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Abstract

The 20S proteasome is the main protease that directly targets intrinsically disordered proteins 

(IDPs) for proteolytic degradation. Mutations, oxidative stress, or aging can induce the buildup of 

IDPs resulting in incorrect signaling or aggregation, associated with the pathogenesis of many 

cancers and neurodegenerative diseases. Drugs that facilitate 20S-mediated proteolysis therefore 

have many potential therapeutic applications. We report herein the modulation of proteasome 

assembly by the small molecule TCH-165, resulting in an increase in 20S levels. The increase in 

the level of free 20S corresponds to enhanced proteolysis of IDPs, including α-synuclein, tau, 

ornithine decarboxylase, and c-Fos, but not structured proteins. Clearance of ubiquitinated protein 

was largely maintained by single capped proteasome complexes (19S–20S), but accumulation 

occurs when all 19S capped proteasome complexes are depleted. This study illustrates the first 

example of a small molecule capable of targeting disordered proteins for degradation by regulating 

the dynamic equilibrium between different proteasome complexes.
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Intrinsically disordered proteins (IDPs) make up a class of proteins that lack a stable tertiary 

structure.1 IDPs are involved in multiple regulatory and signaling events as their disordered 

structures permit interactions with multiple proteins and signaling pathways.2 Not 

surprisingly, accumulation of IDPs can lead to harmful signaling events directly associated 

with the pathogenesis of many human diseases.3–7Unfortunately, the lack of a defined three-

dimensional structure has impeded traditional small molecule-binding pocket drug design 

approaches to block the many detrimental effects of amassed IDPs.

The proteasome is the main protease responsible for the degradation of misfolded, 

oxidatively damaged, and redundant proteins.8–11 The proteasome can form different 

complexes that include active complexes (such as the 26S proteasome) and a weakly active/

latent complex, called the 20S proteasome. In contrast to the 26S proteasome, which 

requires proteins to be ubiquitinated prior to their degradation, IDPs are directly targeted by 

the 20S proteasome for degradation.8,12 IDPs are therefore typically short-lived and present 

in only small-to-undetectable quantity because of unremitted degradation by the 20S 

proteasome.8,12 In most cells, the 20S:26S ratio is approximately 3:1,13 but when IDPs 

accumulate, the 26S proteasome complex will further disassemble to form more 20S 

proteasome particles to prevent toxic signaling.14–16 Considering the pathological role of 

accumulated IDPs in protein aggregation and amyloid formation (notable examples include 

α-synuclein and tau),17–23 cell growth (i.e., ornithine decarboxylase),12,24–27 and survival 

and inflammation (i.e., c-Fos),28 the reduction of the level of IDP buildup has great potential 

for the treatment of multiple human diseases.3–7

Enhancing proteasome activity is a relatively new approach, but despite its enormous 

therapeutic potential, very few molecules have been identified as direct29–31 or indirect32–34 

enhancers of the proteasome degradation pathway.30,35 Herein, we report a new approach 

that uses small molecules to modulate the dynamic equilibrium between different protea-

some complexes, favoring the 20S proteasome, thus mimicking the natural defense response 

of cells to reduce high levels of IDPs.

The 26S proteasome is comprised of a barrel-shaped 20S core particle (CP) capped by two 

regulatory particles (RP) or “caps”.36 The 20S CP is a threonine protease that consists of 

four stacked rings. The two inner β-rings contain three catalytic subunits (β5, β2, and β1) 

that exhibit chymotrypsin-like (CT-L), trypsin-like (Tryp-L), and caspase-like (Casp-L) 

proteolytic activity, respectively.37 The outer α-rings do not exhibit proteolytic activity but 

control access to the proteolytic core chamber via a gate opening and closing mechanism.
38,39 The free 20S proteasome exists primarily in its latent (closed-gate) conformation but 

can accept peptides or IDP substrates when in its intermittent open-gate conformation.8,40
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Better access to the inner 20S core particle (CP) is achieved when additional modules, such 

as a regulatory particle (RP), or PA28 or PA200 activators dock onto the α-ring and induce 

conformational changes promoting gate opening.41–43 The 26S proteasome is assembled by 

the docking of two 19S (or PA700) RPs onto the α-rings of the 20S CP.44 During the 

docking stage, six ATPases (Rpt 1–6) on the base of the 19S lid insert C-terminal 

hydrophobic peptides containing an Hb-Y-X (hydrophobic amino acid-tyrosine-any amino 

acid) motif into the intersubunit pockets in the α-rings.45,46 This docking opens the gate to 

the 20S CP; however, details of this 20S gate opening mechanism remain ambiguous.
38,45,47–49 The RPs contain receptors for ubiquitin recognition and will subsequently 

deubiquitinate, unfold, and transfer the substrate protein into the CP following ATP 

hydrolysis, as it proceeds through at least three major distinct conformational stages.50,51 

The degradation of ubiquitinated proteins requires one (19S–20S) or two regulatory particles 

(19S–20S–19S) to be docked onto the CP.38,52 Not all additional modules require ATP 

hydrolysis to activate the 20S CP. PA28αβ, PA28γ, and Blm10 are examples of activators of 

the 20S that do not have ATPase activity and do not recognize ubiquitinated substrates.
43,53PA28αβ and PA28γ have been shown to compete with the 19S RP for 20S binding to 

provide hybrid proteasomes (19S–20S–PA28).52,54,55 Other 20S activators, such as Blm10, 

allosterically regulate the 20S gate to provide a clear path for IDPs to enter the proteolytic 

20S core.56,57

We previously reported that noncompetitive modulation of a proteasome by imidazolines 

could overcome bortezomib resistance and block tumor growth in vivo.58 The parent 

compound of that study was found not to interact with the catalytic sites of the 20S 

proteasome but to modulate protein proteolysis through an unknown mechanism. Our efforts 

to optimize the activity of the imidazoline scaffold generated the small molecule TCH-165 

(Figure 1).59 Intrigued by conflicting signs of activation and inhibition of proteasome 

activity in various assays, we pursued a full investigation of its mechanism of action. Here 

we report that TCH-165 regulates the dynamic equilibrium between the 20S and 26S 

proteasome complexes, favoring 20S-mediated protein degradation.

MATERIALS AND METHODS

Materials and Reagents.

Human proteasomes (20S, i20S, and 26S) and fluorogenic substrates N-succinyl-Leu-Leu-

Val-Tyr-7-amido-4-methylcoumarin (Suc-LLVY-AMC), carboxyl benzyl-Leu-Leu-Glu-7-

amido-4-methylcoumarin (Z-LLEAMC), tert-butyloxycarbonyl-Leu-Arg-Arg-7-amido-4-

methylcoumarin (Boc-LRR-AMC), acetyl-Pro-Ala-Leu-7-amido-4-methylcoumarin (Ac-

PAL-AMC), and bortezomib were obtained from Boston Biochem, Inc. (Cambridge, MA). 

Epoxomicin was purchased from Cayman Chemical (Ann Arbor, MI). The PVDF 

membrane, Clarity western ECL reagent, blocking grade milk, and precast sodium dodecyl 

sulfate (SDS) gels were from Bio-Rad (Hercules, CA). The DCFDA/H2DCFDA cellular 

reactive oxygen species detection assay kit, recombinant wild type α-synuclein, tau441, and 

GAPDH were obtained from Abcam (Cambridge, MA). Rabbit polyclonal anti-α-synuclein 

(C-20), anti-tau, goat anti-rabbit HRP, rabbit polyclonal GAPDH-HRP, GFP-HRP, and 

mouse monoclonal anti-β5 proteasome subunit were purchased from Santa Cruz 
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Biotechnologies. Mouse monoclonal anti-Rpt1 and the yeast (Saccharomyces cerevisiae) 

proteasome were obtained from Enzo Life Sciences Inc. Rabbit polyclonal anti-ubiquitin, 

anti-K-48 ubiquitin, rabbit polyclonal anti c-Fos, and goat anti-mouse antibodies were 

purchased from Cell Signaling Technology Inc. AQueous One Solution Cell Proliferation 

Reagent (MTS) was obtained from Promega. The human ornithine decarboxylase/ODC1 

gene ORF cDNA clone expression plasmid, N-GFPSpark, and sinofection transfection 

reagent were purchased from Sino Biological Inc. Embryonic kidney cells (HEK293T) were 

a gift from B. Sjögren (Department of Pharmacology & Toxicology, Michigan State 

University), while glioblastoma astrocytoma cells (U-87MG) was obtained from ATCC. The 

plasmid from which the Mtb proteasome was expressed and purified by the method of Lin et 

al.60 was a gift from the Abramovitch lab (Department of Microbiology & Molecular 

Genetics, Michigan State University).

Cell Culture.

RPMI-8226 cells were maintained in RPMI media. Human embryonic kidney cells 

(HEK293T) or glioblastoma cells (U-87MG) were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 100 units/mL 

penicillin/streptomycin, at 37 °C with 5% CO2.

Proteasome Activity in a Purified Protein Assay.

Activity assays were performed in a 200 μL reaction volume. Different concentrations of test 

compounds were added to a black flat/clear bottom 96-well plate containing 1 nM human 

constitutive 20S proteasome, immunoproteasome (i20S), 26S proteasome, Mtb 20S 

proteasome, or yeast proteasome in 50 mM Tris-HCl (pH 7.5) and allowed to sit for 10 min 

at room temperature (RT). Fluorogenic substrates were then added, and the enzymatic 

activity was measured at 37 °C on a SpectraMax M5e spectrometer by measuring the 

increase in fluorescence units per minute for 1 h at 380/460 nm. The fluorescence unit for 

the vehicle control was set at 100%, and the ratio of drug-treated sample to that of vehicle 

control was used to calculate the fold change in enzymatic activity. Fold activity was plotted 

as a function of drug concentration, using GraphPad Prism 5. The fluorogenic substrates 

Suc-LLVYAMC (CT-L activity, 10 μM, and 40 μM for Mtb), Z-LLEAMC (Casp-L activity, 

10 μM), and Boc-LRR-AMC (T-L activity, 20 μM) were used. Magnesium chloride (5 mM) 

and ATP (2.5 mM) were included in assays containing 26S proteasome.

Atomic Force Microscopy (AFM) Imaging.

AFM imaging of proteasome complexes was performed in tapping mode in liquid using the 

MultiMode Nanoscope IIIa microscope and oxide-sharpened silicon nitride probes with a 

nominal spring constant 0.32 N/m (Bruker Corp., Billerica, MA), as previously described.
40,61 To assess the dynamics of the 20S proteasomes, the purified core particles were diluted 

with 5 mM Tris-HCl (pH 7.5) to 3–5 ng/μL, deposited on muscovite mica, and briefly 

incubated at RT (≤5 min) to allow for electrostatic binding to mica. After a few fields had 

been scanned, the particles were treated with dimethyl sulfoxide (DMSO) (control) or 

TCH-165 dissolved in DMSO directly injected into the AFM chamber. The scanning was 

continued to collect 6–10 images; some fields were scanned continuously and others 

distinctly. The titration procedure was repeated until the desired concentration of the drug 
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was achieved. The DMSO concentration in imaging buffer was always kept <3% (v/v). 

Fields of 0.5–1 μm2, with a digital pixel size of 1–2 nm, were scanned with a rate of 2.65 or 

3.05 Hz, with a drive voltage of 200–500 mV and a set point of 1.5–2.0 V. A majority of the 

particles were imaged in “standing” (top-view) position with the α-ring exposed. The 

topography of proteasome particles was analyzed in plane-fitted and flattened raw height 

mode images. Distinguishing between “closed” and “open-gate” particles was based on 

analysis of sections through the center of the α-ring, with the sections presenting a smooth 

concave surface or a central dip.

Proteasome Native Gel.

HEK293Tor U-87MG cells were grown to 80% confluency in a T-75 flask. Cells were 

treated with either vehicle, TCH165, TCH-023, or bortezomib at the concentrations 

indicated under each figure. Cells were trypsinized and washed three times with chilled 

phosphate-buffered saline (PBS). Cell pellets were homogenized in native lysis buffer [50 

mM Tris-HCl (pH 8.0), 2 mM Na2ATP, 5 Mm MgCl2, 0.5 mM EDTA, and 10% glycerol] 

using acid-washed glass beads. The total protein was quantified by a bicinchoninic acid 

(BCA) assay, and equal amounts of lysates (30 μg) were resolved on a 3%–4%–5% 

(stacking–resolving–resolving) Tris-borate-EDTA (TBE) gel supplemented with Rhinohide 

polyacrylamide gel strengthener, for 3 h at 150 V, at 4 °C. Gels were blotted onto a PVDF 

membrane for 3 h at 100 V at 4 °C. Proteasome subcomplexes were probed with an anti-β5 

or Rpt1 antibody.

Docking Studies.

In silico docking was performed as previously reported.29

In Vitro Degradation of α-Synuclein.

Digestion of α-synuclein was performed in a 50 μL reaction volume of 20 mM HEPES (pH 

7.4), 2 mM EDTA, 1 mM EGTA, 0.5 μM purified α-synuclein, 0.5 μM GAPDH, and 15 nM 

purified human 20S proteasome as previously described.29 Briefly, 20S proteasome was 

diluted to 17 nM in reaction buffer. Test compounds or the vehicle (1 μL of a 50× stock) was 

added to 44 μL of 17 nM 20S and incubated at RT for 20 min. The substrate (5 μL of a 5 μM 

GAPDH/synuclein mixture) was then added to the reaction mixture and incubated at 37 °C 

for 1 h. The reactions were quenched with concentrated SDS loading buffer. After being 

boiled for 5 min, samples were resolved on 4 to 20% Tris-glycine sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS–PAGE) and immunoblotted with rabbit polyclonal 

anti-α-synuclein IgG (1:4000) and goat anti-rabbit HRP (1:5000)/anti-GAPDH-HRP. Blots 

were developed with ECL Western reagent and imaged with X-ray film. EDTA and EGTA 

were excluded from 26S degradation buffer and supplemented with magnesium chloride (5 

mM) and ATP (2.5 mM).

In Vitro Degradation of Tau441.

Tau degradation was performed in the same way as that of α-synuclein with the exceptions 

that tau and GAPDH were used at final concentrations of 0.1 μM.
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Generation of HEK293T Cells Stably Expressing Human Ornithine Decarboxylase with N-
Terminal Spark Green Fluorescent Protein (GFPSpark-ODC).

HEK293T cells expressing GFPSpark-ODC were generated as previously reported.29 

Briefly, HEK293T cells were seeded at a density of 1 × 105 cells/mL in a 24-well plate 

overnight. DNA (1 μg of GFPSpark-ODC plasmid) was mixed with 250 μL of serum free 

DMEM medium. Sinofection transfection reagent (5 μL) was also mixed with 250 μL of 

serum free medium in a separate vial. The separate mixtures were combined and allowed to 

sit at RT for 15 min. The mixture was then added to HEK293 cells in a 24-well plate and 

allowed to incubate for 4 h at 37 °C and 5% CO2 in a tissue culture incubator. The 

transfection medium was replaced with fresh complete culture medium (with 10% FBS). 

Three days later, cells were trypsinized and resuspended in hygromycin (100 μg/mL) 

selection medium. Surviving clones were picked and expanded in hygromycin selection 

medium for 6 weeks. After three passages, stable expression was confirmed by confocal 

fluorescent imaging, using standard filters for GFP.

GFPSpark-ODC Degradation in HEK293T Cells.

HEK293T cells stably expressing GFPSpark-ODC were seeded in a T-75 flask, in 

hygromycin selection medium 2 days prior to treatment, such that cells were ~80% 

confluent at the time of treatment. Cells were incubated with fresh medium (no hygromycin) 

with or without 50 μg/mL cycloheximide, in combination with either the vehicle, bortezomib 

(3 μM), or TCH165 (3 and 10 μM) for 24 h. GFPSpark-ODC degradation was monitored by 

immunoblotting of cell lysates with the GFP antibody.

c-Fos Degradation in U-87MG Cells.

U-87MG cells were grown to approximately 80% confluency in a 100 mm dish. Cells were 

treated with the vehicle, TCH-165 (3, 10, or 30 μM), or epoxomicin (100 nM) without or 

with cycloheximide (50 μg/mL) for 8 h. Cells were washed twice with warm PBS and 

scraped into chilled RIPA buffer supplemented with sigmafast protease inhibitor cocktail. 

Total protein was quantified by a BCA assay and total protein normalized to 2 mg/mL and 

boiled with 5× SDS loading buffer. Equal amounts of lysates were resolved on a 4 to 20% 

Tris-glycine gel and transferred to a PVDF membrane. The membrane was probed with anti 

c-Fos and anti-GAPDH antibodies.

Proteasome Activity in HEK293T Cell Lysates.

HEK293T cells were grown in a T-75 flask to ~80% confluency. Cells were treated with the 

vehicle, TCH-165 (10 μM), and epoxomycin (1 μM) for 12 h. Cells were trypsinized and 

washed twice with PBS (pH7.4). Cells were resuspended in 500 μL of lysis buffer (20 mM 

Tris-HCl, 5 mM MgCl2, 1 mM ATP, 0.5 mM EDTA, 1 mM DTT, and 10% glycerol) and 

lysed by sonication. Samples were clarified for 20 min at 14000g. The supernatant was 

assayed for total protein using the BCA assay and normalized to 1 mg/mL. Samples were 

diluted to 0.036 μg/μL in assay buffer (20 mM Tris-HCl, 5 mM MgCl2, 1 mM ATP, and 1 

mM DTT), and 140 μL (5 μg of total protein) of the diluted samples was transferred to three 

wells of a black clear bottom 96-well plate. The substrate (10 μL of Suc-LLVY-AMC) in 

assay buffer was added to a final concentration of 25 μM. Kinetic readings were taken every 
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5 min at 37 °C, at 380/460 nm for 1 h. Epoxomicin treatment was set to zero, and the vehicle 

control was set to 100%.

Ubiquitin Immunoblot.

Lysates of HEK293T cells and U-87MG cells used for 26S assembly were also blotted for 

total ubiquitin and K-48-linked ubiquitin following SDS–PAGE.

Cell Viability Assay (MTS assay).

HEK293T cells or U-87MG cells were seeded in a clear 96 well plate at a density of 1.0 × 

104 cells/well and 5.0 × 104 cells/well for RPMI-8226 cells. Cells were treated with different 

concentrations of TCH-165 for 24 h or 72 h. A MTS solution (20 μL) was then added and 

incubated under cell culture conditions for 2 h. The absorbance was read at 490 nm and 

expressed as a percentage of the vehicle control

ROS Detection Assay.

Reactive oxygen species were detected with DCFDA as specified by the manufacturer. 

Briefly, U-87MG cells were seeded in a black clear bottom 96-well plate at a density of 5.0 

× 104 cells/well in 100 μL of medium overnight. Cells were treated with the vehicle, 

TCH-165 (10 μM), TCH-023 (10 μM), or menadione (50 μM) for 12 h. DCFDA at a 2× final 

concentration (50 μM final concentration) was added, and cells were incubated for a further 

45 min and fluorescence readings taken at 485/535 nm. DCFDA and medium only wells 

were used as blanks. An additional control included cells without DCFDA (called unstained 

cells).

Statistical Analyses.

Data are presented as means ± the standard deviation of at least three independent 

experiments (for data with statistical analysis). Western blots were quantified with ImageJ, 

and statistical analysis was performed with GraphPad Prism 5. An unpaired Student’s t test 

was used for two group comparisons, while one-way analysis of variance with a post hoc 

Bonferroni test was used for multiple comparisons of group means. A p value of <0.05 vas 

considered significant.

RESULTS

TCH-165 Induces an Active 20S Conformation.

The induction of a proteolytically active 20S proteasome conformation can be achieved in 

vitro by pretreating the 20S proteasome with detergents such as sodium dodecyl sulfate, 

heat, or certain ionic conditions.62 Proteolysis of the fluorogenic chymotrypsin-Like (CT-L) 

peptide substrate (Suc-LLVY-AMC)29,30 occurs if an open-gate conformation of the α-ring 

allows the substrate to enter the core particle, resulting in the release of 7-amino-4-

methylcoumarin (AMC).63 The human 20S proteasome was pretreated with various 

concentrations of TCH-165 and proteasome activity quantified by measuring the release of 

AMC from the fluorogenic chymotrypsin-like (CT-L) peptide substrate (Suc-LLVY-AMC) 

over time. The concentration of the drug required for induction of 50% maximum activity 
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(EC50) was determined by fitting the relative fluorescence units and concentrations into a 

four-parameter dose–response curve. No fluorescence was detected in the absence of the 

AMC-labeled substrate, indicating that TCH-165 does not show intrinsic fluorescence at the 

AMC wavelength. The EC50 of TCH-165 was 4.2 μM and saturates at concentrations of >7 

μM (tested up to the limits of its solubility of 70 μM). It should be noted that saturation of 

activity readily distinguishes these agents from detergents such as SDS, which display a 

sharp drop in activity at higher concentrations (Figure 2A, left).30 The imidazoline analogue 

TCH-023 (Figure 1) did not exhibit significant activity and was used as a negative control in 

many of our studies. We tested each of the three proteolytic activities of the proteasome 

using the standard AMC-labeled peptide substrates63,64 and found that TCH-165 enhances 

the chymotrypsin-like (CT-L; EC50 = 4.2 μM), trypsin-like (Tryp-L; EC50 = 3.2 μM), and 

caspase-like (Casp-L; EC50 = 4.7 μM) activities (Figures 1 and 2B). This observation 

suggests enrichment in the open-gate 20S conformation that allows access of each of the 

substrates to the catalytic chamber.65 Under similar assay conditions, TCH-165 had no effect 

on the proteolytic activity of the fully assembled 26S proteasome (Figure 2A, right).

To determine whether the enhanced 20S activity translated to more physiologically relevant 

targets, we investigated the ability of TCH-165 to enhance 20S-mediated degradation of the 

intrinsically disordered proteins α-synuclein (α-syn) and tau (tau441).29,30 For these studies, 

the disordered proteins α-syn (Figure 2C) and tau (Figure 2D) were mixed with the 

structured protein, GAPDH, and treated with the purified 20S proteasome in the presence of 

various concentrations of TCH-165 or bortezomib (BTZ, proteasome inhibitor as a negative 

control)66 for 1 h. The mixture was analyzed for protein degradation by Western blotting. 

Panels C and D of Figure 2 clearly demonstrate that TCH-165 enhanced the degradation of 

both α-syn and tau over the vehicle control (Figure 2C,D; p < 0.01). Importantly, TCH-165 

did not induce the degradation of GAPDH (Figure 2C,D, bottom panels). These data 

demonstrate two important findings. (1) TCH-165 enhances 20S-mediated degradation of 

IDPs, α-syn, and tau in vitro, and (2) TCH-165 does not induce the degradation of 

structured proteins such as GAPDH.

To gain insight into the mechanism of imidazoline-induced activation of 20S in a single-

molecule fashion, AFM was used to study TCH-165-mediated gate-switching dynamics of 

the 20S proteasome. Control native eukaryotic proteasome particles repeatedly scanned and 

imaged by oscillating (tapping) mode AFM in liquid constantly alternate between open and 

closed forms, with the more stable closed-gate form in ~3:1 excess (Figure 2E).40,61 

Analysis of >100 single 20S particles in the top-view position revealed a concentration-

dependent increase in the abundance of open-gate conformers upon treatment with 

TCH-165, from 28 ± 4% in the control to 59 ± 3% at 2 μM TCH-165 (Figure 2E; p < 0.001 

for ≥400 nM). The TCH-165-treated particles continuously switched between open and 

closed forms, similar to control particles. However, unlike the control, the population of 

particles in the open-gate state constituted the majority of conformers. We speculate that the 

open-gate form represents particles with an unobscured or just-clearing path for substrates to 

enter the catalytic chamber. Thus, treatment with TCH-165 increases the population of 

substrate-receptive, activated 20S proteasomes. This notion is consistent with our 

agglomerated data demonstrating enhanced activities of TCH-165-treated 20S core 

proteasomes.
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The Collective Data Suggest an Interaction of TCH-165 with the α-Ring of the 20S 
Proteasome.

In silico docking studies were performed to determine possible binding sites of TCH-165 

that may explain its gate regulation seen in the AFM studies. We used Autodock Vina67 run 

through PyRx68 to manage the workflow. For these studies, TCH-165 was geometrically 

optimized with the MM2 force field. Autodock Vina identified molecular conformations 

with the best fit and strongest binding affinity (global minima). These unbiased docking 

studies found that one pocket, the α1/α2 intersubunit pocket, was primarily targeted by 

TCH-165 (Figure 2F and Figure S1). Binding affinities at this binding pocket were >9 

kcal/mol for the active compound. Binding affinities for the inactive analogue TCH-023 

(Figure 1) were <6 kcal/mol. Interestingly, this pocket was also primarily targeted by the 

phenothiazine-based 20S agonists.29

The α1/α2 intersubunit pocket is known to bind the C-terminal Hb-Y-X-motif of the Rpt-3 

subunit of the 19S cap.69 Thus, we prepared the peptide based on the C-terminatl sequence 

of the Rpt-3 subunit (KDEQEHEFYK) and performed a competition experiment with the 

Rpt-3 peptide and TCH-165. At 1 μM TCH-165, 20S activity is enhanced 2-fold. Treatment 

with the Rpt-3 peptide (2 μM) alone had no effect on 20S-mediated proteolysis. However, 

the presence of the Rpt-3 peptide inhibited TCH-165 enhancement of 20S activity by 

approximately 30% (Figure 2G). The Rpt-5 peptide indicated no signs of competition with 

TCH-165 (data not shown). Although these data indicate that the interaction of the Rpt-3 

peptide with the α-ring prevents 20S activation by TCH-165 (Figure 2G), it does not 

necessarily dictate pocket selectivity as higher concentrations of Rpt3 could not overcome 

TCH-165 activity any further. To further examine the role of the α-ring, we tested the 

immuno-proteasome (i20S), the yeast proteasome, and the Mycobacterium tuberculosis 

proteasome (Mtb 20S) for activation by TCH-165. The i20S has an α-ring identical to that 

of the constitutive 20S CP but incorporates the structurally different catalytic subunits 

LMP7, MECL1, and LMP2, instead of β5, β2, and β1, into its core.70,71 The yeast 

proteasome is similar to the human 20S proteasome but has significant topological 

differences in the subunits of the α-ring.72 In contrast, the Mtb 20S proteasome has an α-

ring comprised of seven identical subunits (α1–α7) and displays a very different α-ring 

topology.73 Similar to the case for the constitutive 20S, TCH-165 was capable of enhancing 

the proteolytic activities of the i20S by >3-fold (Figure S2); however, TCH-165 was unable 

to enhance the activity of the yeast or Mtb 20S proteasome (Figure S3). These data confirm 

the significance of α-ring topology for TCH-165 activity. Consistent with these 

observations, TCH-165 was unable to enhance 26S proteasome-mediated proteolysis of 

fluorescent peptides (Figure 2A, right) or disordered protein α-syn (Figure S4). This 

suggests that blocking the α-rings with two 19S RPs (i.e., in the fully assembled 26S 

proteasome) prevented TCH-165 from binding on the α-ring and enhancing proteolysis. The 

activity of the TCH-165-treated 20S was higher than that of the equimolar 26S proteasome 

in these assays. This suggests that the lack of enhancement of 26S activity by TCH-165 was 

not due to the maxium activity of the core enzyme of 26S, but rather a consequence of the 

TCH-165-binding site being occupied by the 19S caps. Collectively, these data are 

consistent with an interaction of TCH-165 with the α-ring of the 20S proteasome.
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TCH-165 Enhances the Degradation of Intrinsically Disordered Proteins in Cell Cultures.

Next, we assessed if the in vitro activation of the 20S translated in the enhancement of 20S-

mediated degradation of IDPs in cells. Given the antitumor efficacy of this molecule class, 

we turned our attention to proteins that are overexpressed in certain cancers.58,59 For these 

studies, we tested TCH-165 in HEK293T cells expressing ornithine decarboxylase (ODC), 

labeled with GFPSpark at its N-terminus.30 GFPSpark is a structured 28 kDa protein and is 

not degraded by the 20S, whereas the disordered C-terminal of ODC is a well-known 20S 

substrate (Figure 3A).12,24,30 Thus, 20S agonists will enhance the C-terminal degradation of 

the GFPSpark-ODC fusion protein (78 kDa), but not GFP, resulting in a band shift that can 

be detected by Western blotting using an anti-GFP antibody. Cells were cultured with 

TCH-165 for 24 h, and then the lysates were immunoblotted with anti-GFP (Figure 3B,C). 

Cycloheximide was used to ensure changes were occurring at the post-translational level. 

Figure 3B shows that TCH-165 enhanced the cleavage of ODC, but not the structured GFP, 

resulting in the presence of free GFPSpark (28 kDa) and the GFPSpark-ODC fragments 

(~50 kDa). Importantly, TCH-165-enhanced proteolytic degradation was blocked by 

bortezomib (Figure 3B, BTZ, 3 μM). The fact that TCH-165-enhanced ODC degradation is 

blocked by BTZ indicated that this event is proteasome-mediated. Figure 3C shows that the 

enhanced proteolytic degradation is also concentration-dependent. In addition, no changes in 

levels of other structured proteins were detected, as illustrated by the levels of GAPDH and 

β-actin. In the absence of cycloheximide, a continuous production of the fusion protein was 

seen (i.e., no decrease in the level of the GFPSpark-ODC fusion protein), but a 

concentration-dependent increase in the level of 20S-mediated cleavage products of ODC 

was maintained (Figure S5).

The proto-oncoprotein c-Fos is also intrinsically disordered in its C-terminal transactivation 

domain.74 Similar to ODC, c-Fos is targeted for degradation by the 26S proteasome in a 

ubiquitin-dependent manner, but the bulk of its degradation is mediated by the 20S in a 

ubiquitin-independent fashion.75–79 Because of its involvement in c-Fos/c-Jun AP-1-

mediated expression of pro-inflammatory cytokines and neoplastic cellular transformation, 

the pharmacological regulation of c-Fos may have therapeutic implications in the treatments 

of intervertebral disk degeneration, rheumatoid arthritis, and several types of cancer, 

including malignant gliomas.80–83 Considering that the brain expresses one of the highest 

levels of disordered proteins,84,85 we evaluated the effects of TCH-165 on c-Fos degradation 

in the human glioblastoma cells (U-87MG). Treatment of U-87MG cells with TCH-165 for 

8 h resulted in a significant reduction in c-Fos levels compared to the vehicle control (Figure 

3D). Cells treated with TCH-165 also exhibited a concentration-dependent decrease in c-Fos 

protein levels in cycloheximide-treated cells (Figure 3E), which confirms that the c-Fos 

reduction is at the post-translation level and not due to changes in protein synthesis. 

Importantly, the enhanced degradation of c-Fos by TCH-165 was blocked by the selective 

proteasome inhibitor epoxomicin (100 nM), confirming the proteasome as the main target 

for TCH-165-enhanced degradation of c-Fos (Figure 3D,E). Again, the structured protein 

GAPDH was not affected by TCH-165 treatment. These data show that TCH-165 induces 

the proteasomal degradation of IDPs, such as ODC and c-Fos, over structured proteins in 

cell cultures.
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TCH-165-Treated Cells Display a Decrease in the Assembled 26S and an Increase in the 
20S Proteasome.

Endogenous proteasome activators, including PA28αβ, PA28γ, and Blm10, compete with 

the 19S RP for binding to the 20S CP.52,54,55 Enhanced degradation of intrinsically 

disordered proteins by TCH-165 can be a result of the increased enzymatic activity of the 

20S, the increased amount of free 20S via competition with the 19S caps, or a combination 

of both effects. To examine the role of small molecule activators on 19S RP-CP binding, we 

examined possible changes in the distribution of proteasome subcomplexes. HEK293T cells 

were treated with the vehicle and various concentrations of TCH-165 (3, 10, and 30 μM) for 

24 h, and then cell lysates were resolved on a native gel and immunoblotted for proteasome 

subcomplexes (using anti-β5 and anti-Rpt1). Remarkably, the immunoblot revealed a 

concentration-dependent decrease in the amount of fully assembled 26S proteasome (19S–

20S–19S) and singly capped proteasome [19S–20S (Figure 4A)]. This was accompanied by 

a concentration-dependent increase in the levels of free 19S and 20S proteasomes (Figure 

4B). No changes were observed in the levels of individual subunits (β5 of the 20S core and 

Rpt1 of the 19S cap) (Figure 4A). This suggests that changes in the level of 26S and 20S 

were not occurring at the transcription/translation level but are due to a shift in the 

equilibrium between free 20S CP and assembled 26S proteasome particles (Figure 4B). 

Furthermore, treatment of HEK293T cells with TCH-165 (30 μM) resulted in a time-

dependent decrease in assembled 26S (singly and doubly capped) and an increase in the free 

20S proteasome (Figure 4C,D). The inactive analogue TCH-023 had no effect on the 

assembled complexes (Figure 4E). Endogenous disassembly of the 26S proteasome can also 

occur following oxidative stress. Therefore, we checked whether TCH-165 induced reactive 

oxygen species (ROS) via an alternative mechanism, but no significant difference was 

observed in ROS levels for vehicle- or TCH-165-treated cells (Figure S7). Additionally, no 

significant cell death was observed after treatment for 24 h using concentrations of ≤10 μM 

TCH-165 (<20% cell death) and some (22%) at higher concentrations (30 μM), perhaps 

because of the accumulation of ubiquitinated proteins (Figure S8).

Next, we investigated whether TCH-165 enhances the proteasome activity in cells by 

measuring the chymotryptic-like activity in HEK293T cells. For this, we exposed the cells to 

the vehicle, TCH-165, and the nonreversible selective proteasome inhibitor, epoxomycin, 

and evaluated CT-L activity in the cell lysate after exposure for 12 h, using the CT-L probe 

Suc-LLVY-AMC. Figure 4F shows that the CT-L activity is increased significantly (p < 

0.05) after TCH-165 treatment for 12 h compared to the vehicle control. Whether the 

observed enhanced CT-L proteolysis is due to the total increase in 20S particles or to an 

increase in 20S open-gate particles will be difficult to assess in cells.

Considering the decrease in the amount of fully assembled 26S proteasome, we investigated 

possible changes in the clearance of ubiquitinated proteins. For these studies, we treated 

HEK293T cells with the vehicle or TCH-165 for 2, 4, 8, 12, and 24 h, and then the lysates 

were probed for ubiquitinated proteins. Panels A and B of Figure 5 show that the level of 

total ubiquitinated and K-48 ubiquitinated proteins (Figure 5C) remains largely the same. As 

anticipated, only when there is no 19S-capped proteasome present (i.e., 19S–20S–19S and 

19S–20S) do ubiquitinated substrates start to accumulate (Figure 5D). These data illustrate 
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that the singly capped (i.e., 19S–20S) or hybrid proteasome is still fully capable of 

processing ubiquitinated proteins, and perhaps even more efficient than the doubly capped 

form. Thus, at low or intermediate concentrations, TCH-165 does not induce significant 

accumulation of ubiquitinated proteins.

Similarly, when U-87MG cells were probed for TCH-165 modulation of proteasome 

assembly, a concentration response decrease of the fully assembled 26S proteasome was also 

detected (Figure 5E, top panel). Here, the singly capped, hybrid proteasome (i.e., 19S−20S) 

persisted at tested concentrations of ≤30 μM, resulting in no accumulation of ubiquitinated 

proteins (Figure 5E, bottom panel). The significance of this finding is that as long as hybrid 

proteasome complexes (19S–20S) remain in the cells, cells are capable of processing 

ubiquitinated substrates. However, the amount of cleared ubiquitinated substrates varies 

among cell lines and may depend on several additional factors. For example, many E3 

ubiquitin ligases are also IDPs, and the enhanced degradation of disordered E3 ligases by 

these molecules may prevent substantial accumulation of polyubiquitinated proteins.86,87 

These contributing factors that regulate ubiquitinated substrates are under further 

investigation in our lab.

In conclusion, we report here the unique finding of a small molecule that is capable of 

enhancing the clearance of intrinsically disordered proteins by modulating the dynamic 

equilibrium between proteasome complexes, favoring the free 20S. These findings represent 

a new mechanism of proteasome regulation, consistent with our previous findings that these 

agents effectively block growth in bortezomib resistant THP-1 cells.59 A similar efficacy 

was observed among various additional cancer cell lines tested with CC50 values of 1.6 and 

2.4 μM for multiple myeloma cell line RPMI 8226 and glioblastoma cell line U-87MG, 

respectively (Figure S8). These studies provide support for the possibility of enhancing 20S 

selective degradation of intrinsically disordered proteins by modulation of 26S proteasome 

assembly.

DISCUSSION

Intrinsically disordered proteins are unique in that they do not adopt a defined three-

dimensional structure, which allows them to interact with multiple protein partners and 

control multiple cellular events. When IDP production outpaces its removal, the subsequent 

accumulation can lead to harmful signaling directly associated with the pathogenesis of 

many different human diseases. Targeting IDPs for therapeutic intervention is a daunting 

challenge because of the lack of a defined three-dimensional structure, which has impeded 

classic “small molecule-binding pocket” drug design. Here, we describe the identification of 

a small molecule that modulates 26S assembly favoring an increase in 20S proteasome 

particles, resulting in an enhancement of 20S-mediated degradation of IDPs. Proteolytically 

active singly capped proteasome complexes (19S–20S) remain in the cells, still capable of 

degrading ubiquitinated substrates at effective concentrations at which enhancement of 20S 

proteolysis of IDP is observed. However, at high concentrations, the decrease in 19S-capped 

proteasome complexes will prevent the efficient degradation of ubiquitinated substrates. 

These effects may be cell type specific and will likely induce apoptosis in proteasome reliant 

cells, including multiple myeloma cells. These findings illustrate that regulation of the 
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dynamic equilibrium between different proteasome complexes by small molecules 

represents a new approach to controlling the proteolytic degradation of specific protein 

classes. Modulation of proteasome assembly by small molecules can provide a new 

therapeutic strategy for targeting dysregulation of IDPs such as α-synuclein (most notably 

associated with Parkinson’s disease), tau (most notably associated with Alzheimer’s 

disease), and the proto-oncogenes ornithine decarboxylase and c-Fos, and likely many other 

IDPs associated with the pathogenesis of different human diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure and activities of imidazoline scaffolds.
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Figure 2. 
TCH-165 enhances 20S-mediated degradation of peptides, α-syn, and tau by inducing an 

open-gate 20S conformation. (A) Concentration–response curve of TCH-165 for 20S (left) 

and 26S (right) proteasome-mediated proteolysis of the fluorogenic substrates Suc-LLVY-

AMC for chymotrypsin-like (CT-L), Boc-LRR-AMC for trypsin-like (Tryp-L), and Z-LLE-

AMC for caspase-like (Casp-L) activities. (B) EC50 values of TCH-165 and maximum fold 

enhancement of 20S activities. (C) Immunoblot and quantification of GAPDH and α-

synuclein digestion with the 20S proteasome pretreated with TCH-165 or the proteasome 

inhibitor bortezomib (BTZ, 2 μM). (D) Immunoblot and quantification of GAPDH and 

tau441 digestion with the 20S proteasome pretreated with TCH-165 or the proteasome 

inhibitor bortezomib (BTZ, 2 μM). (E) Tilted top-view AFM images of standing particles of 

closed- and open-gate 20S proteasome particles and content of open-gate conformers in 

populations of the 20S proteasome treated with various concentrations of TCH-165. The bar 

graph shows means ± the standard deviation (SD) of at least four fields with 120–260 

particles per field. Western blots were quantified with ImageJ and are presented as means ± 

SD of at least three independent experiments. (F) Top view of the α-ring showing the 

preferred docking site utilizing Autodock Vina of TCH-165 in the α1/α2 intersubunit-

binding pocket of the α-ring of the 20S proteasome. (G) The Rpt-3 peptide (2 μM) inhibits 

TCH-165 (1 μM) enhancement of 20S proteolysis (n = 3). One-way analysis of variance 

with the post hoc Bonferroni test was used for multiple comparisons of means in GraphPad 

Prism 5 (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001).
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Figure 3. 
TCH-165 enhances the degradation of intrinsically disordered proteins in cell cultures. (A) 

Schematic of ODC-GFPSpark degradation by the 20S proteasome. (B) HEK cells stably 

expressing GFPSpark-ODC were treated with cycloheximide (50 μg/mL) and either the 

vehicle, TCH-165 (10 μM), BTZ (3 μM), or a combination of TCH-165 and BTZ for 24 h. 

Cell lysates were immunoblotted with anti-GFP. (C) HEK cells stably expressing GFPSpark-

ODC were treated with TCH-165 (0, 3, and 10 μM) or bortezomib (BTZ, 3 μM) with 

cycloheximide (50 μg/mL) for 24 h. Cell lysates were immunoblotted with anti GFP. (D) 

Glioblastoma cells (U-87MG) were treated with the vehicle or TCH-165 (10 μM) in 

combination with or without epoxomicin (100 nM) for 8 h and immunoblotted with anti c-

Fos. GAPDH and β-actin were used as loading controls. (E) Glioblastoma cells (U-87MG) 

were treated with TCH-165 (0, 3, 10, or 30 μM) and epoxomicin (100 nM) in combination 

with either the vehicle or TCH-165 (10 μM) for 8 h (with 50 μg/mL) and immunoblotted 

with anti c-Fos. GAPDH and β-actin were used as loading controls.
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Figure 4. 
TCH-165 induces a concentration- and time-dependent decrease of assembled 26S, favoring 

an increase of free 20S proteasome. (A) HEK293T cells treated with the vehicle or TCH-165 

(3, 10, and 30 μM) for 24 h were immunoblotted for proteasome subcomplexes following 

native PAGE. Proteasome subunits (β5 and Rpt1) and GAPDH (loading control) were also 

immunoblotted after SDS–PAGE. (B) The data in panel A were quantified with ImageJ (n = 

4). (C) HEK293T cells were treated with TCH-165 (30 μM) for 0, 2, 4, 8, 12, and 24 h and 

immunoblotted for proteasome subcomplexes following native PAGE. (D) The data in panel 

C were quantified with ImageJ (n = 3). (E) HEK293T cells were treated with the vehicle, 

TCH-165 or TCH-023 (0, 10, and 30 μM), or bortezomib (BTZ, 50 nM) for 24 h and 

immunoblotted for proteasome subcomplexes following native PAGE. (F) Hydrolysis of 

Suc-LLVY-AMC in HEK cell lysates. HEK293T cells were treated with the vehicle, 

TCH-165 (10 μM), or epoxomycin (1 μM) for 12 h followed by cell lysis and subsequent 

exposure to the CT-L peptide substrate Suc-LLVY-AMC. Bar graphs are presented as means 

± SD of four independent experiments.
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Figure 5. 
Accumulation of ubiquitinated proteins correlates to the levels of singly and doubly capped 

20S. (A) HEK293T cells were treated TCH-165 (30 μM) for 0, 2, 4, 8, 12, and 24 h and 

immunoblotted for proteasome subcomplexes following native PAGE and ubiquitin and 

proteasome subunit β−5 following SDS–PAGE. GAPDH was used as a loading control. (B) 

Quantification of ubiquitinated proteins was performed with ImageJ, and bar graphs are 

presented as means ± SD of three independent experiments. (C) Quantification of K-48-

ubiquitinated proteins was performed with ImageJ, and bar graphs are presented as means ± 

SD of three independent experiments. (D) HEK cells were treated with the vehicle or 

TCH-165 (3, 10, and 30 μM) for 24 h and immunoblotted with anti-β5 (top panel, native 

gel) and anti-K-48 ubiquitin (bottom panel, denaturing gel). (C) U-87MG cells treated with 

the vehicle or TCH-165 (3, 10, and 30 μM) for 24 h and cell lysates were immunoblotted for 

proteasome subcomplexes (top panel, native gel) and K-48-linked ubiquitin (bottom panel, 

SDS−PAGE).
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