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Abstract Chikungunya virus (CHIKV) infection in humans is rarely fatal but is

often associated with chronic joint and muscle pain. Chronic CHIKV disease is

highly debilitating and is associated with viral persistence. To date, there are no

approved vaccines or therapeutics to prevent or treat CHIKV infections once they

are established. Current palliative treatments aim to reduce joint inflammation and

pain associated with acute and chronic CHIKV disease. Development of novel
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therapeutics that reduces viral loads should positively impact virus inflammatory

disease and improve patient outcomes following CHIKV infection. Therapies that

target multiple aspects of CHIKV replication cycle should be developed since the

virus is capable of rapidly mutating around any single therapeutic. This review

summarizes the current status of small molecule inhibitor development against

CHIKV.

1 Introduction

Chikungunya virus (CHIKV) is an alphavirus of the Togaviridae family transmitted

to humans by Aedes mosquitoes. Since CHIKV was first isolated, the virus has

spread causing multiple endemic and large epidemic outbreaks. Virus sequencing

has identified the emergence of four different virus lineages driven, in part, by

adaptation of the virus to A. albopictus mosquitoes during the 2000s outbreak. This

adaptation allowed virus transmission into more temperate climates (Schuffenecker

et al. 2006; Tsetsarkin et al. 2007). Interest in CHIKV has been driven by the recent

re-emergence of the virus. CHIKV emerged on a global level starting on the coast

of Kenya in 2004, in a wave that continued to spread across the islands of the Indian

Oceans. This spread continued to Asia before arriving in the Caribbean region in

2013, Brazil in 2014 and then the rest of the American continents (Charrel et al.

2007; Weaver and Lecuit 2015; Yang et al. 2017). During this time, CHIKV

outbreaks were also reported in Italy and France due to the emergence of the ability

to use A. albopictus mosquitoes as a transmission vector (Cassadou et al. 2014;

Rezza et al. 2007; Venturi et al. 2017). While the most recent reported outbreak of

CHIKV was in Mombasa, Kenya in February 2018 (WHO Web site), this cycle of

emergence and global spread is likely to repeat as antiviral immunity wanes at the

population level.

Infection with CHIKV causes a febrile illness that is highly associated with

severe joint/muscle pain and is often accompanied by a rash. For some individuals,

the infection is self-limiting and symptoms resolve within a few weeks following

infection. However, about 40–80% of those infected will continue to experience

chronic joint and muscle pain that can last for months to years after CHIKV

infection (Borgherini et al. 2008; Gerardin et al. 2008). Viral RNA can be detected

long term in these patients, but the precise mechanisms that contribute to the

development of chronic CHIKV disease are still unclear (Chopra et al. 2012; Simon

et al. 2015; Sissoko et al. 2009). Atypical complications of CHIKV infection may

occur in the elderly and in individuals with comorbidities, such as encephalitis

(Lebrun et al. 2009). Fetal CHIKV infections during pregnancy are rare, but

perinatal infection of newborns occurs during the intrapartum period, resulting in a

high mortality rate and those surviving may suffer severe, lifelong neurological

outcomes (Bandeira et al. 2016; Gopakumar et al. 2012; Lyra et al. 2016).

Currently, there is no licensed virus-specific treatment to prevent or treat CHIKV

infection and disease. Extensive time and effort have gone into the development of
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multiple anti-CHIKV treatment platforms including vaccines, gene and

immunotherapeutic strategies, as well as small molecule inhibitors. Herein, we

focus on recent advances in the development of small molecule inhibitors directed

against CHIKV replication as treatments for viral infection and disease.

2 CHIKV Genome Organization and Replication Cycle

CHIKV contains a single-stranded, positive-sense linear genome that is approxi-

mately 11.8 kb in length (Fig. 1) (Solignat et al. 2009). The genome contains two

open reading frames (ORFs), and unique polyproteins are generated from two

individual RNA species (Simmons and Strauss 1972; Strauss et al. 1984). The

non-structural proteins (nsP1-4) are created from full-length, genomic mRNA,

whereas the structural polyprotein containing capsid, E3, E2, 6K, and E1 are

synthesized from a subgenomic mRNA (sgmRNA) species. Both genomic and

sgmRNAs are flanked by a 5′ 7-methylguanosine cap and a 3′ polyadenylated tail

(Dubin and Stollar 1975; Dubin et al. 1977). There are three untranslated regions

(UTRs) within the genome; individual UTRs present at the 5′ and 3′ ends, and the

third UTR is located between the ORFs, which contains the promoter sequence

present on the sgmRNA that is required for translation of the structural polyprotein.

The CHIKV replication cycle is shown in Fig. 2. The Chikungunya virion con-

tains 80 trimeric spikes of E1 and E2 glycoprotein heterodimers on the surface (Voss

et al. 2010). E2 facilitates attachment to host cells followed by internalization

through clathrin-mediated endocytosis (CME). Within the early endosomes, the E1

protein facilitates pH-dependent fusion of the viral envelope with the endosomal

membrane (van Duijl-Richter et al. 2015). This process is followed by disassembly

of the virus nucleocapsid and release of the viral genome into the cytosol.

The CHIKV nsPs are synthesized by the host cell translation machinery creating the

precursor polyproteins P123 and P1234. The majority of the translation products are

Fig. 1 Schematic representation of the Chikungunya virus genome. The CHIKV genomic and

subgenomic RNAs are depicted. Following translation, the two polyproteins are cleaved by viral-

or host-specific proteases to release the mature forms of the viral proteins
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P123 with P1234 only being expressed following read-through of the opal stop

codon at the end of nsP3 (Strauss and Strauss 1994). Following translation, P1234 is

cleaved in cis by the viral protease, nsP2, into P123+nsP4. These early replication

complexes (RCs) formed by P123+nsP4 are responsible for synthesizing the nega-

tive strand genomic RNA using the positive strand as a template (Barton et al. 1991;

de Groot et al. 1990; Shirako and Strauss 1994). Eventually, the P123+nsP4 RCs

accumulate to a concentration threshold leading to further processing of P123. At

this point, nsP1 is cleaved in trans forming a complex made up of nsP1+P23+nsP4

that for a short time, is capable of both negative and positive strand synthesis.

Subgenomic viral RNA synthesis (Jose et al. 2009; van der Heijden and Bol 2002;

Vasiljeva et al. 2003) occurs following cleavage of the P2/3 intermediate resulting in

Fig. 2 Chikungunya virus replication cycle. CHIKV enters via receptor-mediated endocytosis

following the binding of the envelope protein to cellular receptors (i.e., Mxra8). Low pH triggers

virus particle release from the endosome. Within the cytoplasm, the virus capsid is disassembled,

which allows translation of the nonstructural ORF from the viral genomic RNA. Processed

nonstructural proteins form a replication complex that synthesizes both the negative strand

genomic length RNA that is used as a template for the production of genomic and subgenomic

RNA species. Translation of the subgenomic RNA produces the structural proteins that are

processed into their mature forms required for encapsidation of the genomic RNA strand and

nucleocapsid assembly. Viral envelope proteins are processed and modified in the endoplasmic

reticulum and Golgi apparatus. At the plasma membrane, the glycoproteins are loaded onto viral

nucleocapsids during envelopment and release at the plasma membrane. A subset of known small

molecule antivirals are depicted in red lettering at their putative site of effect
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fully processed nsPs, forming stable late RCs capable of synthesizing both the

full-length positive-sense genomic RNA and the sgmRNA (Kim et al. 2004).

CHIKV replication induces the formation of host cell membrane invaginations

called spherules. Spherules are connected to the cytoplasm by a narrow neck wherein

early RCs are thought to localize with newly synthesized negative strand RNA.

Double-stranded RNA intermediates are located in the interior of the spherule where

they are protected from degradation and detection by innate immune sensors

(Frolova et al. 2010; Utt et al. 2016). As the infection progresses a portion of the

spherules will become internalized to form a virus-induced type 1 cytopathic vacuole

(CPV) near the endoplasmic reticulum. The formation of CPVs is triggered by

activation of the PI3K-AKT-mTOR pathway and is made up of membranes from

both the endosome and lysosome (Spuul et al. 2010; Thaa et al. 2015).

The viral sgmRNA is translated into the structural polyprotein (capsid-E3-E2-

6k-E1). Once formed the capsid protein undergoes immediate autocleavage, while

the other proteins are still in the process of translation (Thomas et al. 2010). The

cleaved capsid binds newly synthesized genomic viral RNA and facilitates the

formation of the nucleocapsid core. The remaining structural protein polypeptide is

cleaved by host proteases into pE2 (E3-E2), 6K, and E1. E1 and pE2 form

non-covalent heterodimers that travel through the Golgi secretory pathway where

they are post-translationally modified. Within the Golgi, the host enzyme furin

cleaves pE2 into mature viral E2 and E3 (Ozden et al. 2008). The processed

glycoproteins are transported to the plasma membrane where they are inserted into

the host cell plasma membrane. At the same time, nucleocapsid cores containing

infectious viral RNA genomes are recruited to the host cell plasma membrane for

envelopment as the particles bud from the cell, thus completing the replication cycle

(Garoff et al. 2004; Jose et al. 2012; Strauss and Strauss 1994).

3 Methods for Identifying Small Molecule Inhibitors

Against CHIKV

The first step in many workflows for the identification of small molecule antivirals

is the development and validation of a high-throughput screening (HTS) platform.

A variety of CHIKV antiviral screening methods have been developed such as

those based on a reduction in cellular cytopathic effect (CPE), changes in pheno-

type, reduction in replicon/minigenome readouts, as well as in silico virtual

screening that requires solved viral protein structures.

Most conventional antiviral HTS campaigns utilize cell-based screening with

readouts to measure CPE. Similar to other viruses, CHIKV infection causes robust

CPE that can be easily measured as an increase in cell survival for those compounds

demonstrating antiviral activity. Since some compounds in libraries can exhibit

cytostatic and/or cytotoxicity, CPE-reduction-based antiviral screens provide two

simultaneous readouts by identifying compounds with antiviral activity and those
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with low inherent cytotoxicity. Several parameters dictate the overall effectiveness

and reproducibility of CPE-based HTS assays including cell type and passage

number, virus strain, multiplicity of infection, and time point of development as well

as the specific readout. Modifying these culture and assay conditions allows for

optimal virus growth and identifiable CPE. In CHIKV CPE assays, cell types such as

Vero, A. albopictus clone (C6/36), telomerized human fibroblasts, and Baby

Hamster Kidney fibroblasts (BHK-21) cells have been successfully utilized to

identify antiviral compounds (Bhat et al. 2019). Cell viability assay readouts pre-

viously used for CHIKV HTS include measuring cellular dehydrogenase activity

using the colorimetric dyes MTT, MTS, or XTT; mitochondrial membrane potential

using fluorescent mitochondrial tracker dyes; intracellular esterase cleavage

fluorescent dyes; ATP-based luciferase reagents; and those assays that measure

oxygen consumption or glycolysis. While these assays indirectly measure viral

infection through cell viability, direct detection of viral protein production using

viral-specific antibodies or tagged viruses allows one to directly assess viral repli-

cation. Replicon-based screens that incorporate quantifiable reporters have also been

very useful for testing under reduced biosafety level conditions, although modifi-

cations to the viral genome typically need to be introduced to reduce replicon

cytotoxicity (Pohjala et al. 2011; Tamm et al. 2008; Frolov et al. 1999; Dryga et al.

1997). While not always straightforward for HTS development and implementation,

quantification of virus production as plaque reduction can be accomplished by

staining of infected cells or through quantification of produced infectious virus in the

supernatants of infected cells. Since they typically require more involved techniques,

these types of assays are often used to validate hits and determine EC50 values.

Other phenotypic/molecular target-based screens have been designed to measure

compound effects on functions of CHIKV proteins, molecular pathways, or

disease-related outcomes. These types of approaches generally start with target

identification, which is based on knowledge of a known protein or pathway func-

tion, and requires the ability to design assays around the desired targets.

A well-described phenotypic screen for CHIKV is based on transcriptional shutoff

induced by CHIKV nsP2. In this screen, CHIKV nsP2-induced host transcriptional

shutoff is connected to various luciferase-based reporter gene assays, including a

trans-reporter system that employs a Gal4 DNA-binding domain fused to Fos

transcription factor (Bhat et al. 2019). This has been adapted to the HTS platform

and used to identify many compounds that block nsP2 mediated host shutoff

(Lucas-Hourani et al. 2013b).

A rapidly growing area in antiviral development is the development of in silico

virtual screens. These types of screens are knowledge-driven approaches that

combine structural information about a viral or host protein of interest for

target-based screens. In silico computer-based screening of bioactive ligands ranks

molecules based on their likelihood of having affinity for a certain target through a

multistep process of virtual docking, scoring, validation, and simulation steps

(Ekins et al. 2007a, b). Compounds identified by this type of screening method can

be further optimized in silico using computer-based structural models through an

understanding of the compound’s structure–activity relationship (Bhat et al. 2019).
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Any compound hits that come out of this type of screen should be further validated

by empirical methods. Co-crystallization, differential scanning fluorimetry, and

isothermal titration calorimetry are just a few. Most of these techniques require

highly purified proteins. Because high-resolution structures of many CHIKV nsPs

and glycoproteins are solved, they are ideal targets for the development of virtual

screens and computer-aided design. Further into this chapter, we present examples

of compounds identified through in silico screening methods and the methods used

to validate their in vivo efficacy.

4 Small Molecule Inhibitor Strategies for Targeting

CHIKV

4.1 Inhibitors of CHIKV Entry

Attachment of CHIKV particles to a host cell involves the binding of the viral E2

glycoprotein with a host cell receptor protein. CHIKV E2 has two surface-exposed

domains (known as domains A and B) that are capable of binding to cells (Cho

et al. 2008; Voss et al. 2010). Multiple factors are thought to be involved in CHIKV

attachment including numerous proposed entry receptors including prohibitin-1,

TIM-1, glycosaminoglycans, and others; thus far most of these proposed receptors

act mainly as attachment factors to capture virus and facilitate entry (Hoornweg

et al. 2016; Moller-Tank et al. 2013; Silva et al. 2014; van Duijl-Richter et al. 2015;

Wintachai et al. 2012). Mapping studies suggest E2 domain A contains a charged

heparin sulfate-binding groove that may overlap with other cellular attachment

protein-binding sites (Sahoo and Chowdary 2019). Most recently, a genome-wide

CRISPR-Cas9-based host gene deletion screen identified the cell adhesion molecule

Mxra8 as an entry mediator for CHIKV and other alphaviruses (Zhang et al. 2018).

Mxra8 binds a surface-exposed region across the A and B domains of E2, which are

also speculated attachment sites (Zhang et al. 2018). Studies with Mxra8 and other

potential CHIKV entry receptors presented similar conclusions that no single

receptor/factor is critical for CHIKV attachment/entry, and therefore, it is a com-

bination of host factors that likely contribute to cell attachment and entry

(Moller-Tank et al. 2013; Silva et al. 2014; van Duijl-Richter et al. 2015; Wintachai

et al. 2012; Zhang et al. 2018). This makes inhibition of viral entry difficult because

blocking one factor of CHIKV entry will likely not be adequate to inhibit CHIKV

replication. One place to start is the development of small molecule screens that

target the Mxra8-binding region of E2 and the interaction sites of other putative

CHIKV attachment/entry components. Treatment of mice with either an anti-Mxra8

antibody or a Mxra8-Fc fusion protein reduced CHIKV infection and associated

foot swelling, suggesting that Mxra8-specific small molecule inhibitors may be an

effective strategy to inhibit CHIKV infection. This strategy has yet to be success-

fully exploited against CHIKV, and the combination of multiple entry process

inhibitors is one way to inhibit CHIKV infection during the early stages.
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After attachment, CHIKV is internalized largely through clathrin-mediated

endocytosis (CME), although clathrin-independent entry has also been reported

(Ooi et al. 2013; Bernard et al. 2010; van Duijl-Richter et al. 2015). Although

micropinocytosis has been identified as a major route of entry in muscle cells,

which was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (EIPA) (Lee et al. 2019).

Inside the early acidic endosome, the low pH environment triggers CHIKV

E1-mediated fusion of the viral envelope and endosomal membranes in a process

that requires the presence of cholesterol (van Duijl-Richter et al. 2015). Membrane

fusion is followed by virus disassembly and release of the nucleocapsid, uncoating,

and release of the viral genome into the cytosol. Interfering with the formation of

clathrin-coated pits and membrane fusion by adjusting endosome pH are successful

strategies to inhibit CHIKV entry.

In 2012, the first CHIKV receptor prohibitin-1 (PHB1) was described, acting as

a CHIKV-binding factor in human microglia cells (Wintachai et al. 2012). In

addition, a class of naturally occurring plant compounds, flavaglines (FL), as well

as their synthetic analogs (FL3 and FL23), and sulfonyl amides, are able to interact

with PHB1 (Chang et al. 2011; Ribeiro Morais et al. 2011), representing a class of

potential CHIKV inhibitors. Replication of CHIKV in HEK293 cells was maxi-

mally inhibited when cells were treated with the synthetic flavaglines FL3 and FL23

prior to CHIKV infection (Wintachai et al. 2015). However, little inhibitor activity

was detected following a post-entry treatment regimen, suggesting FL3 and FL23

are capable of only inhibiting virus entry. In PHB-CHIKV E2 co-localization, there

was a significant reduction in binding interactions between PHB1 and CHIKV E2

glycoprotein in the presence of FL3 or FL23, with reduction also occurring in the

presence of the sulfonyl amide 1 m inhibitor. Approximately fifty percent of treated

cells still displayed signs of infection, again indicating the role of additional

coreceptors or CHIKV entry mechanisms.

Epigallocatechin-3-gallate (EGCG) is another naturally occurring compound that

inhibited CHIKV infection (Weber et al. 2015). A major component of green tea,

EGCG has displayed antiviral abilities through an interaction with viral surface

proteins that inhibits cellular attachment (Kaihatsu et al. 2018). While concurrent

administration of EGCG with infectious CHIKV was able to reduce the rate of

infection, this was not observed when EGCG was added following infection with

CHIKV (Lu et al. 2017). This finding supports the proposed mechanism that EGCG

functions as an antiviral through the inhibition of entry rather than inhibiting viral

replication (Weber et al. 2015). This inhibition has been documented to affect the

infectivity of both sialic acid and heparan-sulfate-binding viruses, inhibiting

attachment of adenovirus, vesicular stomatitis virus, and vaccinia virus among

others (Colpitts and Schang 2014).

Chloroquine is another broadly acting antiviral compound with efficacy against

CHIKV. Initially developed as an antimalarial drug, chloroquine acts as a

broad-spectrum antiviral through disruption of endosomal entry of viruses and

inhibiting replication. Along with these activities, accumulation of chloroquine in

lymphocytes and macrophages disrupts the secretion of proinflammatory mole-

cules, such as tumor necrosis factor a (TNFa) and the receptor for TNFa

114 N. Haese et al.



(Savarino et al. 2003). When tested for CHIKV inhibition, chloroquine was found

to act in a time- and dose-specific manner. Pre-treatment inhibited viral binding to

cells, likely by altering cell–virus interactions. Chloroquine was previously iden-

tified to alter the terminal glycosylation of angiotensin I converting enzyme 2

(ACE2), a receptor for severe acute respiratory syndrome coronavirus

(SARS-CoV). It is likely that chloroquine may act in a similar function to disrupt

cellular receptors important for CHIKV infection (Khan et al. 2010). When

chloroquine was provided concurrently with infectious CHIKV, or up to 1-hour

post-infection, CHIKV infection was reduced, likely through the pH modulating

effects of chloroquine on endosomes. This alteration in endosomal pH presumably

inhibited virus–endosome interactions required for conformational changes in

unpackaging (Khan et al. 2010). While the effects of chloroquine are quite dramatic

in vitro, treatment efficacy in non-human primates and humans has been limited

(Roques et al. 2018).

Arbidol or umifenovir is marketed as a prophylactic antiviral treatment against

influenza A and B in both Russia and China but inhibits a wide breadth of viruses

including Ebola, hepatitis C, and Tacaribe virus. Maximum inhibition of CHIKV

occurred when arbidol was added prior to infection with IC50 values ranging from 5

to 10 µg/mL (Delogu et al. 2011). CHIKV resistance selected against arbidol

occurs following a single amino acid substitution at G407R of the viral E2 gly-

coprotein. Mechanistically, the effects of arbidol are hypothesized to occur through

disrupting the formation and integrity of cytopathic vacuoles attached to endosomes

and lysosome membranes due to arbidol incorporation into these membranes

(Blaising et al. 2014). Derivatives of arbidol with increased potency and selectivity

index have been synthesized (Di Mola et al. 2014), but additional studies are

required to elucidate the mechanism of action for arbidol against CHIKV and to

further develop analogs that can extend the antiviral treatment window.

Suramin is a multifunctional polysulfonated small molecule with antiviral, -

neoplastic, and -nematodal activities and is currently FDA approved for the treat-

ment of trypanosomiasis in humans. Suramin has antiviral activities against a wide

variety of viruses including CHIKV (Ho et al. 2015). While multiple mechanisms

for suramin activity against CHIKV have been proposed, the compound inhibits

viral entry (Albulescu et al. 2015). Interestingly, molecular docking studies indicate

that suramin may embed itself into the cavity present in the E1/E2 heterodimer and

interfere with their function (Ho et al. 2015). Other lead compounds have been

identified using computational docking using the structure for the viral envelop, but

testing for antiviral activity of these leads is still pending (Agarwal et al. 2019).

CHIKV fusion and budding are influenced by the lipid composition of the viral

envelope and the host cell membrane. This is particularly the case for levels and

composition of cholesterol and sphingolipids. Therefore, abnormalities in lipid

metabolism can affect CHIKV infection outcomes. For example, depletion of

cholesterol with methyl-b-cyclodextrin prior to CHIKV infection of cells reduces

infection by up to 63% (Bernard et al. 2010). Treatment of human foreskin

fibroblasts with either of two cholesterol trafficking inhibitors, U18666A and imi-

pramine, results in a dose-dependent accumulation of intracellular cholesterol and
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inhibition of CHIKV replication (Wichit et al. 2017). Imipramine was demonstrated

to inhibit the CHIKV entry/fusion step and impair post-fusion viral RNA replica-

tion, suggesting the compound is able to interfere with two different stages of the

CHIKV infection process. These results suggest other cholesterol inhibitors may

have potential antiviral activities against CHIKV.

4.2 Inhibitors of CHIKV Structural Proteins

The outer envelope surface of CHIKV is made up of 80 trimeric spikes created by

heterodimers of the E1 and E2 glycoproteins (Voss et al. 2010). E2 facilitates the

binding of CHIKV to the surface of the host cell receptors (Weber et al. 2017) and

contains a cytoplasmic tail that interacts directly with the viral capsid proteins

(Mukhopadhyay et al. 2006). Upon entry, E1, a class II viral fusion protein,

mediates fusion of the viral envelope and host cell endosomal membranes (Kielian

et al. 2010; Uchime et al. 2013). E3, the third glycoprotein, binds exclusively to E2

forming pE2 (Li et al. 2010). E3 is cleaved from E2 by the host protease furin

(Ozden et al. 2008) exposing a N-terminal signal peptide that targets the structural

polyprotein toward the ER for initial processing (Strauss and Strauss 1994). E3

E1-E2 dimers can then form in the trans-Golgi network, with proper folding

mediated by E3 (Metz and Pijlman 2016a; Wong and Chu 2018). After cleavage,

E3 remains non-covalently linked to the dimers until the neutral pH of the plasma

membrane causes its dissociation. This conformational change exposes the

acid-sensitive region between E1 and E2, priming E1 for activation when exposed

to low pH (Metz and Pijlman 2016a, b; Uchime et al. 2013).

CHIKV capsid proteins have three domains including: (1) a highly basic region

that mediates non-specific RNA interactions while containing nuclear localization

and export sequences; (2) a viral genomic RNA-binding region that also promotes

capsid oligomerization; and (3) a serine protease capable of cis and trans cleavage

of the viral capsid proteins (Metz and Pijlman 2016a; Weiss et al. 1994; Linger

et al. 2004; Sokoloski et al. 2017; Aliperti and Schlesinger 1978; Choi et al. 1991;

Melancon and Garoff 1987; Thomas et al. 2010). The capsid nuclear localization

and export signals allow the protein to shuttle between the nucleus and cytoplasm

(Thomas et al. 2013). Mutation of the capsid NES causes nuclear retention and

blockage of the nuclear import system, whereas mutation of NLS attenuates the

virus (Jacobs et al. 2017; Taylor et al. 2017; Thomas et al. 2013). A hydrophobic

domain present in the capsid also directly interacts with the C-terminal tail of E2 to

promote assembly and to facilitate budding of CHIKV through the host cell plasma

membrane (Sharma et al. 2018). The capsid hydrophobic-binding pocket binds the

proline-405 residue of E2, a highly conserved residue in alphaviruses (Aggarwal

et al. 2012; Kim et al. 2005). Picolinic acid (PCA), a potent inhibitor of CHIKV,

closely resembles the molecular structure of proline. The compound is capable of

binding to the hydrophobic pocket of CHIKV capsid (Sharma et al. 2016).

Treatment with PCA results in a significant reduction in vRNA levels and infectious
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virus, suggesting possible inhibitory effects on viral disassembly, replication, or

nucleocapsid assembly (Sharma et al. 2016). Although the exact mechanism by

which it functions remains unclear, the observed antiviral properties of PCA against

CHIKV demonstrate the importance of blocking the hydrophobic domain of capsid.

CHIKV capsid and protease activity continue to be an under-utilized target for

inhibitor development with the potential to be a critical target for CHIKV inhibitors.

4.3 Inhibitors of CHIKV Non-structural Proteins

4.3.1 nsP1

The nsP1 protein is a viral mRNA capping enzyme with both methyltransferase and

guanylyltransferase (GTase) activities. The protein is responsible for capping and

methylation of new synthesized viral RNA protecting it from degradation by host

exonucleases and directing efficient translation of viral mRNAs (Rupp et al. 2015;

Wong and Chu 2018). Additionally, nsP1 plays an important role in RC formation

and localization, which is directed by an alpha-helical amphipathic loop and

palmitoylation site that allows nsP1 containing RCs to dock to the host cell plasma

membrane. This process tethers RCs within spherules (Spuul et al. 2007). nsP1 is

involved in the recruitment of other nsPs into spherules required for the formation

of functional RCs (Abu Bakar and Ng 2018; Salonen et al. 2003). nsP1 is also

involved in releasing budding particles from the cell membrane through interactions

with the host protein tetherin (BST-2) (Jones et al. 2013). These functions of nsP1

make it an appealing target for drug discovery as blocking nsP1 functions disrupt

RC formation and prevent vRNA synthesis (Abu Bakar and Ng 2018). However,

the discovery and design of inhibitors targeting these functions have been difficult

due to the lack of definitive structural knowledge about the interactions between

nsPs and limited information about the structure of CHIKV spherules.

The most fully characterized inhibitors of CHIKV nsP1 target the GTase

function of the capping machinery. MADTP-314 and MADTP-372 are CHIKV and

VEEV nsP1 inhibitors that are part of the [1,2,3]trizolo[4,5-d]pyrimidin-7(6 h)-

ones (MADTP) compound series identified using a cell-based CHIKV replication

screen (Gigante et al. 2014, 2017). CHIKV resistance to MADTP-314 occurs

through a P34S mutation in nsP1 GTase functional domain that was validated by

reverse genetics. In vitro VEEV nsP1 GT assay studies determined that

MADTP-372 disrupted GTase activity and downstream capping reactions, which

are suggested to occur by either disruption of m7GTP-nsP1 complex formation or

inhibition of guanylation (Delang et al. 2016; Gigante et al. 2017). Recently, an

HTS was developed to identify compounds that inhibit the formation of the 5’ cap

by measuring competition for the GTP-binding site on CHIKV nsP1 using

fluorescently labeled GTP (Bullard-Feibelman et al. 2016). This method identified

the natural compound lobaric acid, as a GTP competitor for nsP1 binding and

inhibitor of the guanylation step of the capping reaction (Feibelman et al. 2018).
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4.3.2 nsP2

CHIKV nsP2 is a large protein with at least four enzymatic functions including:

(1) helicase activity by unwinding double-stranded RNA in the 5′ to 3′ direction;

(2) nucleotide triphosphatase (NTPase) activity; (3) RNA 5′ triphosphatase activity;

and (4) papain-like cysteine protease activity (Rupp et al. 2015; Wong and Chu

2018; Das et al. 2014b; Karpe et al. 2011; Ramakrishnan et al. 2017). Activity of

the C-terminal protease domain is responsible for processing the viral nsP1234

polyprotein (Ramakrishnan et al. 2017). Additionally, a portion of nsP2 can localize

to the nucleus where it plays a role in the shutoff of host transcription by mediating

degradation of the RNA polymerase subunit II Rbp1 (Akhrymuk et al. 2012). nsP2

also mediates the shutoff of host translation by interacting with a number of ribo-

somal proteins (Strauss and Strauss 1994). Host cell transcriptional and translational

shutoffs occur without any obvious negative effects to CHIKV replication.

Although mutation of the nsP2 NLS of Semliki Forest virus (SFV) prevented the

protein from entering the nucleus; this process also reduced SFV-induced cell

death, likely due to a reduction in cytotoxicity associated with host shutoff (Tamm

et al. 2008). Nuclear localized nsP2 is also capable of inhibiting innate immunity by

suppression of JAK/STAT signaling. Therefore, multiple modes of action may be at

play (Bhalla et al. 2016; Breakwell et al. 2007; Frolov et al. 2009; Gorchakov et al.

2005). These antiviral functions of nsP2 have earned the protein designation as a

virulence factor as well. Thus, due to these effects on RNA replication and those

directed against the host, nsP2 is a valid antiviral target for inhibiting CHIKV. For

example, a high-throughput phenotypic screen to identify compounds that target

virus-mediated host transcriptional shutoff induced by nsP2 was developed utilizing

a trans-reporter where expression of a luciferase gene is driven by an artificial

transcription factor (Lucas-Hourani et al. 2013b). This method successfully iden-

tified a natural compound that blocked nsP2 activity and inhibited CHIKV

replication.

In recent years, the nsP2 protease function has become a major target of interest

due to its essential role in viral replication and the success of FDA-approved

inhibitors targeting HIV and HCV proteases (Manns and von Hahn 2013; Pokorna

et al. 2009; De Clercq 2007). Peptidomimetic compounds that target nsP2 protease

activity have been developed using a number of biochemical tools including a

FRET-based protease assay (Singh et al. 2018). The crystal structures of CHIKV

and VEEV nsP2 have been solved, and in silico screening for nsP2 protease

inhibitors has begun. Millions of small molecule structures have been tested by a

variety of virtual screening methods to identify compounds that interact with

CHIKV nsP2 protease domain (Bassetto et al. 2013; Agarwal et al. 2015) and to

explore the possible mechanism of action of compounds through in silico docking

(Jadav et al. 2015). These types of in silico studies have generated a number of

promising lead compounds; however, experiments that confirm antiviral activity

and/or target specificity are needed to determine whether the in silico identified

compounds inhibit by the predicted functions (Abu Bakar and Ng 2018; Dhindwal

et al. 2017). Albeit, in silico predicted inhibitors targeting the catalytic site of the
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nsP2 protease were active in viral inhibition assays and nsP2 protease function

assays. Some of the predicted compounds decreased nsP2 protease function, viral

RNA synthesis, and release of infectious viral particles (Das et al. 2016). This study

supports the feasibility of virtual screens to identify target-specific viral inhibitors.

4.3.3 nsP3

The functional role of nsP3 during CHIKV replication is still unclear. Structurally

the nsP3 protein is divided into three domains: (1) an N-terminal macrodomain;

(2) an alphavirus unique domain (AUD) containing a zinc-binding region; and (3) a

C-terminal hypervariable domain (Abu Bakar and Ng 2018). The highly conserved

macrodomain is thought to regulate CHIKV replication through the binding of

RNA and ADP-ribose and ADP-ribosyl hydrolase activities (Malet et al. 2009;

McPherson et al. 2017; Abraham et al. 2018). These activities confer efficient

CHIKV replication, indicating a need for the virus to evade host ADP-ribosylation

of proteins or RNA but how this is important is still unclear. The highly conserved

nature of the macrodomain and residues of the ADP-ribose-binding pocket within

the alphavirus family and other RNA viruses makes it an ideal site for further

development of macrodomain-specific antivirals. Using computer-aided design, we

have screened a small fragment compound library to identify small molecules that

bind within the ADP-ribose-binding pocket of the CHIKV macrodomain. We

validated one fragment through crystal soaking and NMR. However, the small size

of the fragments prohibits their utility as inhibitors in cell-based assays. We are

currently utilizing computer-aided design to build larger fragments that increase

their specificity and activity as CHIKV inhibitors. Other in silico studies aimed at

similarly identifying small molecule inhibitors of the macrodomain ADP binding

identified both naturally occurring small molecules (flavonoids) and pharmaceutical

compounds with the potential to bind CHIKV nsP3 including the flavonoid

naringenin (Nguyen et al. 2014; Pohjala et al. 2011; Seyedi et al. 2016).

Recent mutational studies of the CHIKV AUD suggest this domain determines

species specificity and plays a key role in virus genome and RNA transcription

assembly (Gao et al. 2019). Mutation of the AUD impaired subgenomic RNA

synthesis, RNA-binding activity of the domain, and subcellular localization of nsP3

during CHIKV replication, in turn reducing virus production. This analysis high-

lights the potential for the nsP3 AUD as an antiviral target. nsP3 proteins from other

alphaviruses reportedly interact with a diverse range of host factors including

sphingosine kinase 2 (SK2), Hsp90B, PI3K-AKT-mTOR pathway, and IkkB with

mostly proviral outcomes (Lark et al. 2017), further supporting future investigations

into their utility as antiviral targets by disruption of these virus–host protein

interactions necessary to enhance virus replication. The C-terminal domain pro-

motes CHIKV replication by interfering with stress granule formation through

interactions with GTPase-activating protein (SH3 domain)-binding protein 1

(G3BP1) (Panas et al. 2012, 2014; Fros et al. 2012) and the mosquito version of

G3BP1 called Rasputin (Fros et al. 2015). The heat shock protein Hsp-90 has also
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been shown to interact with nsP3, but the role in virus replication is still unclear

(Rathore et al. 2014). Despite the many potential target sites and key host and viral

interactions of nsP3, only a limited number of studies have focused on developing

antivirals targeting nsP3.

4.3.4 nsP4

The alphavirus RNA-dependent RNA polymerase (RdRp) is encoded within nsP4,

and this protein is the most highly conserved in the alphavirus family (Rupp et al.

2015; Weston et al. 2005; Pietila et al. 2017). Alphavirus RdRps are responsible for

the replication of the viral genome and subgenomic transcripts. As part of the P123

early replication complex, nsP4 mediates the synthesis of the negative genomic

strand from the incoming genome (Pietila et al. 2017). Once fully active, the RC

complex containing the polymerase shifts to the synthesis of the 49S genomic RNA

and 26S subgenomic RNA from these negative strand templates. nsP4 N-terminal

domain also contains adenylyltransferase (TATase) activity, which was identified

through mutational studies that indicated a role in adding or maintaining the 3’

poly-A tail at the end of the genome (Rubach et al. 2009; Tomar et al. 2006). The

N-terminal domain of nsP4 also contains an alphavirus-specific domain that is

important for the interaction with the P123 complex and formation of RCs. Deletion

of the 97 N-terminal residues prevents de novo RdRp activity regardless of the

presence of P123 as well as the association with the P123 complex. This finding

suggests that this region of nsP4 may be a valid target for small molecule inhibitor

development (Rubach et al. 2009; Tomar et al. 2006). nsP4 also interacts with the

host protein Hsp90a via an unknown mechanism and, as mentioned above, inhi-

bition of Hsp90a decreases viral RNA and protein synthesis (Rathore et al. 2014).

Due to their unique structure, RNA virus RdRp is an important target for drug

development. As such a number of compounds have been developed that block

RNA virus replication. Initially developed as an anti-influenza virus inhibitor,

favipiravir (T-705) has also shown good activity against many other divergent RNA

virus polymerases including those encoded by alphaviruses (Furuta et al. 2017).

However, T-705 is not active against DNA or DNA-dependent RNA polymerases

making it selective to both plus and minus strand RNA viruses. Favipiravir is

quickly converted into the triphosphate active form within cells, which is recog-

nized as a substrate for the viral RdRp (Furuta et al. 2005). Functionally T-705

competitively inhibits the incorporation of ATP and GTP by the RdRp leading to

chain termination (Delang et al. 2014; Furuta et al. 2013). T-1105 is a T-705 analog

that effectively inhibits CHIKV nsP4 through interactions with the Lys-291 residue.

T-705 is active against a wide variety of alphaviruses and other RNA viruses,

potentially because the Lys-291 residue is conserved in the polymerases of

positive-sense RNA viruses (Delang et al. 2014). b-D-N4
—hydroxycytidine

(NHC) is another nucleoside analog that targets viral RdRps. These types of

nucleosides tend to work potently and for the development of even low-level

resistance against NHC, the alphavirus VEEV requires the acquisition of multiple
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cooperative mutations within the RdRp domain of nsP4 (Urakova et al. 2018). The

FDA-approved drug Sofosbuvir is a UMP prodrug that gets converted to the active

form in cells where it acts as a chain terminator for flavivirus RNA polymerases.

Sofosbuvir was validated to also bind CHIKV nsP4 and inhibit RNA synthesis and

virus replication in cultured cells and in vivo (Ferreira et al. 2019). NHC is also

capable of inhibiting CHIKV replication (Ehteshami et al. 2017). In addition to

these nucleoside analogs, HTS of chemical compound libraries identified a

non-nucleoside benzimidazole compound possessing inhibitory activity against

nsP4 (Wada et al. 2017). This compound inhibited the RdRp function of nsP4 by

targeting residue Met-2295, potentially inhibiting the RdRp’s ribonucleotide

selection function (Wada et al. 2017). The potential is high for developing other

nucleoside analogs or compounds that target alphavirus nsP4.

4.4 Inhibitors of CHIKV RNA Genome Replication

During replication, the viral RNA genome is first converted to the minus strand

utilizing the P123/nsP4 complex. Once fully processed, the replication complex

then mediates synthesis of the full-length genomic RNA (plus strand) as well as the

subgenomic RNA. Targeting of many different nsP functions, as described above,

can have pleiotropic effects on viral replication including vRNA synthesis.

However, there are also a number of broad-spectrum RNA genome replication

inhibitors described with activity against CHIKV. One of the first to be described is

Ribavirin, which is a broad-spectrum antiviral that has already been approved for

the treatment of RSV in infants and chronic hepatitis C infections (Pawlotsky 2014;

Turner et al. 2014). Ribavirin has demonstrated antiviral activity against CHIKV

and exhibited synergism with both doxycycline and IFN-a (Briolant et al. 2004;

Rothan et al. 2015). Mechanistically, ribavirin is a guanosine analog, with the major

proposed biomechanisms for inhibition of RNA viruses including interference with

inosine monophosphate dehydrogenase (IMPDH) function leading to depletion of

GTP pools (Leyssen et al. 2006), as well as inhibition of viral RNA capping

(Paeshuyse et al. 2011). Other possible mechanisms include an increased mutation

rate as a result of the incorporation of ribavirin by the RdRp (Paeshuyse et al.

2011). Additional studies to determine the mechanism leading to ribavirin inhibi-

tion of CHIKV are ongoing, but it is important to note that it is effective only during

the early stages of the CHIKV replication cycle (Mishra et al. 2016).

RNA viruses are highly mutable making them capable of developing resistance

to small molecules. However, due to this relatively high mutation rate most RNA

virus polymerases are unable to detect or repair damaged or altered nucleotides.

This fact allows one to design nucleotide analogs as either chain terminators or ones

that increase the mutation frequency above tolerable rates so that the virus becomes

genetically unstable. A broad-spectrum viral genome replication inhibitor is the

uridine analog 6-azauridine. Compared to ribavirin, 6-azauridine is more effective

against CHIKV in infected cells (Briolant et al. 2004; Pohjala et al. 2011). Similar
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to other nucleoside analogs, 6-azauridine most likely interferes with cellular UTP

metabolism and the nucleoside analog incorporates into CHIKV RNA leading to

genome error catastrophe (Rada and Dragun 1977; Scholte et al. 2013). While

6-azauridine has been approved for clinical use against psoriasis, further testing in

animal models of viral infection is needed to examine in vivo antiviral activity

(Deneau and Farber 1975; Crutcher and Moschella 1975).

5 Targeting Host Factors Involved in CHIKV Replication

The ability of viruses to rapidly evolve and select for resistant mutations to single

antiviral treatments makes it necessary to identify antiviral drug cocktails con-

taining individual compounds that lack overlapping resistance markers to increase

therapeutic efficacy. Another way to reduce antiviral resistance is to target host

proteins or processes required for virus replication. Development of host-targeting

antivirals has another advantage in that they may have increased breadth of antiviral

activity for viruses that share a cellular pathway. For example, harringtonine and its

analogs homoharringtonine and cephalotaxine alkaloids were identified using an

immunofluorescence-based screen of small molecule inhibitors derived from nat-

ural products to have potent anti-CHIKV activity (Kaur et al. 2013). Harringtonine

functions as an inhibitor of eukaryotic translation by blocking the large ribosomal

subunit (Fresno et al. 1977). The compound also inhibits translation of Epstein–

Barr virus and influenza virus and has been used for translational profiling exper-

iments (Bencun et al. 2018; Machkovech et al. 2019). Harringtonine blocked

translation of CHIKV nsPs and inhibited viral RNA synthesis and subsequent

production of structural proteins, indicating that the compound inhibits early viral

translation events (Kaur et al. 2013). Resistance to harringtonine has yet to be

reported for any virus. It is important to keep in mind the potential for off-target

effects and isoform specificity that can limit host-directed antivirals especially for

in vivo use.

Different screening methods have been used to identify CHIKV/host interactions

important for the virus lifecycle. Linking the results from a human whole

genome-wide loss-of-function siRNA screen with a drug repurposing database

search was used to rapidly identify small molecule inhibitors of CHIKV (Karlas

et al. 2016). In the CHIKV/HEK-293 cell loss-of-function screen, knockdown of

156 host genes increased virus replication, whereas 41 displayed antiviral activity.

To identify potential antiviral small molecule inhibitors, the validated proviral

factors were used to screen available databases that link their drugs to their

experimentally validated target proteins. Using this process, 20 compounds were

identified that interact with gene products of 14 CHIKV proviral factors that span

six unique pathways including vacuolar-type H+ ATPase, CDD-like kinase 1

(CLK1), fms-related tyrosine kinase 4 (FLT4) calmodulin signaling, fatty acid

synthesis, and lysine acetyltransferase 5 (KAT5). All 20 compounds inhibit CHIKV

replication but, as expected, some display cytotoxicity. A combination regimen
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containing TOFA, a fatty acid synthesis inhibitor, and the calmodulin inhibitor

pimozide showed increased inhibition of CHIKV and significantly reduced

CHIKV-induced footpad swelling (Karlas et al. 2016). As discussed below,

research into host factors involved in CHIKV replication has identified additional

potential inhibitors of virus replication and disease.

5.1 Protease Inhibitors

Host proteases are a diverse group of enzymes that catalyze the cleavage of the

same or other proteins. The three large groupings of proteases include serine,

cysteine, and metalloproteinases. The proteases recognize specific substrate amino

acid sequences and perform cleavage of the scissile bond. Host furin is a serine-like

protease that processes a number of different substrates including host-derived

proalbumin and transforming growth factor beta. However, as a resident of the

TGN, furin also cleaves a number of viral glycoproteins including tick-borne

encephalitis virus, HIV gp160, and HCMV gB; and this process typically activates

these proteins (Hallenberger et al. 1992; Stangherlin et al. 2017). Similarly, furin is

involved in processing of the alphavirus envelope pE2/E3 precursor at short

multibasic motifs during virion transport through the TGN (Klimstra et al. 1999;

Ozden et al. 2008). This processing event is required for the formation of infectious

particles for many alphaviruses including CHIKV, which validates furin as an

antiviral target (Heidner et al. 1994, 1996; Klimstra et al. 1999). The irreversible

furin inhibiting peptide decanoyl-RVKR-chloromethyl-ketone (Dec-RVKR-cmk)

significantly inhibits CHIKV infection in human muscle satellite cells by impairing

the formation of mature virus particles (Ozden et al. 2008). Interestingly, therapy

combining dec-RVKR-cmk with chloroquine had additive effects resulting in a

near-complete suppression of virus spread and yield when added just prior to

CHIKV infection. Obvious issues with selectivity and toxicity related to the ple-

thora of cellular furin cleavage substrates as well as the large size of current furin

inhibitors will need to be considered when assessing the antiviral therapeutic value

for inhibitors of furin (Subudhi et al. 2018).

5.2 Pyrimidine and Purine Synthesis Inhibitors

RNA viruses rely heavily on the host pool of nucleosides for efficient replication.

Changes in the concentration of ribonucleotide triphosphate pools can influence the

ability of the RNA virus to replicate and possibly increase mutation frequency

(Ortiz-Riano et al. 2014). A number of HTS campaigns have identified inhibitors of

pyrimidine synthesis as potent antivirals with broad activity (Lucas-Hourani et al.

2013a; Chung et al. 2016; Hoffmann et al. 2011; Smee et al. 2012; Wang et al.

2011). The small molecule DD264 was identified through a cell-based HTS assay to
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identify molecules that stimulate the interferon response, and through mechanism of

action, experiments were identified as an inhibitor of de novo pyrimidine synthesis

suggesting a unique link between the interferon response and pyrimidine biosyn-

thesis (Lucas-Hourani et al. 2013a). DD264 inhibition of virus replication was

dependent upon the activation of IRF1 suggesting an important role in innate

immune activation. Interestingly, DD264 inhibition of CHIKV was blocked when

the pyrimidine uridine but not purine guanosine was added to the culture medium

also supporting that lowered pyrimidine levels are responsible for the activity of

DD264. Dihydroorotate dehydrogenase (DHODH), the fourth enzyme in the

pyrimidine biosynthetic pathway, was identified as the target of DD264. DD264 has

proven to be a useful tool to better understand the link between the innate immune

response and pyrimidine biosynthesis during CHIKV replication. Targeting the

mitochondrial electron transport with antimycin A also inhibits de novo pyrimidine

synthesis resulting in a broad-spectrum antiviral effect (Raveh et al. 2013).

Compounds that target purine biosynthesis have similar antiviral properties against

CHIKV. Mycophenolic acid (MPA) inhibits the cellular enzyme inosine

monophosphate dehydrogenase that is required for guanine synthesis. MPA inhibits

CHIKV replication by blocking viral genome synthesis (Khan et al. 2011). The

in vivo therapeutic application of pyrimidine biosynthesis inhibitors is complicated

by the high uridine concentration in the body that can negate the antiviral effects,

but there may be a utility as site-specific antiviral treatments.

5.3 Cellular Kinase Inhibitors

Viruses modify host kinase signaling pathways in order to adjust the host envi-

ronment to promote their replication (Keating and Striker 2012). The

PI3K-AKT-mTOR pathway is involved in cell survival and alphaviruses activate

this pathway. Semliki Forest virus nsP3 directly activates AKT at the plasma

membrane where it is probably involved in the formation of the replication complex

(Spuul et al. 2010). However, this effect might be virus-specific since CHIKV

replication complex formation was not dependent upon this pathway (Thaa et al.

2015). CHIKV nsP3 is also involved in recruiting sphingosine kinase to the

replication complex (Reid et al. 2015). There are a number of high-throughput

methods that have been used to identify additional host kinases and signaling

pathways involved in CHIKV replication and potential inhibitors. HTS screens

utilizing kinase inhibitor libraries such as the BioFocus kinase inhibitor library

identified six lead hit compounds with the most potent compound CND3514 a

thiozole-4-carboxaminde core scaffold inhibitor with an EC50 = 2.2 µM (Cruz et al.

2013). Other approaches including genome wide or kinase focused siRNA library

screens have also been used (Reid et al. 2015). The use of multiplexed inhibitor

beads to profile changes in the kinome has also been employed to identify kinases

relevant to CHIKV replication (Broeckel et al. 2019). Through this process,

changes in the abundance/activity of the Src family kinase (SFK)-
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phosphatidylinositol 3-kinase (PI3K)-AKT-mTORC signaling pathway during the

course of CHIKV were discovered. Inhibition of this pathway with the SFK inhi-

bitor dasatinib blocked replication of CHIKV and multiple other alphaviruses in

human fibroblasts. In mechanism of action studies, dasatinib was found to block

CHIKV subgenomic RNA translation, significantly reducing structural protein

levels, without affecting synthesis of viral genomic or subgenomic RNA (Broeckel

et al. 2019). A similar effect was observed with the mTORC1/2 inhibitor Torin.

These results were in part due to a decreased amount of CHIKV RNA associated

with polysomes during replication, suggesting CHIKV relies on SFKs for structural

protein synthesis (Broeckel et al. 2019).

Protein kinase C (PKC) is a serine/threonine kinase that is recruited to the

plasma membrane upon cellular activation in response to a number of stimuli. PKC

may play a role in early viral entry steps that involve endosomal trafficking.

Inhibition of PKC with H-7 blocked entry for a number of enveloped viruses

including Sindbis virus (Constantinescu et al. 1991). PKC modulators have also

been tested for their ability to inhibit CHIKV replication. Prostratin and

12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited CHIKV replication in Vero

cells but TPA may be CHIKV-specific as it fails to block other alphaviruses

(Bourjot et al. 2012). Aplysiatoxin analogs, known PKC activators, debro-

moaplysiatoxin and 3-methoxydebromoaplysiatoxin were also reported to inhibit

CHIKV (Gupta et al. 2014). The pan-PKC modulator byrostatin 21 also potently

inhibited CHIKV replication without modulating the cellular PKC pathways, which

suggest that these compounds may also work through PKC-independent pathways.

(Staveness et al. 2016). Deciphering the mechanisms of how PKC modulates the

CHIKV lifecycle requires further investigation. Similar to the other host targeted

antivirals discussed, the clinical use of PKC modulators will be limited because of

the importance of PKC in normal cell survival. Additional studies are required to

fully elucidate the specific cellular kinase pathways involved in CHIKV replication

in order to fully explore the development of novel small molecule antivirals.

5.4 Inhibitors of Protein Chaperones

Cytoplasmic proteins and those traversing through the cellular secretory compart-

ment require chaperones for proper folding and disulfide bond formation that is

important for proper trafficking, increased stability, and improved function. Two

categories of chaperones have been shown to be involved in CHIKV replication

including the Heat shock protein-90 (Hsp-90) and protein disulfide isomerases

(PDI). For example, Hsp-90 is a highly abundant chaperone that is utilized by both

cellular and viral proteins to ensure proper folding, maturation, localization, and

turnover of substrate proteins. Hsp-90 plays an important role in the replication of

many RNA and DNA viruses making it a possible target for broad-spectrum

antiviral development. The Hsp-90 inhibitor geldanamycin and synthetic analogs

of geldanamycin HS-10 and SNX-2112 all inhibit CHIKV replication
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(Rathore et al. 2014). Geldanamycin inhibition has shown that Hsp-90 is essential

during the early stages of CHIKV replication by promoting nsP2 stability (Das et al.

2014a). Hsp-90 also interacts with CHIKV nsP3 and nsP4, and Hsp-90a may play

an important role in the stabilization of nsP4 and formation of the replication

complex (Rathore et al. 2014). HS-10 and SNX-2112 treatment significantly

reduced serum viral titers at 48 hpi and decreased CHIKV-induced joint swelling

disease and inflammatory cytokine production in SVA129 infected mice (Rathore

et al. 2013). However, the development of Hsp-90 inhibitors for in vivo use has

been difficult because the chaperone is involved in many cellular processes and

signaling pathways that can cause a certain level of cytotoxicity when inhibited.

A recently developed second-generation Hsp-90 inhibitor called Ganetespib has

decreased cytotoxicity and in vivo safety (Jhaveri and Modi 2015).

Inhibitors of cellular PDIs block CHIKV infection by decreasing the infectivity

per particle ratio of secreted viruses (Langsjoen et al. 2017). Since CHIKV E1 and

E2 glycoproteins require specific disulfide bonding patterns between conserved

cysteine residues, the reduction in infectivity is likely to require host PDI for

envelope protein function. Consistent with this hypothesis, PDI inhibitors decreased

cell–cell fusion events facilitated by E1. Auranofin, an FDA-approved thioredoxin

reductase (TRX-R) inhibitor, was the most promising compound with a therapeutic

index of 104.5 at 12 hpi, and was efficacious in mouse models of CHIKV infection

and disease (Langsjoen et al. 2017).

6 Conclusions

The development of inhibitors against Chikungunya virus is critical for treating

infected patients to prevent or reduce transmission and disease. CHIKV remains a

clinically relevant human pathogen due to the severity and chronicity of disease and

explosive nature of viral epidemics. Recent development of inhibitors against

CHIKV has identified a number of viable viral and cellular targets that, when

blocked, can robustly inhibit virus replication. However, there are a number of

challenges that remain to overcome in order to successfully treat patients. For

example, the virus rapidly mutates indicating that the virus can quickly develop

resistance to most single-drug regimens. This would indicate that two or more drugs

that target unique aspects of virus replication are required to limit resistance that

would render the drug ineffective. Another major issue that needs to be addressed is

the aspect of determining what the therapeutic window is for treating CHIKV

infection and disease. Due to the chronicity of the viral infection and disease, when

testing new antivirals, it is important to not only assess efficacy during the acute

phase but also the chronic phase in order to establish the effective therapeutic

window. The process of developing inhibitors and identifying the antiviral targets

will continue to also improve our understanding of the virus lifecycle (Table 1).
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Table 1 Viral and host-directed antivirals against Chikungunya virus

Compound Target/MOA Validation

method

References

Inhibitors of CHIKV entry

FL23/FL3 Entry In vitro Wintachai et al. (2015)

EGCG Entry In vitro Weber et al. (2015)

Chloroquine Entry In vitro Khan et al. (2010)

Arbidol/Emifenovir Entry In vitro Delogu et al. (2011)

IIIe 7/IIIf

(Arbidol derivatives)

Entry In vitro Di Mola et al. (2014)

Imipramine Entry In vitro Wichit et al. (2017)

U18666A Entry In vitro Wichit et al. (2017)

Suramin Entry In vitro Ho et al. (2015)

Inhibitors of CHIKV structural proteins

Picolinic acid Capsid protein In vitro Sharma et al. (2016)

Inhibitors of CHIKV non-structural proteins

nsP1

MADTP nsP1 In vitro Delang et al. (2016),

Gigante et al. (2014,

2017)

Lobaric acid nsP1 In vitro Feibelman et al.

(2018)

nsP2

2E nsP2 In silico/

in vitro

Bassetto et al. (2013),

Das et al. (2016)

IDI452-2 nsp2 In vitro Lucas-Hourani et al.

(2013b)

NCL1610 nsP2 In silico Nguyen et al. (2015)

ZINC67680487 nsP2 In silico Jadav et al. (2015)

ZINV0472520 nsP2 In silico/

in vitro

Jadav et al. (2017)

nsP3

Naringenin nsp3 In silico/

in vitro

Pohjala et al. (2011),

Seyedi et al. (2016)

NCA_25457 nsp3 In silico Nguyen et al. (2014)

NC_345647 nsp3 In silico Nguyen et al. (2014)

nsP4

Favipiravir (T705) nsP4 In vitro/

in vivo

Delang et al. (2014)

B NHC nsP4 In vitro Ehteshami et al.

(2017)

Compound A nsP4 In vitro Wada et al. (2017)

(continued)
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Table 1 (continued)

Compound Target/MOA Validation

method

References

Inhibitors of CHIKV RNA genome replication

Ribavirin Nucleoside

analog

In vitro Briolant et al. (2004),

Pohjala et al. (2011)

6-Azauridine Nucleoside

analog

In vitro Briolant et al. (2004),

Pohjala et al. (2011)

Host-targeting compounds

Pimozide Calmodulin In vitro/

in vivo

Karlas et al. (2016)

TOFA Fatty acid

synthesis

In vitro/

in vivo

Karlas et al. (2016)

Dec-RVKR-cmk Furin In vitro Ozden et al. (2008)

Pyrimidine and purine synthesis inhibitors

DD264 De novo

pyrimidine

biosynthesis

In vitro Lucas-Hourani et al.

(2013a)

Mycophenolic acid Guanine

synthesis

In vitro Khan et al. (2011)

Inhibitors of cellular kinases

CND3514 Kinase In vitro Cruz et al. (2013)

Dasatinib Src family

kinases

In vitro Broeckel et al. (2019)

Torin mTORC 1/2 In vitro Broeckel et al. (2019)

Prostratin PKC In vitro Bourjot et al. (2012)

12-O-tetradecanoylphorbol-13-acetate PKC In vitro Bourjot et al. (2012)

Debromoaplysiatoxin PKC In vitro Gupta et al. (2014)

3-Methoxydebromoaplysiatoxin PKC In vitro Gupta et al. (2014)

Bryostatin-21 PKC In vitro Staveness et al. (2016)

Inhibitors of protein chaperones

Geldanamycin Hsp-90 In vitro Rathore et al. (2014)

HS-10 Hsp-90 In vitro/

in vivo

Rathore et al. (2014)

17-AAG Hsp-90 In vitro/

in vivo

Nayak et al. (2017)

SNX-2112 Hsp-90 In vitro/

in vivo

Rathore et al. (2014)

Auranofin Thioredoxin

reductase

In vitro/

in vivo

Langsjoen et al. (2017)

PACMA31 Protein

disulfide

isomerase

In vitro/

in vivo

Langsjoen et al. (2017)
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