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Introduction

More than 100 years have passed since Alzheimer’s disease 

(AD) was first characterized.  However, due to the lack of 

effective treatment, AD remains pandemic in the 21st century, 

imposing enormous social, and economic burdens on patients 

and their families[1].  Modern demographic trends compound 

the problem; our aging global population has led to a steep 

increase in the number of individuals with AD.  In the United 

States alone, more than 13 million individuals are predicted to 

be afflicted with AD by the year 2050[2], leading to an overbur-

den of scarce healthcare resources.  Some studies estimate that 

the present availability of a treatment that can delay disease 

onset by 6.7 years would decrease the prevalence of AD 38% 

by 2050[3].  Such disease-modifying treatments would lower 

the annual cost of individual patient care by up to $24 000, 

thereby reducing the national cost of AD by trillions of dollars 

through the year 2050[4, 5].  

Unfortunately, currently available treatments, eg, Aricept 

and Memantine, usually provide at best only temporary 

and incomplete symptomatic relief.  The marginal benefits 

provided by current therapies emphasize the urgent need to 

develop effective disease-modifying AD treatments.

Amyloid β–targeting strategies 
Disease-modifying strategies currently being pursued for AD 

mainly focus on two AD-related proteins, amyloid β (Aβ) and 
Tau.  Of these, Aβ has attracted the most attention by far.

Substantial data derived from genetics, animal model-

ing, and biochemical studies support the idea that Aβ, the 
major component of senile plaques, plays a central role in AD 

pathophysiology[6, 7].  Paradoxically, Aβ peptides — the seeds 
of AD — are present at birth, and these neurotoxic peptides 
are continuously produced throughout life.  Thus, the most 

direct target in anti-Aβ therapy is reduction of Aβ production, 
which has led naturally to a focus on β- and γ-secretase inhibi-
tors[8–13].  However, despite considerable effort on this front, 

few novel chemical compounds based on this strategy have 

reached clinic trials.  Safety issues are the overriding reason; 

because γ-secretase has many physiologically essential sub-

strates, undesirable side effects are inevitable.  One such sub-

strate is the Notch signaling protein, which plays an interme-

diate and essential role in the differentiation and proliferation 

of many cell types.  The consequences of γ-secretase inhibi-
tion include impaired lymphocyte differentiation and altered 

intestinal goblet cell structure[14–16].  Thus, although the use of 

small-molecule γ-secretase modulators is receiving increasing 
attention as a promising therapeutic approach[17], many com-
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panies have abandoned γ-secretase as a potential target.  
In theory, inhibiting β-secretase should not carry the same 

risk of toxicity as γ-secretase inhibition.  However, designing 
β-secretase inhibitors has been challenging.  The β-secretase 
protein contains a large catalytic pocket; thus, the β-secretase 
inhibitors that have been developed to date are too large to 

penetrate the blood-brain barrier[18-20].  There may also be 

conceptual drawbacks to targeting β-secretase.  The develop-

ment of Aβ secretase inhibitors is based on the hypothesis that 
Aβ deposition in the brain is due to overproduction or poor 
clearance of Aβ.  However, this is likely only true for cases 
of familial AD caused by genetic mutation.  Non-genetic AD 

cases, which represent the majority of AD patients, do not 

carry mutations and do not necessarily have overproduction 

of amyloid precursor protein (APP)[21].  More importantly, a 

deeper understanding of Aβ has revealed that Aβ isoforms 
also serve as endogenous positive regulators of release prob-

ability at hippocampal synapses, with some studies suggest-

ing that monomeric Aβ is beneficial for neurons[22, 23].  Thus, 

because Aβ production may be important for physiological 
health, inhibiting Aβ generation may not necessarily be a 
sound strategy.  An alternative tactic is to focus on Aβ clear-

ance.  One approach is to enhance the peripheral Aβ “sink 
action” by sequestering plasma Aβ, for example using Aβ 
immunotherapy.  The AN1792 Aβ vaccine was designed for 
this purpose; however, it failed in Phase II clinical trials due to 

the development of meningoencephalitis[24].  Nevertheless, it 

might be possible to circumvent such complications by target-

ing the proteolytic machinery in the brain.  However, from a 

therapeutic point of view, it remains to be seen whether any of 

the relevant proteases will serve as a viable AD drug target[25].

Aβ can aggregate into fibrils and oligomers (Figure 1).  It 
was originally believed that only the large fibrils constitut-

ing mature neuritic amyloid plaques are toxic.  However, in 

recent years research focus has shifted towards Aβ oligom-

ers.  Currently, Aβ peptide aggregation into toxic, prefibrillar 
oligomers is considered the key pathogenic event in the onset 

of AD[26, 27].  Consistent with this view, Aβ oligomers can: i) 
directly induce synaptic dysfunction and neuronal death, both 

which are responsible for AD initiation and progression[28–30]; 

and ii) trigger events such as oxidative damage and inflamma-

tion, which contribute to the progression of AD[31–33].  Although 

generation of Aβ monomers is, in and of itself, a physiologi-
cally relevant event, their aggregation into oligomers and 

fibrils is pathogenic.  Thus, blocking aggregation (while spar-

ing Aβ generation) should not lead to mechanism-based toxic-

ity.  Hence, the strategy of inhibiting aggregation of Aβ, more 
specifically the Aβ42 isoform, has emerged as a valid disease-
modifying therapy for AD[34].  

Problems associated with inhibiting Aβ aggregation 
Tremendous effort has been expended in recent years on 

developing small molecules that are capable of inhibiting Aβ 
aggregation.  However, to date, no compounds have entered 

into clinical use.  This is because the inhibition of Aβ aggrega-

tion requires blocking interactions between Aβ monomers, and 
historically, protein–protein interaction interfaces are particu-

larly difficult drug targets.  Thus, inhibiting Aβ aggregation 
has been deemed intractable[35, 36].  The challenges associated 

with targeting Aβ aggregation are substantial, with the most 
obvious obstacle being the sheer size and geometry of the pro-

tein interaction surface.  First, the regions of protein–protein 
interactions are approximately 1500–3000 Å2 [37–40], whereas 

protein–small molecule interaction regions are only about 300–

1000 Å2 [41, 42].  Thus, small molecules are often unable to pro-

duce sufficient steric hindrance to inhibit Aβ aggregation[43].  

Second, the regions of protein–protein interactions are often 

relatively featureless, devoid of grooves or pockets into which 

a small molecule could dock in an energetically favorable 

manner[43–47].  The binding energy that drives protein–protein 

contacts is typically distributed over a large area that lacks a 

defined “hotspot” for pharmacological intervention[48].  Third, 

the highly plastic nature of protein surfaces can accommodate 

small molecules, thereby thwarting inhibition[48].  Together, 

these problems place severe restrictions on the development of 

Aβ aggregation inhibitors.

Designing solutions to these problems 
To tackle these challenges, researchers have envisioned a Tro-

jan horse strategy in which a small bifunctional molecule gains 

access to the relevant biological compartment, binds tightly to 

a chaperone, and thereby provides the necessary steric bulk 

to disrupt protein–protein interactions[48].  A second approach 

is to directly target the important chaperones, such as metals, 

in the brain.  A growing body of evidence suggests that the 

presence of excess zinc, iron, copper and/or aluminum within 

senile plaques exacerbates Aβ-mediated oxidative damage and 
acts as a catalyst for Aβ aggregation in AD[49].  Thus, chelation 

therapies aimed at disrupting aberrant interactions between 

Aβ and metals have attracted considerable attention; one such 
example is PBT2, which is currently in Phase IIa clinical tri-

als[50].  Unfortunately, to date, no new compounds employing 

this strategy have entered into clinical use.  

The discovery that Aβ fibril formation is controlled by 
specific amino acids within the Aβ peptide itself has given 
renewed life to the idea that small molecules might occlude 

Aβ aggregation.  Studies have demonstrated that various Aβ 
peptide regions contribute differently to Aβ aggregation and 
have identified important interactions among specific peptide 
regions that control this process[51].  For instance, the N-termi-Figure 1.  The plaque formation.
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nus[52, 53], hydrophobic core[54, 55], hinge or turn regions[51, 56, 57] 

and C-terminus[58, 59] of Aβ41-42 are all crucial for the peptide’s 
ability to aggregate and promote neurotoxicity.  

The importance of the His13–Lys16 (HHQK) region in oli-

gomerization, fibril propagation and neurotoxicity is well 

known[60–62].  This four-residue region is also an essential com-

ponent of the heparin-binding site for glycosaminoglycans 

(GAGs), which assist the HHQK motif in effecting a change in 

the Aβ secondary structure from a soluble, unordered α-helix 
to a stable β-sheet–rich conformation.  These β-sheet–rich 
structures, in turn, have an affinity for associating with other 
monomers to form oligomers, protofibrils and fibrils that 

aggregate into plaques[60].  The β-hairpin structure serves 
to nucleate the folding of Aβ monomers, which is the rate-
limiting step in fibril formation[56, 57, 63].  The formation of hinge 

or turn regions brings together two hydrophobic segments 

in space and produces the β-strand structure.  In this region, 
Lys28 forms a salt bridge with Asp23/Glu22, which further 

stabilizes the structure[63–65].  Electrostatic and hydrophobic 

interactions between these non-native side chains bring the 

peptides together, allowing native backbone−backbone inter-

actions to initiate the assembly of β-sheets, albeit in non-native 
β-sheet registries[64].  The hydrophobic segments are the main 

core of Aβ aggregates, and hydrophobic interactions are an 
important driving force in Aβ aggregate formation[66, 67].  Based 

on these observations, a β-sheet breaker was first investigated 
as a potential inhibitor of Aβ aggregation[68].  A substantial 

body of evidence suggests that the C-terminus of Aβ42 plays 
a key role in controlling oligomerization; indeed, several stud-

ies of prefibrillar Aβ have suggested that the C-terminus of 
Aβ42 is more rigid than the C-terminus of the more abundant 
but less toxic Aβ40[69–71].  This increased rigidity has been 

attributed to interactions involving C-terminal residues Ile41 

and Ala42, which stabilize a putative turn conformation[71].  

Although these subregions contribute differently to structure 

formation, each is important for Aβ aggregation.  
By targeting these subregions for binding, a small molecule 

will be more likely to directly occlude Aβ aggregation.  In 
fact, most inhibitors that have entered clinical trials target 

these specific subregions within the Aβ sequence (Figure 
2).  Tramiprosate (3-aminopropanesulfonic acid), a mimic 

of GAGs, targets the HHQK subregion at the N-terminus.  

Although the structural simplicity of tramiprosate makes it 

highly specific to Aβ, it ultimately failed in the late stages 
of a Phase III clinical trial[72].  Despite this setback, the data 

obtained provided evidence that inhibitors targeting specific 
Aβ subregions represent a viable approach for AD treat-
ment[73].  The agents targeting C-terminus feature one scaffold, 

the cyclohexanehexol stereoisomers.  Among these, scyllo-

inositol, which interferes with Aβ fibril assembly by compet-
ing with endogenous phosphatidylinositol for binding to 

Aβ41-42[59], has shown promise in current Phase II trials.  The 

hydrophobic central region is yet another promising target for 

Aβ fibrillation inhibitors, which include RS-0406[74].

The quest for small molecules that target Aβ 
As the strategy of inhibiting Aβ aggregation has increasingly 
gained acceptance, greater numbers of inhibitors have been 

developed and the structure-activity relationships of potent 

inhibitors have been systematically explored[75].  These stud-

ies revealed that typical Aβ aggregation inhibitors such as 
Congo red (CR), chrysamine G (CG) and curcumin share a 
similar chemical scaffold.  These molecules contain two aro-

matic groups or inositol groups (with a suitable substituted 

Figure 2.  The subregion-targets in Aβ.
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group) separated by a backbone of the appropriate length[75].  

We speculate that the two terminal groups interact with Aβ 
protein residues to provide the binding affinity, whereas the 
linker facilitates binding of inhibitors to specific subregions.  

Determining which subregion the inhibitors target will be key 

to future research efforts.  A molecule that targets a specific 

subregion should satisfy the following design criteria: (1) it 
should contain terminal groups suitable for interacting with 

residues in, or adjacent to, the subregion; and (2) the linker 

should be of an appropriate length to join the two terminal 

groups, span the subregion, and provide sufficient steric hin-

drance.  Molecules designed according to these specifications 
would therefore be capable of inhibiting Aβ aggregation by 
binding to a specific subregion.  

The handful of inhibitors that have been developed to date 

do not possess this chemical scaffold.  Scyllo-inositol con-

tains only one terminal group and can therefore target only 

a very small region.  Fortunately, scyllo-inositol targets the 
C-terminus, which is important for Aβ aggregation.  How-

ever, the presence of a single terminal group restricts the area 

of the targeted subregion to the C-terminus, and the lack of a 

linker prevents scyllo-inositol from modulating other targeted 

subregions.  Additionally, a single terminal group results 

in a weaker binding avidity.  In the case of tramiprosate, its 

simple structure provides specificity for Aβ, yet, for unknown 
reasons it failed in Phase III clinical trials[72].  Thus, although 

these atypical molecules possess inhibitory activity, they are 

severely limited by their weak binding affinity and small occu-

pied region.  

To our knowledge, most inhibitors target only one sub-

region.  In fact, if inhibitors could target multiple specific 

subregions in concert, they might act synergistically to effec-

tively inhibit Aβ aggregation.  Thus, in our view, the ideal 
Aβ-targeting inhibitor should be of appropriate length and 
suitable flexibility, and should contain multiple groups that 

interact with Aβ residues.  These multiple groups would both 
convey tighter binding avidity and permit targeting of multi-

ple subregions.  In addition, having sufficient length and flex-

ibility would enable the inhibitor to capture the entire Aβ pep-

tide and accommodate conformational changes in the target.  

Unfortunately, our current lack of the Aβ peptide’s detailed 
molecular structure precludes designing such inhibitors.  The 

successful creation of these new inhibitors will require gaining 

a better understanding of the modules necessary for activity 

as well as the key elements in the amyloid surface required for 

aggregation and toxicity.  Alternatively, it might also be pos-

sible to employ a combination of multiple molecules.

Future perspectives
Compounds such as peptide-based inhibitors, antibodies and 

small molecules that target specific Aβ subregions represent 
the first generation of amyloid-based therapeutics with the 

potential to demonstrate disease-modifying activity.  Although 

the results of ongoing clinical trials are inconclusive, these 

compounds hold the promise of a new day in the development 

of disease-modifying therapies for AD; some Aβ aggregation 

inhibitors are listed in Table 1.  As we gain additional insights 

into amyloid biology and AD itself, this will likely guide the 

development of the next generation of inhibitors.  
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