protein with constitutive kinase activity, which accounts 
for 3 ~ 13% of NSCLC [62, 63]. The FDA has approved 
five ALK inhibitors, which have been the first-line stand-
ard of care for patients with NSCLC harboring ALK 
rearrangements [17], including the first-generation ALK 
inhibitor (crizotinib [64, 65]), the second-generation ALK 
inhibitors (ceritinib [66], alectinib [67], and brigatinib 
[68]), and the third-generation ALK inhibitor (lorlatinib 
[69]). As with EGFR inhibitors, acquired drug resistance 
inevitably occurs in most patients after treatment with 
ALK inhibitors [70, 71]. The mechanisms of ALK inhibi-
tor resistance also involve on-target mechanisms (e.g., 
ALK mutations and amplification) and off-target mech-
anisms and are even more complicated [72]. Approxi-
mately 20 ~ 36% of crizotinib-resistant NSCLCs harbor 
ALK mutations, including 1151Tins, L1152R, C1156Y, 
I1171T/N/S, L1196M, G1202R, S1206C/Y, E1210K, 
and G1269A mutations [17, 70–74]. Regarding second-
generation ALK inhibitors, ALK mutations account for 
more than half of the instances of resistance [72]. Spe-
cifically, 1151Tins, L1152P, C1156Y, F1174C/L/V, and 
G1202R mutations confer resistance to ceritinib [17, 72, 
74], while I1171T/N/S, V1180L, L1196M, and G1202R 
mutations confer resistance to alectinib [72]. In addition, 
G1202R, D1203N, S1206Y/C, and E1210K mutations are 
associated with resistance to brigatinib [17, 72]. Thus, 
the G1202R mutation is the most common mechanism 
of first- and second-generation ALK inhibitor resistance. 
Fortunately, G1202R mutation-induced resistance can 
be overcome by the third-generation ALK inhibitor lor-
latinib [75], which is active against the EML4-ALKG1202R 
mutation [76]. Intriguingly, acquired C1156Y and L1198F 
mutations after lorlatinib treatment resensitize the tumor 
to crizotinib [69]. However, the off-target mechanisms of 

ALK inhibitor resistance are still under exploration [77] 
(Fig. 2e).

Mesenchymal–epithelial transition gene (MET) exon 
14 skipping mutations and MET amplification occur 
in approximately 3 ~ 4% [78–80] and 1 ~ 6% [81–83] of 
patients with NSCLC, respectively [84]. MET exon 14 
skipping mutations produce a truncated MET with a 
missing regulatory domain that disrupts ubiquitin-medi-
ated degradation, resulting in increased MET levels, sus-
tained MET activation, and oncogenesis [85]. Thus, MET 
exon 14 skipping mutations and MET amplification act 
as oncogenic-driven factors and confer EGFR inhibitor 
resistance to various cancers, including NSCLC, mak-
ing it a promising therapeutic target [86]. Capmatinib is 
a highly selective, reversible type Ib MET inhibitor that 
targets MET and its mutants (M1250T and Y1235D) [87, 
88]. It is more potent than other MET inhibitors (approx-
imately 30 and five times more potent than crizotinib and 
tepotinib in vitro, respectively) [89]. Capmatinib directly 
binds to the phenol moiety of the  METY1230 residue, while 
 METD1228 forms a salt bridge with  METK1110 to support 
the Y1230–capmatinib interaction, similar to crizotinib 
(Type Ia MET inhibitor) [88]. Capmatinib occupies the 
ATP-binding site of MET, blocks MET phosphorylation, 
and inhibits MET-mediated downstream signaling acti-
vation [88]. Capmatinib exhibits substantial antitumor 
activity in patients with advanced NSCLC harboring 
MET exon 14 skipping mutations and MET amplification 
[84, 85]. Additionally, capmatinib reverses MET-depend-
ent EGFR inhibitor resistance and blocks the signaling 
pathway activation mediated by EGFR and HER3 [87]. 
Significant resistance was observed in cells and clinical 
NSCLC cases bearing METD1228 and METY1230 muta-
tions due to the structural model of the MET–capmatinib 
interaction [88, 90]. Tepotinib is another selective, revers-
ible type Ib MET inhibitor for a similar clinical setting to 
capmatinib. Tepotinib shares a similar mechanism with 
capmatinib in blocking MET [91]. Thus, they achieved 
equivalent clinical outcomes and adverse events [84, 92, 
93]. In vitro, tepotinib overlaps the most MET mutation-
induced resistance with capmatinib, especially METY1230 
mutations, suggesting that tepotinib may not overcome 
capmatinib resistance [90]. Compared with standard 
chemotherapy, tepotinib plus gefitinib exhibits improved 
antitumor activity in patients with EGFR-mutant NSCLC 
with MET overexpression or MET amplification [94] 
(Fig. 2f ).

The rearranged during transfection (RET) gene rear-
rangements occur in approximately 1 ~ 2% of patients 
with NSCLC [95], which is frequently associated with 
brain metastases [96]. Two selective RET inhibitors 
(selpercatinib and pralsetinib) were approved as first-
line treatments for patients with NSCLC harboring RET 
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rearrangements [97, 98]. Selpercatinib and pralsetinib 
are designed to penetrate the central nervous system 
(CNS), thereby achieving poor CNS concentrations suf-
ficient to maintain antitumor activity [99]. Both selper-
catinib and pralsetinib exhibit activity against acquired 
RETV804M/L gatekeeper resistance mutations [100, 101]. 
However, RETG810C/S solvent front mutations (on-target) 
and MET amplification (off-target) were observed in 
selpercatinib- and pralsetinib-resistant cases [102–105]. 
Selpercatinib and pralsetinib bind to the RET kinase in 
a similar mode that occupies both front and back pock-
ets in the active site clefts without passing through the 
gate between V804 and K758 into the BP-I pocket [106]. 
This novel binding mode avoids gatekeeper V804M/L 
mutation-induced resistance but fails to overcome RET 
mutations in G810 and V738 [106]. New-generation RET 
inhibitors are needed for this clinical dilemma. Fortu-
nately, selpercatinib plus crizotinib therapy may be an 
available strategy to overcome selpercatinib resistance 
in RET fusion-positive NSCLC with MET amplification 
[104] (Fig. 2g).

ROS proto-oncogene 1 (ROS1) rearrangements occur 
in approximately 1% of patients with NSCLC [107, 108]. 
Crizotinib has been the first-line therapy for patients 
with metastatic ROS1 fusion-positive NSCLC since 2016 
[108, 109]. However, 47% of patients with ROS1-positive 
NSCLC develop brain metastases upon crizotinib treat-
ment because of crizotinib’s poor CNS penetration due 
to P-glycoprotein-mediated efflux [110–112]. In addi-
tion, the ROS1G2032R mutation is frequently observed 
in NSCLC with acquired resistance to crizotinib [113]. 
Entrectinib is a multitarget TKI that targets ROS1, tro-
pomyosin receptor kinases (TRKs) (encoded by neuro-
trophic tyrosine receptor kinase (NTRK) genes), and ALK 
[114]. Compared with crizotinib, entrectinib is a weak 
substrate of P-glycoprotein that is 30 times more potent 
against ROS1, thereby overcoming P-glycoprotein-medi-
ated efflux and achieving high CNS concentrations [112, 
114, 115]. However, ROS1G2032R and ROS1F2004C/I muta-
tions are also found in NSCLC with acquired resistance 
to entrectinib [116]. In addition, more mechanisms of 
entrectinib resistance are being identified; these include 
NTRK1G595R and NTRK1G667C mutations in colorec-
tal cancer [117], NTRK3G623R mutation in mammary 
analog secretory carcinoma (MASC) [118], and insulin-
like growth factor-1 receptor (IGF1R) activation and 
increased P75 expression in neuroblastoma [119]. These 
findings present new clinical challenges (Fig. 2h).

KRAS, one of the most frequently mutated oncogenes 
in various cancers, was once considered an undrugga-
ble protein due to its small size, relatively smooth sur-
face, and rapid and tight binding properties to GTP in 
its active state [120]. KRASG12C is an oncogenic driver 

mutation that occurs in approximately 13% of patients 
with NSCLC [121]. Sotorasib is the first and only 
 KRASG12C inhibitor that binds to  KRASG12C via the 
cysteine residue mutated from the glycine residue, lock-
ing KRAS in an inactive state [120, 122, 123]. Sotorasib 
provides durable clinical benefits in previously treated 
patients with NSCLC, making it a milestone in can-
cer therapy [121]. Nevertheless, acquired resistance to 
sotorasib inevitably occurs via both on- and off-target 
mechanisms in most patients [124, 125]. G12C/R68S and 
G12C/Y96C/A double mutants and the G12D mutant 
of KRAS confer on-target resistance to sotorasib [124]. 
MET amplification is detected in sotorasib-resistant sub-
clonal NSCLC cells with KRASG12C mutation in  vitro. 
Thus, sotorasib plus crizotinib therapy may be a potential 
strategy to combat off-target resistance [125] (Fig. 2i).

Small‑cell lung cancer
Small-cell lung cancer (SCLC) is a high-grade neuroendo-
crine carcinoma with an abysmal prognosis that accounts 
for approximately 15% of all lung cancer cases [126]. 
However, only two therapeutic drugs for SCLC have 
been approved by the FDA over the past 31 years. Both 
topotecan and lurbinectedin are approved as second-line 
treatments for patients with recurrent metastatic SCLC. 
Topotecan and irinotecan are topoisomerase I (TOP1) 
inhibitors and belong to alkaloid camptothecin deriva-
tives [127]. Topotecan targets TOP1 cleavage complexes 
(TOP1CCs) by forming a network of hydrogen bonds 
with Asn722, Arg364, and Asp533 residues of TOP1 at 
the interface of TOP1CCs [128], thereby forming a physi-
cal impediment and blocking transcription elongation 
[129]. Lurbinectedin is a DNA minor groove covalent 
binder that binds to selected DNA triplets harboring cen-
tral guanine (e.g., AGC, CGG, AGG, and TGG), resulting 
in the formation of a covalent adduct and inhibition of 
oncogenic transcription [130, 131] (Fig. 2j).

In general, genetic alterations that predict response 
to treatment account for approximately 30% of patients 
with NSCLC, including the mutations and/or rearrange-
ments of EGFR, MET, BRAFV600E, ALK, ROS1, RET, 
and NTRK [109]. These approved therapeutic drugs, 
especially the various TKIs, provide significant clinical 
benefits for patients with lung cancer and other malig-
nancies. However, overcoming the multiple mutations 
that induced TKI resistance and the off-target effects 
that induced disease progression remains challenging. As 
to SCLC, although the comprehensive genomic profiles 
have been elucidated, the majority of potential targets are 
undruggable. Seeking efficacious therapeutic targets and 
novel therapeutic strategies are still the focus of current 
research on this most deadly human cancer.
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FDA‑approved therapeutic drugs for breast cancers
Breast cancer is common in females (males only 
account for approximately 1% of breast cancer patients 
[132]). Breast cancer alone accounted for 24.5% of 
cancer cases and 15.5% of cancer-related deaths in 
women and surpassed lung cancer as one of the most 
commonly diagnosed cancers in 2020 [2]. Over the 
past 31  years, the FDA granted approvals for 24 new 
therapeutic drugs (including 18 small molecules, three 
mAbs, and three ADCs) for breast cancer, more than 
any other type of solid tumor [133–135] (Fig.  3a and 
Table 2).

Cytotoxic drugs for breast cancer
Cytotoxic drugs are still widely used in clinical prac-
tice, especially in systemic chemotherapy for recur-
rent unresectable (local or regional) human epidermal 
growth factor receptor 2 (HER2)-negative breast cancer 
and other malignancies [133]. Among these cytotoxic 
drugs, docetaxel represents one of the most notable 
microtubule-stabilizing agents. Docetaxel shares the 
same taxane binding site of β-tubulin with its analog 
paclitaxel [136] but shows more potent antitumor 
activity [137]. It exerts its activity by binding to free 
β-tubulin and inducing microtubule polymerization, 
resulting in cell cycle arrest and death [138, 139]. Ixa-
bepilone is a β-lactam analog of epothilone B and is 
also classified as a microtubule-stabilizing agent. It 
binds tubulin in a similar but not identical manner to 
that of paclitaxel and exhibits potent cytotoxic activity 
in paclitaxel-resistant cells harboring P-glycoprotein 
expression or mutant tubulin [140]. In contrast, eribu-
lin is a microtubule-destabilizing agent that terminates 
protofilament elongation by binding predominantly 
to the vinca domain on β-tubulin, resulting in micro-
tubule catastrophes [141] (Fig.  3b). Capecitabine, a 
prodrug of 5-fluorouracil (5-FU), is first metabolized 
to 5′-deoxy-5-fluorouridine (5′DFUR) by carboxylester-
ase and cytidine deaminase in the liver. 5′DFUR is con-
verted to 5-FU by thymidine phosphorylase (TP) and/
or uridine phosphorylase (UP). Given the significantly 
higher concentrations of both TP and UP in tumor 
tissues than in normal tissues [142–144], the forma-
tion of 5-FU and the subsequent production of active 
metabolites, including fluorodeoxyuridine monophos-
phate (FdUMP), fluorouridine triphosphate (FUTP), 
and fluorodeoxyuridine triphosphate (FdUTP), prefer-
entially occur in tumor tissues [145]. These metabolites 

finally lead to cell injury by attenuating thymidylate 
synthase activity (by FdUMP) and incorporating 
fraudulent bases into RNA (via FUTP) and DNA (via 
FdUTP) [146] (Fig.  3c). Epirubicin is a 4′-epimer of 
anthracycline antibiotic doxorubicin that exhibits at 
least equipotent cytotoxicity but is less myelotoxic 
than doxorubicin [147]. It binds to topoisomerase IIα 
(TOP2A), which interferes with helicase activity and 
TOP2A-DNA cleavable complex formation, resulting 
in irreversible DNA double-stranded breaks (DSBs) and 
gene transcription inhibition [148, 149] (Fig. 3d).

ER‑ or HR‑positive breast cancer
Hormone receptor (HR)-positive breast cancers, includ-
ing estrogen receptor (ER)- and/or progesterone receptor 
(PR)-positive breast cancers, account for more than 70% 
of all breast cancer cases [150, 151] and lead to approxi-
mately 50% of breast cancer-induced deaths [152]. Selec-
tive ER modulators (SERMs), such as tamoxifen (brand 
name: Nolvadex, approved on Nov. 30, 1977, by the 
FDA), have been the standard of care for patients with 
ER-positive breast cancer for over 40  years. At present, 
aromatase inhibitors/inactivators, SERMs, selective ER 
degrader/down-regulator (SERD), and cyclin-dependent 
kinases 4/6 (CDK4/6) inhibitors are the first-line stand-
ard of care for patients with HR-positive and HER2-nega-
tive breast cancers [153].

In premenopausal women, estrogens are mainly synthe-
sized in the ovaries. In postmenopausal women, however, 
estrogens are synthesized in adipose tissue, breast, and 
skin, and this process is mediated by aromatase [154]. As 
a member of the P450 superfamily, aromatase (encoded 
by CYP19) is expressed at extragonadal sites, such as adi-
pose tissue, breast, vascular tissue, bone, brain, and skin, 
in postmenopausal women [154, 155]. It converts andros-
tenedione and testosterone released from ovaries and 
adrenal glands to estrone (E1) and E2, respectively [156]. 
Based on this principle, three third-generation aromatase 
inhibitors have been developed and approved for post-
menopausal women with ER-positive breast cancer [153]. 
The reversible nonsteroidal aromatase inhibitors anas-
trozole and letrozole are triazole derivatives that exert 
clinical efficacy by binding to the heme prosthetic group 
of aromatase [157, 158]. In contrast, the irreversible aro-
matase inactivator exemestane binds to the substrate-
binding pocket of aromatase, leading to its degradation 
[159–161]. Among the third-generation aromatase inhib-
itors, letrozole exhibits the most potent inhibitory effect 
on aromatase enzyme activity in vivo [159, 162, 163]. It is 

(See figure on next page.)
Fig. 3 FDA-approved therapeutic drugs for breast cancers. a Distribution of therapeutic drugs for breast cancers during the past 31 years (adapted 
from [863]). b Microtubule inhibitors. c Antimetabolite. d DNA topoisomerase inhibitor. e Aromatase inhibitors. f ER inhibitors. g CDK4/6 inhibitors. h 
HER2-directed mAbs. i HER2-directed ADCs. j HER2 inhibitors. k PARP inhibitor. l PI3Kα inhibitor. m Trop-2-directed ADC
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Fig. 3 (See legend on previous page.)
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consistently 10 ~ 30 times more potent than anastrozole 
in inhibiting intracellular aromatase [164]. Nevertheless, 
conflicting results exist in various independent studies on 
clinical efficacy [165–167]. These contradictory results 
are potentially correlated with the mutation status of 
GATA binding protein 3 (GATA3) [168] or the saturation 
effect (all third-generation aromatase inhibitors repro-
ducibly cause ~ 98% aromatase inhibition in humans) 
[161] (Fig. 3e).

Toremifene is a SERM structurally similar to tamox-
ifen, differing only by a single chlorine atom [169]. Like 
tamoxifen, toremifene exerts pharmacological activity 
by competitively inhibiting estradiol (E2) binding to the 
ER. It thus cannot be used as second-line therapy after 
tamoxifen failure due to similar pharmacological mecha-
nisms [170]. In contrast, fulvestrant is a full ER antago-
nist approved as a SERD that overcomes the agonistic 
effects of tamoxifen and toremifene [171, 172]. However, 

Table 2 FDA-approved therapeutic drugs for breast cancers

BRCA : Breast cancer susceptibility gene; CDK4/6 Cyclin-dependent kinases 4/6; ER Estrogen receptor; HER2/4 Human epidermal growth factor receptor 2/4; HR 
Hormone receptor; O Orphan; P Priority; PARP Poly (ADP-ribose) polymerase; PI3Kα Phosphatidylinositol 3-kinase α; S Standard; TKI Tyrosine kinase inhibitor

Drug (brand name) Sponsor Properties Indication Approval date Review

Docetaxel (Taxotere) Sanofi Microtubule-stabilizing agent Locally advanced or metastatic 
breast cancer

05/14/1996 P

Ixabepilone (Ixempra) R-Pharm US Microtubule-stabilizing agent Locally advanced or metastatic 
breast cancer

10/16/2007 P

Eribulin mesylate (Halaven) Eisai Microtubule-destabilizing agent Locally advanced or metastatic 
breast cancer

11/15/2010 P

Capecitabine (Xeloda) Roche A prodrug of 5-FU Metastatic breast cancer 04/30/1998 P

Epirubicin HCl (Ellence) Pfizer DNA topoisomerase II inhibitor Primary breast cancer with axillary 
node tumor involvement

09/15/1999 P, O

Anastrozole (Arimidex) Ani pharms Aromatase inhibitor Advanced breast cancer in post-
menopausal women

12/27/1995 S

Letrozole (Femara) Novartis Aromatase inhibitor Advanced breast cancer 07/25/1997 S

Exemestane (Aromasin) Pfizer Aromatase inhibitor ER-positive early breast cancer 10/21/1999 S, O

Toremifene citrate (Fareston) Kyowa Kirin ER inhibitor ER-positive metastatic breast 
cancer

05/29/1997 S, O

Fulvestrant (Faslodex) AstraZeneca ER antagonist HR-positive metastatic breast 
cancer

04/25/2002 S

Palbociclib (Ibrance) Pfizer CDK4/6 inhibitor HER2-negative and HR-positive 
advanced or metastatic breast 
cancer

02/03/2015 P

Ribociclib succinate (Kisqali) Novartis CDK4/6 inhibitor HR-positive, HER2-negative breast 
cancer

03/13/2017 P

Abemaciclib (Verzenio) Eli Lilly CDK4/6 inhibitor HR-positive, HER2-negative breast 
cancer

09/28/2017 P

Trastuzumab (Herceptin) Genentech HER2-directed mAb HER2-positive breast cancer 09/25/1998 P

Pertuzumab (Perjeta) Genentech HER2-directed mAb HER2-positive metastatic breast 
cancer

06/08/2012 P

Margetuximab (Margenza) MacroGenics HER2-directed mAb HER2-positive breast cancer 12/16/2020 S

Ado-trastuzumab emtansine 
(Kadcyla)

Genentech HER2-directed ADC HER2-positive metastatic breast 
cancer

02/22/2013 P

Trastuzumab deruxtecan (Enhertu) Daiichi Sankyo HER2-directed ADC HER2-positive breast cancer 12/20/2019 P

Lapatinib ditosylate (Tykerb) Novartis HER2 and EGFR inhibitor Advanced or metastatic breast 
cancer

03/13/2007 P

Neratinib maleate (Nerlynx) Puma Biotech EGFR, HER2, and HER4 inhibitor HER2-overexpressed breast cancer 07/17/2017 S

Tucatinib (Tukysa) Seagen HER2 inhibitor HER2-positive breast cancer 04/17/2020 P, O

Talazoparib tosylate (Talzenna) Pfizer PARP inhibitor BRCA -mutated HER2-negative 
breast cancer

10/16/2018 P

Alpelisib (Piqray) Novartis PI3Kα inhibitor PIK3CA-altered, HR-positive, and 
HER2-negative breast cancer

05/24/2019 P

Sacituzumab govitecan (Trodelvy) Immunomedics Trop-2-directed ADC Triple-negative breast cancer 
(TNBC)

04/22/2020 P
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because of its poor physicochemical features, fulvestrant 
must be administered monthly intramuscular injections, 
limiting its clinical application [173]. Mechanistically, it 
has recently been proven to exert its properties by mark-
edly impairing the intranuclear mobility of the ER [152] 
(Fig. 3f ).

The formation of the cyclin D–cyclin-dependent 
kinases 4/6 (CDK4/6) complex (also known as G1-CDK) 
and CDK4/6-induced retinoblastoma (RB) phospho-
rylation are core events of the G1-S transition in the cell 
cycle [174]. Inhibition of CDK4/6 induces RB hypophos-
phorylation and reactivation, resulting in stable cell 
cycle arrest in the G1 phase [175]. Three CDK4/6 inhibi-
tors (palbociclib, ribociclib, and abemaciclib) have been 
approved for the first-line therapy of patients with HR-
positive and HER2-negative breast cancers in combina-
tion with nonsteroidal aromatase inhibitors [176–179] 
or SERD (fulvestrant) [180, 181] (Fig. 3g), thereby delay-
ing or overcoming endocrine resistance [182]. Although 
three CDK4/6 inhibitors share multiple similarities, 
unique characteristics exist in each of them [182]. Pal-
bociclib primarily targets CDK4 monomers instead of 
endogenous CDK4 trimer complexes or CDK6 but pro-
motes the formation of inactive CDK2 complexes [183]. 
Palbociclib and ribociclib are more selective for CDK4/6 
than abemaciclib, probably due to the greater lipophilic-
ity and larger binding site side chains than abemaciclib, 
which may reduce the probability of interaction with off-
target kinase ATP-binding pockets [184, 185]. Ribociclib 
is less potent than palbociclib and abemaciclib in inhib-
iting RB phosphorylation [184]. In contrast, abemaciclib 
binds to the ATP cleft more readily and forms a hydro-
gen bond with the conserved catalytic residue (Lys43) of 
CDKs, which decreases its selectivity [184, 185].

HER2‑positive breast cancer
HER2-positive breast cancer (including some luminal B 
subtype cancers) accounts for 13 ~ 15% of all breast can-
cer cases [186] and is associated with aggressive and met-
astatic behavior [187]. As the first mAb to be approved to 
treat solid tumors, trastuzumab is a landmark in tailored 
therapies [133]. Trastuzumab binds to the extracellular 
region of HER2 on the C-terminal portion of domain IV 
and exerts its function via several mechanisms, includ-
ing ADCC, inhibition of HER2 shedding, and disruption 
of ligand-independent downstream cascades [188–191]. 
However, trastuzumab is insufficient to block ligand-
induced HER2/HER3 dimerization [191]. In contrast, 
pertuzumab binds to the extracellular domain II of HER2 
and blocks both ligand-dependent and ligand-independ-
ent HER2/HER3 dimerization and activation [191–193]. 
The addition of pertuzumab to the combination of trastu-
zumab plus docetaxel significantly improves median PFS, 

and overall survival (OS) compared to that with a per-
tuzumab-free regimen [194, 195]. Margetuximab, as the 
latest approved HER2 mAb, improves the ADCC effect in 
HER2-low tumors with enhanced targeting activity and 
overcomes trastuzumab resistance [196] (Fig. 3h). Com-
pared with trastuzumab plus chemotherapy, margetuxi-
mab plus chemotherapy significantly improves PFS in 
HER2-positive patients who have received two or more 
prior anti-HER2 therapies [197].

Trastuzumab significantly improves the clinical out-
comes of patients with HER2-positive breast cancer 
[198]. In the metastatic setting, however, resistance to 
trastuzumab and disease progression occurs in most 
patients treated with trastuzumab within one year [199, 
200]. The general mechanisms of trastuzumab resistance 
refer to obstacles for trastuzumab–HER2 interaction, 
reactivation of HER2 downstream signaling pathways, 
initiation of bypass signaling pathways, and failure to 
trigger immune-mediated mechanisms [201]. For this 
reason, two HER2-based ADCs (ado-trastuzumab 
emtansine and trastuzumab deruxtecan) were intro-
duced (Fig. 3i). Ado-trastuzumab emtansine is composed 
of trastuzumab and DM1, linked with a non-cleavable 
thioether linker, N-succinimidyl-4-(N-maleimidomethyl) 
cyclohexane-1-carboxylate (SMCC, designated MCC 
after conjugation) [202, 203]. DM1 is a derivative of may-
tansine isolated from various Maytenus species [204] 
that exerts antitumor activity by destabilizing micro-
tubules [205]. Ado-trastuzumab emtansine retains all 
the antitumor efficiency of trastuzumab and is active 
against lapatinib-resistant breast cancer cells and lapat-
inib-insensitive tumors [203]. Ado-trastuzumab emtan-
sine shows significant clinical advantages over lapatinib 
plus capecitabine [206] and trastuzumab plus docetaxel 
[207]. Despite these therapeutic advances, most patients 
treated with ado-trastuzumab emtansine eventually 
experience disease progression [208, 209]. The resist-
ance mechanisms of ado-trastuzumab emtansine par-
tially overlap with those of trastuzumab but also include 
P-glycoprotein overexpression and receptor-mediated 
endocytosis defects [210, 211]. Trastuzumab deruxtecan 
is composed of trastuzumab and TOP1 inhibitor payload 
(Dxd, an exatecan derivative) linked with a protease-
cleavable maleimide tetrapeptide linker [212]. Trastu-
zumab deruxtecan exhibits durable antitumor activity in 
patients previously treated with ado-trastuzumab emtan-
sine [213]. Recently, the phase 3 DESTINY-Breast03 trial 
(NCT03529110) demonstrated that trastuzumab derux-
tecan exhibits superiority over trastuzumab emtansine 
in patients previously treated with the trastuzumab plus 
taxane regimen [214].

Moreover, three HER2 inhibitors (lapatinib, neratinib, 
and tucatinib) were approved as third-line regimens for 
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the treatment of HER2-positive breast cancer in com-
bination with trastuzumab and/or capecitabine [215] 
(Fig.  3j). In contrast to HER2-directed mAbs, HER2 
inhibitors bind to the cytoplasmic tyrosine kinase 
domain instead of the extracellular region of HER2. 
Lapatinib is a potent dual inhibitor of both EGFR and 
HER2 [216, 217] that exerts antitumor activity by revers-
ibly binding to the cytoplasmic ATP-binding sites of 
EGFR and HER2, leading to the impediment of tyrosine 
kinase phosphorylation, which dampens or abrogates 
the activation of HER2-mediated downstream pathways 
[218]. Intriguingly, lapatinib also reverses P-glycoprotein- 
and ABCG2-mediated multidrug resistance (MDR) by 
directly attenuating their transport activity [219]. How-
ever, HER2T798M/I gatekeeper mutations and bypass sign-
aling pathway initiation inevitably confer resistance to 
lapatinib [220–222]. Neratinib is an irreversible inhibitor 
of EGFR, HER2, and HER4 that binds to the conserved 
Cys773 of EGFR and Cys805 of HER2, which forms 
a covalent bond with the HER family at the cleft of the 
ATP-binding site [223, 224]. Neratinib exhibited substan-
tial clinical activity in patients with and without prior 
trastuzumab treatment [225], while the neratinib plus 
paclitaxel regimen yielded higher complete pathological 
response rates than the trastuzumab plus paclitaxel regi-
men in patients with HER2-positive, HR-negative breast 
cancer [226]. However, the HER2T798I gatekeeper muta-
tion also confers resistance to neratinib [227], suggest-
ing that neratinib may not overcome lapatinib resistance, 
although it displays nanomolar antiproliferative activity 
against this mutant in  vitro [228]. Tucatinib is another 
reversible HER2 inhibitor that shares a similar binding 
mechanism with lapatinib but exhibits the highest selec-
tivity to HER2 among these HER2 inhibitors [229]. Com-
pared to placebo, tucatinib’s addition to the trastuzumab 
plus capecitabine regimen exhibited acceptable toxicity 
[230], improved survival outcomes, improved objective 
response rate (ORR), and reduced the risk of death [231, 
232]. Among these HER2 inhibitors, neratinib exhibits 
the most potent activity against HER2 kinase, followed by 
tucatinib and lapatinib [228].

BRCA‑mutated breast cancer
Germline mutations of BRCA1 and/or BRCA2 are 
observed in more than 5% of all breast cancer cases and 
approximately 13% of basal-like breast cancer (BLBC) 
cases [233]. BRCA1/2 mutations frequently indicate 
a deficiency in repairing DNA DSBs by homologous 
recombination [234] and predispose patients to breast, 
ovarian, and other cancers [235–237]. Poly (ADP-ribose) 
polymerases (PARPs) are essential for DNA single-strand 
break (SSB) repair by base excision repair (BER) [238]. 
The N-terminal zinc finger motifs of PARPs bind to 

damaged DNA, which activates its catalytic C-terminal 
to hydrolyze nicotinamide adenine dinucleotide  (NAD+) 
and produce ADP-ribose units, thereby yielding linear 
and branched poly (ADP-ribose) (PAR) for the reseal-
ing of DNA SSBs during BER [239, 240]. PARP inhibitors 
are designed to inhibit auto-PARylation by competitively 
binding to PARPs at the  NAD+ binding site [241, 242], 
leading to cell death in BRCA1/2-mutated cancer cells 
through a synthetic lethality mechanism [243]. Breast 
cancers harboring germline mutations in either BRCA1 
or BRCA2 are highly sensitive to PARP inhibitors [244, 
245], and thus, inhibiting PARPs has become a therapeu-
tic strategy for targeting BRCA1/2-mutated cancer cells 
[246]. Talazoparib is the fourth (also the latest) PARP 
inhibitor approved by the FDA (after olaparib, ruca-
parib, and niraparib) [247]. Through hydrogen-bonding 
and π-stacking interactions, including those mediated 
by active site water molecules, talazoparib is anchored 
to the nicotinamide-binding pocket [248], leading to a 
noticeable displacement of the bound ligand within the 
 NAD+ site [249]. Compared with olaparib, rucaparib, 
and niraparib  (IC50 values 1.94, 1.98, and 3.8 nM, respec-
tively, for the inhibition of PARP1), talazoparib is three 
times more potent, with an  IC50 of 0.57  nM [250, 251]. 
Therefore, talazoparib exhibits superiority over olaparib 
or rucaparib in trapping PARP–DNA at the site of DNA 
damage [239]. Talazoparib monotherapy demonstrates 
a tolerable safety profile and preliminary clinical activ-
ity in patients with sporadic cancers harboring germline 
BRCA1/2 mutations [252]. It also exhibits a significant 
benefit over standard chemotherapy (capecitabine, eribu-
lin, gemcitabine, or vinorelbine) among patients with 
germline BRCA1/2-mutated breast cancer [253] (Fig. 3k).

PIK3CA‑altered breast cancer
Phosphatidylinositol 3-kinase catalytic subunit A 
(PIK3CA) gene mutation is observed in approximately 
40% of HR-positive and HER2-negative breast cancers 
[233, 254, 255]. PIK3CA mutation induces phosphati-
dylinositol 3-kinase (PI3K) activation, leading to cell 
proliferation and apoptosis evasion [233]. Alpelisib is a 
PI3Kα inhibitor that binds to PI3Kα and forms multiple 
hydrogen bonds with PI3Kα at the ATP-binding pocket, 
thereby inhibiting the enzymatic activity of PI3Kα and 
PI3Kα-mediated downstream pathways [256, 257]. Alpe-
lisib demonstrates tolerable safety and favorable clinical 
efficiency in patients with PIK3CA-altered, HR-positive, 
HER2-negative breast cancer in combination with fulves-
trant [255, 258–260] or letrozole [261] (Fig. 3l).

Triple‑negative breast cancer
Triple-negative breast cancer (TNBC) is defined as 
breast cancer lacking expression of ER, PR, and HER2, 
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which accounts for 10 ~ 15% of all breast cancer cases 
[186]. It represents the subtype with the worst prognos-
tic outcome among breast cancers [262]. Before 2019, 
single-agent taxanes or anthracyclines were the first-line 
regimens for unresectable locally advanced or metastatic 
TNBC [263]. However, the median OS remains at approx-
imately 18 months or even less [264, 265]. On March 8, 
2019, the FDA-approved atezolizumab plus albumin-
bound nab-paclitaxel (brand name: Abraxane, approved 
on January 7, 2005) as a first-line regimen for unresect-
able locally advanced or metastatic TNBC with PDL1 
expression [265, 266]. Trophoblastic cell surface anti-
gen-2 (Trop-2, also known as EGP-1, encoded by TAC-
STD2) is a transmembrane glycoprotein overexpressed 
in 83% of breast cancer cases [267] and 85% of TNBCs 
[268]. It is considered a key driver of human cancers, 
making it an attractive target for TNBC treatment [267]. 
Sacituzumab govitecan-hziy is a Trop-2-directed ADC 
composed of sacituzumab and SN-38 covalently linked 
with a hydrolyzable CL2A linker [269, 270]. Safituzumab 
is a humanized Trop-2-directed mAb developed from 
murine RS7-3G11 [271, 272], while SN-38 is an active 
metabolite of irinotecan, a TOP1 inhibitor [273]. Saci-
tuzumab govitecan-hziy exhibits acceptable toxicity and 
preliminary clinical activity in previously treated patients 
with refractory metastatic solid tumors [274], espe-
cially with metastatic TNBC [275, 276]. Compared with 
standard chemotherapy, it demonstrates durable objec-
tive responses and significant superiorities in heavily 
treated patients with metastatic TNBC [277]. However, 
the clinical benefits of sacituzumab govitecan-hziy are 
highly dependent on Trop-2 expression; definitive con-
clusions are difficult to draw in the low Trop-2 expression 
subgroup [278]. In addition, canonical TOP1E418K resist-
ance mutation, TOP1p.-122 fs (frameshift mutation), and 
TACSTD2T256R missense mutation confer resistance to 
sacituzumab govitecan-hziy [268]. These findings pose 
new challenges regarding sacituzumab govitecan-hziy 
application (Fig. 3m).

Breast cancer drugs are frequently at the forefront of 
advances in cancer treatment and diagnosis, especially in 
CDK4/6 inhibitors, HER2 inhibitors, and HER2-directed 
mAbs and ADCs [133]. Meanwhile, the progress of breast 
cancer drugs provides an essential basis for other malig-
nancies in drug research and development. Cytotoxic 
drugs and selective ER antagonists dominated the early 
decades until 2010. However, these two types of medi-
cines have been overshadowed by targeted drugs, which 
have accounted for the majority of the newly approved 
breast cancer drugs since 2010. Besides, the approved 
drugs mainly focused on targeting HER2 in recent years, 
limiting the breakthrough in drug development, espe-
cially for TNBCs.

FDA‑approved therapeutic drugs for gynecologic cancers
Gynecologic cancers include cervical, ovarian, uterine, 
vaginal, vulvar, and fallopian tube cancers, accounting 
for 15.2% of all malignancies among females and 15.3% 
of cancer-related deaths worldwide in 2020 [2]. However, 
only six therapeutic drugs have been approved by the 
FDA for gynecologic cancers as initial indications since 
1991 (Fig. 4a and Table 3).

Ovarian cancer
Ovarian cancer is the third most common gynecologic 
cancer, accounting for 3.4% of all female malignancies 
and 4.7% of cancer-related deaths in females worldwide 
in 2020 [2]. FDA has granted four new therapeutic drug 
approvals for ovarian cancer. Paclitaxel is undoubtedly a 
milestone in the history of cancer drugs. It was isolated 
by Wall and Wani from the bark of Taxus brevifolia in 
1971 [279] (Fig. 4b). Currently, paclitaxel (including nab-
paclitaxel albumin-bound) and its analog docetaxel are 
widely used to treat various malignancies [280]. It cova-
lently binds to β-tubulin at amino acid residues 1–31 
[281], 217–233 [282], and Arg282 [283] and enhances 
microtubule polymerization, thereby suppressing micro-
tubule dynamics and blocking cell mitosis [284].

Germline mutations of BRCA1 and/or BRCA /2 are 
present in approximately 14.1% of all ovarian cancer 
cases [285]. Based on the same principle described in 
the breast cancer section above, three PARP inhibitors 
(olaparib [286], rucaparib [287], and niraparib [250]) 
were approved as maintenance therapies for BRCA1/2-
mutated ovarian cancer [288–290] (Fig.  4c). These 
PARP inhibitors are designed to competitively bind to 
the  NAD+ binding site of the PARP enzyme [237, 238]. 
Platinum and PARP inhibitor sensitivity commonly coex-
ist in BRCA1/2-mutated ovarian cancer due to homolo-
gous recombination deficiency (HRD) [291]; however, 
nucleotide excision repair (NER) alterations confer 
enhanced platinum sensitivity but not PARP inhibi-
tor sensitivity [292]. There is no significant efficacy dif-
ference between these PARP inhibitors as maintenance 
therapies in patients with BRCA -mutated, platinum-
sensitive relapsed ovarian cancer [293]. Additionally, 
PARP inhibitors yield similar response and survival rates 
in patients harboring either somatic or germline BRCA  
mutations [294]. Of note, olaparib represents the most 
cost-effective [295] PARP inhibitor, and the olaparib plus 
bevacizumab regimen achieved a dramatic improve-
ment in PFS in ovarian cancer patients with BRCA  
mutations (37.2  months) and without BRCA  mutations 
(28.1 months) compared to that with placebo plus beva-
cizumab (17.7 and 16.6 months, respectively) [296]. Thus, 
the olaparib plus bevacizumab regimen was approved 
for first‐line maintenance treatment of HRD-positive 
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advanced ovarian cancer [297]. Clinical trials of PARP 
inhibitors (rucaparib and niraparib) combined with beva-
cizumab for ovarian cancer maintenance therapy are still 
ongoing [298, 299].

Endometrial cancer
Endometrial cancer is the second most common 
gynecologic cancer and originates in the inner 

epithelial lining of the uterus [300]. It accounted for 
4.5% of all malignancies among females and 2.2% of 
cancer-related deaths in females worldwide in 2020 
[2]. Mismatch repair deficiency (dMMR) is a conse-
quence of germline mutations or epigenetic silencing 
in MMR genes, resulting in the accumulation of errors 
introduced during DNA replication [301]. Therefore, 
dMMR leads to genome-wide instability, especially in 
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Table 3 FDA-approved therapeutic drugs for gynecologic cancers

O Orphan; P Priority; PARP Poly (ADP-ribose) polymerase; PD1 Programmed death receptor-1; S Standard; TF Tissue factor

Drug (brand name) Sponsor Properties Indication Approval date Review

Paclitaxel (Taxol) HQ Spclt Microtubule-stabilizing agent Advanced ovarian cancer 12/29/1992 P, O

Olaparib (Lynparza) AstraZeneca PARP inhibitor Advanced BRCA -mutated ovarian cancer 12/19/2014 P, O

Rucaparib camsylate (Rubraca) Clovis Oncology PARP inhibitor BRCA -positive ovarian cancer 12/19/2016 P, O

Niraparib tosylate (Zejula) GlaxoSmithKline PARP inhibitor Epithelial ovarian, fallopian tube, or 
primary peritoneal cancer

03/27/2017 P, O

Dostarlimab (Jemperli) GlaxoSmithKline PD1-directed mAb Endometrial cancer 04/22/2021 P

Tisotumab vedotin (Tivdak) Seagen TF-targeted ADC Cervical cancer 09/20/2021 P, O
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regions of simple repetitive DNA sequences (known 
as microsatellite instability—high (MSI-H)), resulting 
in tumorigenesis [302]. MSI-H/dMMR is observed in 
18 ~ 28% of endometrial cancer cases [303, 304] and 
confers sensitivity to PD1 blockade [304]. A higher 
number of  CD3+ and  CD8+ TILs and increased PD1 
expression (but not PDL1) are observed in the hyper-
mutated subgroups (POLE mutations or MSI-H/
dMMR) of endometrial cancer than in the hypomu-
tated microsatellite-stable subgroup [305], explaining 
why MSI-H/dMMR-positive endometrial cancer is 
sensitive to PD1 blockade. Dostarlimab is the fourth 
(also the latest) FDA-approved PD1-directed mAb 
after pembrolizumab, nivolumab, and cemiplimab 
[306]. It exhibits a high affinity for both human and 
cynomolgus monkey PD1, preventing PDL1 and PDL2 
from interacting with PD1 [307]. Dostarlimab dem-
onstrates a manageable safety profile equivalent to 
that of other PD1-directed mAbs and robust clinical 
activity in previously treated patients with recurrent 
or advanced MSI-H/dMMR or MMR proficient/stable 
(MMRp/MSS) endometrial cancer [308, 309] (Fig. 4d). 
Of note, dostarlimab achieved a complete response in 
100% of patients with dMMR-positive locally advanced 
rectal cancer [310].

Cervical cancer
Cervical cancer is the most common gynecologic can-
cer, accounting for 6.6% of all malignancies among 
females and 7.8% of cancer-related deaths in females 
worldwide in 2020 [2]. Cervical cancer is strongly linked 
with human-papillomavirus (HPV) infection [311], 
especially HPV-16 and HPV-18 subtypes [312]. Tissue 
factor (TF, also known as thromboplastin, factor III, or 
CD142) is overexpressed in various cancers [313], espe-
cially cervical cancer [314]. TF promotes tumor pro-
gression by initiating the coagulation pathway with its 
procoagulant activity and protease-activated receptor 
2 (PAR-2)-mediated signaling, making it an attractive 
target [315]. Tisotumab vedotin is a TF-directed ADC 
composed of tisotumab and microtubule-destabilizing 
agent monomethyl auristatin E (MMAE), linked with 
protease-cleavable maleimidocaproyl valine-citrulline 
p-aminobenzyl alcohol carbamate (MC-vc-PAB) linker 
[316]. Tisotumab is a TF-directed mAb generated by 
immunization of HuMAb mice [316], while vedotin 
refers to MMAE plus the MC-vc-PAB linker. Tisotumab 
vedotin demonstrates a manageable safety profile and 
durable antitumor activity in previously treated (e.g., 
bevacizumab plus doublet chemotherapy) patients 
with recurrent or metastatic cervical cancer [317, 318] 
(Fig. 4e).

FDA‑approved therapeutic drugs for gastrointestinal 
cancers
Gastrointestinal cancers include esophageal, gastric, 
colorectal, pancreatic, gallbladder, and liver cancer 
(including cholangiocarcinoma), accounting for 26.4% 
of cancer cases and 36.3% of cancer-related mortalities 
worldwide in 2020 [2]. Over the past 31 years, the FDA 
granted approvals for 17 new therapeutic drugs (includ-
ing 12 small molecules, four mAbs, and one recombinant 
fusion protein) for gastrointestinal cancers (Fig.  5a and 
Table 4).

Esophageal cancer
Esophageal cancer accounted for 3.1% of cancer cases 
and 5.5% of cancer-related mortalities worldwide in 2020 
[2]. Porfimer sodium was approved by the FDA as a pho-
tosensitizer for photodynamic therapy of obstructing 
esophageal cancer [319] (Fig. 5b). In the presence of oxy-
gen, this approach utilizes light to activate the porfimer 
sodium, which is relatively selectively concentrated in 
cancer cells, leading to cell death [320]. However, photo-
dynamic therapy with porfimer sodium as an endoscopic 
therapy for esophageal cancer is losing popularity due to 
the potential for long-term complications [321]. Fluo-
ropyrimidine plus platinum-based chemotherapies are 
frequently used as first-line therapy for advanced esopha-
geal cancer [322]. Compared to chemotherapy alone, 
pembrolizumab plus 5-FU and cisplatin (chemotherapy) 
significantly improve clinical outcomes in the first-line 
treatment of advanced esophageal cancer [323].

Gastric cancer
Gastric cancer accounted for 5.6% of cancer cases and 
7.7% of cancer-related mortalities worldwide in 2020 [2]. 
Vascular endothelial growth factor receptor 2 (VEGFR2), 
the principal receptor of VEGF-induced angiogenesis, is 
expressed in most solid tumors, including gastric cancer 
[324]. Ramucirumab is a VEGFR2-directed mAb [325] 
that binds selectively to the g-like extracellular domain 
III of VEGFR2, which prevents VEGF ligands from bind-
ing to VEGFR2 [326], thereby inhibiting VEGF ligand-
induced cell proliferation, migration, and angiogenesis 
[327] (Fig. 5c). Ramucirumab monotherapy exhibits sig-
nificant survival benefits in patients with advanced gas-
tric or gastroesophageal junction adenocarcinoma who 
have disease progression after first-line chemotherapy 
compared to placebo [328]. The ramucirumab plus pacli-
taxel regimen also demonstrated superiority over placebo 
plus paclitaxel therapy in the same clinical setting; thus, 
ramucirumab plus paclitaxel could be regarded as a new 
second-line treatment for advanced gastric cancer [329].
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Gastrointestinal stromal tumors
Gastrointestinal stromal tumors (GISTs) constitute the 
largest subset of mesenchymal tumors that arise from 
precursors of the connective tissue cells of the gastro-
intestinal tract [330, 331]. They occur predominantly 
(60%) in the stomach, with 30% of cases in the small 
intestine and 10% of cases in other sites of the gastroin-
testinal tract; 10 ~ 30% are malignant and exhibit intra-
abdominal spread or liver metastases [332]. RTKs, such 
as VEGFR2, platelet-derived growth factor receptor α/β 
(PDGFRα/β), and KIT, are frequently overexpressed 
or mutated in GISTs, leading to constitutive activation 
of these kinases [333, 334]. Approximately 75 ~ 80% 
of GISTs harbor KIT mutations, and 5 ~ 8% of GISTs 
harbor PDGFRA mutations [334]. Therefore, the FDA-
approved three multitarget TKIs for GIST treatment 
(Fig. 5d).

Imatinib (Additional file 1: Table S1, page 13; Table S2, 
page 44) is still the first-line treatment for advanced 
GISTs [335, 336]. However, approximately 50% of 
patients develop resistance within two years [336, 337]. 
Sunitinib is a potent inhibitor of multiple RTKs, includ-
ing PDGFRα/β, VEGFR2, and KIT [338], and has been 
approved as second-line therapy for imatinib-resistant 
GISTs [339, 340]. The ATP-binding-pocket mutants 
 KITV654A,  KITT670I, and PDGFRαD842V are the most 
common in imatinib-resistant GISTs, whereas certain 
mutant-induced resistance can be overcome by sunitinib, 
except PDGFRαD842V [337, 340, 341]. Given the failures 
in overcoming the PDGFRAD842V-induced resistance, 
avapritinib was approved as a first-line regimen for GISTs 
harboring PDGFRA exon 18 (including D842V) mutation 
[342]. Avapritinib is a potent TKI that targets KIT exon 
17 (including D816V) and PDGFRA exon 18 (including 

Table 4 FDA-approved therapeutic drugs for gastrointestinal cancers

EGFR Epidermal growth factor receptor; FGFR1-3 Fibroblast growth factor receptor-1–3; GEP-NET Gastroenteropancreatic neuroendocrine tumor; GIST Gastrointestinal 
stromal tumor; O Orphan; P Priority; PDGFRα/β Platelet-derived growth factor receptor α/β; PlGF Placenta growth factor; RCC  Renal cell carcinoma; RET Rearranged 
during transfection; S Standard; VEGF Vascular endothelial growth factor; VEGFR Vascular endothelial growth factor receptor

Drug (brand name) Sponsor Properties Indication Approval date Review

Porfimer sodium (Photofrin) Pinnacle Biolgs A photosensitizer used for photo-
dynamic therapy

Obstructing esophageal cancer 12/27/1995 P, O

Ramucirumab (Cyramza) Eli Lilly VEGFR2-directed mAb Gastric cancer 04/21/2014 P, O

Sunitinib malate (Sutent) CPPI CV Multitarget TKI (VEGFRs, 
PDGFRα/β, CSF1R, KIT, and FLT3)

Imatinib-resistant GIST and 
advanced RCC 

01/26/2006 P

Avapritinib (Ayvakit) Blueprint PDGFRα, PDGFRα mutants, and 
KIT inhibitor

GIST with PDGFRA exon 18 muta-
tions

01/09/2020 P, O

Ripretinib (Qinlock) Deciphera PDGFRα, PDGFRα mutants, and 
KIT inhibitor

Advanced GIST 05/15/2020 P, O

Lutetium Lu-177 dotatate 
(Lutathera)

AAA USA Somatostatin receptor-targeted 
radiopharmaceutical

GEP-NETs 01/26/2018 P, O

Pemigatinib (Pemazyre) Incyte FGFR1-3 inhibitor Advanced cholangiocarcinoma 
with FGFR2 fusions/rearrange-
ments

04/17/2020 P, O

Infigratinib phosphate (Truseltiq) Helsinn Hlthcare FGFR1-3 inhibitor Advanced cholangiocarcinoma 
with FGFR2 fusions/rearrange-
ments

05/28/2021 P, O

Gemcitabine HCl (Gemzar) Eli Lilly DNA synthesis inhibitor Locally advanced or metastatic 
pancreatic cancer

05/15/1996 P

Irinotecan HCl (Camptosar) Pfizer DNA topoisomerase I inhibitor Metastatic colorectal cancer 06/14/1996 P

Oxaliplatin (Eloxatin) Sanofi Organoplatinum alkylating agent Colorectal cancer (in combina-
tion with 5-FU and leucovorin)

08/09/2002 P

Cetuximab (Erbitux) ImClone EGFR-directed mAb Colorectal cancer 02/12/2004 N/A

Panitumumab (Vectibix) Amgen EGFR-directed mAb Colorectal cancer 09/27/2006 N/A

Bevacizumab (Avastin) Genentech VEGF-A-directed mAb Colorectal cancer 02/26/2004 O

Ziv-aflibercept (Zaltrap) Sanofi Soluble receptor decoy that binds 
VEGF-A, VEGF-B, and PlGF

Metastatic colorectal cancer 08/03/2012 N/A

Regorafenib (Stivarga) Bayer Multitarget TKI (RET, VEGFRs, KIT, 
PDGFRα/β, FGFR1/2, RAF1, BRAF, 
and  BRAFV600E)

Metastatic colorectal cancer 09/27/2012 P

Tipiracil HCl; Trifluridine (Lonsurf ) Taiho Thymidine phosphorylase inhibi-
tor plus a nucleoside metabolic 
inhibitor

Colorectal cancer 09/22/2015 S
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D842V) mutations. In contrast, imatinib, sunitinib, and 
regorafenib exhibit weak potency in blocking mutation-
induced constitutive kinase activity [343, 344]. Given the 
heterogeneity of KIT and PDGFRA mutants in GISTs, 
broader spectrum drugs are needed to overcome the 
multiple mutations of KIT and PDGFRA, as well as other 
RTKs. Ripretinib was designed to overcome the drug 
resistance of GISTs harboring broad KIT and PDGFRA 
mutations [345]. As a ‘switch control’ kinase inhibitor, 
ripretinib forces the activation loop of KIT or PDGFRα 
into an inactive conformation through a switch control 
mechanism that prevents switches from adopting a type I 
active state and stabilizes switches in type II inactive state 
[345, 346]. Therefore, the FDA-approved ripretinib for 
the fourth-line treatment of patients with advanced GIST 
who have received prior treatment with three or more 
TKIs [345]. Notably, the common PDGFRαD842V mutant 
is sensitive to avapritinib and crenolanib but resistant 
to ripretinib, and secondary resistance mutations after 
imatinib or avapritinib treatment, such as the triple 
mutant PDGFRαD842V/V658A/G652E, can be overcome by the 
heat shock protein 90 (HSP90) inhibitor tanespimycin 
[347].

Gastroenteropancreatic neuroendocrine tumors
Gastroenteropancreatic neuroendocrine tumors (GEP-
NETs) account for more than 60% of NETs that arise 
from neuroendocrine cells of the digestive tract [348]. 
Regarding prevalence, GEP-NETs have been the second 
most common gastrointestinal cancer [349]. Somatosta-
tin receptors (SSTRs) are G-protein-coupled receptors 
frequently expressed in GEP-NETs [350]. Somatostatin 
is the ligand of SSTRs that inhibits the release of pitui-
tary and gastrointestinal hormones [351]. Octreotide 
(brand name: Sandostatin, approved by the FDA on Oct. 
21, 1988), a synthetic octapeptide (D-Phe-c[Cys-Phe-
D-Trp-Lys-Thr-Cys]-Thr-ol), is a somatostatin analog 
with long-acting pharmacologic properties mimick-
ing natural somatostatin [352]. Therefore, it has been 
approved for metastatic carcinoid and vasoactive intes-
tinal peptide-secreting tumors [353]. While it does not 
affect tumor progression, it can improve symptoms. 
On the other hand, Lutetium-177 (177Lu) is a medium-
energy β- and low-energy γ-emitting radionuclide with 
a maximal tissue penetration of 2 mm [354] and a half-
life of 160  h [355], allowing detection by scintigraphy 
and subsequent dosimetry. Combining the properties of 
177Lu and octreotate (differs from octreotide only in that 
the C-terminal threoninol is replaced with threonine 
but exhibits a higher affinity for SSTR2 than octreotide 
[356]),  [177Lu-DOTA0,Tyr3]-octreotate (Lutetium Lu-177 
dotatate) was approved by the FDA for peptide receptor 

radionuclide therapy (PRRT) of SSTR-positive advanced 
GEP-NETs [349] (Fig. 5e).

Cholangiocarcinoma
Hepatocellular carcinoma (HCC, comprising 75% ~ 85% 
of liver cancer cases) and intrahepatic cholangiocarci-
noma (ICC, comprising 10 ~ 15% of liver cancer cases) 
are the most frequent types of primary liver cancer, which 
accounted for 4.7% of cancer cases and 8.3% of cancer-
related mortalities worldwide in 2020 [2]. Compared to 
HCC, ICC has a poorer prognosis in terms of both mOS 
(HCC 71.7 months vs. ICC 21.5 months) and disease-free 
survival (DFS) (HCC 68.2 months vs. ICC 15.5 months) 
[357]. Genomic alterations (including mutation, fusion, 
and rearrangement) that activate fibroblast growth fac-
tor receptor 2 (FGFR2) are almost exclusively found in 
patients with ICC, making it a promising therapeutic tar-
get [358, 359].

Pemigatinib is a potent, selective inhibitor of FGFR1-3 
that binds the ATP-binding pocket of FGFR at the hinge 
region, thereby inhibiting FGFR-mediated cell prolifera-
tion, differentiation, and angiogenesis [360, 361]. Pemi-
gatinib exhibits a manageable safety profile and durable 
antitumor activity in previously treated patients with 
cholangiocarcinoma harboring FGFR2 fusions/rear-
rangements [362]. A phase 3 FIGHT-302 clinical trial 
of first-line pemigatinib vs. gemcitabine plus cisplatin 
for advanced cholangiocarcinoma harboring FGFR2 
fusions/rearrangements is still ongoing [363]. Simi-
lar to all other TKIs, acquired resistance mutations in 
FGFR2 (N549K/H, E565A, L617V, K641R, and K659M) 
are observed in patients with progressive disease and 
may confer resistance to pemigatinib [359]. Infigratinib 
is another FGFR1-3 inhibitor [364] that binds to FGFR 
at a hinge region, similar to pemigatinib [365]. It shows 
manageable toxicity and meaningful clinical activity 
against chemotherapy-refractory cholangiocarcinoma 
FGFR2 fusions/rearrangements [366, 367]. Strikingly, 5 
of 6 FGFR2 mutations observed in infigratinib-resistant 
patients completely overlapped with the five FGFR2 
mutations observed in pemigatinib-resistant cases, 
except for the FGFR2V564F gatekeeper resistance muta-
tion, which exclusively exists in infigratinib-resistant 
patients [359, 368, 369]. Thus, pemigatinib may theoreti-
cally overcome FGFR2V564F mutation-induced resistance 
to infigratinib (Fig. 5f ).

Pancreatic cancer
Pancreatic cancer has the highest mortality-to-incidence 
ratio (1.808) among all malignancies, accounting for 2.6% 
of cancer cases and 4.7% of cancer-related mortalities 
worldwide in 2020 [2]. Although genomic and micro-
environment alterations of pancreatic cancer have been 
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elucidated [370, 371], most alterations (e.g., KRAS and 
TP53 mutations) are not druggable. Given the lack of 
effective targets, systemic chemotherapy is still the first-
line regimen. Gemcitabine is an analog of deoxycytidine 
that acts as a DNA synthesis inhibitor. It is phosphoryl-
ated by deoxycytidine kinase to form its active products 
(including gemcitabine diphosphate and gemcitabine 
triphosphate), which are incorporated into the DNA, 
leading to the inhibition of the DNA synthesis process 
[372] (Fig.  5g). Gemcitabine exhibits significant supe-
riority over 5-FU in patients with advanced pancreatic 
cancer [373]. Currently, systemic chemotherapy com-
binations, including FOLFIRINOX (5-FU, leucovorin, 
irinotecan, and oxaliplatin) [374] and gemcitabine plus 
nab-paclitaxel [375], have become the first-line treatment 
for patients with advanced pancreatic cancer [376]. There 
was no significant difference in the treatment efficacy 
between the FOLFIRINOX and gemcitabine plus nab-
paclitaxel regimens [377].

Colorectal cancer
Colorectal cancer accounted for 9.8% of cancer cases 
and 9.2% of cancer-related mortalities worldwide in 
2020 [2]. The FDA-approved eight therapeutic drugs in 
the past 31  years (Fig.  5h–n). Similar to topotecan, iri-
notecan is also a TOP1 inhibitor (Fig.  5h). However, 
compared to topotecan, irinotecan is a prodrug. It is 
hydrolyzed by uridine diphosphate glucuronosyltrans-
ferase 1A1 (UGT1A1) to its active metabolite SN-38 by 
carboxylesterases, which are abundant in plasma, liver, 
and cancer cells [273, 378, 379]. A study indicated that 
SN-38 is 1000 times more potent than irinotecan in 
inducing DNA SSBs [378]. Thus, SN-38 was adopted as 
a cytotoxic agent in a Trop-2-directed ADC. Oxaliplatin 
is a third-generation platinum-based drug that impairs 
normal DNA functions by generating mono-adducts 
and DNA crosslinks, similar to the first- (cisplatin) and 
second-generation (carboplatin) platinum drugs [380] 
(Fig.  5i). In contrast to cisplatin and carboplatin, oxali-
platin has a unique indication for colorectal cancer, as 
it facilitates organic cation transporter (OCT)-mediated 
uptake [381]. In addition, oxaliplatin shows different drug 
resistance mechanisms from cisplatin and carboplatin. 
Specifically, dMMR and replicative bypass increases that 
confer cisplatin resistance do not contribute to resistance 
to oxaliplatin [382]. On the other hand, multidrug resist-
ance-associated protein 2 (MRP2)-mediated drug efflux 
limits both cisplatin and oxaliplatin accumulation [383, 
384], rendering gastrointestinal cancer cells resistant to 
oxaliplatin [385] but not to cisplatin [381, 386]. Given 
the broad-spectrum antitumor activity of irinotecan and 
oxaliplatin, they have become essential ingredients in 
some classical regimens for colorectal cancer treatment, 

such as FOLFOXIRI (5-FU, leucovorin, oxaliplatin, and 
irinotecan), FOLFIRI (5-FU, leucovorin, and irinotecan) 
[387], FOLFOX (5-FU, leucovorin, oxaliplatin) [388], and 
CAPEOX (capecitabine and oxaliplatin) [389].

Similar to NSCLC, EGFR is overexpressed in approx-
imately 50 ~ 80% of colorectal cancers [390, 391]. 
However, somatic mutations of EGFR occur at a very 
low frequency in colorectal cancer [392]. Thus, two 
EGFR-directed mAbs (cetuximab and panitumumab) 
were approved by the FDA for EGFR-positive meta-
static colorectal cancer (Fig.  5j). Cetuximab interacts 
exclusively with the soluble extracellular region of EGFR 
and occludes the ligand-binding region on domain III 
of EGFR partially, which sterically prevents EGFR from 
adopting the extended conformation required for dimeri-
zation, thereby inhibiting the activation of EGFR [393]. 
Colorectal cancer harboring EGFRS492R, EGFRK467T, and 
EGFRR451C mutations confer cetuximab resistance but 
respond to panitumumab [394, 395]. These mutations 
may directly block cetuximab binding to domain III of 
EGFR but are permissive for panitumumab binding, 
which is attributed to a central cavity located between the 
heavy and light chain of panitumumab accommodating 
these mutations [396]. Given the low incidence of EGFR 
mutations, cetuximab and panitumumab are considered 
equivalent treatments in most clinical circumstances due 
to a shared epitope [397].

Compelling evidence indicates that VEGFR1 and 
VEGFR2 are the primary mediators of tumor angio-
genesis and vascular permeability [398, 399]. Accord-
ingly, VEGFR1/2-related ligands, vascular endothelial 
growth factors (VEGFs), have become promising targets 
in malignancies. The VEGF family consists of five glyco-
proteins, VEGF-A, -B, -C, -D, and placenta growth factor 
(PlGF). Each VEGF exerts its activity by binding to the 
corresponding receptors. Specifically, VEGF-A binds to 
VEGFR1 and VEGFR2, VEGF-B and PlGF bind exclu-
sively to VEGFR1 [400], whereas VEGF-C and VEGF-
D bind to VEGFR2 and VEGFR3 [401, 402]. Based on 
this principle, the VEGF-A-directed mAb bevacizumab 
was approved by the FDA as first-line therapy for meta-
static colorectal cancer in combination with FOLFOX-
IRI (5-FU, leucovorin, oxaliplatin, and irinotecan) [403] 
(Fig.  5k). Bevacizumab binds to soluble VEGF-A and 
prevents VEGF-A from binding to its receptors (VEGFR1 
and VEGFR2) by steric hindrance, thereby reducing 
blood vessel density, vascular permeability, and liver 
metastases of colorectal cancer mediated by VEGFR1 
and VEGFR2 [404]. In contrast, ziv-aflibercept adopts a 
new strategy to antagonize VEGFs by utilizing the high 
binding affinity between VEGFRs and VEGFs (Fig.  5l). 
Specifically, ziv-aflibercept is constructed as a soluble 
receptor decoy that fuses the second immunoglobulin 
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(Ig)-like domain of VEGFR1 and the third Ig-like domain 
of VEGFR2 to the Fc portion of human IgG1 [405]. There-
fore, ziv-aflibercept acts as a VEGF trap that antagonizes 
multiple VEGFs, including VEGF-A, VEGF-B, and PlGF 
[406]. Similar to bevacizumab, ziv-aflibercept was also 
approved by the FDA as first-line therapy for metastatic 
colorectal cancer in combination with FOLFIRI (5-FU, 
leucovorin, and irinotecan) [407]. However, almost half 
of patients develop metastases, and most have unresect-
able tumors [408].

Increasing evidence indicates that the overactivation of 
RTKs and their downstream signaling cascades contrib-
ute to the development, progression, and acquired drug 
resistance of colorectal cancer [409, 410]. Regorafenib is 
a potent multitarget TKI that blocks angiogenic kinases 
(VEGFR1/2/3, PDGFRα/β, and FGFR1/2) and oncogenic 
kinases (KIT, RET, RAF1,  BRAFWT, and  BRAFV600E) [411] 
(Fig. 5m). CYP3A4 and UGT1A9 metabolize Regorafenib 
into two main circulating metabolites, M-2 (N-oxide) 
and M-5 (N-oxide/N-desmethyl) [412]. Both metabolites 
exhibit similar pharmacological activity to regorafenib. 
However, regorafenib primarily seems to induce stabi-
lization of the disease rather than tumor regression in 
metastatic colorectal cancer because few patients achieve 
an objective tumor response [413]. Thus, regorafenib was 
approved by the FDA for patients with metastatic colo-
rectal cancer who had received previous standard thera-
pies [414].

Nevertheless, the OS benefit of regorafenib is 
1.4  months, and over 50% of patients with colorectal 
cancer eventually develop resistance and progressive 
disease after a transient response to the standard ther-
apy [413, 415]. Additional treatment options are needed 
for patients with metastatic colorectal cancer who have 
exhausted all standard therapies [416]. Trifluridine/tip-
iracil (known as TAS-102) is an antimetabolite agent that 
comprises a trifluridine (thymidine-based nucleoside 
analog) and a tipiracil (thymidine phosphorylase inhibi-
tor) [417] (Fig. 5n). Like 5-FU, trifluridine inhibits thymi-
dylate synthase (a central enzyme in DNA synthesis) and 
incorporates itself into DNA, leading to cell death [418]. 
Of note, trifluridine exhibits higher activity than 5-FU 
because it does not elicit an autophagic survival response 
as 5-FU [419]. Tipiracil attenuates thymidine phosphory-
lase-mediated catabolism of trifluridine, which increases 
the bioavailability and potentiates the in vivo efficacy of 
trifluridine [417]. Intriguingly, tipiracil/trifluridine exhib-
its pharmacological activity in both 5-FU-sensitive and 
5-FU-resistant cancer cells [420, 421]. Thus, tipiracil/tri-
fluridine was approved for the treatment of patients with 
metastatic colorectal cancer who are refractory to or are 
not considered candidates for current standard chemo-
therapy and biological therapy [422].

FDA‑approved therapeutic drugs for prostate cancers
Prostate cancer accounted for 14.1% of cancer cases and 
6.8% of cancer-related mortalities among males world-
wide in 2020, second only to lung cancer [2]. Over the 
past 31 years, the FDA granted 12 new therapeutic drug 
approvals for prostate cancer (Fig. 6a and Table 5).

The progression of prostate cancer is frequently accom-
panied by rising androgen receptor (AR) overexpression 
owing to the proliferation of luminal epithelial cells of the 
prostate caused by the accumulation of somatic muta-
tions or AR amplification [423, 424]. Overexpression of 
AR enhances the binding activity to androgens [425], 
such as dihydrotestosterone (DHT), which initiates the 
translocation of AR from the cytoplasm to the nucleus 
[426], where AR binds to specific DNA sequences, 
namely, androgen response elements (AREs), thereby 
initiating the transcription of its target genes, including 
prostate-specific antigen (PSA) [427–429]. As a result, 
PSA is frequently elevated in patients with prostate 
cancer and has become a classic biomarker for disease 
diagnosis [430], whereas an AR-mediated transcription 
program increases cell proliferation [431] and changes 
central metabolism and biosynthesis [432], leading to dis-
ease progression [433].

Based on this principle, five AR antagonists have been 
approved by the FDA for advanced or metastatic prostate 
cancer; these include two first-generation antiandrogens 
(nilutamide and bicalutamide) (another antiandrogen, 
flutamide, brand name: Eulexin, approved on January 27, 
1989, by the FDA) and three second-generation antian-
drogens (enzalutamide, apalutamide, and darolutamide) 
(Fig. 6b). Mechanistically, all these AR antagonists com-
petitively bind to the ligand-binding domain (LBD) of AR 
and prevent androgens from binding to AR. Compared 
to first-generation antiandrogens, second-generation 
antiandrogens improve the pharmacologic properties 
by which AR translocation and AR-mediated transcrip-
tion are blocked [434]. However, cross-resistance widely 
exists throughout antiandrogens due to mutations or 
deletions in the LBD of AR [435, 436]. Specifically, muta-
tions of ARH874Y, ARV715M, and ART877A/S confer the con-
version of flutamide and nilutamide from AR antagonists 
to agonists [437]. Fortunately, these AR mutants are 
sensitive to bicalutamide [437]. However, the ARW741C/L 
mutations convert bicalutamide from an AR antagonist 
to an agonist [438, 439] but are sensitive to nilutamide 
[440]. The ARF876L mutation also switches the second-
generation antiandrogens enzalutamide and apalutamide 
from AR antagonists to agonists [441–443] but is sensi-
tive to the most novel antiandrogen darolutamide [444]. 
Moreover, darolutamide exhibits antagonistic effects on 
mutations of ARW741L and ART877A [444]. Nevertheless, it 
still cannot overcome the resistance of AR LBD-deletion 
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variants [435]. Therefore, the N-terminus of AR should 
be considered the target domain for the next generation 
of antiandrogens.

Androgen deprivation therapy (ADT) is another strat-
egy for the treatment of prostate cancer that suppresses 
serum testosterone to castration levels, thereby prevent-
ing AR activation and blocking AR-mediated transcrip-
tion. Both gonadotropin-releasing hormone (GnRH, also 

known as luteinizing hormone-releasing hormone (LH-
RH)) agonists and GnRH antagonists are used for ADT, 
although they have different pharmacological mecha-
nisms [445].

GnRH agonists stimulate the pituitary gland, which 
causes a flare phenomenon by which testosterone lev-
els are initially increased for 5 ~ 12 days [446]. However, 
sustained overstimulation leads to the downregulation 
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and desensitization of GnRH receptors located in gon-
adotroph cells [447], thereby reducing the luteinizing 
hormone (LH) and follicle-stimulating hormone (FSH) 
levels, which eventually decreases serum testosterone 
and achieves castration levels [446, 447]. In contrast, 
GnRH antagonists induce a rapid decrease in LH and 
FSH by competitively binding to the GnRH receptors 
[448] and decrease serum testosterone to castration lev-
els without causing a flare phenomenon [449]. Based on 
this principle, the GnRH agonist triptorelin (Fig. 6c) and 
three GnRH antagonists (abarelix, degarelix, and relugo-
lix) (Fig. 6d) were approved by the FDA. Another GnRH 
agonist, histrelin, was approved by the FDA for prostate 
cancer under the brand name Vantas on Oct. 12, 2004 
(Additional file 1: Table S1, page 1).

Similar to the previously approved GnRH agonists 
goserelin (brand name: Zoladex, approved by the FDA 
on Dec. 29, 1989) and leuprolide (brand name: Lupron 
Depot, approved by the FDA on January 26, 1989), both 
triptorelin (decapeptide) and histrelin (nonapeptide) are 
synthetic, polypeptide GnRH analogs. Compared to the 
endogenous GnRH (Glp-His-Trp-Ser-Tyr-Gly-Leu-Arg-
Pro-Gly-NH2), both triptorelin and histrelin preserve the 
N-terminal five amino acid residues (Glp-His-Trp-Ser-
Tyr) and C-terminal three amino acid residues (Leu-Arg-
Pro) [450–452]. Endogenous GnRH is rapidly degraded 
in blood by enzymatic cleavage at the Gly residue in posi-
tion 6 [453];  Gly6 is replaced by D-Trp and D-His (Bzl) in 
triptorelin and histrelin, respectively, to increase resist-
ance to degradation and thereby prolong the half-life 
time in vivo [452, 454]. On the other hand, the  Gly10 of 
endogenous GnRH is replaced by AzaGly-NH2 in goser-
elin and Pro-NHEt in leuprolide and histrelin to increase 
the binding affinity between GnRH agonists and the 

GnRH receptor [452, 455]. Histrelin is a GnRH agonist 
administered once yearly that exhibits long-term effi-
cacy and tolerability as a subcutaneous implant [456]. 
Although leuprolide, a GnRH agonist administered twice 
yearly [457], is comparable to histrelin in the drug admin-
istration schedule, 10% of patients treated with leuprolide 
failed to achieve medical castration [458].

Compared to triptorelin, histrelin may reduce the 
flare phenomenon and testosterone microsurges upon 
repeated administration to a certain extent. However, 
GnRH agonists cannot eliminate these adverse effects 
due to their natural pharmacological mechanism [452]. 
Therefore, GnRH antagonists have been developed for 
the treatment of advanced prostate cancer. However, 
first- and second-generation GnRH antagonists are 
unsuitable for clinical use due to solubility limitations 
and systemic allergic reactions caused by histamine 
release [452, 459, 460]. Abarelix and degarelix are third-
generation GnRH antagonists derived from endogenous 
GnRH. Compared to endogenous GnRH, the N-terminal 
three amino acid residues (crucial for biological activity) 
 Tyr5-Gly6,  Arg8, and  Gly10 are substituted in abarelix and 
degarelix to eliminate the biological activity of GnRH but 
increase the stability and binding affinity to the GnRH 
receptor [460].

As expected, abarelix induces a rapid suppression of 
serum testosterone and PSA levels and achieves medi-
cal castration without a testosterone surge [461–463]. 
However, it also causes inevitable adverse effects, such as 
severe allergic reactions upon long-term administration 
[462, 464], and exhibits more frequent and shorter time 
intervals in escape from castration than complete ADT 
[446, 465]. Consequently, abarelix was withdrawn from 
the market in 2005 [466].

Table 5 FDA-approved therapeutic drugs for prostate cancers

AR Androgen receptor; CYP17A1 Cytochrome P450 17A1; GnRH Gonadotropin-releasing hormone; mCRPC Metastatic castration-resistant prostate cancer; O Orphan; P 
Priority; S Standard

Drug (brand name) Sponsor Properties Indication Approval date Review

Bicalutamide (Casodex) Ani pharms AR antagonist Advanced prostate cancer 10/04/1995 S

Nilutamide (Nilandron) Concordia AR antagonist Metastatic prostate cancer 09/19/1996 S

Enzalutamide (Xtandi) Astellas AR antagonist mCRPC 08/31/2012 P

Apalutamide (Erleada) Janssen AR antagonist Prostate cancer 02/14/2018 P

Darolutamide (Nubeqa) Bayer AR antagonist Prostate cancer 7/30/2019 P

Triptorelin pamoate (Trelstar) Verity GnRH agonist Advanced prostate cancer 06/15/2000 S

Abarelix (Plenaxis) Speciality GnRH receptor antagonist Advanced prostate cancer 11/25/2003 P

Degarelix acetate (Firmagon) Ferring GnRH receptor antagonist Advanced prostate cancer 12/24/2008 S

Relugolix (Orgovyx) Myovant GnRH receptor antagonist Prostate cancer 12/18/2020 P

Cabazitaxel (Jevtana kit) Sanofi Microtubule-stabilizing agent Prostate cancer 06/17/2010 P

Abiraterone acetate (Zytiga) Janssen CYP17A1 inhibitor mCRPC 04/28/2011 P

Radium RA 223 dichloride (Xofigo) Bayer α-particle-emitting radiopharmaceutical mCRPC 05/15/2013 P
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In contrast, degarelix is generally well tolerated, with 
most adverse events being mild to moderate in severity 
[467]. Additionally, the long-term clinical efficacy in sup-
pressing testosterone and PSA levels are comparable to 
that of leuprolide over a one-year treatment period [468], 
and PSA-PFS is significantly improved upon degarelix 
treatment compared to leuprolide [469]. Thus, degarelix 
can be an alternative to GnRH agonists. Relugolix is a 
nonpeptidic drug and the first orally administered GnRH 
antagonist [470] that exhibits significantly superior 
clinical efficacy and a lower incidence of major adverse 
cardiovascular events than leuprolide [471]. Given the 
easier administration, relugolix is likely to become the 
new standard of care, although whether it is superior to 
surgical or established chemical castration treatments 
remains to be proven [472].

Cabazitaxel is a microtubule-stabilizing agent that 
binds to the N-terminus of the β-tubulin subunit, which 
promotes the assembly of tubulin into microtubules and 
stabilizes the mitotic spindle [473, 474]. It is synthesized 
from 10-deacetyl baccatin III, a compound extracted 
from the needles of yew trees (Taxus spp.) [475]. Com-
pared to previous taxanes, such as paclitaxel and doc-
etaxel, cabazitaxel exhibits favorable pharmacological 
efficacy, including increased cytotoxic activity in mul-
tidrug- and docetaxel-resistant cancer cells, probably 
due to a lower affinity for P-glycoprotein than docetaxel 
[476]. As expected, cabazitaxel exhibited an encouraging 
clinical advantage for the treatment of metastatic cas-
tration-resistant prostate cancer (mCRPC) compared to 
docetaxel [477, 478] and was approved as a second-line 
chemotherapy option for mCRPC [479] (Fig. 6e).

Cytochrome P450 17A1 (CYP17A1) is critical for pro-
ducing androgenic and osteogenic sex steroids with its 
hydroxylase and 17, 20-lyase activities [480]. CYP17A1 
is significantly elevated in mCRPC, making it an essen-
tial target for the treatment of mCRPC [481]. Abirater-
one is a potent, selective, irreversible CYP17A1 inhibitor 
that binds to haem iron and occupies the majority of the 
enclosed active site of CYP17A1 [482], thereby attenuat-
ing the enzymatic activity of CYP17A1 and preventing 
androgen biosynthesis [483]. Abiraterone exhibits favora-
ble clinical efficacy, making it an essential first-line option 
for the treatment of mCRPC [484–487] (Fig. 6f ).

Radium RA 223 dichloride (223RaCl2) is a radiophar-
maceutical that has been approved for patients with 
prostate cancer-derived symptomatic bone metastases 
[488] (Fig. 6g). 223RaCl2 exerts its pharmacological effect 
through Radium-223 (223Ra), an α-particle-emitting 
radioisotope. 223Ra is also a calcium mimetic that binds 
preferentially to the newly formed bone in areas of bone 
metastases, with a half-life of 11.4 days and maximal tis-
sue penetration of fewer than 100  μm [489, 490]. Each 

atom of 223Ra emits four high linear energy α-particles 
(composed of two protons and two neutrons), which 
exert pharmacological actions by inducing DNA DSBs 
in directly irradiated cells and adjacent cells [490] or by 
producing extracellular reactive oxygen species (ROS) in 
directly irradiated cells and then inducing DNA DSBs in 
adjacent cells with a bystander effect [491].

FDA‑approved therapeutic drugs for urologic cancers
Aside from prostate cancer, kidney and bladder cancers 
are the most common urologic cancers [2]. Over the 
past 31 years, the FDA granted 12 new therapeutic drug 
approvals for urologic cancers (Fig. 7a and Table 6).

Renal cell carcinoma
Kidney cancer accounted for 2.2% of cancer cases and 
1.8% of cancer-related mortalities worldwide in 2020 [2]. 
Renal cell carcinoma (RCC) is the most common subtype 
(~ 70%) of kidney cancer [492]. One recombinant human 
interleukin-2 (IL-2, aldesleukin), four TKIs (sorafenib, 
pazopanib, axitinib, and tivozanib), and two mammalian 
targets of rapamycin (mTOR) inhibitors (temsirolimus 
and everolimus) have been approved for the treatment of 
RCC in the past three decades (Fig. 7b-d).

IL-2 was first discovered as a T cell growth factor in 
1976 [493] and cloned in 1983 [494]. Over the ensuing 
years, IL-2 was proven to be a pivotal cytokine produced 
primarily by  CD4+ T cells [495, 496]. As a pleiotropic 
mediator within the immune system, it interacts with 
IL-2 receptors (IL-2Rα, IL-2Rβ, and IL-2Rγ) and induces 
the proliferation and differentiation of immune cells, 
thereby regulating a range of diseases involving infection, 
autoimmune disease, and cancer [496]. Aldesleukin is a 
nonglycosylated, modified form of human endogenous 
IL-2 that exerts its antitumor activity by enhancing the 
cytotoxicity of T lymphocytes and the activity of natural 
killer and lymphokine-activated killer (LAK) cells [497] 
(Fig.  7b). Aldesleukin monotherapy achieves an ORR 
of 14 ~ 25% and exhibits durable antitumor activity in 
patients with metastatic RCC [498, 499].

Sorafenib is an oral first-generation multitarget TKI 
that targets several RTKs, including RAF1,  BRAFWT, 
 BRAFV600E, VEGFRs, PDGFR-β, FGFR1, FMS-like tyros-
ine kinase 3 (FLT3), KIT, and RET [500, 501]. It occu-
pies the ATP adenine binding pocket of these RTKs 
with its distal 4-pyridyl ring, which blocks the autophos-
phorylation of these RTKs, thereby attenuating the 
mitogen-activated protein kinase (MAPK)/extracel-
lular signal-regulated kinase (ERK) signaling pathway 
[500, 502]. Given its potent antitumor effects, sorafenib 
is applied to various malignancies in addition to RCC 
[501]. Sorafenib resistance inevitably occurs and mainly 
involves mutations in RTKs and activation of the bypass 
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pathway [503]. Regorafenib, as a fluoro‐sorafenib, pro-
vides a nearly 3-month improvement in OS in HCC 
patients progressing on sorafenib treatment [504]. How-
ever, regorafenib cannot overcome sorafenib resistance 
because they share a similar structure [505]. Sunitinib 
is another first-generation multitarget TKI with a simi-
lar target profile to sorafenib. Intriguingly, sequential 

sorafenib-sunitinib and vice versa provide similar clinical 
benefits in metastatic RCC [506]. In contrast, pazopanib 
is an oral second-generation multitarget TKI that prefer-
entially targets VEGFRs, PDGFRα/β, and KIT [507–509]. 
It competes with ATP for binding to the cytoplasmic 
domain of these RTKs and prevents ATP-induced activa-
tion [510]. Pazopanib retains clinical activity in patients 

Fig. 7 FDA-approved therapeutic drugs for urologic cancers. a Distribution of therapeutic drugs for urologic cancers during the past 31 years 
(adapted from [867]). b Recombinant human IL-2 (obtained from www. rcsb. org and go.drugbank.com). c Multitarget TKI and VEGFR inhibitors. d 
mTOR inhibitors. e PDL1-directed mAbs. f Nectin-4-directed ADC. g DNA topoisomerase inhibitor. h FGFR inhibitor

https://www.rcsb.org
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with advanced clear-cell RCC after failure of sunitinib 
or bevacizumab [511]. Thus, pazopanib is non-inferior 
to sunitinib as first-line therapy in clinical efficacy and 
exhibits advantages in the safety profile [512]. Axitinib 
and tivozanib are selective second-generation VEGFR 
inhibitors that exhibit greater selectivity for VEGFRs 
than other TKIs (e.g., sorafenib, sunitinib, pazopanib) 
[513, 514]. Axitinib is a substituted indazole derivative 
produced from a structure-based drug design [515]. It 
exhibits antitumor activity and a manageable safety pro-
file in sorafenib-refractory metastatic RCC [516] but 
has no significant superiority over sorafenib as first-line 
therapy [517]. Compared with sorafenib, axitinib signifi-
cantly prolongs the median PFS by two months and can 
be an option for second-line therapy [518, 519]. Never-
theless, axitinib plus avelumab or pembrolizumab thera-
pies exhibit significant clinical benefits in advanced RCC 
as first-line treatment compared to the standard of care 
of sunitinib [520, 521]. Tivozanib is a quinoline urea 
derivative that interacts with the ATP-binding site and 
the allosteric-binding site consisting of the DFG motif 
within the activation loop of VEGFR, similar to sorafenib 
[522]. It inhibits VEGF-induced VEGFR phosphorylation 
and blocks VEGF-dependent but not VEGF-independent 
MAPK activation [523]. Tivozanib improves PFS and 
is better tolerated as third- or fourth-line therapy than 
sorafenib [524] (Fig. 7c).

mTOR is a serine/threonine-protein kinase that gov-
erns a diverse set of biological events by joining with 
other components to form two distinct complexes known 
as mTOR complex 1 (mTORC1) and mTOR complex 2 
(mTORC2) [525]. mTORC1 is composed of three core 

components: mTOR, mammalian lethal with SEC13 pro-
tein 8 (mLST8, also known as GβL) [526], and its unique 
defining subunit, regulatory-associated protein of mTOR 
(RAPTOR) [527]. In lieu of RAPTOR, mTORC2 con-
tains rapamycin-insensitive companion of mTOR (RIC-
TOR) [528, 529]. mTORC1 governs glucose metabolism, 
cell cycle progression, cell survival, and the biosynthe-
sis of proteins, lipids, and nucleotides, while mTORC2 
governs cytoskeletal rearrangement and prosurvival 
pathways [525]. Temsirolimus and everolimus are deriva-
tives of sirolimus (also known as rapamycin) (Additional 
file 1: Table S1, page 11), a compound extracted from a 
Streptomyces hygroscopicus soil bacterium [530]. Mecha-
nistically, rapamycin, temsirolimus, and everolimus are 
inhibitors of mTORC1. Similar to rapamycin, both tem-
sirolimus and everolimus bind to FK506-binding protein 
12 (FKBP12) and form a gain-of-function complex, which 
subsequently prohibits the activation of mTOR, resulting 
in cell cycle arrest and suppression of hypoxia-inducible 
factor-1α (HIF1α) and VEGF expression [531, 532].

Temsirolimus is a water-soluble ester of rapamycin 
with improved pharmaceutical properties, including 
stability and solubility, making it suitable for intrave-
nous administration [533]. Intriguingly, temsirolimus 
is hydrolyzed by CYP3A4 to its major metabolite rapa-
mycin in vivo [534]. Compared with interferon-α (IFNα) 
monotherapy, temsirolimus improves OS among patients 
with metastatic RCC [535]. Everolimus is a hydroxyethyl 
ether derivative of rapamycin with superior pharmaceu-
tical characteristics, making it suitable for oral adminis-
tration. Unlike temsirolimus, everolimus is not converted 
to rapamycin in  vivo [532]. Compared with placebo, 

Table 6 FDA-approved therapeutic drugs for urologic cancers

BCG Bacillus Calmette-Guérin; CIS Carcinoma in situ; FGFR Fibroblast growth factor receptor; mTOR Mammalian target of rapamycin; O Orphan; P Priority; PDGFR 
Platelet-derived growth factor receptor; PDL1 Programmed death-ligand 1; RCC  Renal cell carcinoma; S Standard; VEGFR Vascular endothelial growth factor receptor

Drug (brand name) Sponsor Properties Indication Approval date Review

Aldesleukin (Proleukin) Chiron Recombinant human interleukin-2 Metastatic RCC 05/05/1992 O

Sorafenib toylate (Nexavar) Bayer Multitarget TKI (VEGFR2/3, PDGFRβ, FLT3, KIT, RAF1, 
and BRAF)

Advanced RCC 12/01/2005 P, O

Pazopanib HCl (Votrient) Novartis Multitarget TKI (VEGFRs, PDGFRα/β, FGFR1/2, KIT) Metastatic RCC 10/19/2009 S

Axitinib (Inlyta) Pfizer VEGFRs inhibitor Advanced RCC 01/27/2012 S

Tivozanib HCl (Fotivda) Aveo Pharms VEGFRs inhibitor Advanced RCC 03/10/2021 S

Temsirolimus (Torisel) Merck & Co mTOR inhibitor Advanced RCC 05/30/2007 P

Everolimus (Afinitor) Novartis mTOR inhibitor Advanced RCC 03/30/2009 P

Atezolizumab (Tecentriq) Genentech PDL1-directed mAb Urothelial carcinoma 05/18/2016 N/A

Durvalumab (Imfinzi) AstraZeneca PDL1-directed mAb Urothelial carcinoma 05/01/2017 N/A

Enfortumab vedotin (Padcev) Astellas Nectin-4-directed ADC Urothelial carcinoma 12/18/2019 P

Valrubicin (Valstar) Endo Pharm A semisynthetic analog of anthracycline doxorubicin BCG-refractory CIS 
of urinary bladder 
cancer

09/25/1998 P, O

Erdafitinib (Balversa) Janssen FGFR inhibitor Bladder cancer 04/12/2019 P
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everolimus prolongs PFS in patients with metastatic RCC 
previously treated with sunitinib and/or sorafenib [536]. 
Compared to temsirolimus, everolimus exhibits superior 
clinical efficacy in metastatic RCC in terms of prolonging 
OS and PFS and decreasing the risk of death [537, 538] 
(Fig. 7d).

RCC is a highly vascularized tumor prone to dis-
tant metastasis [503]. Mechanistically, clear-cell RCC 
accounts for approximately 80 ~ 85% of metastatic RCC 
cases [539], whereas 60% of clear-cell RCC harbors loss-
of-function of the von Hippel–Lindau (VHL) tumor sup-
pressor gene, which leads to the accumulation of HIF1α 
and activation of its target genes, including VEGF and 
PDGF [540]. It explains why all these TKIs target VEG-
FRs and/or PDGFRs, although they have different target 
profiles. In addition, two mTOR inhibitors can reduce the 
expression of HIF1α and VEGF. Before 2005, nonspecific 
immune cytokines, such as IL-2 and IFNα, were previ-
ously the mainstays of therapy for advanced RCC [540]. 
Currently, PD1-directed mAbs, such as pembrolizumab 
and nivolumab, plus TKIs, such as axitinib [521], len-
vatinib [541], and cabozantinib [542], have become the 
first-line regimens for patients with advanced or meta-
static RCC.

Bladder cancer
Bladder cancer accounted for 3.0% of cancer cases and 
2.1% of cancer-related mortalities worldwide in 2020 [2]. 
Urothelial carcinoma accounts for approximately 90% of 
bladder cancers [543]. Over the past 31  years, the FDA 
has approved five therapeutic drugs for bladder cancer 
treatment (Fig. 7e–h).

PDL1 is an immune checkpoint expressed in 20% of 
tumor cells and 40% of tumor-infiltrating mononuclear 
cells (TIMCs) in urothelial carcinoma [544]. It binds to its 
receptor PD1 on the surface of T lymphocytes and nega-
tively regulates the antitumor function of T lymphocytes 
[545]. PDL1-directed mAbs bind exclusively to PDL1 
and block the interaction between PDL1 and PD1, which 
reactivates the antitumor immunity of T lymphocytes 
[546]. Mechanistically, atezolizumab binds to the CC′, 
C′C″, and FG loops of PDL1, while durvalumab binds to 
the CC′ loop and N-terminal region of PDL1 [547]. The 
Fc fragments of both mAbs are engineered to eliminate 
the ADCC effect and complement-dependent cytotox-
icity (CDC) and prevent the depletion of activated T 
lymphocytes [548, 549]. Atezolizumab is the first PDL1-
directed mAb [550] that exhibits durable activity, good 
tolerability, and superior clinical efficacy compared with 
chemotherapy in patients with platinum-treated locally 
advanced or metastatic urothelial carcinoma [551–553]. 
Notably, an increase in the mutation load increases the 
response to atezolizumab [551]. Likewise, durvalumab 

exhibits at least equivalent clinical efficacy to atezoli-
zumab [554–556]. Currently, other PDL1 (avelumab) 
[557, 558] and PD1 (pembrolizumab [559, 560] and [561, 
562])-directed mAbs are also used as first- or second-line 
treatments for urothelial carcinoma (Fig. 7e).

Nectin-4 is a type I transmembrane protein expressed 
at low levels in normal human tissues and is also known 
as poliovirus receptor-like 4 (PVRL4) [563, 564]. It acts 
as an oncoprotein [565] that promotes cancer cell pro-
liferation and metastasis by activating Wnt/β-catenin 
[566] and the HER2-mediated PI3K/AKT signaling path-
way [567–569]. Nectin-4 is expressed in 69% of solid 
tumors [563] and overexpressed in more than 60% of 
bladder cancers (or urothelial carcinomas) [563, 570], 
making it an attractive target for urothelial carcinoma 
treatment. Enfortumab vedotin is a nectin-4-directed 
ADC composed of enfortumab and MMAE with a pro-
tease-cleavable MC-vc-PAB linker [563], similar to tiso-
tumab vedotin. Enfortumab is a nectin-4-directed mAb 
that binds to the extracellular domain of human nectin-4 
[563] (Fig. 7f ). Enfortumab vedotin significantly improves 
the median OS and PFS compared with that with chemo-
therapy (docetaxel, paclitaxel, or vinflunine) in patients 
with locally advanced or metastatic urothelial carcinoma 
who were previously treated with platinum-based treat-
ment and PD1/PDL1 blockade, providing a new option 
for this patient population [571, 572].

Valrubicin is a semisynthetic analog of the anthra-
cycline doxorubicin that binds weakly to DNA [573] 
(Fig.  7g). Compared to doxorubicin and epirubicin, val-
rubicin and its metabolites exhibit lower potency and less 
toxicity and exert antitumor effects by interfering with 
TOP2A-mediated cleavage and resealing of DNA, leading 
to the inhibition of DNA elongation and RNA biosynthe-
sis [573–575]. Therefore, the S-G2 transition of the cell 
cycle is blocked, and chromosome stability is disrupted. 
Valrubicin is effective and well tolerated in patients with 
bacillus Calmette-Guérin (BCG)-refractory carcinoma 
in situ (CIS) of the bladder [576].

In addition, genetic alterations of FGFRs, including 
amplification, mutation, and rearrangement, occur in 
approximately one-third of urothelial carcinomas, mak-
ing FGFRs promising therapeutic targets [577]. Erdafi-
tinib is an oral pan-FGFR inhibitor that binds to the 
inactive DGF-Din conformation, which prevents the FGF 
ligand-induced dimerization, phosphorylation, and acti-
vation of FGFRs [578–580] (Fig. 7h). Compared to other 
inhibitors (rogaratinib [581], pemigatinib [582], and 
infigratinib [583]) with an ORR of approximately 25%, 
erdafitinib exhibits superior clinical efficacy with an ORR 
of 40% [584]. Thus, erdafitinib was approved for patients 
with locally advanced or metastatic urothelial carcinoma 
harboring FGFR2 or FGFR3 genetic alterations [579].
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FDA‑approved therapeutic drugs for melanoma and other 
skin cancers
Melanoma
Melanoma accounted for 1.7% of cancer cases and 0.6% 
of cancer-related mortalities worldwide in 2020 [2]. Nine 
therapeutic drugs (including BRAF and MAPK/ERK 
kinase (MEK) inhibitors and cytotoxic T lymphocyte 
antigen 4 (CTLA4)- and PD1-directed mAbs) have been 
approved by the FDA for melanoma in the past three 
decades (Fig. 8a and Table 7).

BRAF forms a tight heterodimer with CRAF under 
the induction of active RAS and acts as a critical effec-
tor in the RAS–RAF–MEK–MAPK/ERK pathway [585]. 

However, approximately 70% of melanomas harbor BRAF 
mutations, whereas BRAFV600E and BRAFV600K account 
for 80 ~ 90% and 10 ~ 20% of all BRAF mutations, respec-
tively [586, 587], making it a therapeutic target in mela-
noma [588]. Oncogenic BRAF constitutively activates 
the MAPK/ERK pathway, resulting in uncontrolled cell 
proliferation [589]. Therefore, three BRAF inhibitors 
(vemurafenib, dabrafenib, and encorafenib) (Fig. 8b) were 
approved for melanoma treatment.

Vemurafenib is a second-generation inhibitor with a 
mild selectivity for BRAFV600E over BRAFWT. It occu-
pies the ATP-binding pocket in the ‘αC-OUT/DFG-
in’ (active) conformation of BRAF and inhibits BRAF 

Fig. 8 FDA-approved therapeutic drugs for melanoma and other skin cancers. a Distribution of therapeutic drugs for melanoma and other 
skin cancers during the past 31 years (adapted from [868]). b BRAF inhibitors. c MEK inhibitors. d CTLA4-directed mAb. e PD1-directed mAbs. f 
Smoothened inhibitors. g PDL1-directed mAb. h PD1-directed mAb
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phosphorylation and activation, thereby attenuating 
downstream MEK–MAPK/ERK signaling transduction 
[590]. As expected, vemurafenib significantly improved 
OS and PFS in patients with previously untreated mela-
noma harboring the BRAFV600E mutation [591]. In par-
allel, dabrafenib, another highly potent and specific 
inhibitor, exhibits a virtually identical clinical outcome 
to vemurafenib [592] and a BRAF binding mechanism 
similar to that of vemurafenib [593]. Dabrafenib plus 
trametinib (a MEK inhibitor) therapy adds a clear benefit 
over vemurafenib monotherapy in patients with unre-
sectable or metastatic melanoma harboring BRAFV600E/K 
mutations [594]. Unfortunately, most patients treated 
with vemurafenib or dabrafenib will develop disease pro-
gression following tumor regression within 6 ~ 8 months 
[595]. Encorafenib is still an αC-OUT inhibitor of BRAF 
and is used in combination with binimetinib (another 
MEK inhibitor) in clinical practice [596]. It showed a 
longer residence time and lower off-rate than vemu-
rafenib and dabrafenib in a preclinical study [597, 598]. 
Compared to vemurafenib or dabrafenib monotherapy, 
encorafenib plus binimetinib combination therapy sig-
nificantly improves clinical efficacy and tolerability [599, 
600].

MEK is a direct downstream target of BRAF, and BRAF 
mutations that cause overactivation of the RAS–RAF–
MEK–MAPK/ERK pathway highly depend on MEK 

activity [601]. Thus, three MEK inhibitors (trametinib, 
cobimetinib, and binimetinib) have been approved and 
are frequently used in combination with BRAF inhibi-
tors [602] (Fig.  8c). Trametinib stably binds to unphos-
phorylated MEK1/2 with high affinity and maintains 
MEK in an unphosphorylated state [603]. However, 
trametinib shows a low affinity for phosphorylated 
MEK1/2 [604]. In contrast, cobimetinib not only inhibits 
ERK1/2 phosphorylation but also retains the inhibitory 
effect of phosphorylated MEK1/2 [605], whereas bini-
metinib exhibits clinical activity in both BRAF-mutated 
and NRAS-mutated melanoma [606]. In clinical practice, 
trametinib is used in combination with dabrafenib [607, 
608], cobimetinib is used with vemurafenib [609, 610], 
and binimetinib is used with encorafenib [599, 600]. All 
three combined therapies exhibit equivalent clinical out-
comes, such as objective/complete response rate, median 
PFS, toxic effects, and two-year survival rate. Of note, the 
mOS is 33.6  months with encorafenib plus binimetinib, 
22.3  months with vemurafenib plus cobimetinib, and 
25.1 months with dabrafenib plus trametinib [602].

CTLA4 is a second counterreceptor for the B7 fam-
ily of costimulatory molecules that functions as a nega-
tive regulator of T lymphocyte activation [611]. Blocking 
CTLA4 significantly enhances antitumor immunity 
[612]. Ipilimumab is the first CTLA4-directed mAb that 
binds to CTLA4 on the cell surface, thereby blocking the 

Table 7 FDA-approved therapeutic drugs for melanoma and other skin cancers

CTLA4 Cytotoxic T lymphocyte antigen 4; MEK MAPK/ERK kinase; O Orphan; P Priority; PD1 Programmed death receptor-1; PDL1 Programmed death-ligand 1; S 
Standard

Drug (brand name) Sponsor Properties Indication Approval date Review

Vemurafenib (Zelboraf ) Roche BRAF inhibitor BRAF-positive unresectable or 
metastatic melanoma

08/17/2011 P, O

Dabrafenib mesylate (Tafinlar) Novartis Kinase inhibitor with activity 
against  BRAFV600E/D/K, wild-type 
BRAF and other kinases

Unresectable or metastatic 
melanoma with  BRAFV600E 
mutation

05/29/2013 S, O

Encorafenib (Braftovi) Array BioPharma BRAF inhibitor BRAF-mutated melanoma 06/27/2018 S, O

Trametinib DMSO (Mekinist) Novartis MEK1/2 inhibitor Unresectable or metastatic 
melanoma with  BRAFV600E 
mutation

05/29/2013 S, O

Cobimetinib fumarate (Cotellic) Genentech MEK inhibitor Melanoma with BRAFV600E/K 
mutations

11/10/2015 P, O

Binimetinib (Mektovi) Array BioPharma MEK inhibitor BRAF-mutated melanoma 06/27/2018 S, O

Ipilimumab (Yervoy) Bristol-Myers Squibb CTLA4-directed mAb Unresectable or metastatic 
melanoma

03/25/2011 P, O

Pembrolizumab (Keytruda) Merck PD1-directed mAb Metastatic melanoma 09/04/2014 P, O

Nivolumab (Opdivo) Bristol-Myers Squibb PD1-directed mAb Unresectable or metastatic 
melanoma

12/22/2014 P, O

Vismodegib (Erivedge) Genentech Smoothened inhibitor Advanced basal cell carcinoma 01/30/2012 P

Sonidegib phosphate (Odomzo) Sun Pharma Smoothened inhibitor Basal cell carcinoma 07/24/2015 S

Avelumab (Bavencio) Emd Serono PDL1-directed mAb Merkel cell carcinoma 03/23/2017 P, O

Cemiplimab (Libtayo) Regeneron PD1-directed mAb Cutaneous squamous cell 
carcinoma

09/28/2018 P
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interaction between CTLA4 and B7.1/B7.2 and restor-
ing the activation of T lymphocytes [613] (Fig.  8d). 
Compared with gp100 monotherapy, ipilimumab mono-
therapy or plus glycoprotein 100 (gp100) significantly 
improved the median OS of patients with advanced or 
metastatic melanoma [614].

PD1 is another negative regulator of T lymphocytes 
that confers tumor immune evasion by interacting 
with its ligands PDL1 and PDL2 [615, 616]. PD1 is also 
expressed in melanoma cells and contributes to tumor 
growth [617]. Pembrolizumab is a PD1-directed mAb 
that binds to the C’D loop of PD1 [618–620]. Pem-
brolizumab monotherapy is significantly superior to 
ipilimumab monotherapy in clinical trials [621, 622] 
and can be an effective treatment option for patients 
with ipilimumab-refractory advanced melanoma [623]. 
Nivolumab is another PD1-directed mAb that binds to 
the N-loop of PD1 [618, 620, 624] (Fig. 6e). It is frequently 
used in combination with ipilimumab for patients with 
advanced or metastatic melanoma [625, 626]. Compared 
with ipilimumab monotherapy, nivolumab monotherapy 
or ipilimumab plus ipilimumab significantly extends OS 
and five-year survival [627, 628] (Fig. 8e).

Nonmelanoma skin cancers (NMSCs) mainly encom-
pass basal cell carcinoma, squamous cell carcinoma, and 
neuroendocrine skin carcinoma (also known as Merkel 
cell carcinoma) [629]. NMSCs are the most commonly 
diagnosed cancers, accounting for up to 30% of all human 
tumors [629–632] and 0.6% of cancer-related mortalities 
[2].

Basal cell carcinoma
Basal cell carcinoma constitutes approximately 80% of 
all NMSCs, and more than five million new cases are 
diagnosed each year worldwide [633, 634]. However, the 
absolute incidence and mortality are difficult to deter-
mine since basal cell carcinoma is usually excluded from 
cancer registry statistics [633]. In part, basal cell carci-
noma is the most frequent human cancer subtype [632]. 
Loss-of-function mutations of tumor suppressor gene 
patched homolog 1 (PTCH1) occur in 30 ~ 40% of basal 
cell carcinomas [635]. Dysfunctional PTCH1 causes con-
stitutive activation of smoothened (SMO), resulting in 
continuous activation of hedgehog signaling and its tar-
get genes in basal cell carcinoma [174, 634], making SMO 
a promising target. Therefore, two SMO inhibitors (vis-
modegib and sonidegib) were approved for the treatment 
of basal cell carcinoma [636, 637] (Fig. 8f ).

Vismodegib is the first SMO inhibitor that occupies 
the transmembrane domain core and forms hydrophobic 
interactions with SMO by a network of hydrogen bonds 
[638, 639], thereby inhibiting SMO activity and down-
stream signaling, regardless of PTCH1 [640]. However, 

approximately 21% of patients develop resistance within 
a year while undergoing continuous vismodegib treat-
ment [641]. Various mutations in SMO are located in 
the drug-binding pocket of SMO and confer resist-
ance to vismodegib by abrogating or impairing vismod-
egib binding to SMO, such as D473H, D473G, W281C, 
V321M, I408V, C469Y, and Q477E [642–646]. Sonidegib 
is another SMO inhibitor that binds to a drug-binding 
pocket of SMO similar to vismodegib. It exerts antitumor 
effects by inhibiting the transcriptional activity of gli-
oma-associated oncogene (GLI) and inducing the expres-
sion of caspase-3 and the cleavage of PARP, resulting in 
cell cycle arrest and apoptosis [647]. However, sonidegib 
has an SMO binding pattern similar to that of vismod-
egib. As expected, sonidegib cannot overcome the vismo-
degib resistance induced by SMO mutations [648].

Merkel cell carcinoma
Merkel cell carcinoma is a rare but highly aggressive 
NMSC with neuroendocrine features [649] frequently 
associated with Merkel cell polyomavirus infection and 
accumulation of ultraviolet-induced mutations [650]. 
Approximately 50% of tumor cells and 55% of tumor-
infiltrating immune cells (TIICs) express PDL1 in Merkel 
cell carcinoma [651]. Avelumab is a PDL1-directed mAb 
that binds to the CC’ loop of PDL1 [547, 652], thereby 
blocking the interaction between PDL1 and PD1, which 
reactivates the antitumor immunity of T lymphocytes, 
similar to atezolizumab and durvalumab (Fig.  8g). Ave-
lumab is well tolerated with durable responses [653] and 
has become the standard-of-care treatment for meta-
static and advanced Merkel cell carcinoma [654], similar 
to other anti-PD1 immunotherapies, including pembroli-
zumab [655, 656] and nivolumab [657].

Cutaneous squamous cell carcinoma
Cutaneous squamous cell carcinoma (CSCC) accounts 
for approximately 20% of NMSCs, second only to basal 
cell carcinoma in NMSCs [658]. In contrast to most basal 
cell carcinomas, CSCC is highly aggressive, prone to 
metastasis, and correlated with ultraviolet radiation [658, 
659]. More than half of CSCC TIICs express PD1, espe-
cially  CD4+ and  CD8+ TILs, which show PD1 positivity 
rates of 73% and 80%, respectively [660]. Cemiplimab is 
a PD1-directed mAb that binds to the BC loop, C’D loop, 
and FG loop of PD1 with its heavy chain variable domain 
 (VH). In contrast, the light chain variable domain  (VL) of 
cemiplimab sterically inhibits the interaction between 
PDL1 and PD1 [661] (Fig.  8h). Given the considerable 
antitumor activity and acceptable safety, cemiplimab was 
approved for patients with metastatic or locally advanced 
CSCC [662–664].
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FDA‑approved therapeutic drugs for thyroid cancer 
and other solid tumors
Thyroid cancer
Thyroid cancer accounted for 3.0% of cancer cases and 
0.6% of cancer-related mortalities worldwide in 2020 [2]. 
Contrary to pancreatic cancer, thyroid cancer has the 
lowest mortality-to-incidence ratio (0.133) among all 
malignancies [2].

Differentiated thyroid cancer (DTC) is derived from 
the follicular epithelial cells of the thyroid, accounting 
for approximately 95% of all cases, whereas surgery fol-
lowed by either radioiodine therapy or observation is the 
standard treatment for most patients [665]. It is crucial 
to stimulate iodine uptake by elevating thyroid-stimu-
lating hormone (TSH) or depleting thyroid hormone 
prior to radioiodine (iodine-131) administration [666]. 
Thyrotropin alfa is a recombinant human TSH (rhTSH) 
synthesized in a genetically modified Chinese hamster 
ovary cell line (Fig.  9a). It stimulates the thyroid gland 
to produce thyroxine (T4), and its more bioactive form 

triiodothyronine (T3), which increases iodine uptake. 
Clinically, thyrotropin alfa is used for radioiodine abla-
tion of DTC [667] and radioiodine scanning of poorly 
differentiated thyroid cancer [668]. However, 9% of DTCs 
recur after thyroid hormone plus radioiodine therapy 
[669], and approximately 30% of patients with advanced, 
metastatic DTCs have the radioiodine-refractory disease 
[670]. Loss or low expression of sodium–iodide sym-
porter (NIS) is associated with radioiodine refractoriness 
[669, 670]. Genetic and epigenetic alterations induced 
activation of RTKs and their downstream RAS–RAF–
MEK–MAPK/ERK and PI3K–AKT–mTOR pathways 
contribute to the dysfunction of NIS [671–673]. Len-
vatinib is a TKI that targets VEGFRs, FGFRs, PDGFRα, 
RET, and KIT [674, 675] (Fig.  9b). It binds to the ATP-
binding site and the neighboring region of RTKs, adopt-
ing a DFG-in conformation, compared to the DFG-out 
conformation of sorafenib [676]. As expected, lenvatinib 
significantly improves PFS with a high response rate in 
patients with radioiodine-refractory thyroid cancer [677].
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Medullary thyroid cancer (MTC) originates in the 
parafollicular neuroendocrine cells of the thyroid 
and accounts for 1 ~ 2% of all cases [665]. Acquired 
somatic RET mutations and germline RET mutations 
are observed in 35 ~ 50% and 6.5% of sporadic MTCs, 
respectively [678, 679], and are considered second-
ary events rather than initiators that drive the tumo-
rigenesis of MTC [680]. Of note, RETM918T mutation is 
associated with a more aggressive disease and a poorer 
prognosis [681]. EGFR is overexpressed in 13% of MTCs, 
VEGFR2 expression is significantly higher in metastases 
than in the primary tumors of MTCs [682], and MET 
is overexpressed in thyroid epithelial cells [683]. These 
RTKs contribute to the tumorigenesis and angiogenesis 
of MTC [684]. Vandetanib is an inhibitor of VEGFR2, 
EGFR, and RET [678] that binds to the ATP-binding site 
of RTKs [685], leading to cell apoptosis rather than cell 
cycle arrest [686, 687]. However, RETV804M/L gatekeeper 
mutations and RET-S904F mutation confer resistance to 
vandetanib, mainly by increasing the ATP affinity and 
autophosphorylation activity of RET kinase [688, 689]. 
Cabozantinib is an inhibitor of VEGFR2, MET, and RET 
[684] that also binds to the ATP-binding site of RTKs 
[690], thereby inhibiting autophosphorylation of RTKs, 
which leads to tumor hypoxia and apoptosis and sup-
presses metastasis, angiogenesis, and tumor growth [684, 
691]. Cabozantinib significantly prolongs PFS in patients 
with unresectable, locally advanced, or metastatic MTC 
[684, 692, 693]. Intriguingly, cabozantinib potently inhib-
its native ROS1 and the crizotinib-resistant ROS1G2032R 
mutation [694] and overcomes crizotinib resistance in 
CD74-ROS1D2033N-rearranged lung cancer [695] (Fig. 9c).

Soft tissue sarcomas (STSs) are rare tumors that 
account for 1% of all adult malignancies; these include 
Kaposi’s sarcoma, adipocytic tumors (e.g., liposarcoma), 
smooth muscle tumors (e.g., leiomyosarcoma), fibro-
histiocytic tumors (e.g., tenosynovial giant cell tumor), 
tumors of uncertain differentiation (e.g., epithelioid sar-
coma) [696], etc.

Kaposi’s sarcoma
Kaposi’s sarcoma accounted for 0.2% of cancer cases 
and 0.2% of cancer-related mortalities worldwide in 
2020 [2]. It is a relatively rare cancer caused by Kaposi’s 
sarcoma-associated herpesvirus (KSHV, also known as 
human herpesvirus 8 (HHV8)) infection [697]. The skin 
and superficial mucosae are the most common sites of 
Kaposi’s sarcoma lesions [698]. Retinoid X receptor α 
(RXRα) and retinoic acid receptor γ (RARγ) control cell 
differentiation, proliferation, and apoptosis and are pre-
dominantly expressed in the skin [699, 700]. Alitretinoin 
is a 9-cis-retinoic acid that acts as a pan-agonist of RARs 
and RXRs [700]. It modulates cell differentiation and 

apoptosis in a variety of sarcomas by potentially induc-
ing the formation of a homodimer of RXRs [701–703] 
(Fig. 9d). Alitretinoin gel demonstrates durable responses 
with tolerable safety in patients with acquired immuno-
deficiency syndrome (AIDS)-related Kaposi’s sarcoma 
[704, 705].

Liposarcoma
Liposarcoma is a rare malignant tumor of adipocytic dif-
ferentiation that accounts for 15 ~ 20% of STS cases [706]. 
It is characterized by recurrent amplifications within 
chromosome 12, which leads to the overexpression of 
disease-driving genes [706]. Leiomyosarcoma is a malig-
nant mesenchymal tumor that accounts for 10 ~ 20% 
of STS cases [707]. Leiomyosarcoma also exhibits com-
plex genomic alterations involving DNA copy number 
changes and gene mutations [708]. Trabectedin is a tet-
rahydroisoquinoline alkaloid derived from the Caribbean 
marine tunicate Ecteinascidia turbinata [709] (Fig.  9e). 
It binds to the minor groove of DNA that bends DNA 
toward the major groove by forming trabectedin-DNA 
adducts, which block the G2/M phase transition of the 
cell cycle and inhibit cell proliferation [709–711]. The 
FDA-approved Trabectedin for patients with unresect-
able or metastatic liposarcoma or leiomyosarcoma who 
received a prior anthracycline-containing regimen [712].

Soft tissue sarcoma
PDGFRα expression in STSs is sevenfold higher than in 
normal tissues [713]. Olaratumab is a PDGFRα-directed 
mAb that selectively binds to the extracellular domain 
of PDGFRα, which prevents PDGF-AA, PDGF-BB, and 
PDGF-CC ligands from binding to PDGFRα [714, 715] 
(Fig.  9f ). It inhibits the ligand-induced autophospho-
rylation of PDGFRα and downstream signaling, thereby 
blocking PDGFRα-mediated cell mitogenesis [716]. 
Olaratumab plus doxorubicin combination therapy sig-
nificantly improves the PFS and OS compared to doxoru-
bicin alone in patients with advanced STSs [717].

Tenosynovial giant cell tumor
Tenosynovial giant cell tumor (TGCT) is a rare, locally 
aggressive neoplasm mainly characterized by colony-
stimulating factor-1 (CSF1) translocations and CSF1 
receptor (CSF1R) overexpression [718, 719]. CSF1 trans-
locations result in local overexpression of CSF1, which 
attracts histiocytoid and CSF1R-expressing inflammatory 
cells [718–720]. Moreover, CSF1 promotes the differen-
tiation of monocytes into tumor-associated macrophages 
(TAMs), which in turn facilitates tumor survival, growth, 
and metastases with their immunosuppressive effects 
[721–723]. Thus, the CSF1/CSF1R axis is critical for the 
tumorigenesis and progression of TGCTs. Pexidartinib 



Page 32 of 63Wu et al. Journal of Hematology & Oncology          (2022) 15:143 

is an inhibitor of CSF1R, KIT, and FLT3 that accesses 
the autoinhibited state of CSF1R through direct inter-
actions with juxtamembrane residues embedded in the 
ATP-binding pocket, thereby blocking the CSF1/CSF1R 
axis [724] (Fig. 9g). Notably, pexidartinib retains activity 
against the quizartinib-resistant FLT3 gatekeeper F691L 
mutation [725]. As the first systemic therapy of TGCT, 
pexidartinib exhibits a robust tumor response with 
improved clinical outcomes [718, 723].

Epithelioid sarcoma
Epithelioid sarcoma is an ultrarare high-grade soft tis-
sue sarcoma with clinicopathological complexities 
that predisposes patients to locoregional recurrence 
[726], accounting for 1.2 ~ 1.5% of STS cases [727]. INI1 
(encoded by the SMARCB1 tumor suppressor gene) is 
a core subunit of the switch/sucrose nonfermentable 
(SWI/SNF) chromatin remodeling complex frequently 
inactivated in epithelioid sarcomas [728]. The SWI/SNF 
complex is a crucial regulator of nucleosome position-
ing, frequently located at sites marked by acetylated his-
tone H3 lysine 27 (H3K27ac), which establishes an open 
chromatin state with other transcription factors for tran-
scriptional activation [729]. Enhancer of zeste homolog 
2 (EZH2) is an enzymatic subunit of polycomb repressor 
complex 2 (PRC2) that negatively regulates the activity of 
the SWI/SNF complex by placing the repressive trimeth-
ylated histone H3 lysine 27 (H3K27me3) mark [729]. 
EZH2 is expressed in approximately one-third of epi-
thelioid sarcomas [730], making EZH2 a promising tar-
get. Tazemetostat is an inhibitor of EZH2 that blocks the 
lysine methyltransferase activity of EZH2 by selectively 
binding to the S-adenosyl methionine (SAM) binding site 
of EZH2 [731] (Fig.  9h). Tazemetostat exhibits clinical 
activity with favorable safety in patients with advanced 
epithelioid sarcoma harboring INI1 loss [732, 733].

Brain and other CNS tumors accounted for 1.6% of 
cancer cases and 2.5% of cancer-related mortalities 
worldwide in 2020 [2]. These tumors comprise over 100 
histologically distinct subtypes with varying clinical char-
acteristics, treatments, and outcomes, mainly includ-
ing tumors of neuroepithelial tissue, cranial and spinal 
nerves, meninges, etc. [734].

Glioblastoma
Glioblastoma multiforme (GBM) is the most frequent 
and lethal subtype of brain cancer that originates in the 
CNS [735]. Compared with surrounding healthy tissue, 
brain cancers possess a more alkaline pH [736]. Temozo-
lomide is a DNA alkylating prodrug stable at acidic pH 
values but labile at alkaline pH values [737] (Fig. 9i). The 
alkaline microenvironment within brain cancer prefer-
entially facilitates the activation of temozolomide [736, 

737]. It adds a methyl group to the  O6 position of guanine 
(G), resulting in a methyl-guanine (meG)-to-thymine 
(T) mismatch during DNA replication instead of a G-to-
cytosine (C) match [738], which leads to DNA damage 
and ultimately cell apoptosis [739, 740]. Temozolomide 
exhibits an acceptable safety profile and improves PFS 
compared with procarbazine in patients with GBM at 
first relapse [741]. Currently, temozolomide-containing 
regimens are still the first-line therapy for GBM [742, 
743]. However,  O6-meG methyltransferase (MGMT) 
removes alkyl groups from the  O6 position of G, confer-
ring resistance to temozolomide [744, 745].

Neuroblastoma
Neuroblastoma is a malignant embryonal tumor derived 
from primitive cells of the sympathetic nervous system 
[746, 747]. It is the most frequent and lethal solid tumor 
in children and is commonly associated with a poor over-
all prognosis [747]. Disialoganglioside GD2 is expressed 
almost uniformly on the surface of neuroblastoma cells 
and induces cell proliferation, invasion, and motility by 
activating RTK-mediated signal transduction [746, 748, 
749], making it an effective and tractable target of neu-
roblastoma [750, 751]. Dinutuximab is a human/mouse 
chimeric GD2-directed mAb that recognizes and binds 
to the sugar moiety of GD2 exposed to the extracellular 
milieu (similar to 14G2a antibody [752]), thereby induc-
ing cell lysis through ADCC and CDC [751–753]. Com-
pared with standard therapy (six cycles of 13-cis-retinoic 
acid), dinutuximab significantly improved clinical out-
comes in combination with alternating granulocyte-mac-
rophage colony-stimulating factor (GM-CSF) and IL-2 
after standard therapy in patients with high-risk neuro-
blastoma [754]. However, anti-drug antibodies, including 
human anti-mouse or -chimeric antibodies, may cause 
treatment delays, terminations, or even abrogate the 
antitumor effects [746]. Naxitamab is designed to reduce 
the effects of anti-drug antibodies but enhance ADCC 
through humanized IgG1-Fc and retain complement-
mediated cytotoxicity potency through its high affin-
ity for GD2 [746, 755]. As expected, naxitamab exhibits 
modest toxic effects, low immunogenicity, and substan-
tial anti-neuroblastoma activity in combination with 
GM-CSF in patients with relapsed or refractory high-risk 
neuroblastoma [756–758] (Fig. 9j).

Malignant pleural mesothelioma
Malignant pleural mesothelioma (MPM) is a rare but 
highly aggressive and lethal cancer that originates in the 
serosal outer linings of the lungs (pleurae), heart, abdo-
men, and testes, with a 5-year OS rate of ~ 5% [759, 760]. 
Folate receptors (FRα, FRβ, and FRγ) are cysteine-rich 
cell surface glycoproteins that mediate the cellular uptake 
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of folate, commonly expressed at low levels in most nor-
mal tissues [761]. Folate-dependent one-carbon metabo-
lism is required for the de novo synthesis of purines, 
thymidylate, and S-adenosyl methionine and is thus criti-
cal to DNA synthesis [762]. Nevertheless, FRα is highly 
activated and overexpressed in MPM tissues compared 
with normal adjacent tissues, making the folate–FRα 
delivery and metabolism system an attractive target for 
MPM treatment [763]. Pemetrexed is a multitargeted 
anti-folate agent that inhibits at least three enzymes 
(thymidylate synthase, dihydrofolate reductase, and gly-
cinamide ribonucleotide formyltransferase) involved in 
folate metabolism and DNA synthesis [764] (Fig.  9k). 
Compared to cisplatin monotherapy, pemetrexed plus 
cisplatin therapy improved the mOS (12.1  months vs. 
9.3 months) and was thus approved by the FDA for unre-
sectable MPM treatment [765]. Most recently, compared 
with cisplatin-pemetrexed chemotherapy, durvalumab 
plus platinum-pemetrexed chemotherapy therapy signifi-
cantly improved the mOS (20.4 months vs. 12.1 months) 
in patients with unresectable MPM [766].

NTRK‑positive solid tumors
TRK proteins (including TRKA, TRKB, and TRKC) are 
encoded by the NTRK gene family (NTRK1-3), which 
are frequently fusion-positive in a broad range of solid 
tumors, including glioblastoma, NSCLC, and STSs. [767]. 

NTRK fusion leads to the constitutive activation of TRK 
protein, which acts as an oncogenic driver, making it a 
potential therapeutic target [768]. Larotrectinib is an 
oral, highly selective inhibitor of TRKs that binds to and 
competitively inhibits the ATP-binding site of TRKs [769] 
(Fig.  9l). Larotrectinib induces both cell apoptosis and 
inhibition of cell growth in TRK-overexpressed tumors 
[770] and exhibits encouraging antitumor activity with 
good tolerance in patients with tumors harboring NTRK 
gene fusions [771–773]. However,  NTRK1G595R and 
 NTRK1G667C mutations located in the catalytic domain 
confer resistance to both entrectinib and larotrectinib 
[117, 774]. Ponatinib and nintedanib (a PDGFR, FGFR, 
and VEGFR inhibitor used for idiopathic pulmonary 
fibrosis treatment) potentially overcome  NTRK1G667C 
mutation-induced resistance but not  NTRK1G595R 
mutation-induced resistance [774]. Moreover, the next-
generation TRK inhibitors repotrectinib and LOXO-195 
exhibit encouraging activity to overcome TRK mutation-
induced resistance [775] (Table 8).

The success and dilemma of current antitumor strategies
RTK inhibitors and immune checkpoint blockades (ICBs) 
have undoubtedly been the most successful antitumor 
drugs in the past 31 years. The human RTK family com-
prises 58 RTK proteins, which fall into 20 subfamilies 
[776]. These RTKs share a similar structure, mainly with 

Table 8 FDA-approved therapeutic drugs for thyroid cancer and other solid tumors

AIDS Acquired immunodeficiency syndrome; CSF1R Colony-stimulating factor-1 receptor; EGFR Epidermal growth factor receptor; EZH2 Enhancer of zeste homolog 2; 
FLT3 FMS-like tyrosine kinase 3; MEK1/2 MAPK/ERK kinase 1/2; MET Mesenchymal–epithelial transition gene; NTRK Neurotrophic receptor tyrosine kinase; O Orphan; P 
Priority; PDGFRα Platelet-derived growth factor receptor α; RET: rearranged during transfection gene; S Standard; TRKs Tropomyosin receptor kinases; VEGFR Vascular 
endothelial growth factor receptor

Drug (brand name) Sponsor Properties Indication Approval date Review

Thyrotropin alfa (Thyrogen) Genzyme Recombinant human thyroid-
stimulating hormone

Thyroid cancer 11/30/1998 O

Lenvatinib mesylate (Lenvima) Eisai Multitarget TKI (VEGFRs, FGFRs, 
PDGFRα, RET, and KIT)

Thyroid cancer 02/13/2015 P, O

Vandetanib (Caprelsa) Genzyme Multitarget TKI (VEGFR2/3, EGFR, 
and RET)

Unresectable or metastatic medul-
lary thyroid cancer

04/06/2011 P, O

Cabozantinib S-malate (Cometriq) Exelixis Multitarget TKI (VEGFRs, MET, RET, 
FLT3, KIT, TIE2, and AXL)

Progressive, metastatic medullary 
thyroid cancer

11/29/2012 P, O

Alitretinoin (Panretin) Concordia 9-cis-retinoic acid, a form of 
vitamin A

AIDS-related Kaposi’s sarcoma 02/02/1999 P, O

Trabectedin (Yondelis) Janssen Alkylating drug Liposarcoma or leiomyosarcoma 10/23/2015 P, O

Olaratumab (Lartruvo) Eli Lilly PDGFRα-directed mAb Soft tissue sarcoma 10/19/2016 P, O

Pexidartinib HCl (Turalio) Daiichi Sankyo CSF1R, KIT, and FLT3 inhibitor Tenosynovial giant cell tumor 08/02/2019 P, O

Tazemetostat (Tazverik) Epizyme EZH2 inhibitor Epithelioid sarcoma 01/23/2020 P, O

Temozolomide (Temodar) Merck DNA alkylating agent Glioblastoma 08/11/1999 P, O

Dinutuximab (Unituxin) United Therap GD2-directed mAb High-risk neuroblastoma 03/10/2015 P, O

Naxitamab (Danyelza) Y-mAbs GD2-directed mAb High-risk neuroblastoma 11/25/2020 P, O

Pemetrexed disodium (Alimta) Eli Lilly Folate analog Malignant pleural mesothelioma 02/04/2004 P, O

Larotrectinib sulfate (Vitrakvi) Bayer TRKs inhibitor NTRK-positive solid tumors 11/26/2018 P, O
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ligand-binding domains in the extracellular region, a sin-
gle transmembrane helix, and a tyrosine kinase domain 
in the cytoplasmic region [776] (Fig.  10). Aberrant 

overexpression and oncogenic gain-of-function muta-
tion-induced ligand-independent activation of RTKs fre-
quently leads to the activation of downstream pathways, 
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resulting in various diseases involving cancers, diabetes, 
inflammation, etc. RTK-targeted therapies can occur 
at three levels: blocking the ligand–RTK interaction in 
the extracellular region, inhibiting the tyrosine kinase 
domain in the intracellular region, and inhibiting the 
constitutive components of RTK-mediated downstream 
pathways.

The advent of trastuzumab is undoubtedly a milestone. 
It inhibited the RTK pathway from the first level and 
was the first RTK-targeted therapy. However, obstacles 
to trastuzumab–HER2 interaction [201] and reactiva-
tion of HER2 downstream pathways, whether induced by 
bypass pathway switching or mutations of downstream 
components (e.g., PIK3CA mutation [777]), confer resist-
ance to trastuzumab. Regarding other RTKs, such as 
MET, oncogenic mutations lead to MET self-activation 
in a ligand-independent manner [778]. These biologi-
cal mechanisms inevitably lead to the failure of the first-
level RTK-targeted strategy. Gefitinib is a small-molecule 
inhibitor that targets the intracellular tyrosine kinase 
domain of RTK at the second level because it is difficult 
for antibodies to target intracellular antigens [779]. This 
strategy addresses the ligand-dependent activation and 
specific mutation-induced self-activation of RTK to a 
certain extent. However, it cannot overcome the bypass 
pathway switch, secondary mutations within the tyrosine 
kinase domain, and downstream component mutations, 
even if multitarget TKIs (e.g., sorafenib) are used. Inhibi-
tors of the RAS–RAF–MEK–MAPK/ERK (e.g., sotorasib) 
and PI3K–AKT–mTOR (e.g., alpelisib) pathways block 
the RTK pathway at the third level. This strategy blocks 
the RTK pathway regardless of upstream RTK activation 
and may address the bypass pathway switch to a certain 
extent. However, the secondary mutations of targets and 
loss-of-function PTEN mutations still confer resistance 
[124, 780]. Nevertheless, RTK-targeted drugs have been 
the mainstay for the treatment of solid tumors. Over the 
past 31 years, 48 RTK inhibitors and 13 RTK downstream 
component inhibitors were approved by the FDA, and 
these drugs account for more than half of all therapeutic 
drugs for solid tumors (Fig. 11a).

ICBs adopt a novel strategy that reinvigorates a range 
of  CD4+ and  CD8+ tumor-infiltrating T lymphocytes 
[781], enabling the possibility of long-term survival in 
patients with metastatic or advanced cancers [782]. The 
clinical application of ICBs heralds a new era of cancer 
treatment, as they are the most successful strategy in the 
recent decade [782, 783]. The FDA has approved nine 
ICBs in the USA since the first approval of ipilimumab 
in 2011 (Additional file 1: Table S4, page 56). Despite the 
clinical success, only a minority of people exhibit dura-
ble responses to ICBs [784]. The mutated proteins of 
cancer cells produced by nonsynonymous mutations and 

other genetic alterations need to be processed and then 
presented as neoantigens by major histocompatibility 
complex (MHC) molecules of antigen-presenting cells 
(APCs) and recognized by T cells [785]. However, neo-
antigens do not always bind to MHC molecules with high 
affinity or contain mutant amino acids at the appropriate 
position, making it difficult for T cells to recognize them 
[784]. Melanoma has the highest frequency of somatic 
mutations among human cancers and may produce the 
largest available neoantigen repertoire [785]. It explains 
why most ICBs are approved for the treatment of mela-
noma. In addition, preexisting PD1/PDL1-positive  CD4+ 
and  CD8+ T cells positioned in proximity to the cancer 
cells inside tumors are critical to clinical responses [786, 
787]. In some tumors with an ‘immune-excluded’ pheno-
type, the T cells locate the stroma surrounding the tumor 
nest instead of penetrating the parenchyma of the tumor. 
Tumors with the ‘immune-desert’ phenotype lack T cells 
in either the parenchyma or stroma of the tumor [784]. 
Thus, tumors with immune-excluded and immune-
desert phenotypes are often associated with unfavorable 
responses to ICBs [783]. In addition, immune-related 
adverse events (irAEs) [788] and hyperprogressive dis-
ease [5, 789] are of great concern. It is clear that further 
work is needed to reliably regulate the immune system in 
the clinic.

Breast and prostate cancers are associated with sex 
hormones and accounted for approximately one-fifth of 
cancer cases and more than 10% of cancer-related mor-
talities worldwide in 2020 [2]. Breast cancer drugs are 
frequently at the forefront of advances in cancer treat-
ment and diagnosis [133]. Therapeutic drugs for breast 
cancer have begun to diversify, and no new drugs target-
ing ER (two SERDs bazedoxifene and ospemifene, are not 
indicated for breast cancer, Additional file  1: Table  S1, 
page 26) or aromatase have been approved since the 
approval of fulvestrant in 2002. ER-positive breast can-
cer accounts for 80% of all breast cancer cases and half 
of breast cancer-related mortalities [152, 790]. Given the 
superiority of fulvestrant, newer-generation ER antago-
nists are needed to improve the poor physicochemical 
properties and administration mode of fulvestrant for 
this large group of patients [152].

In contrast, therapeutic drugs for prostate cancer are 
still limited to antiandrogens, even in recent years. The 
progression of mCRPC is the major cause of death in 
patients with prostate cancer [791], although OS is signif-
icantly improved with cabazitaxel [477, 478], abiraterone 
[486], and enzalutamide [792]. Bipolar androgen ther-
apy (BAT) is a new strategy that induces rapid cycling 
between high and low serum testosterone concentra-
tions, resulting in tumor responses and resensitization of 
mCRPC to enzalutamide. This strategy is more effective 
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than abiraterone [793, 794]. Distinct strategies have been 
developed for the two sex hormone-related cancers; spe-
cifically, breast cancer treatment adopts strategies refer-
ring to multiple targets and mechanisms, while prostate 
cancer treatment emphasizes the refinement of antian-
drogen strategies.

Therapeutic drugs for solid tumors have ushered in a 
new period of prosperity. Seventy-four therapeutic drugs 
and 61 RTK or RTK pathway inhibitors were approved 
in the last decade, accounting for 61.7% and 75.4% of all 
therapeutic drugs and RTK or RTK pathway inhibitors 
of solid tumors approved in the past 31  years, respec-
tively (Fig. 11b). Quite a few drugs have been exquisitely 
designed. For instance, ziv-aflibercept utilizes the binding 
affinity between VEGFRs and VEGFs to capture VEGFs. 
In addition, ADCs retain all the antitumor efficiency of 
mAbs and add cytotoxic payloads, allowing for the tar-
geted delivery of chemotherapeutic agents. The appli-
cation of ADCs has dramatically expanded the clinical 
application of mAbs. ADCs and the first bispecific anti-
body, amivantamab, have started a new era of engineered 
antibodies. The approval of SMO, PARP, and EZH2 
inhibitors was based on research progress on hedgehog 
signaling, synthetic lethality, and epigenetics in cancers. 
It is believed that there will be more drugs based on new 
mechanisms in the future alongside the exploration of 
new targets and vulnerabilities of tumors.

Future perspectives
Target identification and drug design have been the core 
drivers throughout antitumor history in recent dec-
ades, and antitumor strategies for solid tumors have 
profoundly changed over the past 30  years. During the 
first decade, pharmacologists were devoted to develop-
ing anti-endocrine agents, microtubule inhibitors, DNA 
alkylating agents, and DNA topoisomerase inhibitors. 
Overall, this stage did not focus much on targeting drugs, 
although the advent of trastuzumab began a new era of 
RTK-targeted therapy. During the second decade, phar-
macologists extended RTK-targeted inhibitor studies to 
include RTK downstream component inhibitors, which 
enriched the TKI library and shifted the focus toward tar-
geted drug development. In addition, the advent of ipili-
mumab, which converts immunotherapy from positive 
stimulation (e.g., IL-2 and INFα) to immune checkpoint 
blockade, started a true paradigm shift for metastatic or 
advanced solid tumors. During the third decade, RTK 
and RTK pathway inhibitors and ICBs were extensively 
developed. Drugs targeting novel targets and tumor vul-
nerabilities, such as PARP and SMO inhibitors, were 
added to the list for solid tumor treatment.  KRASG12C, 
once considered an undruggable target, was blocked 

successfully by sotorasib. The treatment of solid tumors 
ushered in the precise targeting stage (Fig. 12a).

RTK and RTK pathway inhibitors, ADCs and ICBs, 
are still the mainstay. A new ICB relatlimab-rmbw (lym-
phocyte activation gene-3 (LAG-3)-directed mAb) was 
approved by the FDA in combination with nivolumab 
for unresectable or metastatic melanoma on March 18, 
2022 [795]. Next, proteolysis-targeting chimeras (PRO-
TACs) [796] and small interfering RNA (siRNA) tech-
nologies [797] degrade targets at the protein and RNA 
levels, respectively [798]. Indeed, the first RNA-targeted 
drug, inclisiran (Additional file  1: Table  S1, page 40), 
has been approved by the FDA [799]. Increasing clini-
cal trials of PROTAC-based drugs are ongoing, making 
PROTACs the gold rush [800]. The advent of PROTAC 
technology makes it possible to selectively degrade 
proteins that are typically difficult to target (e.g., tran-
scription factors). Similar technologies, such as chap-
erone-mediated autophagy [801], Trim-Away [802], 
degradation tag (dTAG) [803], and lysosome-targeting 
chimeras (LYTACs) [804], are also of great concern. Mul-
tispecific antibodies (msAbs) bind two or more epitopes, 
which greatly extends the function of mAbs. With the 
approval of bispecific T-cell engagers (BiTEs) blinatu-
momab (Additional file  1: Table  S1, page 28; Table  S2, 
page 47) and amivantamab, msAbs will become a critical 
antitumor strategy in the coming decades [805].

Vaccines, cell-based therapies, and gene therapy 
products represent another essential pillar of cancer 
treatment, although they are not discussed in the text. 
Chimeric antigen receptor (CAR)-T cells have achieved 
great success in patients with hematological malignan-
cies, especially CD19-directed CAR-T cells [806]. The 
clinical application of CAR-T cells in solid tumors has 
been limited by setbacks due to substantive biologi-
cal barriers and risks [807]. Efforts to seek suitable tar-
gets [808] to overcome the immunosuppressive tumor 
microenvironment (TME) [809] and combat cytokine 
release syndrome (CRS) and immune effector cell-asso-
ciated neurotoxicity syndrome (ICANS) [810, 811] are 
still ongoing. In recent years, CAR-T-cell clinical tri-
als against solid tumors have exhibited acceptable safety 
and encouraging clinical outcomes [812–815]. Oncolytic 
viruses are naturally or genetically engineered viruses 
that preferentially infect, lyse, and replicate in cancer 
cells relative to normal cells [816, 817]. Oncolytic viruses 
provide a platform for monotherapy [818] or in combi-
nation with chemotherapies [819, 820] and immuno-
therapies [821–823] by delivering defined factors. With 
the first approval of talimogene laherparepvec (T-Vec) in 
2015 [824], many clinical trials are ongoing [816]. Onc-
olytic viruses are also attractive carriers for cancer vac-
cines [825] and gene editing [826].
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Cancer vaccines can be simply divided into preven-
tive and therapeutic vaccines [827]. Therapeutic vaccines 
directly utilize APCs (e.g., dendritic cells (DCs)), viruses, 
liposomes, and nanoparticles as vesicles to deliver tumor-
specific antigens (including neoantigens), inducing 
immune recognition and activation of T cells [828]. Pre-
ventive vaccines are confined to specific virus-induced 
cancers, such as HPV-related cancers [829] and hepatitis 
B virus (HBV)-related HCC [830]. Like preventive vac-
cines, chemoprevention is also a preventive strategy to 
reverse, suppress, or prevent carcinogenic progression to 
invasive cancer using chemical agents [831]. For instance, 
familial adenomatous polyposis (FAP) is a precancerous 
state of colorectal cancer [832] caused by germline muta-
tions in the adenomatous polyposis coli (APC) gene [833, 
834]. Almost all of the mutations of APC, both germline 
and somatic, produce a truncated APC protein, leading 
to APC dysfunction [835–837]. Dysfunctional APC fails 
to form a destruction complex, resulting in β-Catenin 
stabilization and canonical Wnt/β-Catenin signaling 
activation [838]. Cyclooxygenase-2 (COX-2) is a crucial 
enzyme of prostaglandin  E2  (PGE2) biosynthesis that 
plays an essential role in colorectal tumorigenesis [839]. 
 PGE2 is a potent proinflammatory factor that serves as a 
ligand for the G protein-coupled receptor (GPCR) EP2. 
It promotes colon cancer cell growth through the Gαs-
Axin-β-Catenin axis [840]. Celecoxib is a potent COX-2 
inhibitor approved by the FDA in 1998 for treating FAP 
(Additional file  1: Table  S1, page 10); thus, it is also an 
agent for the chemoprevention of colorectal cancer [841, 
842]. From the cost-effectiveness perspective, preventive 
vaccines and chemoprevention have absolute superiori-
ties, both economically and physiologically.

Cell death inducers have always been an important 
research field in cancer treatment strategies [843]. 
Mechanically, the available antitumor drugs induce cell 
cycle arrest or cell death unexceptionally. For instance, 
the mTOR inhibitors (e.g., temsirolimus and everoli-
mus) can be classified as autophagy-related death 
inducers. In recent years, novel cell death inducers, 
such as the tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) agonist eftozanermin alfa 
(ABBV-621) [844] and the mitochondrial caseino-
lytic protease P (ClpP) activator ONC201 [845] have 
entered clinical trials for the treatment of solid tumors 
(NCT03082209 and NCT05476939), which may bring 
new hope for cancer treatment. In contrast, significant 
success has been achieved in the field of epigenetic 
drugs (epi-drugs), such as EZH2 inhibitor tazemeto-
stat and isocitrate dehydrogenase 1 (IDH1) inhibitor 
ivosidenib (Additional file  1: Table  S1, page 34). The 
first- and second-generation epi-drugs that use a ‘one 
size fits all’ strategy, such as DNA methyltransferase 

(DNMT) and histone deacetylase (HDAC) inhibitors, 
were proven to have disappointing efficacy in patients 
with solid tumors [846]. The third-generation epi-
drugs use more precise targets, such as IDH1, EZH2, 
and certain bromodomain and extra-terminal domain 
(BET)-containing proteins (BRDs), which are showing 
promising efficacy [847].

Artificial intelligence (AI) improves the ability to deal 
with the massive amount of tumor genome informa-
tion and promotes the ability to decipher protein struc-
tures. The AI technology represented by AlphaFold 
may significantly shorten the process of drug develop-
ment [848]. In addition, gene-editing technologies, such 
as clustered regularly interspaced short palindromic 
repeats (CRISPR)-associated (Cas) systems [849], pro-
vide a potent tool to modify primary patient-derived 
cells in vitro. Quite a few clinical trials of CRISPR-based 
immune cells for cancer treatment are ongoing, espe-
cially CAR-T cells [850]. However, multiple hurdles need 
to be overcome before CRISPR directly targets tumor 
cells in vivo, including appropriate delivery carriers, off-
target cutting, and chromosomal rearrangements [850, 
851]. Modifying specific mutations by gene-editing 
technologies is undoubtedly one of the peaks of preci-
sion medicine. Engineered cell therapies should not be 
limited to the currently used T cell or DC cell models; 
many other cell types can also be incorporated into this 
system, such as stem cells [852, 853], natural killer (NK) 
cells [854], fibroblasts [855], and even engineered cancer 
cells [856]. Expanding the variety of cell types available 
for therapy can make full use of the characteristics of dif-
ferent cells to meet complex clinical needs [857]. Human 
microbiome communities have been implicated in cancer 
initiation, progression, metastasis, and therapy resistance 
[858]. With the advent of next-generation sequencing 
and a deeper understanding of host–microbiome inter-
actions, microbiome analyses are being developed as a 
promising approach for cancer diagnosis [859], while 
microbiome modulation may be a practicable adjunct to 
existing antitumor strategies [860].

High tumor heterogeneity and tumor mutation burden 
are frequently associated with treatment resistance and 
cancer recurrence [861], failing to predict the response to 
available treatment [862]. For these clinical settings, sys-
tematic manipulation and domestication of cancer cells 
by extracellular matrix (ECM) and epigenetic remodeling 
or by more complicated metabolic and immune remod-
eling to control the progression and metastasis of tumors 
instead of killing tumors may be realistic strategies in the 
post-precision medicine era. With the development of AI 
and nanotechnology, the existing approaches to diagno-
sis and treatment will be replaced by dynamic nanosen-
sors and intelligent nanobots, thereby promoting the 
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transition from precision medicine to intelligent medi-
cine (Fig. 12b).

Conclusion
The research and development pace of antitumor drugs 
is accelerating with the in-depth study of the tumori-
genesis mechanism. Nevertheless, these 120 therapeutic 
drugs are still the mainstay for advanced, unresectable, 
or metastatic solid tumors. Although several drugs have 
been discontinued or withdrawn from the market due to 
severe adverse effects, commercial reasons, or the emer-
gence of substituted new-generation drugs, the findings 
and lessons in the exploration of cancer treatment strat-
egies will always be the milestones in antitumor history.
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terone; dMMR: Mismatch repair deficiency; DNMT: DNA methyltransferase; 
DSBs: Double-stranded breaks; dTAG : Degradation tag; DTC: Differentiated 
thyroid cancer; ECM: Extracellular matrix; EGFR: Epidermal growth factor 
receptor; EML4: EMAP-like protein 4; epi-drugs: Epigenetic drugs; ER: Estrogen 
receptor; ERK: Extracellular signal-regulated kinase; EZH2: Zeste homolog 2; 
FAP: Familial adenomatous polyposis; FDA: Food and Drug Administration; 
FdUMP: Fluorodeoxyuridine monophosphate; FdUTP: Fluorodeoxyuridine 
triphosphate; FGFR2: Fibroblast growth factor receptor 2; FKBP12: FK506-
binding protein 12; FR: Folate receptor; FSH: Follicle-stimulating hormone; 
FUTP: Fluorouridine triphosphate; GATA3: GATA binding protein 3; GBM: 
Glioblastoma multiforme; GEP-NETs: Gastroenteropancreatic neuroendocrine 
tumors; GISTs: Gastrointestinal stromal tumors; GLI: Glioma-associated 
oncogene; GM-CSF: Granulocyte-macrophage colony-stimulating factor; 
GnRH: Gonadotropin-releasing hormone; gp100: Glycoprotein 100; GPCR: G 
protein-coupled receptor; H3K27ac: Acetylated histone H3 lysine27; 
H3K27me3: Trimethylated histone H3 lysine27; HBV: Hepatitis B virus; HCC: 
Hepatocellular carcinoma; HDAC: Histone deacetylase; HER2: Epidermal 
growth factor receptor 2; HGF: Hepatocyte growth factor; HIF1α: Hypoxia-
inducible factor-1α; HPV: Human papillomavirus; HR: Hormone receptor; HRD: 
Homologous recombination deficiency; HSP90: Heat shock protein 90; ICANS: 
Immune effector cell-associated neurotoxicity syndrome; ICBs: Immune 
checkpoint blockades; ICC: Intrahepatic cholangiocarcinoma; IDH1: Isocitrate 
dehydrogenase 1; IFNα: Interferon-α; IFNγ: Interferon-γ; Ig: Immunoglobulin; 
IGF1R: Insulin-like growth factor-1 receptor; IL-2: Interleukin-2; IL-2R: IL-2 
receptor; irAEs: Immune-related adverse events; KSHV: Kaposi’s sarcoma-
associated herpesvirus; LAG-3: Lymphocyte activation gene-3; LAK: 
Lymphokine-activated killer; LBD: Ligand-binding domain; LCC: Large-cell 
carcinoma; LH: Luteinizing hormone; LH-RH: Luteinizing hormone-releasing 
hormone; LYTACs: Lysosome-targeting chimaeras; mAbs: Monoclonal 
antibodies; MAPK: Mitogen-activated protein kinase; MASC: Mammary analog 
secretory carcinoma; mCRPC: Metastatic castration-resistant prostate cancer; 
MC-vc-PAB: Maleimidocaproyl valine-citrulline p-aminobenzyl alcohol 

carbamate; MDR: ABCG2-mediated multidrug resistance; MEK: MAPK/ERK 
kinase; MET: Mesenchymal–epithelial transition; MGMT: O6-meG methyltrans-
ferase; MHC: Major histocompatibility complex; mLST8: Mammalian lethal with 
SEC13 protein 8; MMAE: Monomethyl auristatin E; MPM: Malignant pleural 
mesothelioma; MRP2: Multidrug resistance-associated protein 2; msAbs: 
Multispecific antibodies; MSI-H: Microsatellite instability—high; MTC: 
Medullary thyroid cancer; mTOR: Mammalian target of rapamycin; mTORC: 
MTOR complex; NAD+: Nicotinamide adenine dinucleotide; NER: Nucleotide 
excision repair; NIS: Sodium–iodide symporter; NK: Natural killer; NMEs: New 
molecular entities; NMPA: National Medical Products Administration; NMSCs: 
Non-melanoma skin cancers; NSCLC: Non-small-cell lung cancer; NTRK: 
Neurotrophic tyrosine receptor kinase; OCT: Organic cation transporter; ORR: 
Objective response rate; OS: Overall survival; PARPs: Poly (ADP-ribose) 
polymerases; PAR: Poly (ADP-ribose); PAR-2: Protease-activated receptor 2; PD1: 
Programmed death receptor-1; PDGFRα/β: Platelet-derived growth factor 
receptor α/β; PDL1: Programmed death-ligand 1; PFS: Progression-free 
survival; PGE2: Prostaglandin  E2; PI3K: Phosphatidylinositol 3-kinase; PIK3CA: 
Phosphatidylinositol 3-kinase catalytic subunit A; PlGF: Placenta growth factor; 
PR: Progesterone receptor; PRC2: Polycomb repressor complex 2; PROTACs: 
Proteolysis-targeting chimeras; PRRT : Peptide receptor radionuclide therapy; 
PSA: Prostate-specific antigen; PTCH1: Patched homolog 1; RAPTOR: 
Regulatory-associated protein of mTOR; RARγ: Retinoic acid receptor γ; RB: 
Retinoblastoma; RB3-SLD: RB3 protein stathmin-like domain; RCC : Renal cell 
carcinoma; RET: Rearranged during transfection; rhTSH: Recombinant human 
TSH; RICTOR: Rapamycin-insensitive companion of mTOR; ROS: Reactive 
oxygen species; ROS1: ROS proto-oncogene 1; RTKs: Receptor tyrosine kinases; 
RXRα: Retinoid X receptor α; SAM: S-adenosyl methionine; SERD: Selective ER 
degrader/down-regulator; SERMs: Selective ER modulators; SCC: Squamous 
cell carcinoma; SCLC: Small-cell lung cancer; siRNA: Small interfering RNA; 
SMCC: N-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate; 
SMO: Smoothened; SSBs: DNA single-stranded breaks; SSTRs: Somatostatin 
receptors; SWI/SNF: Switch/sucrose non-fermentable; T-Vec: Talimogene 
laherparepvec; TF: Tissue factor; TIIs: Tumor-infiltrating immune cells; TIMCs: 
Tumor-infiltrating mononuclear cells; TKIs: Tyrosine kinase inhibitors; TME: 
Tumor microenvironment; TNBC: Triple-negative breast cancer; TOP1: 
Topoisomerase I; TOP1CCs: TOP1 cleavage complexes; TOP2A: Topoisomerase 
Iiα; TP: Thymidine phosphorylase; TRAIL: Tumor necrosis factor-related 
apoptosis inducing ligand; TRKs: Tropomyosin receptor kinases; Trop-2: 
Trophoblastic cell surface antigen-2; TSH: Thyroid-stimulating hormone; 
UGT1A1: Uridine diphosphate glucuronosyltransferase 1A1; UP: Uridine 
phosphorylase; VEGFR2: Vascular endothelial growth factor receptor 2; VEGFs: 
Vascular endothelial growth factors; VHL: Von Hippel–Lindau; WT: Wild type.
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