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Small molecule metabolites: discovery of biomarkers and
therapeutic targets
Shi Qiu1, Ying Cai2, Hong Yao3, Chunsheng Lin4, Yiqiang Xie1✉, Songqi Tang 1✉ and Aihua Zhang1,2✉

Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-
recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject’s phenotypic informative dimension,
are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could
lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and
selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic
biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic
potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways
changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have
established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic
target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule
candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and
treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
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INTRODUCTION
Metabolite biosignatures from human biofluids providing a link
between genotype, environment and phenotype, are attractive
biomarkers for the clinical diagnosis, prognosis, and diseases
classification.1–8 It can provide a unique metabolic readout and
snapshot of the health/disease status of key information about the
downstream products related to various metabolic processes.9–12

Differential metabolites can improve the specificity and accuracy
as biomarkers for patient diagnosis, patient monitoring, risk
prediction and prognosis.13–16 Discovery and identification of
small molecule metabolites or metabolic pathway alterations is
useful for understanding the pathophysiology of diseases, and
help identify therapeutic targets.17–27 Metabolome represent the
upstream input from environment and downstream output of
genome, the collection of bioactive small molecule metabolites
including nucleotides, carbohydrates, amino acid, and fatty acid,
has used for discovery of early prediction and diagnosis
biomarkers of diseases that insight into the best use of
interventions.28–35 Endogenous metabolites could provide unique
metabolic insights into the mechanistic basis and therapeutic
targets of disease and also leads to personalized metabolic
phenotype.36

Bioactive functions and detail molecular mechanisms of small
metabolites have gradually raised attention of scientists and
researchers.37–43 Fortunately, advancements in metabolomics
technologies hold promise as non-invasive and high-throughput
tool that conventionally divided into untargeted and untargeted
analysis has demonstrated high value in investigation of

metabolite signatures, and allowed researcher to establish mass
spectrometry-based comprehensive profiling of small molecule
metabolites to provide insight into metabolic function.44–55.
Metabolomics, the science of characterizing known and unknown
small molecule metabolites, appears to be an ideally tool for
disease characterization and monitoring as well as the investiga-
tion of disease pathophysiology and biochemical characteristics in
body systems.56–60 Major approaches include metabolic pheno-
typing, metabolic fingerprinting, metabolic profiling and targeted
metabolite analysis.61–75 Fig. 1 shows general workflow for
biomarker discovery from small-molecule metabolites through
metabolomics approach. Metabolic phenotypes could reflect the
metabolic response feature variation to pathophysiological stimuli
at a certain time point.76–78 According to specific profiles,
metabolic regulation associated with therapeutic responses is
new therapeutic strategy for diseases.79–81 Since metabolomics
aims to identify small metabolites from biological system, insights
into metabolism and its regulation mechanisms that symptom
generation and therapeutic response, provides an innovative
approach to answer phenotype-related questions distinctly
altered in diseases, elucidate the biochemical functions and
delineate the associated mechanisms implicated in the dysregu-
lated metabolism from patients within clinical settings.82–92

Identification of the small metabolites and molecular mechan-
isms using high-throughput metabolomics may allow for the rapid
development of biomarker and improving disease diagnosis,
prognosis, treatment response, and for revealing mechanisms and
disease etiology, therapeutic target for ameliorating the quality of
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life in patients.93–99 Using small molecule metabolites-based
metabolomics for discovery of metabolic biomarkers to diagnosis
and then providing key information for biomarker validation and
elucidation of the molecular mechanism of disease, has attracted
broad interest.100,101 This review focused on functional features of
small molecule metabolites, utility of them as biomarkers and
therapeutic targets for disease via the function relationship and
associated molecular mechanisms, and also discussed its progress
in the early diagnosis, prognosis, and pathogenesis of disease at
the level of metabolism in vivo, which is expected to translate the
milestone findings into clinical trials to enhance the efficacy and
provide new sights for human clinical use in the future.

ADVANCED TECHNOLOGY PLATFORM
Metabolites are the final downstream products of protein
translation and gene transcription or cellular perturbations to
the proteome, genome or transcriptome, have potentially crucial
linkage between genotype and environment, and provide a closer
image of the final phenotype.102–105 A human metabolome mainly
contains the detailed information of 41,993 small-molecule
metabolites, has been implemented for public.106,107 Metabolites
act as signaling molecules, serve as cofactors, energy production

and storage, and can trigger regulation processes.108–119 Small
molecule metabolites-based metabolomics have several advan-
tages over the other omics approaches. Genomics may have little
impact on expression outcome in the function of a protein, but
metabolomics can directly detect the biochemical response to a
stimulus.120–123 Unlike metabolomics, genomics, transcriptomics
and proteomics is unable to dynamically analyze the detailed
information of metabolic function in living systems.124 Consider-
ing time sensitive and accurate phenotypic analysis of live
organisms, their individual diagnostic ability is lower than that
of metabolomics.125–129 As a downstream product of transcrip-
tome, genome and proteome, metabolome includes small
molecule metabolites correlate to specific metabolic phenotype
and insights into the mechanistic basis and therapeutic targets of
diseases (illustrated in Fig. 2). Over the past few years, it has
demonstrated significant benefits for discovering biomarkers,
disease diagnosis and treatment, and delineating metabolic
regulation mechanism.130–136 Metabolic signatures from complete
system can infer the possible mechanism of diseases and identify
therapeutic targets.137–146

Metabolome covers a suite of small metabolites with a
molecular mass less than 1500 Da, including but not limited to
amino acids, lipids, organic acids, and some exogenous

Fig. 1 Analytical workflow of small molecule metabolites-based metabolomics. The first stage involves experimental design, followed by
election of biological subjects, sample collection, preparation, and metabolite extraction. Next is acquisition and processing of data, then data
analysis, and finally, making sense of the data through biomarker discovery, and functional interpretation. The images were obtained using
the example data provided by the MetaboAnalyst 5.0 and figures created by BioRender

Small molecule metabolites: discovery of biomarkers and therapeutic targets
Qiu et al.

2

Signal Transduction and Targeted Therapy           (2023) 8:132 



chemicals.40,42,147–151 All metabolite repertoire is influenced by the
physiological activity or exogenous environmental factors.152–156 It
makes metabolome information data more difficult to inter-
pret.157,158 Small metabolites classified as endogenous and
exogenous analytes could participate in various metabolic path-
ways, such as urea cycle, tricarboxylic acid cycle, or fat
oxidation.159–161 The former includes amino acids such as
glycosylation products, histidine and cystine, organic acids such
as succinate and citrate, lipids such as glycerolipids and
sphingolipids, and other endogenous molecules.162–166 A wide
variety of biological media has been used from all available body
fluids and tissues, including serum, plasma, cerebrospinal fluid,
saliva, feces, sweat, tears, urine, breast milk, cervicovaginal
secretions.127,167–171

Molecular profiling of minor molecules offers invaluable insights
into the metabolic function and targets. A disruption of metabolic
pathways indicates that metabolomics might be used as a more
precise tool for patients when compared with the conventional
biomarkers.126,172,173 It is vital to understand the biological role of
metabolites in regulating biological functions. Numerous strate-
gies have been showed to expand small-molecule metabolites
coverage.174–176 Mass spectrometry (MS) has been applied to the
detection of small molecule metabolites, and allowing interpreta-
tion of metabolic changes at the systems-level in health and
disease, from whole organisms to single cells.177–190 Metabolomics
mass spectrometry-based can rapidly discover small molecule
metabolites and improve the understanding metabolic mechan-
ism of numerous diseases, and improve the ability for monitoring
various metabolic changes in clinical settings.191–194 Mass spectro-
metry coupled with liquid chromatography platforms enhances
versatility and sensitivity of identification and quantification of

metabolites, precisely facilitates exploration of a large number of
small-molecule metabolites from bio-samples, and describes a
main picture of general metabolic changes that related to disease
alteration.49,136,195 Emerging mass spectrometry imaging is a
powerful analytical approach for spatial detection, quantification
and imaging of endogenous and exogenous molecules.196–198 A
cross-platform approach by integration of systems biology and
small molecule data could discover the regulators of human
metabolism into clinical insights.199–201 High-throughput meta-
bolic profiling can reveal credible information on the underlying
functional metabolic mechanisms.202–205

Technique breakthroughs have provided new opportunities to
explore metabolic dimensions of diseases. Major analytic techni-
ques for endogenous molecules include nuclear magnetic
resonance (NMR) and mass spectrometry. MS can identify the
low-abundance metabolites and metabolic alteration along key
pathways is identifies by NMR. Recent efforts are directed towards
revealing globally spatial distribution of small molecule metabo-
lites and identifying active metabolites beyond their trend analysis
and metabolites characterization.64,206–208 High-throughput MS
imaging (MSI) technology allows for simultaneous visualization of
spatial distribution of small metabolite molecules, providing
attractive platforms for spatial visualization of metabolic processes
to understand the complex communication networks.209–211 It is
noteworthy that MSI technology has been successfully applied to
imaging various human and animal tissues, such as liver, kidney,
brain, heart, skin, breast and lens.212–216 NMR profiles has been
largely used for characterizing biomarker and classified numerous
diseases, including kidney diseases, cancer, cardiovascular dis-
eases, Alzheimer’s disease and etc.217–225 At present, no single
analytical method or instrument can fulfill the mission of

Multi-omics integration

Genome Proteome Metabolome Microbiome

DNA RNA Protein Metabolite Gut microbiota

Biomarker

Fig. 2 Schematic representation of the most commonly used omic platforms for multi-omics studies. Metabolites are the downstream
products of the genome, transcriptome, proteome, and enzymatic reactions, which are also affected by environmental exposures. The
metabolome provides a functional readout of these upstream changes. Multi-omics (including genome, transcriptome, proteome,
metabolome, and microbiome data) are collected from patients and integrated to identify personalized functional signatures using complex
and comprehensive network analysis. The figures created by BioRender
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identification of entire metabolome.226 Many reviews have
recognized about the combination platform to maximize meta-
bolomics data.227–229 Multiple technologies have greatly broa-
dened the level of metabolite coverage, and several reviews have
also been widely discussed regarding how different MS and NMR
platforms works and their own advantages and
disadvantages.135,230–241

Small molecule metabolites-based metabolomics can be
categorized into targeted and untargeted
approaches.65,75,134,242,243 Untargeted metabolomics reveals pre-
viously unknown metabolic information, and conversely, targeted
approach highlight analyzing a set of metabolites, tend to be
more sensitive and higher reproducibility relative to untargeted
approach.133,244–249 Targeted metabolomics tends to analyze a
specific known metabolic pathway for the metabolite quantifica-
tion.250,251 However, untargeted metabolomics often focuses on a
large number of unknown metabolites without bias and
metabolite identification.252–258 Untargeted (discovery-based)
approach enables global detection of all metabolites that linked
phenotype information. Targeted (validated-based) metabolomics
focused on the metabolites related to a metabolic pathway of
interest. Due to the complex of metabolome, robust data analysis
requires the preprocessing raw data followed by multivariate
statistical analysis, omics data mining and bioinformatics integra-
tion.259–269 The larger data sets require the specialized tools for
rapid analysis.270–273 The progressions such as automatic annota-
tion, in-silico fragmentation and databases construction have
advanced to solving these problems.274–276 Multivariate statistical
techniques are widely applied in mechanistic understanding of
metabolic processes, beyond phenotyping and biomarker dis-
covery of various diseases.277–288 Data pre-processing software
and numerous pattern recognition analysis packages have been
reviewed elsewhere.289–295 Human Metabolome Database and
Kyoto Encyclopedia of Genes and Genomes are the frequently
used databases currently in small molecule applications
field.296–301 Metabolome data can be processed automatically by
bioinformatic tools.302–304 For instance, MetaboAnalyst tools can
generalize network interaction and visualization map derive
meaningful biological inferences, which includes numerous
modules for pathway analysis and metabolite enrichment analysis
with network topology approaches.305–310 It can provide a ranked
list of potential metabolite biomarkers and fundamental metabolic
pathways by allocating small metabolites to relevant biological
pathways with pathophysiological basis of disease.

IDENTIFICATION OF BIOACTIVE METABOLITES
Endogenous metabolites are biosynthesized by the host organism
or microflora. In 1971, Linus Pauling et al. had used endogenous
metabolites to reveal physiological status in biological system. Small
molecule metabolites can be produced by catabolism or anabolism,
such as peptides, sugars, amino acids, nucleic acids, organic acids,
lipids, and fatty acids. Metabolites are the closest link between the
genotype and phenotypes, and that reflects the genome, proteome,
transcriptome, epigenome, and the interactions with environ-
ment.311 They play critical roles in biological pathways and serve
as valuable bioindicators during cellular processes.91,312,313 Meta-
bolic profile could provide a snapshot of complex interplay between
environment and intermediary processes.314–316 Once specific
metabolites to disease pathophysiology are identified and then
gain interest in understanding biological biomarkers within
mechanistic pathways, using an invasive approach to monitor
disease progression and distinguish diseased subjects. To date,
metabolic signatures have already been discovered from investiga-
tions to uncover biomarkers and gain insight into the ongoing
metabolism and treatment targets for numerous diseases.317–324

Metabolome are comprehensively characterizing small meta-
bolites in cells, biofluids, organs, or other biological systems. Due

to the chemical complexity and dynamic range of the metabo-
lome, the simultaneous identification and reliable quantification of
metabolite features are greatly complicated. Biomarker identifica-
tion can facilitate the diagnosis and prognosis of diseases or
individualized treatment, better understanding and exploring
potential molecular pathways and mechanisms within disease
progression or modulated by drugs. Identification of active
metabolite is part of the most important processes in the
discovery stage.325–329 The biological matrices are complex with
thousands of small metabolites in them, the use of analytical
profiling techniques identify (global, untargeted, and top-down
approach) and quantify (specific, targeted, and bottom-up
approach) metabolites contribute to understanding the pathology
mechanisms. Given the metabolic profile alterations, the qualita-
tive and quantitative study technique of small metabolite
molecules, provides an opportunity for identifying promising
biomarkers and predictive model330–342.
The identification of the selected minor metabolites can be

carried out by a range of analytical technology.342–344 Major
analytical platforms for small molecules are nuclear magnetic
resonance (NMR), liquid chromatography-mass spectrometry (LC-
MS), and gas chromatography-mass spectrometry (GC-MS) (Fig. 3).
Each technique offers unique advantages in the sensitivity,
accuracy, resolution, dynamic range, reproducibility and through-
put. A mass spectrometry-based strategy for identifying a list of
biological activity metabolites. Moreover, it detects entire
metabolites rather than a single metabolite. MS scan, high-
precision MS/MS analysis combined with database (e.g., HMDB
and METLIN) can provide a large number of the relatively
abundant ions and acquire more reliable identifications.345–347 It
also needs analysis software for highly complex data to complete
the metabolite identification and metabolic pathways analysis.348

XCMS Online, Open-MS, MZmine and MS-DIAL software are
available for peak detection and alignment.349–351 Untargeted
approach deals with a vast number of unknown molecules and
reveals functional changes, and then targeted approach focus on
accurate identification and quantitation is subsequent validation
including sample preparation, data acquisition and analysis. NMR
data processing has been accessible via NMRbox for metabolite
identification. Software tools and substantial spectral databases
facilitate the identification of small metabolites by both 1D-NMR
(e.g., B.I. QUANT, Chenomx NMR Suite, Bayesil, MagMet) and 2D-
NMR (e.g., COLMAR).352–358 However, combining NMR and MS
data greatly improves the metabolome coverage and enhances
the accuracy of small metabolite identification, greatly benefit the
quality of data.359

Numerous groups seek to provide the available online tools for
statistical and bioinformatic analysis, e.g., Metlin, MetaboAnalyst,
KEGG.58,360–364 Small metabolite abundance is quantified depend-
ing on peak intensity. The biological activity metabolites are
selected by specific statistical cutoff (e.g. a fold changeå 2 or a p
value < 0.01). Correlations calculated the association between
metabolites and clinical features and further evaluated the
underlying metabolism differences. To find a panel of metabolites
as possible biomarkers for the specific condition, each metabolite
needs to be independently analyzed to illustrate the diagnostic
ability. The area under the ROC curve (AUC) measured accuracy to
see how the metabolites contribute to group separation and ROC
analysis could check of the performance of particular metabolites
for a diagnostic test.172,365–368 To evaluate the overall performance
of small metabolites for diagnosis, the sensitivities, AUC values,
specificities were evaluated. A total of 24368 metabolites has been
published according to recent HMDB 5.0 database.106 Number of
small metabolites was identified in urine and blood are 5661 and
38,036, respectively. In recent decades, many small metabolites
have been discovered in diseases progression, and these studies
need emphasize metabolite bioactivity and provide their relevant
biological significance.
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EXPLORING PHENOTYPE SIGNATURES
Metabolites are end-products or intermediates of the metabolism
processes and closely linked to the phenotype of a biological
system, which govern the modulating the phenotype function.
Level changes of small metabolites could be used as diagnostic
and prognostic biomarkers as well as therapeutic targets.320,369–372

Metabolome is in constant change, and thus a more reflection of
body phenotype than the other “-omics”, such as transcriptomics,
proteomics or genomics. Metabolomics tool in clinic measuring
variations of metabolites will play a key role for biomarker
research, the identification of biochemical pathways involved in
the treatment follow-up.373–377 Metabolomics obtaining global
metabolic profile in biological systems can measure low-
molecular-weight metabolites in the biological systems associated
with various pathological conditions, could fill gaps between end-
phenotypes and genotype.378–380

Small metabolites are correlation with the functional status in a
biological system. Exploring metabolites and the related meta-
bolic pathways allow a better understanding of how the
abnormal metabolism could lead to disease’s onset, and
progression.381–385 They enter body circulation and then is
transferred to target organ and tissues, and then exert a series
of biological effects that modulate cell function.386–390 Small
metabolites could hint proteins acting as modulators of various
biological phenotypes and could develop targets for early
intervention.391–395 Metabolic signatures associated with human
phenotype can be identified by various ways including by
exploring associations between small metabolites and pheno-
types.396,397 In addition, research of metabolic signatures has help
discovery of potential biomarkers for the diseases. Toward
developing effective approaches to evaluate disease progression
and therapy responses, a robust and reproducible method is
necessary to accurately depict their phenotype. A challenge is to

identify the key “signals” of interest in metabolomic data that real
influence on phenotype. Identifying molecular signatures that
modulate phenotype could be achieved by an appropriate
screening way. Mass spectrometry (MS) can detect all the
ionizable metabolites without labeling or preselec-
tion.57,255,351,398–403 High-throughput screening of metabolic
signatures that are closest to phenotypes advances to quantify
and identify small-molecule metabolites at microenviron-
ments.404–409 Single-cell metabolomic methods provide a direct
understanding of the phenotypes of cellular activity and
environmental changes.410–414 High-throughput molecular fin-
gerprints in a wide range of pathological conditions were
generated from metabolic profiling of biofluids and have been
evaluated neurodegenerative conditions, cardiovascular diseases,
metabolic disorders, and various types of cancers.415–423

Understanding manifestations of each patient’s metabolic map
will allow for precision therapies rather than for the “average
patient”. Metabolic profile, a collection of distinct metabolites,
could describe human phenotype using small chemical metabo-
lites as index for biochemical traits.68,424–427 Because it could
reflect a patient’s phenotype, metabolic profile offers a compre-
hensive, precise and dynamic picture of the phenotype, allows
the discovery of small metabolites related with various human
phenotypes that link to health, disease or drug monitor-
ing.100,428–442 Discrimination between the metabolite profile of
diseases could result in potential benefits of identification of early
diagnostic or prognostic biomarkers response to predic-
tions.443–449 The elucidation of specific metabolic phenotype is
essential for identifying potential biomarkers and drug targets,
better understanding the underlying pathogenesis during disease
progression (Fig. 4). Metabolic phenotyping from biological
samples based on the fundamental paradigm of the homeostasis
could reflect the substantial changes in the whole metabolism.450

Fig. 3 Overview of advanced technology platform for metabolite quantification in biomedicine. Step 1: Sample preparation through
deproteinization and/or centrifugation of biofluids. Step 2: Detection of analyte signal through NMR or MS spectroscopy. Step 3: Small
metabolites is filtered and quantified for significant biomarkers of interest. The images were obtained using the example data provided by the
MetaboAnalyst 5.0 and figures created by BioRender
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The metabolic profiles of patients are dynamic and can be
influenced by lifestyle, disease, external or internal stimuli and
physiological and pathological condition changes.451–458 The
biological processes that be related with gender, age, obesity,
disease, medication, etc., could change the metabolic profile of an
individual.459–464 Metabolic profile of biofluid media can directly
reflect the particular metabolic status of different tissues or
organs, also determine metabolic signatures for identifying the
distinct patient subgroups according to disease characteris-
tics.168,465–472 Since changes in various pathological conditions
can be revealed by metabolic profiles, exploring metabolome
could help towards enhancing the disease diagnosis, prognosis,
surveillance, and personalized treatments. Metabolic changes
serving as biomarkers for early diagnosis and potential ther-
apeutic target, play significant pathological effects on regulated
metabolism.
Several small metabolites analyses have been carried out to

identify the specific metabolic phenotype profile relevant with
disease progression and characterize alterations of metabolic
signatures which may be used as potential biomarkers in clinic.
The study by Liu et al. was aimed at characterizing the distinctive
inflammatory phenotypes, and then identify the metabolic
signatures and pathways. It demonstrated adenosine 5'-mono-
phosphate, allantoin and nicotinamide correlate with metabolic
changes to predict asthma inflammatory phenotypes.473 Another
study has reported that the differential metabolites including
glycerophosphocholine, rosterone sulfate, and elaidic carnitine
as potential indicators can predict abortion rate of polycystic
ovary syndrome, with an AUC of 0.933, 0.941, 0.933 for high
predictive performance, respectively.474 LC-tandem MS was
performed to characterize the serum metabolic signatures of
hepatolithiasis, and identified 277 metabolites, AUC values for
metabolites including18-β-glycyrrhetinic acid and PC (4:0/16:2)

were up to 0.90, may have clinical value for hepatolithiasis.475 A
study showed that polyunsaturated fatty acids and bile acids as
potent markers were closely related to the severity and
chronicity of drug-induced liver injury patients, respectively.476

In addition, the distinct metabolic signatures at the acute phase
of COVID-19 patients compared to the recovery period, suggest-
ing arginine and tryptophan metabolism as main pathways with
a probable link to disease severity.477 In a quantitative profiling
study that focused on urinary metabolic signatures including
homovanillate, L-methionine, and thymine as indicators of
traumatic brain injury.478 Concerning metabolic signatures of
tumor growth stage, such as colorectal cancer, sporadic color-
ectal adenoma, and the potential metabolites such as D-
mannose, sarcosine, 4,5-trimethoxybenzoic acid are found by
serum metabolic screening.479 By metabolic features of PCa
analyses, Yu et al. discovered a series of altered metabolites that
were related to TCA, glycine cleavage system, fatty acid
metabolism. Importantly, Glu/Gln had high predictive power
when detecting PCa patients (AUC = 0.984), with a higher
sensitivity (96.6%) than PSA (94.4%).480 In summary, these
studies show the small molecule phenotype signatures offers
new avenues for better understanding biological metabolic
processes of diseases, and for developing new biomarkers to
improve patient management in clinic.

PROMISING BIOMARKERS
According to NIH Biomarkers Definitions Group, biomarkers were
defined as features which are measured as an index or sign for
physiological, biological, pathological, or pharmacological pro-
cesses. Biomarker have characteristics that can be quantified,
analyzed and associated with human phenotype and could be
used for early disease detection, improve outcomes of treatments

Fig. 4 Representative metabolite biomarkers associated with human diseases in clinical studies for disease phenotype, diagnosis,
classification, prognosis, and treatment (the detailed information showed in Table 1)
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and selection of therapeutic strategy, and reduce disease-related
mortalities, and lead to the identification of the therapeutic
targets. Although the extensive efforts, currently used biomarkers
in clinic are lacking adequate sensitivity and specificity for disease
early detection and treatment monitoring. A growing number of
biomarkers in urine, blood, plasma or saliva, have been considered
to identify intermediate phenotypes with a clearer picture for
predicting the response to therapy. Altered metabolisms have
recognized as biomarkers. Metabolic profile can describe the
underlying molecular picture of disease disorder or phenotype.
Therefore, to improve the patient management, more precise
biomarkers in biofluids are needed. Discovery of metabolic
biomarkers will improve patient pretreatment and response to
therapy.
Recently, a variety of biomarkers were discovered and

employed to detect early-stage disease and predict disease
progression, clinical outcome or drug response (Table 1). It can
be a group of metabolites, a metabolite, or a molecular feature.
The presence of a disease suggests the metabolite concentration
has abnormal change (lower or higher concentration) is a sign of a
perturbed or dysfunctional metabolic pathways of systemic
homeostasis. There are huge advantages to consider and apply
metabolic information during discovery phase that focusing on
the understanding of the biological system associated with the
metabolic pathways and can provide novel biomarkers and
targets. Thus, unlike proteins and genes, metabolites as signatures
of biochemical activity are closely correlate with human pheno-
type, since they play a key role in cellular signaling regulation and
physiological function control. Therefore, discovery of altered
metabolic features related to phenotypic variation produced
insights into pathophysiology, mechanistic basis and therapeutic
targets of metabolic diseases.
Given metabolism plays fundamental roles in characteristic

metabolic alterations to gain deep insights into disease pathogen-
esis, small metabolites could emerge as potential targets for
developing predictive biomarkers, and therapeutic targets. The
precision treatment of metabolic disorders remains a huge
challenge due to the imprecise diagnosis and involved incomplete
understanding of pathophysiological process. To practice preci-
sion treatment, it is necessary to investigate small biomarkers that
carefully consider phenotype determination. To establishing
quantitative fingerprint and detection of endogenous metabolite
biomarkers in easily obtainable and less intrusive biofluid may
help to establish the close relationship between disease process
and metabolic changes that contribute to body dysfunction of
mechanistic basis of metabolic diseases. Currently, it is a challenge
to rapidly detect disease using specific metabolite signatures at
initial stages. Despite many biomarkers have been discovered in
clinic, other biomarkers have not undergone their clinical validity
and usefulness, preventing them advanced into clinical treatment.
Advanced technology has greatly facilitated the discovery of
biomarkers insights into metabolic regulatory and signaling
activities that are strongly associated with human phenotype.
Furthermore, biomarkers for the prediction, prognosis, and
monitoring therapy, after the biomarker discovery phase, need
GC or LC-MS, and NMR spectroscopy analytical techniques.
Advanced analytical techniques could insight into the concentra-
tion detection of potential metabolite biomarkers within its early
stages. Advanced platforms, especially using LC/MS/MS, facilitate
detection, quantification, and characterization of small metabolic
molecules (e.g., peptides, carbohydrates, amino acids, and fatty
acids) involved in metabolic and catabolic processes, and greatly
enhanced their translational capability.
Some representative potential metabolite biomarkers are

currently screened (Fig. 4). A six-metabolite panel (beta-alanine,
homoserine, 3-hydroxykynurenine, aspartate, tyrosine and
ornithine) was quantified as potential blood-based biomarkers,
and considers as a potential diagnostic or prognostic assay for

Parkinson’s disease.481 Eva et al. had profiled serum metabolite
signatures in early breast cancer participants and found that
circulating metabolites: glutamine, tyrosine, proline, histidine,
alanine and citrate can significantly correlate with tumor
proliferation.482 Interestingly, a panel of two potential predictive
metabolites (palmitic amide and deoxycholic acid) in serum was
reported as potential biomarker of Crohn’s disease patients, and
its metabolic disturbance involved the fatty acids, bile acid
biosynthesis, and energy metabolism.483 Additionally with the use
of correlation analysis and ROC curve analysis, the characteristic
metabolites including alanine, glucose, lactate, glycine and
threonine were identified in pulmonary arterial hypertension
patients, and threonine and lactate were markedly correlated with
pulmonary vascular resistance and arterial pressure.484

In a study that focused on biomarkers associated with gouty
arthritis progression in patients, serum metabolic profiles were
screened N1-Methyl-2-pyridone-5-carboxamide, kynurenic acid,
5-and hydroxyindole acetic acid.485 A multi-omics model with
machine learning approaches was developed for discovering
metabolite biomarkers predicting COVID-19 patients.486 Interest-
ingly, 5-oxoproline can be used as a key biomarker for acute
ischemic stroke.487 Metabolic profiling model based on seven
metabolite candidates in plasma samples can provide powerful
early survival prediction capabilities for ST-segment elevation
myocardial infarction patients.488 Potential small metabolites
included LysoPC(15:0), docosapentaenoic acid, propionyl carni-
tine, LysoPC(14:0), and phenylalanine were constructed a risk
score for dose-response relationship with metabolism abnormal-
ities and metabolic syndrome.381 Plasma metabolic profiling
revealed four circulating metabolites (glutamate, pseudouridine,
N-acetyltryptophan and leucylleucine) were identified in diabetic
retinopathy patients.489 It has been reported that candidate
biomarkers arachidonic acid and 13(S)-HODE associated with Akt
pathway were potential biomarkers of non-small-cell lung
cancer.490

DIAGNOSTIC BIOMARKERS
Early diagnosis and effective prevention are of great importance
and has attracted great attention for improving treatment and
new therapeutic targets. For ideal biomarkers, molecular com-
pound should be readily measurable in invasive biological media.
Given metabolites are downstream expression of genome, closely
indicate phenotypic fingerprints at a particular physiological
period.491–494 One of the major advantages of metabolome over
genome is that it can reflect environmental impact and provide
global photograph of individual pathological conditions at any
time point. Timely diagnosis is crucial, and the screening of small
metabolites could play pivotal role in disease diagnosis. Therefore,
the need for prompt diagnosis indicates the huge potential of
advanced methods that reflect phenotype and therefore function
changes. Since small metabolites indicate end-products of
physiological processes, exploring whole metabolome can better
understand disease pathology and mechanisms of
intervention.495–498

Advanced analytical technology for small metabolites profiling
features in distinguishing or determining disease pathophysiology
associated with disease subtypes, progression, and treatment.
Disease detection techniques over traditional methods are
necessary for initial diagnosis, and also provide an effective
approach to screen the right populations, assess drug efficacy,
guide the choice of treatment or track disease progression,
provide better patient care. Rapid progress in omics by high-
throughput technology including LC-MS, GC-MS, and NMR,
focused on characterization of metabolic phenotype, has allowed
for simultaneous determination of a large number of small
metabolic products in biological specimens.499–503 Omics
approaches for biomarker discovery of early disease diagnosis
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could be achieved by analytical tools together with pattern
recognition analysis (Fig. 5). Typical examples of these approaches
consist of metabolic profiling, metabolic footprinting, metabolic
fingerprinting, flux and target analysis, each of which has played a
significant effect in clarifying the related metabolic pathways,
understanding disease mechanisms and pathological pro-
cesses.504–508 It can accurately detect the changes in distinguished
features of metabolism, remains indispensable for disease
detection.
The metabolites linking between genotype and phenotype will

result in biomarker identification for the early diagnosis, detection,

and response to treatment, better understanding the complex
disease pathophysiology that dramatic functional changes. Meta-
bolic signature of disease could assess the risk or earlier diagnosis,
detection, treatment monitoring, specific disease subtypes, and
help selection of targeted treatment to match metabolic
alterations of diseases related to phenotypic variation.509–514 To
identify metabolite profile changes in early diagnosis stage of
diseases is important for improving the prognosis, treatment and
management. A larger number of single metabolite or a panel of
the dysregulated metabolites can build diagnostic models that
hold diagnostic power and are capable of differentiating

Fig. 5 Potential roles and applications of small-molecule candidate metabolites for biomarker discovery, diseases diagnosis, prognosis, and
monitoring treatments in biomedicine. Compound detection, metabolites are detected by using specific detection techniques; data pre-
processing, raw signals are then pre-processed to produce data in a suitable format for subsequent statistical analysis; then, data
normalization is used to reduce the system and technical bias; data processing, for untargeted studies, metabolites are identified from spectral
information in some given database; statistical analyses, univariate and multivariate statistical analyses are used to identify significantly
expressed metabolites; biomarker discovery from multicenter, the discriminant metabolites originated from metabolomics approaches may
become promising candidate molecules to aid disease diagnosis, and risk stratification; function analyses, next, the significantly expressed
metabolites are subsequently linked to the biological context by using enrichment and pathway analysis. The images were obtained using the
example data provided by the MetaboAnalyst 5.0 and figures created by BioRender
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patients.515–518 Small molecule metabolites reflecting dynamic
pathological information is gradually moving towards clinical
practice, and has been proven accurate enough for satisfactory
diagnostic performance to predict diseases or early diagnosis or
discriminate patients. Figure 6 shows how small metabolites could
build metabolic blueprint of predictors in identifying biomarkers

for early complex disease detection. Pathway analysis could
expound altered metabolic alteration and show disease treatment
options. Its application in all aspects of diagnostic potential has
been proved in the research of metabolic disorders involved in
disease progression, such as diabetes, metabolic syndrome and
obesity.

Fig. 6 Schematic diagram of an integrated pharmacology framework for discovery of bioactivity-correlated constituents, target identification
and action mechanism of herbal medicine and natural products. The first stage discovers active compounds of treatment-related herbs
followed by construction of correlation analysis network of treatment-related herb-compound and small molecule metabolite (Correlations
based on the abundance scored value). Next is that highlight the main active constituents from identification of new candidates from natural
products, and then elucidate the underlying mechanisms by target virtual screening and identification, until the final step of in vitro and
in vivo tests. The images were obtained using the example data provided by the MetaboAnalyst 5.0 and figures created by BioRender

Small molecule metabolites: discovery of biomarkers and therapeutic targets
Qiu et al.

11

Signal Transduction and Targeted Therapy           (2023) 8:132 



Regarding establishing early clinical diagnostic tool, a study was
performed to identify differential and functional metabolites of
early NAFLD. New candidates were discovered, including the
upregulated theophylline and 1-naphthylmethanol, downregulated
lysophosphatidylcholine (24:1(15Z)) and 2-hydroxyphenylacetic
acid. It can achieve a high diagnostic power in the discovery phase
(80.99%) and validation phase (75.23%).519 Study carried out by Xin
et al. highlighted how metabolite biomarkers and metabolic profile
can serve as biomarkers for precision diagnosis of various types of
tuberculosis.520 Further, it also demonstrated that potential of
machine learning method combining metabolome in screening out
diagnostic biomarkers from big data set. Parallel study has been
carried out in plasma samples focusing on the metabolic
characterization of breast cancer patient, and revealed specific
metabolic profiles, identified a panel of glutamate, sphingomyelins,
and cysteine that showed high predictability that can be used as
diagnostic biomarkers.521 Previous study reported LPC (18:2/0:0)
level correlate with diastolic dysfunction and glycyl tyrosine
correlate with reduced lower left ventricular ejection fraction,
indicating they can detect cardiovascular risk.522 An integrated
multi-platform analyses were used to screen biologically significant
metabolites linked to Esophageal squamous cell carcinoma
patients.523 It found the close link lipid, amino acid metabolism,
and a diagnosis panel of citrulline, l-carnitine, acetyl-carnitine,
tryptophan and lysine selected as potential biomarkers in
distinguishing patients. Metabolic pathway analysis obtained
biomarkers associated with oral squamous cell carcinoma that
closely related to amino acid and cholic acid metabolism. Further, a
diagnostic panel was established and constituted of cysteine, cholic
acid, decanoylcarnitine, and had high early diagnosis power
(AUC= 0.998).524 According to Lunyera et al., urine tricarboxylic
acid cycle signatures are potential indicators at early-stage diabetic
kidney disease progression.525 It has proved that glycerolipid
metabolism and galactose metabolism are the main metabolic
pathways, and serummetabolite glycerol-3-galactoside can be used
as an independent indicator to predict diabetic kidney disease.526

Here, these instances of clinical trials based on endogenous small
molecule metabolites expand the coverage of metabolic biomar-
kers for disease diagnosis.

DISEASE CLASSIFICATION AND STRATIFICATION
Clinicians need rapidly assess disease stratification risk and with
adequate accuracy. Recently, omics combination approach has
employed as a promising strategy for generating information on
detecting early metabolic alterations which could contribute to
the disease classification, stratification and progression for
diseases that are immediately associated to biologically mean-
ingful metabolism, such as cardiovascular diseases, cancer,
diabetes, and obesity.527–530 The right choice of small molecule
metabolites that correlate with pathological states can help
making decision and lower-costs from the pilot testing into the
clinic. Metabolic profiles of diseases are able to characterize
disease signatures for discovering and identifying diagnostic
biomarkers and many unexpected mechanistic pathways that
involved in disease pathogenesis. Classically, endogenous small
molecules metabolite screening combined with the traditional risk
assessments enable characterization of metabolic phenotypes
even before manifestation of symptoms and have the potential to
improve non-invasive diagnostics and disease classification with
great potential to translate them into clinical settings.531–535

According to small molecule metabolite profiles or fingerprints
shown ability to predict disease risks, the big data being collected
on artificial intelligence or big data mining will contribute to
disease stratification analysis as an integrative tool that assists
clinicians in making decisions.536–538 Over the past few years, one
of the most striking aspects of screening of endogenous small
molecules metabolite of systemic metabolome alterations

particularly has evolved to gain a much broader dimension, also
showed great potential for differentiating disease subtypes.
Importantly, a large number of cohort studies have been carried

out to help establish a more effective and reliable risk
performance model for disease stratified risk events. In pancreatic
ductal adenocarcinoma, a panel of three small metabolites
including creatine, proline, and palmitic acid can exhibit a
beneficial performance for distinguishing pancreatic ductal
adenocarcinoma from benign pancreatic neoplasms or healthy
controls.539 A study has focused on characterizing the metabolic
subtypes of pancreatic ductal adenocarcinoma and analyzing the
relationship between long-term prognosis and metabolic sub-
type.540 It did not reveal the metabolic differences at the clinical
stages and choline-like type showed better prognosis among
metabolic subtypes. Interestingly, a metabolites biomarker panel
can precisely predict the overall survival of pancreatic cancer and
distinguish tumors from normal pancreatic tissues in a clinical
setting.541 A recent study investigating potential biomarkers for
screening and diagnosis of lung metastases, some low-molecular
metabolites such as indoleacrylic acid, L-tyrosine, retinol,
L-octanoylcarnitine and decanoylcarnitine were selected and
found they had high AUCs values and showed a strong ability
to differentiate between pulmonary metastatic carcinoma and
other subtypes.542 An integrated metabolome and lipidome
platform discovered four differential metabolites including
D-glyceric acid, cortisol, 2-(methylthio) ethanol,
N-acetylhistamine and then established a differentiation model
for precise pathological classification of squamous carcinoma and
non-small cell lung adenocarcinoma.543

Serum metabolic profiles in salivary gland tumors patients were
investigated to gain a better understanding of the disease risk
stratification. A total of 32 small metabolites were identified, and a
risk predicting model based on the gradually upregulated serine
and lactic acid was developed in benign and malignant stages.544

In medulloblastoma, a panel of two urine metabolites including
cortolone and tetrahydrocortisone showed a high accuracy for
diagnosis and monitoring.545 A machine learning-derived nomo-
gram models using thiamine triphosphate, diabetes duration, and
systolic blood pressure were established for early diagnosis and
accurate prediction of diabetic retinopathy.546 Metabolic altera-
tions in amino acid, energy, lipid, and metabolism could
distinguish the different stable and unstable types of coronary
atherosclerotic heart disease.547 Moreau et al. analyzed salivary
metabolome in primary burning mouth syndrome and found
tyrosine pathway (L-tyrosine, tyramine, L-dopa) can differ patients
according to the levels of pain.548 A study performed by tissue-
based spatial metabolomics with mass resolution imaging had
developed classification system of gastric cancer subtypes and
insight into their distinct metabolic pathways and molecular
characteristics.549

A metabolic biomarker panel was discovered in discovery
cohort to discriminate papillary thyroid cancer from benign
thyroid nodule with 91.89% sensitivity, AUC of 97.03%, and
92.63% specificity, and in validation cohort displayed 86.57%
sensitivity, AUC of 92.72%, and 92.50% specificity, and can
improve stratification of thyroid microcarcinoma.550 In recent
work, several metabolites such as carnitines, fatty acids, ketone
bodies, bile acids, purines and tryptophan, were obtained as early
biomarkers to distinguish from the early-stage and end-stage
coronavirus disease 2019.551 Using a ROC curve and logistic
regression analysis, a biomarker panel of PA(37:4), 6-keto-PGF1α,
PS(36:0), and LysoPC(20:1) demonstrated good classification and
diagnostic ability in distinguishing endometrial polyps from
endometrial hyperplasia or endometrial cancer in the validation
set.552 Notably, targeted metabolomics analyses identified
gamma-aminobutyric acid markedly reduced in COVID-19 patients
and its change levels with high sensitivity that allowed for COVID-
19 stratification.553
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Urinary metabolic features of prostate cancer, bladder cancer,
and renal cell carcinoma have been carried out to determine and
reveal that N-methylhydantoin, 4-hydroxybenzoate, creatinine,
acetate and glutamine had significantly discriminatory accuracy
among groups.554 When the level of a specific antigen is located in
the range of 4–10 ng/ml, differential metabolites are screened to
effectively distinguish between benign prostatic hyperplasia and
prostate cancer.555 As for the metabolic perturbations in vivo,
Alotaibi and colleagues followed the bioactive lipid molecules
screening approach and reported the 5 metabolites as biomarkers
of disease severity differed between pulmonary artery hypertension
with systemic sclerosis and idiopathic pulmonary arterial hyperten-
sion, and provide important underlying mechanistic basis in
subgroups of pulmonary artery hypertension.556 Furthermore, Luo
et al. performed a comprehensive analysis of metabolome data, and
relevant metabolite dehydrophytosphingosine and 9-cis-retinoic
acid had proved to be the most discriminative biomarkers for
ventricular fibrillation phenotype, had the high predictive prob-
ability based on their combination model.557 Albillos et al.
conducted metabolome with multivariate analysis to examine
potential biomarkers such as acyl-carnitines, bilirubin, tyramine, for
differentiation between Parkinson’s disease and essential tremor.558

These studies show a great potential for screening biomarkers for
better disease stratification to advance the understanding patho-
physiology, allowing therapeutic options.

PROGNOSIS BIOMARKERS
The lack of symptoms in the prognosis stages makes early disease
diagnosis difficult. Prognosis biomarkers are important in order to
reduce complex disease mortality. It is essential to identify
prognostic biomarkers that could facilitate decision making by
clinicians and promote individual therapy. Identification of useful
prognosis biomarkers remains a huge challenge in clinic. However,
regular tests offer low specificity and sensitivity, leading to
inadequate early-stage diagnosis or risk assessment. To improve
the risk stratification and prevention of disease, benefit from
therapy, it need insight into multiple prognosis biomarkers and
simultaneously quantify in a high-throughput way. Interestingly, a
great advantage of small metabolites as biomarkers likely occurs a
panel of multiple metabolites with markedly concentration
changes correlated with disease status.559–562 Interestingly, one
of the significant advantages of metabolite biomarkers may be
that they are composed of multiple metabolites, and their
concentration changes are significantly related to disease
status.563–567 The response to drug therapy can accurately monitor
the changes of small metabolites in biological media (e.g., urine
and blood).
Large amounts of studies have analyzed the metabolic profiles

of patients to identify potential small biomarkers with prognosis
utility in the clinic (Table 1). These researches include huge efforts
to develop simple, inexpensive, and novel diagnostic applications,
to enhance knowledge on the predictive or prognosis biomarkers
of the diseases and its complications. Metabolic deregulation
could affect various molecular biological processes (e.g., cell
apoptosis or invasion) that contribute to disease progression and
impact patient survival. Of interest to physician is the great
potential of small molecule metabolites an invaluable tool from a
prognostic point of view. Instead of a single biomarker, multiple
small metabolites corresponding to particular phenotypes are
anticipated to yield a higher selectivity and sensitivity.568–570 Both
un-targeted and targeted approach have also been conducted
identifying specific metabolites or predictor biomarkers which
were linked to metabolic alterations.571–574

Analyses of the relative level of tricarboxylic acid by semi-
targeted serum metabolomics shows that circulating pyruvate is
an effective prognostic biomarker of COVID-19, which means that
the quantification of pyruvate is a clinical support for prognosis

prediction.575 Metabolic profiling of plasma reveals COVID-19
affected porphyrin and glycerophospholipid metabolism, respec-
tively.576 Small metabolites in porphyrin and purine pathways
were markedly elevated in severe group, indicating that they can
be used for prognostic biomarkers. Prognostic tests based on
intermediary metabolites such as ureidopropionate, deoxycytidine
and kynurenine could improve COVID-19 patient treatment
outcome and severity.577 One example comes from Barco et al.,
who used a targeted metabolite profiling approach to discover the
high expression of 3-O-methyldopa was associated with worse
prognosis in neuroblastoma patients.578 A study performed
untargeted metabolomics had revealed eight metabolic biomar-
kers were identified as prognostic biomarkers of acute ischemic
stroke.579 As an example according to Brunmair et al., metabolic
phenotyping of tear fluid has been successfully established and
revealed taurine and nicotinic acid represent new biomarkers
were elevated in the diabetic cohort, and supports prediction of
disease development.580 Furthermore, metabolite profiles also
showed that asparagine synthesis was increased and associated to
poor prognosis for female colorectal cancer patients.581

METABOLIC PATHWAYS
Aberrant metabolism is a necessary pillar as a hallmark of disease,
e.g. lactate, pyruvate metabolites can assist in cellular proliferation.
Comprehensive understanding and investigating mechanistic
pathways can provide powerful evidence for precise diagnosis,
phenotypic classification, prognosis and treatment of patients.
Metabolic pathway analysis can be performed with benefiting
mechanistic explanations of therapeutic targets for metabolism-
related diseases.582–584 The altered metabolites are significantly
correlated with metabolic pathways and biological processes
involved in the disease progression. In addition, the differential
metabolites are likely to be one of the most important information
to explain the pathogenesis mechanism. From a metabolic
perspective, small molecule metabolites whose altered concentra-
tions could reflect phenotypes and elucidate pathophysiological
changes of complex diseases, provides clues regarding alteration
of metabolism in dysfunction, helps functional interpretation of
metabolic perturbations in vivo related to phenotypic varia-
tion.585–588 In this context, small molecule metabolites are
associated with diagnosis or prognosis in metabolic processes
and alteration in treatment of systemic homeostasis. Targeting
metabolic pathways can regulate the abnormal metabolisms and
finally alleviate disease syndromes.
Small molecule metabolites associated with specific metabolic

phenotype can be used to screen early disease symptoms and
monitoring its progression, through measuring endogenous
metabolite alterations in biofluids or tissues.589–591 Discovery of
small metabolite by high-throughput, non-invasive, and cost-
effective metabolomics are quite useful to compute metabolic
pathways that link complex chemical reactions involved in the
biological process. Advanced metabolomics technology could
amplify the small changes of differential metabolite expression to
achieve a wide coverage and then reflect functional changes,
deeply reveal action mechanism.592,593 This approach enables
providing the key information for further exploration of metabolic
signatures and potential biomarkers, mechanistic in-depth under-
standing, and therapeutic targets for treatment. Metabolite can be
used as an early indicator of pathological changes prior to
development of disease symptom. Several available software
platforms have been designed to facilitate metabolic pathway
analysis for small molecule metabolites.594–596 Particularly, Inge-
nuity Pathway Analysis and MetaboAnalyst could be used to
clarify the relevant metabolic pathway network change associated
with small molecule metabolites found in omics data, enable
integration for biological interpretations.58,360,597–599 The online
databases, such as KEGG, provide huge information about a large
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number of biological pathways and can be easily used to
determine and visualize the metabolic pathways and metabolite
interaction network involved in fundamental biological processes.
These comprehensive tools to the biological interpretation help
the identification of differentially altered analytes and dysregula-
tions of pathways.
Previous report had shown that metabolic alterations in clinical

hypothyroidism and subclinical hypothyroidism linked to various
potential metabolite biomarkers suggesting that impacting
onsteroid hormone biosynthesis, primary bile acid biosynthesis,
lysine degradation, purine metabolism and tryptophan metabo-
lism.600 Recently, Marino et al. performed multivariate network
analysis to identify the core pathways in the advanced stage of
Amyotrophic lateral sclerosis, and suggested the metabolic
alteration of lysophosphatidylcholine, sphingomyelin, and phos-
phocholine metabolism, consistent with repairing inflammation
and neuronal degeneration.601 Metabolic dysfunction in glycer-
ophospholipid metabolism, arginine and proline metabolism, and
tryptophan biosynthesis of invasive ductal carcinoma patients was
also observed by pathway enrichment analysis.602 Alterations to
metabolic pathways included glycerophospholipid metabolism,
D-glutamine and D-glutamate metabolism associated with atrial
fibrillation have been broadly explored at small metabolites level.
A study has focused on characterizing the specific and precise
metabolic features of atrial fibrillation subtypes, indicated that
small-molecule metabolites may facilitate effective treatment.603

Additionally with the use of untargeted metabolomics, a study
demonstrated serum biomarkers of progression of diabetic
retinopathy in Asians, and there were 171 metabolic features
including glutamine, N-acetyl-l-glutamate, glutamate, aspartate,
N-acetyl-l-aspartate, docosahexaenoic, icosapentaenoic, and
dihomo-gamma-linolenate distinguished proliferative diabetic
retinopathy patients from T2DM patients.604 Enrichment pathway
analyses for major metabolite biomarkers indicated arginine
biosynthesis metabolism, d-glutamine and d-glutamate metabo-
lism were dysregulated in advanced stages of diabetic
retinopathy.
Metabolic snapshot of COVID-19 revealed some additional

interconnection pathways implicated in disease pathogenesis,
including citrulline, phenylalanine and histidine, 2-aminobutyric
acid, asymmetric dimethylarginine.605 The disordered metabolic
pathways of primary Sjögren’s syndrome patients are associated
with tyrosine metabolism, tryptophan metabolism, aspartate and
asparagine metabolism, carbon fixation and affect neurological
cognitive impairment, inflammatory injury, and the immune
response.606 Pathway analysis by urinary metabolomic study
demonstrated that aberrant metabolisms involved in aspartate
metabolism, glycine metabolism, glycolysis, glyoxylate metabo-
lism, and TCA cycle.607 Metabolic signatures enriched metabolic
pathways of multiple myeloma patients were linked to amino acid
metabolism and biosynthesis, and insight into elucidating disease
pathogenesis.608 Characteristic biomarkers succinic acid semialde-
hyde, uracil, uridine or metabolic pathways enriched in lipid
metabolism, amino acid metabolism, nucleotide metabolism and
glycometabolism were identified and related to specific multiple
trauma complicated with sepsis.609 Through untargeted analysis, a
total of 120 candidate differential metabolites were detected in
patients with ischemic stroke and markedly altered metabolic
pathways were purine metabolism, steroid hormone biosynthesis,
or CoA biosynthesis.610 Metabolic profiling using high-resolution
mass spectrometry of cystic renal disease patients was collected
and impact several pathways involved in purine and pyrimidine,
aminoacyl-tRNA biosynthesis, glutathione, TCA cycle, etc.611

ENABLING PRECISION TREATMENT
There is not any specific therapy for satisfying all the patients.
Thus, to predict the therapeutic response with matching the right

patients at the right treatment is necessary in clinic. Additional
techniques are critical to discover effective and potential
biomarkers to guide patient management matching the proper
treatment. Metabolite profiling as cost-effective and productive
way enables holistic and systematic analyses of metabolites and
can be utilized to predict and monitor the response to drug
treatment, uncover therapeutic target for drug discovery, perso-
nalized management to reduce disease burden. Application of
small metabolites to predict specific response to drug therapy is
closely related to patient’s pharmacological phenotype and could
generate more information than other omics data for interpreta-
tion of the metabolome data.612–614 Furthermore, it enables
exploring promising models to predict therapeutic
response.171,615,616 Small molecule metabolites can be used for
diagnosis and prognosis of patients, predicting pharmacological
responses to the peculiar treatment. Furthermore, metabolic
signatures can provide the huge information from targeted
metabolic pathways or precision drug therapy. Distinctive
metabolite signatures that are useful for identifying different
therapies responses are summarized (Table 1).
Irajizad et al. conducted plasma metabolomics profiles and

artificial intelligence using a deep learning model to identify
biomarkers for predicting response to neoadjuvant chemotherapy
in triple-negative breast cancer.617 According to metabolic
profiles, taurine, glutamine, glycine and hypoxanthine were
potential biomarkers of ladder cancer patients treated with
neoadjuvant chemotherapy and pathway enrichment analysis
characterized significant alterations were related to amino acid
metabolism.618 Amino acid metabolism seems to be a predomi-
nant pathway altered in ladder cancer patients and has potential
value in enhancing the efficacy of chemotherapy. Notably,
hypotaurine and taurine metabolism, pentose and glucuronate
interconversions were the most altered pathway for subcutaneous
immunotherapy.619 In this study, the authors found taurine, l-
alanine, and hypotaurine, considered to be predictive biomarkers
relevant with effective subcutaneous immunotherapy.
A recent study investigating the relationship between anti-VEGF

therapy and serum metabolome and described differential
metabolite LPC 18:0 may be a potential biomarker for guiding
treatment options for macular degeneration and choroidal
vasculopathy.620 It has been reported that decreased kynurenic
acid in cerebrospinal fluid and kynurenic acid/kynurenine ratio
represent a biomarker of epileptic spasms and further therapeu-
tics method should be explored to increase the kynurenic acid
level.621 Previous report has shown that after 4 weeks of
olanzapine monotherapy in schizophrenic patients, methyl
n-methylaminobenzoate as response biomarkers in the kynur-
enine pathway is associated with treatment outcomes.622 Meta-
bolic profile alteration to molecular phenotype of psoriasis
vulgaris patients showed that SM (d16:1/16:1) and Cer (d18:1/
18:0) correlated with the biochemical indicators and could
contribute to precision treatment.623 Another study used meta-
bolomic profiling and small metabolites (N-methylisoleucine,
nornicotine, 2,3-dihydroxybutanoic acid) were able to discriminate
rheumatoid arthritis patients with early response to methotrexate
therapy.624 These clinical applications of small metabolites provide
excellent examples to illustrate new channels for targeted
therapies and enabling precision treatment.

MODULATING METABOLISM
Modulating metabolisms with small molecules have been known
for decades. Metabolic therapies are imperative and bring new
opportunities for patients. Metabolic disorders are caused by
various mechanisms. Recently, metabolism has acquired interest
regarding the relationship with environmental factors, host genes
and diseases.625–630 How does small molecule metabolites drive
phenotype modulation? The common regulating mechanism of
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active pathway is metabolites bind allosteric sites on enzymes.
Discovery of the relationship network or pathway of metabolite
interaction can uncover the action modes of regulation. Numerous
works have revealed differences changes in small molecular
metabolites associated metabolic pathways are closely related to
therapy efficacy and potential drug targets.631–633 Perhaps the
application of these metabolic pathways involves small metabo-
lites could better clarify the development of complex diseases in
the future.
To exploiting the unique features of modulating metabolism

with small molecules for treatment and monitoring is a very
promising direction. The endogenous metabolite profiling pro-
vides the best view of disease phenotypes. Advanced screening
approaches by analyzing the metabolic profiles have become
increasingly application in metabolism study.634–637 Simulta-
neously, continuous development in high-throughput metabolo-
mics technology has allowed considerable progress to be made in
determining disease pathogenesis, understanding the various
relationship between metabolic regulation and disease. Single-cell
metabolomics technologies will reveal new insights into modulat-
ing metabolism with small molecules.198,214,413,638,639 It can
provide meaningful cell phenotype, enabling us to analyze cell
status and obtain the overall biological information.
Metabolic perturbations in vivo contribute to early discovery

and mechanisms of phenotype modulation. Decoding the
molecular mechanism of metabolic alterations will provide a
promising way for novel therapeutic interventions. Metabolic
alterations can modulate the cell signaling pathways to maintain
the systemic homeostasis. The most diseases (e.g., obesity,
diabetes, hypertension, or depression) have strong metabolic
disorders, many chronic diseases (e.g., Alzheimer disease, or
cancer) have unexpected metabolic basis of associations.640–642 It
still needs a significant treatment window for effectively optimize
therapies by precisely inhibiting the metabolic targets. To blocking
metabolic pathways or inhibiting metabolic enzymes are almost
impossible to generate an effective treatment. Metabolic disorders
have become a feature of several cancers. Interestingly, several
studies showed that targeting metabolic enzymes could signifi-
cantly inhibit tumors to promote an effective therapeutic
intervention.370,643–646

Major findings of previous studies in small molecule metabolites
drive metabolism were summarized in Table 1. Targeted
metabolomics identified energy metabolites of lung adenocarci-
noma cells and found that KCNK3 can inhibit proliferation and
glucose metabolism through activation AMPK/TXNIP pathways,
indicating KCNK3 may be a potential therapeutic target.647 The
authors examined a total of 202 relationship features between
various cancers and metabolites, and showed gamma-glutamyli-
soleucine, 7-alpha-hydroxy-3-oxo-4-cholestenoate, gamma-gluta-
mylleucine, and 1-oleoylglycerophosphocholine were the most
dangerous metabolites for ovarian cancer, lung cancer, glioma
and breast cancer, respectively. Analyses in these causal links
demonstrated these small metabolites play a key role in
phenotypic regulation to distinguish cancer patients in clinic.648

Pathway enrichment analyses indicated that the imbalance of
purine and amino acid metabolism could affect the prognosis of
patients with oral squamous cell carcinoma.649

A recent study conducting an inquiry into the relationship of
small molecule metabolite hydroxyasparagine in blood samples
associated with the progression of chronic kidney disease
patients.650 Another study used serum metabolomic analysis and
differentially expressed metabolites, such as triethanolamine,
chavicol and alpha-methylstyrene, that involved in platelet
degranulation and immune responses, and metabolism process
were firstly identified as biomarkers in COVID-19 progression.651 A
study suggested that the mechanism of lipid metabolism plays a
critical role in pathological process of osteoarticular tuberculo-
sis.652 Multivariate statistical analysis based on open database,

metabolic differences of altered small metabolites were identified
in superior limbic keratoconjunctivitis patients, and fundamental
processes mainly involved in the inoleic acid metabolism, butyrate
metabolism, ketone body metabolism, carnitine synthesis, and
etc.653 Glutamate metabolism and urea cycle are related to
psychiatric symptoms and accounted for the highest proportion in
the altered metabolic pathway, and decreased in the schizo-
phrenia group.654 A study has demonstrated that glyceropho-
spholipid metabolism and arginine and proline metabolism
pathways are related to inflammatory states and β-pseudouridine,
may participate in inflammation regulation.655

FUNCTIONAL TARGET
Metabolite has a wide range of biochemical function, a growing
area of researches is the usage of small molecule metabolites to
discover the metabolic targets with optimal therapeutic response
for precision medicine. A change of metabolite levels as results of
the modified enzyme activities indicates a phenotype alteration
because of metabolite concentrations provide a close association
with biochemical activity. Endogenous metabolites as therapeutic
molecules targeting regulators prone to modulate metabolism
activity with key metabolic pathways such as regulating multiple
enzymatic reactions. Recent advances in high-throughput meta-
bolic flux analysis technologies using stable isotope tracer
methods make characterization of a large scale of endogenous
metabolite for characterizing and tracking the metabolic activ-
ities.656–660 It could provide potential therapeutic targets depend-
ing on the improved and detailed understanding of the
interaction between metabolism in vivo and functional status. A
clear understanding of molecular mechanisms about targeting
central metabolic pathway always plays a key role in the discovery
of drug targets for optimal therapies.661–663 Metabolomics directly
contributed to uncover novel targets can elucidate disease
mechanisms in various diseases. From a point of view of
metabolism, such knowledge will uncover new therapeutic targets
related to phenotypic variation. Understanding the metabolic
dysregulation can facilitate drug development and provide
therapeutic targets for disease therapy. Numerous active com-
pounds as modulators of metabolism and could target metabolic
regulation mechanism.664–669

The disordered metabolic pathways associated with COVID-19
patients performed by quasi-targeted metabolomics with pathway
enrichment, and showed glutamine/glutamate ratio markedly
related with severe disease.670 It is therefore proposed that
elevated glutamate level is associated with the increased risk of
disease infection. Nevertheless, elevated glutamine was associated
with a reduced risk of severe. This study has provided the
probable targets for COVID-19 patients. In another study,
concerning plasma metabolites, Ozaki et al. found that small
metabolites can predict the progression of cognitive impairment
in Alzheimer’s disease.671 Metabolic profiling of cerebrospinal fluid
revealed pentose phosphate pathway is an important target for
sedatives to change brain metabolism.672 The study carried out by
Thomas et al. highlighted pathophysiological mechanisms from
serum metabolome, and demonstrated metabolic disruption of
choline phospholipids as among the strongest predictors were
associated with severity of traumatic brain injury patients.673

Furthermore, a study proven palmitic acid is a key metabolite as
promising therapeutic target, which accelerates cellular senes-
cence by producing living oxygen in kawasaki disease.674

According to Scarale et al., tryptophan, kynurenine and
hexanoylcarnitine are associated to improve the mortality predic-
tion of type 2 diabetes.675 Metabolomics and mass spectrometry
analysis have identified succinate as a therapeutic target for aortic
aneurysm and dissection.164 Metabolic alterations of colorectal
cancer patients were assayed by functional metabolome profiling
and glycodeoxycholic acid positively showed high specificity and
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sensitivity correlated with CRC.676 Further findings showed GDCA
can promote cell proliferation and migration, and PARP-1 was
identified as a key target. A study profiled metabolome and
identified subtype-specific N-acetyl-aspartyl-glutamate as a key
tumor-promoting metabolite and therapeutic targets for advance
precision treatment for triple-negative breast cancer.22

Targeting tryptophan metabolism in cancer has curative
potential. For instance, tryptophan metabolism is a major
metabolic pathway which restricts anti-tumor immunity and
promotes intrinsic malignant properties of tumor cells, and
considers as a target for cancer immunotherapy.677–679 Trypto-
phan metabolism changes could result in a series of alterations in
tumor microenvironment and tumor cells, and then promote
tumor progression. Via hindering DNA repair, small molecule
metabolites had accumulated in tumors involved in abnormal
metabolism.680 Mechanistically, targeting isocitrate dehydrogen-
ase 1 and 2 (IDH1 and IDH2) enzymes result in elevated levels of
2-hydroxyglutarate in cells and its accumulation boosts rapid
development of tumors. Functionally, this better define relation-
ships between small molecule metabolite disrupting DNA repair
and biochemical function that benefit efficient treatment. In
summary, these metabolic targets can enhance precise treatment
in the upcoming era of precision medicine.

METABOLIC NETWORKS EXPLORATION
Metabolic perturbations could be modified by drug or natural
products treatment as a crucial mechanism for its effects. Most
natural products influence on multiple rather than single targets
to exert the bioactivity. Both targeted and untargeted small
molecule metabolites-based metabolomics have been used to
characterize unexpected metabolic changes in biological samples,
understand the metabolic processes and explore network targets
and mechanism in various organisms.681–683 This analytical
process always generates increasingly complex datasets at a large
scale (thousands of metabolites), cause processing, analyzing, and
interpreting relationships of small molecule metabolites are major
challenges. Biological interpretation of the connected informative
relationships of small molecule metabolites could be formalized as
metabolic networks based on the prior knowledge, where the
feature metabolites as nodes and the related metabolites are
connected as edges.
Integrating multi-layer networks to use prior metabolic knowl-

edge would help to improve the identification of metabolites and
derive new interpretation of biological contexts.684–686 Once the
metabolic networks of co-regulated metabolites are established,
and then metabolism information will be mined using advanced
algorithms. Importantly, the recent use of multiple network
constructions and graph-based methods to perform topological
analysis focused on analyzing the metabolic processes or
metabolites data associated with a phenotype of interest.687–689

Metabolic networks or graph are generated depend on the prior
biological knowledge. Network metabolites are co-regulated or
connected within metabolic pathways. Instead, it represents the
interconnections of metabolism network connected metabolites
via distinct pathways. If correlation value of metabolites in a
metabolic network are reaches a given threshold. Based on
similarity or correlation of the identified metabolites, the graph
analysis (e.g., metabolite graph and compound reaction graph),
advanced statistical methods, and data analysis can be used to
explore the inter-connected data to reveal metabolite relationship
in biological samples.
During the past few years, network-based approaches towards

multi-targeted compounds represent an important tool owing to
its potential for ascertaining and investigating new drug targets
and complex relationships.690–693 The ‘network pharmacology’
created by Hopkins and focus on a therapeutic concept from ‘one
target-one drug’ to ‘target-network-component’ to combat the

complex diseases.694–697 It used bioinformatics and high-
throughput screening method to facilitate the prediction of
various drug targets network based on the establishment of
biological models, and is becoming more important in revealing
the underlying mechanisms of drug actions. By analyzing the
highly connected nodes in metabolic networks may open new
avenues for discovery of mechanistically relevant signals for
specific multi-target natural compounds. Thus, systems analysis of
diverse metabolic pathways to identify novel targets may over-
come pitfalls and facilitate change concepts of current drug
design and develop new diagnostic as well as targeted
therapeutic tool via exhibiting multiple targets and action modes.
Multi-omics interaction networks were constructed and showed

that multiple biomarkers included pyridoxamine phosphate, folic
acid, pyridoxal phosphate, and vitamin metabolism disorder was
pathological characteristics of pulmonary tuberculosis patients.698

Based on 127 metabolic signatures from the Alzheimer’s Disease,
specific metabolic networks modeling for diagnosis were con-
structed and provided key insights for personalized late-onset.699

Recently, Guo et al. performed a metabolic network-based
identification modeling for mapping the differential metabolites,
a panel of eight candidate metabolites (i.e., palmitic acid,
pyruvate, tryptophan) were further indicated a high discrimination
for non-small cell lung cancer (accuracy > 97.7%).700

EFFICACY EVALUATION
Metabolic profile change of complex diseases suggests distinctive
aberrations of the metabolism can be due to drug’s treatment
efficacy on patients’ genotype. Small molecule metabolite-based
metabolomics plays an important role in discovering biomarkers
to evaluate the efficacy of therapies and have become critical
tools for investigating modes of drug action, identifying novel
drug targets701–704 Particularly, by generating metabolic signature,
it is increasingly being implemented to diagnose disease, monitor
treatment and uncover the underlying mechanisms of complex
diseases, seek to understand drug efficacy. Moreover, in-depth
research on small molecule metabolite may guide drug efficacy,
development, and safety. Selecting the most effective treatment
drugs is an extremely important event. Identifying small molecule
metabolites as biomarkers associated metabolic alteration by drug
response before administration could greatly reduce costs of
treatment. This is compatible with the notion that we need
screening strategies of small molecule metabolite to determine
each stage of treatment efficacy, and to develop more effective
therapies. Clinical models combining small molecule metabolites
have shed light on the search for biomarkers and therapeutic
targets, could improve the accuracy of identifying patients.
The decrease of plasma kynurenine level may indicate the

therapeutic response of escitalopram, suggesting that it may
participate in the pathophysiological response of severe depres-
sion caused by escitalopram treatment.705 Metabolic signatures of
cholangiocarcinoma patients showed that the TCA cycle was
reversed, which was obviously manifested by the increase in the
level of amino acid and citric acid as intermediate products of TCA
cycle and have the ability to predict patients' response to
chemotherapy.706 Stratification of methotrexate efficacy identified
significant alterations to various metabolites such as phosphati-
dylcholines, glucosylceramides, sphingomyelins, hypoxanthine,
etc, involved in nucleotide, energy, fatty acid/lipid metabolism.707

Serum-based metabolites involving L-arginine and arachidonic
acid can serve as diagnostic biomarkers for breast cancer
predicting therapeutic effects of trastuzumab.708

Medicinal plants usually depend on complex components are a
great resource for treatment of metabolic disorders. However, due
to complex components and multiple molecular targets, mole-
cular action mechanisms of herbs and formulations are still not
very largely clear. Usual methods are not enough sensitive to
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evaluate drug efficacy, even small effects of drugs can be
sensitively detected by small molecule metabolites as disease-
related biomarkers in clinical trials, by monitoring differences of
metabolite profiles. Knowledge about metabolic regulation
mechanism by herbal medicines can help to predict and
understand the efficacy and toxicity. Recent years some studies
utilizing metabolomics to elucidate the biological basis and
mechanism of the effect.709–711 It focuses on fluctuations of small
molecule metabolites and insights into drug efficacy assessment
and investigates molecular mechanism of herbal plants as
adjuvant therapy for aberrant metabolism-related diseases.
Research has shown that small molecule metabolite-based
metabolomics can be further used to identify the active
compounds and targets, which develop new therapies.712–715

ACTIVE INGREDIENTS DISCOVERY
Over the past decades, more than half of new drugs and drug
leads have been developed from natural products that possess
immense chemical structure with various biological properties.
Recently, natural products in medicinal plants, such as alkaloids,
flavonoids, terpenoids, carotenoids, and glycosides, possess
therapeutic effects and are used as new therapeutic drugs.716–718

In clinic, herbal products are combined with conventional drugs to
improve pharmacological effects. Active ingredients or drug leads
from natural products have been a key source but their
identification is always a challenge due to their complexity.
Understanding effective mechanism of natural products or their
derivatives or synthetic mimic requires elucidation of pharmaco-
logical response to complex phytoconstituents. Although a great
advance achieved, one major challenge in discovering new active
ingredients is unclear pharmacological mechanisms. The action
mechanisms and efficacy profiles of herbal medicines for their
potential use should provide in-depth information on elucidating
the underlying mechanisms for active ingredients discovery.
Medicinal plants such as herbal extracts, formulae, and different

compounds showed the pharmacological effects through regulat-
ing metabolic disorder and mechanism pathways due to multi-
compound interactions and diverse chemical structures. High-
throughput metabolomics agrees with holistic view and insight
into a comprehensive mechanistic efficacy of herbal medicines,
including medicinal plants, preparation, active compounds,
aqueous extracts and formulas or patent medicines.719–723 Target
small molecule metabolite based-screens offer numerous advan-
tages for functional ingredients discovery from natural products as
a treasure trove for drug development, and allows in-depth
understanding of the possible targets and action mechanisms.
Advanced metabolomics techniques consist of LC-MS, NMR, and
GC-MS in combination with pattern recognition analysis or
multivariate statistical analyses could identify a large number of
metabolites and impact on diagnosing disease, discovery of
biomarkers, investigation of phenotypes, classify physiological
status and response to treatment, unravel efficacy of metabolic-
targeting drug, cover the full pipeline of lead compound discovery
and development from medicinal plants.719,724–727 Based on
multiple metabolic alterations involved in disease pathogenesis,
it is particularly pivotal to explore herb-derived bioactive
ingredients for these mechanistic basis, damaged metabolic
pathways and therapeutic targets of metabolic diseases. More-
over, herb-derived bioactive ingredients have been screened and
validated in vitro and in vivo, to investigate the underlying
changes of small metabolites and metabolic pathways, and to find
potential targets (Fig. 6). They can provide a functional relation-
ship between chemical diversity and metabolite changes.
Natural compounds as potential therapeutic agents have

gained increasing interest due to ability to target metabolism
and their diverse structures. Different metabolites involved in
metabolic alterations could be targeted by the active components

due to their efficacy in the clinic. Various herb-derived bioactive
compounds could target the metabolic regulation mechanism of
diseases and exhibit therapeutic potential. Cell culture and animal
model experiments had been to analyze the potential effect and
metabolic activity, the additional clinical studies are necessary to
fully elucidate therapeutic efficacy and mechanisms of action.
High-resolution prediction technology or visualization approaches
enhances screen and validates the lead compounds from natural
products.728 Eighty-nine compounds were identified and calceo-
larioside B, isoacteoside, and 2'-acetylacteoside being validated to
treat renal fibrosis. The functional mechanisms modulate the
metabolic pathways or whole metabolism of natural bioactive
compounds needs to be elucidated for use as therapeutic agents.
Bioactive compounds could target the small molecule metabolites
associated metabolic process of a specific phenotype and
modulate metabolic activity of distinct pathways, hold great
potential as therapeutic preparations for highly complex diseases.
The potentially vasodilative compounds from Uncaria were

screened as isocorynoxeine, corynoxeine, rhynchophylline, iso-
rhynchophylline, by correlation analysis of small metabolites.729 In
vitro and in vivo constituents of American ginseng were in-depth
investigated using mass spectrometry, and then natural bioactive
compounds associated with therapeutic effects were explored
using correlation analysis between in vivo constituents and
marker metabolites, and revealed ginsenoside Rd, and pseudo-
ginsenoside F11 may be potential active markers of American
ginseng.730 By correlation analysis between anti-inflammatory
activity of Scutellariae radix and small metabolites, a total of ten
potential components were screened out with high correlation
coefficients. An in vivo study revealed oroxylin A had the potential
effect of antisepsis by inhibiting TLR4/NF-κB signaling pathway.731

METABOLIC PROCESS OF ACTIVE COMPONENTS
Since the beginning of the 19th century, natural products such as
morphine isolated from opium plant have been explored in drug
development. With the concept of returning to nature, natural
products have attracted great attention and are useful agents for
lead compound discovery and new effective drugs. The herb-
derived phytochemicals known as natural products have health
benefits and their activities and the underlying mechanisms have
remained elusive, due to lack a method about how to characterize
active components to the whole effect that visualizes dynamic
changes in vivo and these components possess diverse effects. To
reveal the pharmacological effects of herb-derived phytochem-
icals with multi-components and multi-targets, the following
issues should be solved with emphasis: how to detect active
components with low content, elucidate metabolic pathway,
reveal overall in vivo metabolic process and effective mechanism.
Considering complexity, meanwhile it has numerous metabolic
reactions in vivo, producing diverse metabolites. Metabolic
processes study in vivo is important to determine multi-
component characteristics of efficacy and guide the new drug
development, or speed up drug discovery from natural
products.732–734

Drug discovery process from natural products exhibits some
obstacles that presented by the extraction, purification and
separating active components. Several of the obstacles have
been addressed by employing small molecule metabolites-based
screening. Metabolic processes undergo biotransformation
mediated by phase I and II reactions or gut microbiota direct
impact on the efficacy and are important for determination of
pharmacokinetic parameters on the concentrations of active
components to the organs and tissues over time.735–737 To reveal
in vivo processes (absorption, distribution, metabolism, excretion)
of multi-active components, it can elaborate the efficacy material
basis. Metabolic parameters in vivo, Cmax, Tmax, t1/2, and AUC0–t
were the most calculated. Active substances are from the
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prototypes and the metabolites entering into human circulation,
which is directly related to the metabolic process. Endogenous
small molecule metabolites can be linked to specific metabolic
phenotype, activities, or functions, are closely linked to therapeu-
tic efficacy to screen out the key components in the whole in vivo
process.
Understanding metabolic fate of active components is a key

factor for elaboration of new therapeutic agents. However, the
identified herb-derived bioactive metabolites suggesting the
curative potential by modulating multiple targets of disease-
associated networks. Owing to the high sensitivity and stability,
modern mass spectrometry coupled with all kinds of hyphenated
chromatography separation techniques has a pivotal role in the
exploration of in vivo metabolism of active components.738–757

Cheminformatics utilizing computer-aided, high-throughput vir-
tual screening, network-based and machine learning techniques
have opened up a new avenue in exploiting naturally-inspired
products for lead compound and active components discov-
ery.758–767 A non-targeted metabolomics screening strategy is
carried out focusing on the in vivo metabolites that exist in the
administrated samples and do not exist in blank biological
samples, by exploring the dosage-effect relationships. To selecting
in vivo metabolites being associated with therapeutic effect as
pharmacological index reflecting overall efficacy is of great
significance. Simultaneous determination in vivo of herbal
components is technically challenging due to complex interac-
tions with co-existing components. Indeed, LC-MS with selective
reaction monitoring mode or background deduction method and
pattern recognition analyses were adopted to eliminate possible
interference as an effective technique for the identification and
quantitative analysis of in vivo components in biological media.
Due to active components are complex and their contribution
weight to effect is different, it is necessary to explore in vivo
metabolic processes of combination multiple active components
based on AUC-weighting approach, so that can guide practice
administration in the clinic.
Metabolic whole-process in vivo could be realized by efficiently

constructing the relationship among endogenous metabolites and
compounds. Based on different scores of relationships building
in vivo metabolic network, active components markers including
metabolites or prototypes that are highly related to small
molecule metabolites can be effectively screened out by
molecular network technology.768–772 To screen potential active
candidates for revealing overall effects, compounds with highly
relevant and large VIP values (>1) rankings were selected and
identified by the correlation analysis model. The appropriate mix
of active components could be optimized via metabolic pheno-
typic screening and their targets and molecular mechanisms can
be revealed by network pharmacology, artificial intelligence, or
computer docking.

METABOLIC HOMEOSTASIS AND GUT MICROBIOTA
Increasing evidence shows that homeostasis balance of the
human body depends on reciprocal interaction with gut micro-
biome. Microbial dysbiosis is a contributing factor for onset and
progression of diseases. Gut microbiota contribution to control
homeostasis, modulating immunity environment, and maintaining
systemic health is an emerging.773–776 It produces a large number
of small metabolites that regulates host metabolism responses
and metabolic disorders. To date, there is growing evidence that
most of small molecular metabolites have beneficial impacts on
the host.777–782 Gut microbiota can produce various metabolites
as messengers between host and microorganisms. Major com-
munication between host and gut microbiota takes place through
the metabolites, such as acetate, butyrate, and propionate, and via
the microbiota composition modulating metabolism pro-
cesses.783–786 Gut microbiota acts as an “invisible organ” and

produces active metabolites via their receptor signal to regulate
the host metabolism that affects systemic health, and plays a
variety of effects on the host from shaping gut structure and
function to the modulation of the host status. The increasing
evidence showing that gut environment disorder could affect
various organs lead to metabolic diseases.787–790 Imbalance of gut
microbiota is closely associated with disease mechanisms, and
implying a new therapeutic avenue.
Probiotics can improve the intestinal microecological balance of

the host, and play a positive role in enhancing the immunity of the
body and helping the absorption of nutrients. The host also could
produce a variety of important metabolites that also affect the
balance of microbiota. Gut microbiota by producing various
bioactive compounds is linked to pharmacological effects and
plays an important role in drug absorption, metabolism and
efficacy.791–794 The gut microbiota as an indispensable “organ” to
regulation of drug metabolism affects the inherent bioavailability
of drugs to reduce toxicity and increase the target efficacy. It can
activate or inactivate the pharmacological effect of natural
products. Natural products can alter the microbiota compositions
or their metabolites via modulating the host metabolism, which
could enhance therapeutic effects and attenuate adverse reaction
in pharmaceutical development. For instance, some metabolites
as ligand metabolic signaling can activate cell-surface GPCRs and
may provide potential targets.795 Herbal ingredients could
regulate the metabolic disruptions by altering gut microbiota,
particularly to reveal the dysregulated metabolites in metabolic
pathways interacting with gut microbiota. Since natural products
are metabolized and mainly absorbed in the intestinal tract, the
secondary metabolites could regulate metabolic perturbations.
Microbial-derived products receive considerable attention in
disease treatment based on their efficacy by modulating
expression of metabolic regulators.
Human metabolism is also influenced by regulating gut

microbiota that could regulate metabolic products of the host
metabolism enter into circulation system of host and participate in
metabolic regulation mechanism in vivo. It continues the
awareness of gut microbiota influences on metabolism, due to
the complexity and interplay between the host gut and
microbiota. Trimethylamine as a toxic molecule cross the gut-
blood barrier for circulatory system homeostasis of cardiovascular
diseases.796 Gut microbiota as signal distant organs via the
systemic circulation affects the pathological processes on
controlling host vascular and energy homeostasis. Due to gut
microbial dysbiosis, disorder of energy homeostasis balance has a
key role in the disease progression. Some evidence points to the
important role of gut-derived metabolites in regulating energy
metabolism.797–802 For instance, SCFA as ligands activating cellular
signaling cascades have a variety of beneficial impacts in
regulating energy metabolism, especially in obesity-related
diseases.803 Small metabolites of gut microbiota, such as bile
acids (BAs), and amino acids could decrease the insulin sensitivity
and regulate metabolic dysfunction and immune homeostasis,
which play a crucial role of the glucose regulation. Interactivity
relationship of gut microbiota and BAs as signaling regulators
have a profound impact on disease progression through
modulating metabolic homeostasis (Fig. 7). In addition, many
works have shown that relationship between gut microbiota and
BAs plays a critical role in the systemic homeostasis.
Reciprocal relationship between host and gut microbiota to

maintain homeostasis of biological processes is in dynamic
balance and that influenced by endogenous metabolites or
biological effects of their precursor. Gut microbiota could produce
various small molecules and metabolites, plays a physiological role
in maintaining hot homeostasis and internal stability through its
metabolites serve as messenger affecting disease states. In
addition, some metabolites are only released from gut microbiota,
such as bacteriocins, short-chain fatty acids, etc. It showed that
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tryptophan could also be metabolized by gut microbiota, leading
to synthesis of bioactive indoles.804 Additionally, gut microbiota
metabolizes primary bile acids, showing a protective role in
gastrointestinal diseases. Gut microbiota and their metabolites, as
a whole, have been considered as versatile “organ” maintaining
the body homeostasis. As gut microbial metabolites, such as
secondary bile acids and short-chain fatty acids, could alter the
metabolic fluxes by interacting with host receptors, thereby
significantly affect metabolic homeostasis leading diseases.805–807

These metabolites participate in diverse metabolic processes, such
as cell communication, energy metabolism, and host immunity,
could influence human physiology, and future studies should
define the functional relevance involved in disease pathogenesis.
Gut microbiota plays an important role in affecting the

metabolic homeostasis. It has been increasingly appreciated small
molecule metabolites-based metabolomics integrating with gut
microbiota to explore systemic interaction between metabolites,
gut microbiome and disease subtype. Small metabolic biomarkers
have used to analyze the interaction between gut microbial
composition and metabolism via omics analysis. Recently, Brial
et al. discovered that hippurate was a key co-metabolite of host-
microbial, could mediate the metabolic improvements associated
with high-richness microbiota.808 This work has provided a
beneficial biomarker hippurate as a mediator of metabolic health
that contributes to metabolic improvements in terms of metabolic
phenotype control for the host. In a recent study in Nature, Wu
et al. had discovered host-microbe interaction that microbiota-
derived inositol phosphate metabolism contributed intestinal
homeostasis through mediating the HDAC3 activity in the
intestine.809

Analyses in airway serum composition and microbiome datasets
demonstrated the gut microbiota can influence on metabolic
activity.810 Through depicting the overall landscape of metabo-
lome and microbiome in rheumatoid arthritis patients, 26 genera
and 41 metabolites were remarkably altered and function

prediction model observed the depleted dysregulation pathways
of amino acids biosynthesis.811 Integrated metagenomic and
metabolomic analysis had characterized the interactions between
metabolites and gut microbiome in early-onset colorectal cancer
patients and helps explain the disease pathogenesis. Microbiome-
derived metabolites such as bile acid, tryptophan, and choline
could be used for the accurate and rapid detection of disease.812

Changes in the levels of several amino acid derived metabolites in
a cohort of obese patients, such as the decrease of phenylace-
tylglutamine and the increase of L-histidine, linked to changes in
the gut microbiota composition and function.813 Particularly, P.
pentosaceus and L. lactis can ameliorate NAFLD progression by
regulating tryptophan metabolism of the gut-liver axis and also
closed associated with metabolic dysregulations of bile acid and
indole.814 A study analyzed the correlation between serum
metabolites and gut microbiota in elderly patients with chronic
heart failure insights into metabolic phenotypes.815 Further,
biocytin was negatively correlated with Escherichia Shigella; lactose
and sucrose were negatively correlated with Haemophilus;
bilirubin was positively correlated with Klebsiella; inosine and
riboflavin were negatively correlated with Klebsiella. From the
plasma metabolome analysis, a positive correlation between
metabolite levels and the amount was observed and provide a
guide for modulating gut microbiome may help shape a healthy
metabolome.816

INFLUENCE FACTORS
Duo to the influence of metabolism is multifaceted factors
including exogenous or endogenous. Small metabolites could
be widely varied by sex, age, weight, nutrition, medications,
lifestyle, and circadian rhythm. If they changed, accordingly, the
metabolism will also change and then different small metabolites
will produce. Certainly, these factors are impossible or even
difficult to monitor and may represent the most challenging in

Fig. 7 Schematic summary of interactions of bile acids and gut microbe participate in the host metabolism. Note: BAs, bile acids; BSEP, bile
salt export protein; FGF, fibroblast growth factor; FGFR, FGF receptor; RXR, retinoid X receptor; NTCP, sodium taurocholate cotransporting
polypeptide; OATP, organic anion-transporting polypeptide; SHP, small heterodimer partner; JNK, c-Jun N-terminal kinase; ERK, extracellular
signal-regulated kinase; T3, thyroid hormone; T4, thyroxine; DIO2, type 2 iodothyronine deiodinase; ASBT, apical sodium-dependent bile acid
transporter; OST, organic solute transporter. Primary bile acids are synthesized and then conjugated with taurine or glycine in hepatocytes.
Conjugated bile acids are transported into the bile duct by BSEP. Most conjugated bile acids are reabsorbed via ASBT and circulate to the liver
by OATP, OSTa/b, and NTCP. Bile acids acts as the endogenous ligands for FXR and TGR5 to generate distinct effects on metabolism regulation.
The figures created by BioRender
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metabolic biomarkers studies. These factors can lead to metabolic
dysregulation of body, which can cause metabolic pathway
alterations in disease-associated patients. When some influencing
factors were intervened by drugs, early prevention, timely and
effective disease treatment can achieve.
Small metabolites could participate in the entire “metabolic

chain” in body, and has important implications for identifying the
metabolic features related to disease phenotypic variation.
Although the potential metabolite markers for diagnosis and
treatment of diseases have screened and made great progress,
and still needed to be validated the feasibility in a large number of
cohort studies. Differences in some marker metabolites between
the humans and animal experiment need to consider it. Compared
with animal experiments, some elements, e.g. gender, age,
psychological status, disease history, diet, exercise pattern, habits
and customs, and other lifestyle differences have been considered
to be significant variation factors for the altered metabolism
within the body.
Metabolome is affected by genetic factors, intestinal flora and

environmental exposures.817–820 These changes might originate
from the environment, physiological or pathological status,
diseases, drugs or other external stimuli, which can significantly
contribute to the metabolome composition. Moreover, small
molecule metabolites-based metabolomics can identify as many
marker metabolites as possible and then reveal the metabolic
network associations of bioactive substances and effective targets,
needs to validate these associations, and further mechanistic
research on dysregulated metabolites should be implemented
and reproduced. Metabolomics contrary to genomics, proteomics,
or transcriptomics, can rapidly and accurately reflect a more
clearly phenotypic state of organisms, however it influenced by
outside confounding factors. Previous studies have shown these
factors could influence the metabolic phenotypes of metabolism-
related diseases.

LIMITATIONS AND CHALLENGES
As we have shown, small molecule metabolites-based metabo-
lomics has enormous potentials and many applications, however,
several challenges and limitations need to be further addressed.
The complexity of a large number of metabolic signatures that
present in “dark metabolome” associated with manifestations of
transient phenotypic state is one of the huge challenges.
Advantage of omics as tools for biomarker discovery simulta-
neously quantifying a large number of small molecules in
biological media. Since metabolome associated metabolic altera-
tion is highly complex, and no uniform strategy and distinct
analytical platform can analyze all the small metabolites of the
whole phenotype. Others are the challenges in small metabolite
analysis associated metabolic alteration include the genetic
factors, environmental factors, or gut microbiota. Numerous small
metabolites from different biological media were considered to be
candidate biomarker of predicting the of disease onset, and
therapeutic response. Determination of small metabolites as
excellent candidate are measured from no-invasive samples such
as urine and blood. Potential role of the target metabolites needs
further verify and identify as biomarkers in the disease diagnosis,
management and prognosis of diseases. Predictive ability, disease
prognosis and diagnostic value of the established metabolic
profiles need further validate with larger sample sizes in real-world
medicine. In addition, method standardization of large rando-
mized clinical trials is needed.
Previous studies have shown that quality of metabolic data lead

to significant variability that influenced by sampling techniques
and analytic approaches.821–823 Technological limitations or
insufficient use of metabolomics are partly caused by structurally
diverse metabolites, standardization and uniformity of instrumen-
tation, temperature variation, sample preparation and handling,

proficiency and availability of trained staff. It is important to
emphasize the standardization of laboratory procedures, such as
extraction, sample processing, and other analytical protocols, is a
fundamental step to obtain biologically meaningful metabolic
results. It is necessary to establish the commonly accepted
standardized criteria or protocols for sample extraction, data
mining and data reporting. This could resolve the major
challenges with metabolite identification by used various spectro-
scopy, chromatographic methodology to influence specific con-
stituent, result evaluation by employed different statistical
methods and interpretation of clinical significance, all of which
could affect experimental or clinical outcome and thus limit the
application of small molecule metabolites-based metabolomics
into clinical aspects. In the past decade, the significant progress
and improvements in technical aspects have been made for small
metabolite analysis from metabolic perturbations in tissues and
biofluids to further promote understanding of molecular mechan-
isms to advance meaningful interpretation of metabolic features
related to phenotypic variation. Analyzing and revealing metabolic
changes in disease response to drugs could provide opportunities
to discover the potential targets and biologically meaningful
metabolic pathways for metabolism-related diseases therapy.
Fortunately, targeted metabolic profiling of some metabolites
has been endorsed to be applied in clinical practice for disease
markers and potential targets identification for monitoring,
diagnosis, and drug efficacy.
The accurate masses, fragment mass spectra and retention time

should be provided to identify metabolites via database-based
search methods. However, considering that significant amounts of
datasets, special statistical software, complexity of computational
processing, bioinformatics tool, lead to detecting specific mole-
cules, validate the pathways and associations, analyze data even
more difficult. Databases for metabolome analysis with extensive
metabolite coverage with help of multivariate analysis have been
significantly developed for data identification and visualization.
Small metabolites are downstream of transcriptome-proteome
and their metabolism were affected by various microbiota in vivo,
so that multi-omics can create approach to explore the interac-
tions of proteins, metabolites, genes, and microbiota, and then
reveal the pathophysiological mechanisms in both diseased and
non-diseased states. Fortunately, integration with other omics
could insight into the characteristic metabolic alterations.824,825

Integrative analysis of omics data by multi-omics technology
could provide the mechanistic insights into diseases and bring
precision treatment.
One of the biggest challenges is mainly in the realm of data

integration still in early stages and needs additional consideration.
To achieve this goal, high-throughput integration multi-omics with
help improvement of computational and bioinformatics techniques
has greatly contributed to accurately identify the relevant small-
metabolites and their biological processes involved in metabolic
perturbations in vivo. Such integration analysis approach can
effectively use it to understand abnormal biological mechanisms in
the underlying metabolic network of interest by visualizing
metabolic pathways. The integration importance of metabolomics
with other omics is seen in some very recent research.826–828 The
high complexity of metabolome poses another challenge for
identifying metabolic features related to phenotypic variation.
Fortunately, computational approaches and artificial intelligence-
based algorithms representing promising tools for biomarker
discovery is provided to overcome the above problems. Advanced
analytical techniques, such as artificial intelligence, computational
algorithms, metabolite imaging, statistical, and big data mining are
urgently needed to improve coverage of the low-abundance
metabolites for clinical validity and utility of small molecule
metabolites involved in disease pathogenesis.
The full validation stage of the small molecule metabolites-

based metabolomics workflow is missing and prohibits the
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biomarker discovery to clinical translation over time. However,
there are several limitations should be addressed in future
research. Due to lack of standardization in process research and
external validation and some works need to be done before
ascertaining biomarkers for clinical practice. Utilization of stan-
dardization process should be embodied in each stage, such as
patient enrollment, sample collection and processing, storage,
preparation treatment, data acquisition and in-depth analysis. In
addition, the standardization of sample preparation and proces-
sing, data analysis and variation factors will help to promote the
research of small molecule metabolites to beyond the discovery
stage of biomarkers and towards the development and validation
of clinical trials.
Indeed, small molecule signatures provide crucial information

for diagnostic and prognostic biomarkers, and therapeutic
response. However, it remains a subsequent challenge of
translation of small molecule signatures from laboratory results
to clinical and industrial application. An open issue is most
researches still have done with smaller cohorts, and it requires
future studies with a larger cohort dataset from multicenter
studies in clinic should include many metabolite biomarkers and
metabolic pathways for accurate diagnosis of diseases and better
understanding metabolic alterations, and should be addressed in
the future.

FUTURE OUTLOOK
Altered metabolism leads to characteristic metabolic phenotypes
as the hallmark of disease that drive identification of new targets
related to metabolic regulation mechanism could be applied for
developing effective screening strategies for predicting early
disease, or evaluation treatment monitoring responses. Metabo-
lomics, as mentioned above, is a relatively young discipline
relative to other omics, has identified small molecule metabolite
biomarkers for the disease diagnosis, prediction, screening, and
monitoring treatment. Compared to genome or transcriptome,
coverage of metabolome remains limited and lead inadequate
interpretation of the final results. Due to no single technology can
offer an entire metabolic spectrum, thereby different advanced
analytical chemistry platforms are recommended to integrate
metabolomics with upstream omics and network target analysis.
Integration of multi-omics datasets can represent a powerful
method to reveal metabolic signatures related to phenotypic
variation of patients.829 Moreover, multi-omics integrative analysis
can uncover disease biomarkers and new pathological pathways,
deepen understanding of mechanistic basis and therapeutic
targets of metabolic diseases, and accelerate new drug develop-
ment for better therapy, significantly enhanced translational
capability.830–833 The integration of multi-omics analysis may
present precise metabolic biomarkers, a global metabolic snap-
shot and metabolic networks, which can deepen exploration of
underlying mechanisms towards improving clinical management
of disease. However, due to the complexity of metabolic pathway
data and the interaction between metabolic network and other
factors, the integration of multi omics data is a huge challenge. It
needs to establish an international network or a different platform
with modern instruments for the integrative multi-omics data by
biologists, statistician and chemists.
Future work should strive to solve many of the following clinical

problems, e.g. limited in sample size and control groups,
validation of candidate biomarkers in clinical settings. It is still
difficult to rapidly separate the small molecule metabolite while
keeping their metabolic states, especially under metabolic
disturbance, because metabolite biomarker is susceptible to
change of environmental factors. Future studies should validate
the selected small metabolites in larger sample datasets to
increase the analysis credibility and statistical power that help to
our understanding of the aberrant metabolism. In this scenario, it

needs to improve the detection precision and accuracy of small
metabolites from the entire metabolome in real time analysis.
Particularly, break the technical bottlenecks by substantial efforts
needed to acquire high sensitivity and accuracy for extensive
coverage detection of metabolome. Recently, high-resolution
mass spectrometry improves detection capability and enable us
to identify metabolic biomarkers towards clinical validation.834–836

Forthcoming research of diseases will address questions about
the integrated metabolic phenotypes, and then how to transform
them into clinical applications for better therapies. Large,
prospective clinical practice can validate the discovered small
molecule metabolites with high translational chances for diag-
nostics, prevention and therapeutics. Nevertheless, upcoming
challenges will include harmonization and normalization of
disparate datasets, protocols standardizations and new algorith-
mic analysis to better explore the underlying mechanisms and
insights. Likewise, software for data processing and interpretation
is becoming standardized and widespread. Standardization of
procedures for meaningful and accurate management of meta-
bolite biomarker research that modulates biological processes
should be further refined for untargeted or targeted analysis
towards ensuring laboratory results become clinical translational.
Therefore, targeted and functional analysis approach to overcome
limitations of conventional metabolomics is a new strategy for
exploring the small-molecule metabolism associated mechanisms
of complex alterations of systemic homeostasis. A large number of
small metabolites have been identified as disease biomarkers or
predictors.466,837–842 Therefore, future research should reduce the
number of diagnostic or prognostic biomarkers to the most
appropriate number.
With help of the enhanced AI or big data analytics, machine

learning or developing algorithms, a clear understanding of
underlying pathological pathways and metabolism-related dis-
eases can offer a tangible route or evidence to support clinical
decisions in addressing the formalized utilization of small
molecule metabolites or metabolic phenotyping into routine
clinic. On localizing metabolic alterations is key to driving our
understanding of disease, advances in metabolic imaging in an
unprecedented approach actively realized better resolution of
metabolic property to quantify metabolites and illuminating
metabolic pathways. In the near future, the significant improve-
ment in metabolic imaging tool combined with innovative
algorithms enables to differentiate tissue states for various
diseases. Current applications of multi-omics via modern imaging
techniques and computational improvements translate to clinical
diagnosis, prevention and precision treatment, and facilitate
selective treatment in future medical care.
Future work should explore the non-invasive, specific bio-

markers with high diagnostic value, simplify the evaluation
process assessment of candidate biomarkers into clinical
application, develop new algorithms or bioinformatics software
for exploring molecular interactions associated metabolic
alteration, and establish effective association integrating labora-
tory and clinical results. Additionally, the further characterization
of small molecule metabolites associated gut microbiome could
shed light on metabolic features related to phenotypic variation
of disease pathogenesis, enable to assist diagnosis, prognosis,
treatment strategy selection, and realize the benefits that of
small molecule metabolites bring to precision treatment. Small
molecule metabolites-based metabolomics has greatly changed
biomedical research. In the future, metabolite biomarkers will
need to be effectively validated and transferred to clinical
applications, thereby researchers should work closely with
clinicians. For increasing the accessibility of metabolite biomar-
kers, its analytical instruments should become far cheaper and
simpler, insights into specific metabolic phenotypes. With the
joint efforts of the government and industrial community, all this
will be achieved.
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CONCLUSION
Abnormal metabolites could serve as potential biomarkers for
evaluating diagnosis and monitoring treatment response and
prognosis, will provide abundant evidence for future precise
medicine. A variety of metabolic pathways are altered in human
diseases, including fatty acid oxidation, amino acid metabolism,
lipid and energy metabolism, glycolysis, phospholipid metabolism,
and tricarboxylic acid cycle that maybe considered as potential
targets for further clinical trials. Metabolome has provided a
comprehensive, dynamic, and precise picture of metabolic
phenotype that could confer the personalized clinical practice.
Metabolomics has changed the world of metabolite biomarkers,
for its utilization of identification of pre-disease states, diagnosis,
subtyping, prognosticating and monitoring treatment response,
provide evidence for the early diagnosis, prevention, and
mechanistic exploration. Current milestone findings encourage
further investigations to urgent application in the clinic. Numerous
studies are also going on metabolomics-based discovery of
identifying the unique metabolic signatures, opens up the
complex metabolite networks in physiological or pathophysiolo-
gical processes; its biomedical applications can already be
foreseen to monitor health and disease, assess disease severity
or drug development, predict the time-course, monitor progres-
sion of diseases, and predict potential treatments, and elucidation
of disease mechanisms.
The present review summarized the outcomes of most

significant researches to extend the knowledge of small-
molecule metabolite biomarkers. A major limitation is the
absence of validation of metabolic phenotype-related mechan-
istic targets of diseases, which leads to lack the focused therapy
and become increasingly prevalent. It is vital that we should dig
out the most sensitive and accurate, specific metabolite
signatures and conduct more studies to corroborate and validate
these findings. However, standardization studies of metabolite
applications methods and validation with a greater degree of
certainty in large-scale clinical samples are needed before these
tests could be a wide range of applications in clinical settings. In
addition, multicenter exploration with large-scale populations in
validation of small-molecule metabolite biomarkers is still needed
for clinical translation and utilization. Integration multi-omics data
combined with clinical measures has potential to facilitate
delineating of disease progress and treatment. The combined
analysis of multi-omics data focused on the precise metabolic
phenotype characterization offer opportunities to facilitate
deciphering the molecular changes underlying metabolic
mechanisms in human diseases. Upcoming research should
improve the diagnostic ability of potential biomarkers to easily
predict diagnosis and prognosis. Additionally, future direction to
address clinical application relates to the establishment of the
relationships between metabolic profiles and clinical parameters.
Future endeavors should increase the confidence in metabolite
identification by systematic large-scale profiling analysis and
emphasize determining the applicability of metabolomic-derived
biomarkers and their clinical utility in large-scale clinical settings.
Further targeted metabolic profile is needed to better explore the
suitability of small-molecule metabolite as initial indicators of
diseases, better understanding of pathophysiologic mechanisms,
mitigating the risk and benefit from the best treatment, may
open novel avenues for future precise medicine.
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