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Abstract
Ion channels residing in the inner (IMM) and outer (OMM) mitochondrial membranes are 
emerging as noteworthy pharmacological targets in oncology. While these aspects have not 
been investigated for all of them, a role in cancer growth and/or metastasis and/or drug 
resistance has been shown at least for the IMM-residing Ca2+ uniporter complex and K+-
selective mtK

V
1.3, mtIK

Ca
, mtSK

Ca
 and mtTASK-3, and for the OMM Voltage-Dependent Anion 

Channel (mitochondrial porin). A special case is that of the Mitochondrial Permeability 
Transition Pore, a large pore which forms in the IMM of severely stressed cells, and which 
may be exploited to precipitate the death of cancerous cells. Here we briefly discuss the 
oncological relevance of mitochondria and their channels, and summarize the methods 
that can be adopted to selectively target these intracellular organelles. We then present an 
updated list of known mitochondrial channels, and review the pharmacology of those with 
proven relevance for cancer.

Introduction

Targeting mitochondria to antagonize cancer has ceased to be an oncological side-show to become a major play, with the emergence of a whole new field of pharmacology based on so-called “mitocans” [1]. The mitochondria of cancerous cells acquire specific characteristics 
and functions [2, 3]. Thus, for example, the Krebs’ cycle becomes a key provider of 
biosynthetic intermediates and modulators of enzymes, epigenomic control and thus gene 
expression [4]. An increased production of reactive oxygen species (ROS) by mitochondria 
contributes to the rapid and limitless growth phenotype [5], and it also constitutes a cellular 
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Achilles’ heel, since it brings the threshold for oxidative cell death within reach for redox 
stress-inducing drugs [6]. Mitochondrial alterations, and/or alterations in pro-apoptotic 
signaling to mitochondria, make cancer cells resistant to extrinsic apoptosis induction. Mitochondrial fusion/fission dynamics have been related to cancer cell invasiveness and 
maintenance of “stemness” [7]. The bioenergetic characteristics of cancer stem cells [8, 9] 
point to mitochondrial intervention for their eradication [10]. In summary, the prominence 
of the mitochondrial role in cancer and the alterations of the mitochondrial characteristics 
and functions in cancerous cells provide a clear rationale for the “mitocan” approach [1].

Mitochondrial ion channels provide one of the features that can be exploited [11-
13]. As discussed elsewhere [12, 14] (Szabò et al, this Special Issue), alterations in their 
expression levels are commonplace in cancer. They are of special interest in many cases 
of chemoresistance [15] and possibly for the elimination of cancer stem cells [16, 17]. An 
updated list of the channels reported to be present in mitochondria is shown in Table 1. This is an expanding field, and the list will probably become longer and more detailed in 
the next few years. Obviously, not all these channels are necessarily functioning in all cells, 
and not all of them have a major role in any given cancer. Those for which evidence of such a role has been provided are identified in Table 1. Much, actually most, remains to be 
learned and understood. Some of the mitochondrial channels have been studied in more 
depth than others in this context. This can be said for example of mtK

V
1.3, which is covered 

by another contributed paper (Leanza et al., this Special Issue), and of Voltage-Dependent 
Anion Channel (VDAC)-1. The latter, the mitochondrial porin, serves to show that outer 
mitochondrial membrane (OMM) channels may be of key importance in this context, laying 
to rest the vision of the OMM as a passive sieve. Another key point is that while a few of these 
channels are endemic to mitochondria, several reside in the plasma membrane (PM) and 
other intracellular membranes as well [11], and this may complicate the pharmacology. The logical move to counteract this difficulty is to engineer the specific accumulation of the drug 
at mitochondria: non-mitochondrial channels in both normal and cancerous cells will thus 

Table 1. Ion channels with mitochondrial location and their involvement in cancer
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be largely spared, and this may help limit side-effects. Drug action on mitochondrial targets will on the other hand have a stronger, selective effect in cancer cells. Target specificity is 
in principle easier to achieve for inner mitochondrial membrane (IMM) residents, because 
advantage can be taken of the electrical potential and concentration gradients maintained across the IMM but not across the OMM. The issue of drugging a specific component of an 
intracellular organelle is superimposed on the upstream problem of selective delivery to the 
cancerous tissue. This latter topic is not covered here (for reviews see, e.g.: [18-21]).We provide a summary of the strategies and difficulties involved in selectively aiming 
at mitochondrial targets, then individually discuss the pharmacology of the mitochondrial 
channels with a recognized role in cancer.

Mitochondrial targeting

Targeting a drug to mitochondria – or for that matter to any subcellular compartment 
- can rely on two strategies: a) attaching an “address” moiety to the active principle (Fig. 1) or b) arranging for transportation by a nanostructured targeted carrier. Within the first 
approach a distinction can be made between molecules in which the targeting moiety is 
attached permanently and prodrugs based on a labile linker, whose splitting will regenerate the parent active portion. Chemical modification entails new pharmacologically relevant 
properties which need to be taken into consideration. Moderate lipophilicity and molecular 
weight are required for an optimal membrane permeation [22].

In most cases mitochondrial targeting relies on the transmembrane potential to drive 
drugs engineered to carry - stably or temporarily (prodrugs) - a positive charge into the 
matrix or IMM. Accumulation of membrane-permeant cations into regions at negative electrochemical potential is mandated by the laws of thermodynamics, a principle first 
applied in this setting by Skulachev’s group 50 years ago [23] and later used in any number 
of biomedical studies (revs., e.g: [24, 25]). In order for the cation to cross biomembranes, in the absence of a specific carrier, the positive charge needs to be delocalized and the molecule as a whole needs to be sufficiently lipophilic. This very often translates into the incorporation 

Fig. 1. A) Common mitochondria-targeting ligands; B) examples of linkers between the targeting moiety 

and the drug; C) typical mitochondria-targeting conjugate scheme.

Figure 1 
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into the mitochondriotropic molecule of a triphenylphosphonium (TPP) group connected 
to the pharmacologically active moiety via a linker (which may contain a “bioreversible” 
bond system if a prodrug is desired). Besides providing a well-tested, reliable stratagem, 
using TPP facilitates the chemist’s task, because – possible complications aside - it can be 
easily produced by reacting a good and easy-to-handle nucleophile, triphenylphosphine, 
with an electrophilic center carrying a good leaving group, such as a iodide or tosylate (p-toluensulfonate). On the down side, any lipophilic group is bound, by definition, to have a significant affinity for biomembranes. The positive charge furthermore favors interactions 
with negatively charged cell components, such as phospholipid headgroups and DNA. Not 
to be forgotten, it also determines accumulation into the cytosol, which – while electrically 
positive in comparison to the mitochondrial matrix - is at a more negative potential than the 
extracellular space. Unsurprisingly, TPP-containing compounds exhibit extensive binding 
also to non-mitochondrial structures [26]. Because of this tendency to give pleiotropic 
interactions, off-targets are a possibility to be considered even more seriously than for drugs 
in general. In fact, at relatively high (several µM) concentrations some TPP conjugates seem to 
cause mitochondrial dysfunction. This has been observed with TPP surfactants [27] but also 
phenolic derivatives [28] and other seemingly nondescript TPP-comprising molecules [29-
31]. At least in some cases the disrupting effect appears to be associated with an interaction 
with Complex I of the respiratory chain and the ensuing upregulation of ROS production [32, 
33]. ROS in turn can affect some intracellular channels [34]. However, emphatically, not all TPP-comprising compounds produce such effects (e.g. [28, 29]), and specifically this is not 
the case of the psoralenic derivatives discussed below. Controls are clearly needed in each 
case.

These shortcomings of the TPP group prompt consideration of alternative mitochondria-
targeting groups, including dequalinium (DQA), imidazolium, guanidinium, pyridinium, 
rhodamine, and triethylammonium groups [35] (Fig. 1A). DQA is a dicationic lipophilic 
compound formed by two quinaldinium rings linked by ten methylene groups. It can self-
assemble into vesicle-like liposomes referred to as DQAsomes [36], which have been used 
to deliver chemotherapeutics drugs and genetic material to mitochondria [37]. Imidazolium cations have been used to convey fluorophores to the mitochondria of cultured cells [38], and 
could be exploited, in principle, to target pharmaceuticals as well. Conjugation of porphyrins 
with guanidinium/biguanidinium determined a “clean” mitochondrial localization in cultured 
cells [39]. Both Rhodamine 123 and Rhodamine 19 are mitochondria-targeting moieties 
because of their delocalized positive charge and ability to cross biomembranes. Rhodamine 
19 has been tested in substitution of TPP to form a mitochondriotropic rhodamine 19–
plastoquinone conjugate [40]. Pyridinium has been used as the targeting group, for example, 
in compound F16 and its derivatives, which act as anticancer mitochondrial uncouplers 
[41] and in the rhodocyanine dye MKT-077, a mtHsp70 inhibitor evaluated in an oncological 
clinical trial [42, 43].

Peptides can also be used as mitochondria-targeting devices [24, 44, 45]. These belong 
to the family of cell-penetrating peptides (CPPs): positively-charged aminoacid sequences 
capable of entering the cell and, at least in principle, to carry along a “cargo” as well, e.g. in a 
prodrug (e.g. [45]). Unsurprisingly, the best-performing Mitochondria Penetrating Peptides 
(MPPs) alternate charged and lipophilic residues [44]. As for TPP-comprising molecules, 
some of these peptides may act as mitochondria-disrupting agents, with potential direct 
anti-cancer applications. This “mitotoxic” activity increases with charge and lipophilicity 
[44]. Analogously, mitochondrial demise may be brought about by peptide-lipid conjugates 
[46]. In other studies, MPPs have been used to ferry cytotoxic – DNA-damaging – agents 
to mitochondria (e.g.: [47, 48]). The peptide may be tailored to engage the mitochondrial 
protein import system. This option has been, perhaps surprisingly, rather neglected so far, 
with only a few studies aimed at the mitochondrial delivery of DNA [49, 50] or supramolecular 
systems [51, 52].In order to achieve both selective mitochondrial targeting and optimal binding affinity and specificity for the desired mitochondrial ion channel, the position of the targeting 
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moiety needs to be optimized through structure-activity relationship (SAR) studies. The 
spacer between the targeting moieties and the pharmacophores can be of various types (Fig. 
1B): an alkyl chain with saturated C-C bonds (Fig. 1B, i), or comprise amide (Fig. 1B, ii), ester (Fig. 1B, iii) and disulfide functionalities. Phenylethynyl (Fig. 1B, iv) and polyethylene glycol 
(Fig. 1B, v) linkers have also been used. Different linkers will provide different chemical and 
spatial properties to the conjugate, i.e. a phenylethynyl linker is characterized by its rigidity 
and a polyethylene glycol linker provides higher water solubility. A spacer between the 
channel modulator and the targeting ligand allows for an optimal recognition.

In the second alternative – using nanocarriers for selective mitochondrial delivery - 
the targeting problem is obviously shifted from the single molecule to the supramolecular 
structure, but the principles applied remain much the same. This approach may offer 
a number of advantages: it may incorporate various components acting in synergy to 
optimize delivery; it makes it unnecessary to modify the active principle, and protects it from metabolic modifications; it may be used to deliver an assortment of “cargos”. On the other hand nanocarriers may encounter difficulties in crossing biomembranes, or use 
complex and “dangerous” processes, such endocytosis, to do so. This may however turn out to be an advantage for the specific delivery to tumor masses through “defects” of vascular epithelia. This field, born more than 20 years ago with Weissig’s dequalinium liposomes 
[36] is blooming (revs.: [24, 53]), although results in in vivo cancer models have yet to meet 
expectations [54]. The surface of nanovehicles has been decorated with TPP (e.g. [55-57]; 
the synthesis of TPP-lipid conjugates has been described by [58]) and peptides (e.g. [59, 
60]). The possibility of introducing cooperating targeting structures has been taken full 
advantage of in the development of Multi-Functional Envelope-Type Nano Devices (MENDs) 
by Harashima’s group (rev.s, e.g.: [61]). The various components of these systems act to 
limit recognition by the reticuloendothelial system, favor uptake into cells and exit from 
endosomes, and selective delivery to the target compartment. In cultured cells, MENDs can 
achieve the delivery of small molecules to the mitochondrial matrix [62].Both strategies – structural modification, packaging – can be used, perhaps in 
combination, to deliver known or novel channel modulators to mitochondria. This approach 
has been adopted so far only in a few studies, and the potential for further development is 
great. We give below a concise overview - limited to matters of oncological interest - of the 
state of the art.

The Mitochondrial Permeability Transition Pore

Whether the Mitochondrial Permeability Transition Pore (MPTP; recent revs., e.g.: [63-
65]) ought to be considered a channel in the same sense as the others mentioned in this review may be a moot point. This is a variable-size (up to very large) pore believed to fulfill 
physiological roles via transient brief openings, and of major biomedical interest because its 
full activation leads to mitochondrial depolarization, loss of key soluble matrix components, 
and cell death. After decades of debates, its molecular identity may now have been settled: 
the pore is believed to be formed, under the appropriate conditions, by the dimeric F

o
F

1
 

ATP synthase [66, 67]; permissive conditions are a high matrix Ca2+ concentration, and 
oxidative stress (e.g.: [68, 69]). Given its involvement in major pathologies – e.g. infarct, 
dystrophy, neurodegeneration – in which it plays the villain, pharmacological research has 
so far concentrated on inhibitors (e.g. [70]). However, the MPTP is of major relevance also 
in cancer. Cancerous cells have altered Ca2+ [71] and ROS [72] homeostasis. They adapt to 
stressful conditions and defend their survival and proliferation by repressing MPT-mediated 
death [73]. Although this is not always realized by the researchers, facilitating MPTP opening 
in cancerous cells may therefore underlie – completely or in part – the effects of drugs 
ranging from traditional medicine preparations [74] to organometallic gold complexes [75, 
76]. The connection is the pro-oxidant effect of the drugs, which increases oxidative stress to 
the point where a critical death-induction threshold is exceeded in already-stressed cancer 
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cells, but not – or to a more limited extent – in normal cells. Since the redox sensitivity of Ca2+ 
channels and transporters of the ER, mitochondria and PM links redox alterations and Ca2+ 
levels [77], oxidative stress implies Ca2+ stress, the key factors leading to MPTP opening and 
hence cell death. Anti-cancer strategies based on the upregulation of ROS production are 
currently receiving much attention [78], with the possible repurposing of several drugs as 
anti-cancer agents precisely because of their pro-oxidant action (e.g. [79, 80]). The possibility 
of overcoming chemoresistance by this approach is an important consideration. The down-
side is the possibility that redox action may have an undesirable impact on normal cells and 
organs, for example the heart [81].

It follows that any drug capable of inducing “excess” oxidative stress in cancer cells 
can be considered as indirectly acting, at least potentially and in part, via the MPTP. Redox 
stress inducers are plentiful. The already-mentioned metal complexes, including, besides 
gold compounds, platinum, palladium, copper, silver, ruthenium, tin etc. ones inhibit the 
thioredoxin reductase (TrxR) system, which is potentiated by cancer cells in order to maintain 
a degree of redox homeostasis (rev.s, e.g.: [82-85]). Polyphenols, generally considered as 
anti-oxidants, can actually behave as pro-oxidants and induce cancer cell death by this 
mechanism (as well as others) (e.g.: [86, 87]). Some, like for example curcumin, myricetin, 
baicalein, EGCG also are potent TrxR inhibitors [88, 89]. Autoxidation and interaction with 
the mitochondrial respiratory chain provide further mechanisms of redox stress induction. 
Redox cyclers such as quinones, paraquat or pyocyanin can act similarly. Redox stress and 
MPTP activation are also induced by berberine. Methyl jasmonate, a plant hormone, acts 
likewise and is cytotoxic for cancerous cells while sparing normal ones [90]. The list could go 
on. The occurrence and relevance of these processes depend on several factors, one of which 
is the concentration of the active species. Thus, they are expected to be enhanced when a 
concentrative effect is obtained by coupling to a mitochondria-targeting moiety (see above). 
Mitochondriotropic derivatives of quercetin, resveratrol, pterostilbene, honokiol, gallic 
acid, caffeic acid, plastoquinone, menadione and other potentially redox-active compounds 
have been synthesized and tested, and indeed they show an increased tendency to act as 
pro-oxidants [24]. The studies with these compounds so far have been limited to in vitro 
protocols. When applied to cultured cancer cells they do exhibit remarkable cytotoxicity. 
Their usefulness in in vivo cancer models remains however to be put to test. In vivo models have on the other hand been used to test the efficacy of mitochondriotropic psoralen 
derivatives, which according to the current mechanistic model act by inducing oxidative 
stress downstream of the inhibition of a mitochondrial K+ channel, and are discussed below.

The MPTP thus serves as the executioner for a number of redox-active compounds 
with anti-cancer potential. It may be indirectly modulated through the signaling cascades that have been identified to have an impact on its activity [65]. Examples of this approach 
are provided by hirsutine, an alkaloid, and the synthetic compound GSK1059615. What is lacking – and may not be easy to find, given the molecular nature of the pore – 
is a useful direct activator (for an overview of PT inducers and inhibitors see, e.g., [91]). 
Polyphosphate, in complex with poly-hydroxybutyrate, has been proposed to act as such 
[92]. Atractyloside and carboxyatractyloside, two inhibitors of the mitochondrial ADP/ATP 
exchanger (ANT) stabilizing it in the “C” conformation, have long been observed to induce 
IMM permeabilization [93] (while bongkrekate, another inhibitor blocking the carrier in the 
“M” conformation, antagonizes it). Ebselen, a seleno compound, has been reported to do the 
same [94]. Logically, the ANT has been proposed to be involved, pointing to the possibility 
that more than one mechanism of IMM permeabilization may exist [95]. Resminostat, an 
HDAC inhibitor, triggers the MPT via interaction with Cyclophilin D (a modulatory component 
of the MPTP) and the ANT [96]. Benzodiazepine 423 binds to the Oligomycin Sensitivity 
Conferring Protein (OSCP) subunit of the F

O
F

1
 ATP synthase and facilitates the opening of the MPTP, a finding that was instrumental for the identification of ATP synthase dimers as 

the molecular substrate of the permeability transition [66, 97]. Various ligands of the OMM-
located peripheral benzodiazepine receptor / Translocator Protein (TSPO) have been found 
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to have analogous effects on mitochondria [98], although the underlying mechanism is at 
present unclear.

The Mitochondrial Calcium Uniporter Complex

That mitochondrial Ca2+ handling is of prime importance in cancer follows, if for no 
other reason, from the role this ion has in precipitating the MPT and cell death (see above). 
As mentioned, this role belongs to matrix Ca2+. Mitochondrial Ca2+ uptake also modulates 
(increases) ROS production by the organelles [99] (and is in turn modulated by it; [100]). 
ROS are an intracellular messenger of the utmost importance in cancer cells, in which, as 
already mentioned (see above), they are upregulated and contribute to cell proliferation, 
spreading and metastasis, survival, accumulation of oncogenic mutations, adaptation to 
hypoxia [101, 102]. Mitochondria contribute to shaping cytosolic Ca2+ signaling [103, 104], 
which, again, is altered in cancer cells and is profoundly involved in such aspects as growth, 
metastasis, autophagy, drug resistance, escape of immune surveillance, “stemness” [105, 
106]. Ca2+ uptake by mitochondria through the ER-mitochondria axis (“ER-mitochondrial 
Ca2+ fueling”) stimulates mitochondrial metabolism thus providing the cancerous cells with 
an adequate supply of metabolic building. It follows that the mitochondrial machinery for 
Ca2+ uptake/release is a key character on the oncological stage [107-109]. Its centerpiece 
is the Mitochondrial Calcium Uniporter Complex (MCUC), comprising various regulatory 
subunits (rev.s: [107, 110]). Not only the expression level but also the composition of the 
MCUC have been found to be altered in several cancer types, and these variations appear to be cancer type-specific (revs.: [107, 109]). Post-translational modifications also intervene. 
It should also be mentioned that the stoichiometric composition of the MCUC varies from 
organ to organ under normal circumstances as well [111]. Pharmacological interventions 
aimed at the MCUC therefore ought to be planned case-by-case. Besides the pore-forming 
MCU, one may target regulatory subunits, or, conceivably, oligomerization – a process favored 
by oxidative conditions.

Historically, Ca2+ uptake by mitochondria has been blocked by Ruthenium complexes (Ru360) and lanthanides. These Ruthenium complexes appear to be specific blockers of the 
MCU and can be utilized in studies with cultured cells, including cancer ones but also in vivo (e.g. [112]). Serious drawbacks are the tendency to bind to polysaccharides and difficulty in 
diffusing across biomembranes. Their use as a possible therapeutic agent in animal cancer 
models seems to have been limited so far to some studies in the 1970’s [113]. A new Ruthenium 
compound with good permeation and selectivity, Ru265, has been recently reported [114]. 
Cancer-targeted prodrugs of Ru complexes have been produced and may provide a lead to 
more useful forms of this type of inhibitors [115]. Other inorganics inhibiting Ca2+ uptake by 
mitochondria are the lanthanides [116], which would however need much work to be turned 
into useful drugs.

Among organic compounds, two tetracycline analogues - minocycline and doxocycline 
- were found to inhibit mitochondrial Ca2+ uptake when applied in the 50 µM range, 
protecting rat hepatocytes from chemical hypoxia-induced death [117]. These antibiotics 
have shown activity against various cancers (e.g. [118]) as well as for several other conditions. DS16570511 has been identified in a large high-throughput screening [119]. 
This is a membrane-permeant MCU inhibitor, effective in the µM range. It appears however to have as yet unidentified mitochondrial off-targets [120]. We are unaware of any tests in 
cancer models so far. The thiourea derivative KB-R7943, an inhibitor of the PM Na+/Ca2+ 
exchanger 1, has also been reported to inhibit mitochondrial Ca2+ uptake (µM range) [121], but whether this reflects a direct effect on the MCUC is unclear, since this drug also has 
mitochondrial off-targets [122]. Mitoxantrone (a topoisomerase inhibitor with oncological 
applications) has also emerged as an MCUC inhibitor (IC

50
 in the µM range) from a screening 

study [123]. Another anticancer drug, proteasome inhibitor Bortezomib, stimulates instead 
mitochondrial Ca2+ uptake in a Ru360-sensitive manner, and this may contribute to its anti-
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cancer effects [124]. Polyamines, e.g. spermine, also stimulate Ca2+ uptake by mitochondria [125], a finding that may be worth scrutinizing now that the MCUC has been molecularly defined. Aminoglucoside antibiotics also can activate [125]. Activation of the MCUC has 
also been proposed as the mechanism of anti-cancer action of AG311 [126], which however 
seems more likely to act by inhibiting complex I of the respiratory chain [127]. An analogous 
suggestion has been made for Necrox-5 [128], but also in this case subsequent reports point to other targets [129, 130]. Several plant flavonoids upregulate mitochondrial Ca2+ uptake 
in vitro [131]. The most effective among those tested was kaempferol, which nearly doubled 
the rate of mito-aequorin response increase at 1 µM in HeLa cells [131].

With the exceptions of Ru360, which has been shown to bind to the aspartate “ring” 
at the mouth of the MCU channel [132], of Ru265, which involves MCU Cys97 [114] and of 
oxidative stress, which leads to glutathionylation of Cys97 and formation of higher oligomers 
[133], the mechanisms of action of these various compounds remain to be explored.

The MCU complex would be fully expected to undergo regulation by cellular signaling 
cascades (rev.: [133]). Mitochondrial Ca2+ uptake has been reported to be modulated 
downstream of p38 MAPK, PKC, PKD, CaMK-II [134, 135] but how this comes about needs 
to be investigated further (see, e.g., [136]). In summary, the pharmacology of the MCUC is still fairly primitive – not surprisingly since the system has been first identified only about 
9 years ago [137, 138] – but offers excellent perspectives for development and applications, 
and certainly not only in oncology.

Mitochondrial K
V
 channels

K+ is the most abundant cation in both cytosol and mitochondrial matrix; it is used 
by mitochondria to control volume and some functions [139]; K+ channels are the most diversified superfamily of ion channels in nature [140]. It is not surprising therefore that 
several representatives of the class are present, besides other cell membranes, in the IMM 
(see Table 1; [141]). The processes involved in regulating the distribution of multiple-
location channels are now beginning to be understood [142]. And given the pervasive roles of ion channels, in general, in cell life, it is also not surprising that altered expression profiles 
/ functions are often found in cancer (e.g.: [3, 14]; for K+ channels: [143]) and may concern 
ion-conducting but also regulatory subunits [144]. The intersection of these concepts makes 
it likely that some mitochondrial channels are relevant for cancer, and this is indeed the case 
(see Table 1; [12, 13]). Again, this is work in progress, and it may well be that in the future an 
oncological relevance may emerge for some mitochondrial channels not currently known to 
have one, and therefore not discussed here.

So far, mitochondrial K
V
 channels have been used to precipitate cancerous cell death 

downstream of their inhibition (see below). It may be considered, however, that an alternative 
way to reach the same goal may be via their activation by K+ channel openers. If sustained, so 
as to overwhelm the counteracting electroneutral K/H exchange, and if the transmembrane 
electrical potential were maintained, to an extent, by the organelles, activation would be 
expected to lead to K+ influx into the matrix, swelling, and, eventually, OMM rupture and 
cytochrome c release. As far as we know, this approach has not yet been considered.

K
V
1.3

K
V
1.3 is likely to be the mitochondrial K+ channel to which the most attention has 

been paid in an oncological context. Its expression and functions in cell life and death are 
covered in detail in another review of this Special Issue (Leanza et al) and elsewhere [13]. 
We therefore provide here only a summary.

PM K
V
1.3 is well known to be the target of peptide toxins which block it due to the 

interaction of a lysine residue with the “ring” of negative charges formed by four aspartate 
residues in the channel vestibule [145, 146]. This inhibition can block cell proliferation, 
and since PM K

V
1.3 is particularly crucial for lymphocytes, it offers hope for the treatment 
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of autoimmune disorders [146]. However, these toxins do not enter cells. IMM K
V
1.3 can 

likewise be blocked by Lys128 of pro-apoptotic protein Bax following incorporation of the 
latter into the OMM [147]. Hyperpolarization, ROS production, cytochrome c release and apoptosis follow. These findings suggested that pharmacological inhibition of IMM K

V
1.3 

might well produce the same outcome. Wulff, Chandy and coworkers had developed a family 
of membrane-permeant K

V
 inhibitors – including Psora-4 and its derivative PAP-1 - based on 

the psoralenic (furocoumarinic) ring system [148]. These drugs probably act by inserting 
“sidewise” into the ion-conducting pore with their coumarinic moieties [149]. Clofazimine, 
an antimycobacterial drug, was also found to be a permeant K

V
1.3 inhibitor [150]. The compounds proved to have some efficacy against various cancerous cells in vitro, in in vivo 

models of melanoma and pancreatic ductal adenocarcinoma (PDAC) and against B cells from 
the blood of chronic lymphocytic leukemia (CLL) patients [151-153]. Mitochondriotropic 
PAP-1 derivatives PAPTP and PCARBTP (a carbamate prodrug) were produced and tested with the goal of improving efficacy and target specificity [154]. The strategy proved successful, 
achieving important reductions of tumor mass in murine models of melanoma and PDAC 
and eliminating a very high fraction of ex vivo human CLL cells and of various cultured cell 
lines. Importantly, they were essentially without effect on healthy tissues. Despite killing 
glioma cells in vitro, they were however unable to antagonize the tumor in vivo, because they 
were excluded from the central nervous system by the blood-brain barrier (BBB) [155]. A 
similar cytotoxicity was exerted by PCTP, a prodrug analogous to PCARBTP but comprising 
a carbonate group, rather than a carbamate, as labile bond system [156]. The activity of 
these compounds is sensitive to structural details. Thus, shortening the linker between 
the furocoumarin system and the “driving” triphenylphosphonium group resulted in a compound (P5TP) with only about the same efficacy as the parent, non-mitochondriotropic 
PAP-1 [156]. At low doses (< 1 µM), they may activate pro-survival pathways (Bergermann 
et al., this Special Issue), thus acting in “hormetic” fashion, or alter the cell cycle [157]. Both 
effects have been tentatively attributed to the induction of a mild oxidative stress.

Much work has been directed towards the discovery of K
V
1.3 inhibitors because of the role of this channel in inflammatory and autoimmune disorders [158, 159]. A number of 

natural and synthetic compounds have been found to inhibit PM K
V
1.3, and might serve as 

leads for mitochondria-targeted new drugs. These include other psoralen derivatives [160], and the prenylated flavonoids xanthohumol, isoxanthohumol and 6- and 8-prenylnaringenin 
(EC

50
 in the 3-8 µM range) [161, 162]. Some derivatives of khellinone inhibited with K

d
 < 1 

µM [163-165]. Diphenylphosphine oxide inhibited the channel with an IC
50

 of ~ 3 µM [166]. 
Sibutramine (a discontinued appetite suppressant), did the same with IC

50
 ~ 3.7 µM [167]. Less potent were trifluoperazine, thioridazine, tamoxifen [168], acacetin, chrysin [162, 169], 

genistein [170], resveratrol [171], simple derivatives of naringenin and piceatannol [172], 18β-glycyrrhetinic acid [173], lovastatin [174] and other statins [175], verapamil, diltiazem 
[176]. Derivatives of correolide, a pentacyclic natural compound, have been the object of 
a SAR study [177]. Patent applications seek to protect whole classes of synthetic K

V
1.3 

blockers, based on an amide [178] or an oxazolidinedione [179] core.
Interestingly, PM K

V
1.3 is inhibited downstream of ceramide production by acid 

sphingomyelinase (ASM) [180]. Localization of the channel in lipid rafts is involved in this 
phenomenon [181]. Ceramide [182] and ASM [183] are present in the mitochondria (at least 
those of some cells under stressful circumstances), and affect processes of the IMM [184, 
185].

K
V
1.5

K
V
1.5 is a first-degree cousin of K

V
1.3, with which it forms heterotetramers. Its 

expression appears to be altered in several cancers, and to be involved – analogously to K
V
1.3 

– in cell proliferation and metastasis [186]. PAP-1 (see above) was selected among a group 
of psoralen derivatives because of its (rather modest) selectivity for K

V
1.3 over K

V
1.5. K

V
1.5 

is present in the IMM of macrophages [187], but a mitochondrial localization has not been 
reported for other cell types.
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Especially because of its involvement in cardiac function, K
V
1.5 has been the focus of a considerable pharmacological research effort (e.g. [188]). Among the molecules identified 

as inhibitors are ortho,ortho-disubstituted bisaryl compounds [189], anthranilic amides 
[190], pyrazolodihydropyrimidine derivatives [191], S0100176 [192], AVE0118 [193], the 
phosphatidylinositol 3-kinase inhibitor LY294002 [194], verapamil [195], the anesthetic 
propofol [196], the lipoxygenase inhibitors cinnamyl-3, 4-dihydroxy-alpha-cyanocinnamate 
and nordihydroguaiaretic acid [197], diphenylphosphine oxide [198]. At least some of these 
inhibitors act also on K

V
1.3. The structural similarity among voltage-dependent K+ channels clearly makes selective targeting difficult.

Mitochondrial K
Ca

 channels

Ca2+-activated K+ channels are present in the IMM of several cell types, including 
some cancer lines (Table 1; [11, 13, 141, 199, 200]). They are believed to participate in the 
regulation of trans-IMM potential, ROS production and Ca2+ homeostasis. According to their 
conductance, they are named “Big” (BK

Ca
, a.k.a. K

Ca
1.1), “Intermediate” (IK

Ca
, a.k.a. K

Ca
3.1) and 

“Small” (SK
Ca

, a.k.a. K
Ca

2.1-3). mtBK
Ca

 [200] and mtSK
Ca

 (e.g [201].) have been much studied 
because of their role in cardiac ischemic preconditioning. Less attention has been paid to 
their possible role in cancer.

BK
Ca

mtBK
Ca

 is present in human LN229 glioma and U-87 MG astrocytoma cell lines. CGS7184, 
a BK

Ca
 channel opener, induced mitochondrial depolarization and death of these cells, but 

the effect seems actually to involve Ca2+ release from the ER and to be independent of mtBK
Ca

 
opening [202, 203]. Ophiobolin A, a fungal metabolite, is instead a (weak; IC

50
 ~ 10 µM) 

BK
Ca

 channel inhibitor, and it also induced death of a cancer (glioblastoma) line [204]. The 
correlation between the two effects would however need strengthening also in this case.

Besides the compounds just mentioned, many other small molecule BK
Ca

 agonists have been identified or synthesized. For detailed reviews please see [205, 206]. These compounds 
are not, in general, either very powerful (typically they act in the several-µM range) or specific. One of the most powerful may be the triterpenoid glycoside dehydrosaponin, which 
reportedly acted (unfortunately from the intracellular side) at concentrations as low as 10 
nM in planar bilayer experiments [207].

Selective antagonists of BK
Ca

 have also been sought, without much luck. For a review please see [208]. Most of the compounds identified – which include, e.g., paxilline, verapamil, 
quinine, clotrimazole - act also on other K+ channels, in particular IK

Ca
. A possibly selective one is Penitrem A [209], which acts via subunit β1.  It is one of a set of indole diterpene 

alkaloids produced by Penicillium sp., reported to have anti-proliferative and anti-invasive properties against various cancers. Penitrems are however known to act also via the Wnt/β-
catenin pathway [210].

IK
Ca

The role of IK
Ca

 in cancer is, instead, well supported. The channel is involved with cell 
migration, proliferation, and invasion, and it has been studied in particular in the context 
of cancers of the pancreas and breast and gliomas (revs.: [211, 212]). It may furthermore 
confer radioresistance [213]. The mitochondrial population has been discovered in cancer 
cell lines [214, 215]. IK

Ca 
has been found to regulate oxidative phosphorylation in some PDAC 

cell lines [216], and treatment with a membrane-permeant inhibitor (TRAM-34) sensitized 
melanoma cells to TRAIL-induced apoptosis [217] and reduced the proliferation rate in a 
murine breast cancer model [218].

Mitochondria-targeted IK
Ca

 inhibitors have not yet been developed. A few membrane-permeant inhibitors exist which might serve as leads. One difficulty is the tendency of K+ 
channel modulators to act on more than one member of the superfamily, a problem due 
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to the intrinsic similarity of these channels. The most hopeful for mtIK
Ca

 may well be the 
tetrarylmethane inhibitors TRAM-34, considered to be selective for IK

Ca
 [219, 220] and 

clotrimazole (an antimycotic) [221], both of which inhibit the mitochondrial population 
in cultured cells [214], and activator 1-EBIO [222]. Several other activators [223] are 
available as lead compounds. Activators generally have low selectivity, acting on small- as 
well as intermediate-conductance K

Ca
 channels as well as on other channels. However, a SAR study of the benzothiazole pharmacophore of SKA-31 has led to significantly IK

Ca
-selective 

compounds [224]. Among inhibitors, some natural products, e.g. caffeic acid, are also rather 
weak and unselective [225]. Some synthetic dibenzoates worked in the nM range, but did 
not distinguish between IK

Ca
 and SK

Ca
’s [226]. However TRAM-34, Senicapoc (ICA-17043), 

NS6180 and a derivative of nifedipine have nM-range potency as well as good selectivity [223, 227], and may be the first-choice candidates for elaborations. Dequalinium-related 
UCL1407, UCL1440, UCL1438 had IC

50
 values in the ~1µM range [228]. The peptide toxin 

with the best combination of selectivity and potency for IK
Ca

 is maurotoxin [229].
It may well happen – it remains to be investigated in depth – that the mitochondria of a 

given cancer type might harbour only one or few types of K+ channels. Thus, for example, that 
of IK

Ca
 was the only significant activity by K+ channels we observed in HCT116 mitochondria 

[214]. Thus, a mitochondriotropic compound may achieve a sort of “topological selectivity” 
despite having itself an intrinsically low ability to distinguish among K+ channels.

SK
Ca

A role of small-conductance Ca2+-activated K+ channels (SK
Ca

2.1-3) in cancer has been 
documented mainly for SK3 (SK

Ca
2.3) [230]. SK channels are present in the IMM of neurons [231] and of cardiomyocytes [232], where they influence transmembrane potential and 

respiration and have a protective role. Their possible involvement in cancer cell physiology 
has not – to our knowledge – been studied, but that their modulation may have (an) effect(s) 
is a distinct possibility.

The pharmacology of these channels [223] overlaps that of the other K
Ca

 channels to 
a considerable extent. Activators NS309, SKA-31, 1-EBIO/DCEB, SKS-11, SKS-14 [233] are 
shared with IK

Ca
. CyPPA activates instead rather specifically on SK2 and SK3 [234], but also modulates the β-catenin/GSK3β pathway [235]. Antagonists include NS8593 [201], which 

however acts on quite distinct channels as well [236]. More SK-selective selective blockers 
are the small neurotoxin apamin – which was instrumental in the characterization of SK 
channels themselves [237], but also blocks K

V
1.3 with an IC

50
 of 13 nM [238] - BBP [239], 

UCL1684 [228]. SK3 is also inhibited by edelfosine, an ether-linked phospholipid with anti-
cancer properties [240].

TASK

TASK-3 (Twik-related acid-sensitive K+ channel 3; KCNK9; K
2P

9.1) is a member of the 
two-pore K+ channel (K

2P
) family. PM TASK channels are involved – with other members 

of the K
2P

 group - in the conduction of a “background” or “leak” K+ current (and hence in 
setting membrane potential). It has a large role in O

2
 (respiration) and pH sensing, apoptosis, 

the sleep-wake cycle, anesthesia, pain signaling, and various other functions (revs on K
2P

 
channels: [241, 242]). It is well known to form heteromeric channels at least with TASK-
1, with which it shares about 50% of the sequence, and TWIK-1. Since it’s “designed” to 
control membrane potential, TASK-3 is strongly expressed in the nervous and cardiovascular 
systems, but it has been found to be upregulated in several cancer types (e.g.: [243, 244]) 
and it is recognized to have a role in tumorigenesis [245]. The existence of a mitochondrial 
population has been known for more than 10 years [246, 247], and suppression of TASK-
3 expression has deleterious consequences for mitochondria and (cancerous) cells [248, 
249]. These observations suggest that mitochondrial TASK-3 may be a target of oncological 
relevance.



Cell Physiol Biochem 2019;53(S1):11-43
DOI: 10.33594/000000192
Published online: 14 December 2019 22

Cellular Physiology 

and Biochemistry

Cellular Physiology 

and Biochemistry
© 2019 The Author(s). Published by 

Cell Physiol Biochem Press GmbH&Co. KG

Parrasia et al.: Drugs vs Mitochondrial Channels in Cancer

TASK channels (and in general K
2P

 channels) however are not the easiest of 
pharmacological targets (for recent reviews: [250, 251]). Selectivity in particular has turned 
out to be a problem (a common one for small-molecule K+ channel inhibitors). Inhibitors 
have been sought especially for use as respiratory stimulants. The channel changes its 
selectivity (i.e., K+ transport is inhibited) upon extracellular acidification [252], it is blocked 
by Zn2+ (which has no effect on TASK-1 and -2) [253], Ruthenium Red [254, 255], by high 
concentrations (~10µM) of anandamide (which at lower concentrations is selective for TASK-
1) [256] and by a host of other molecules acting in the tens-of-µM units (or higher) range 
(tabulated in [250]). TASK-3 is a target of anesthetics [257] and breathing stimulants [258]. 
One of the latter is Doxapram, which actually selects TASK-1 (IC

50
 ~ 0.4 µM) over TASK-3 (IC

50
 

~ 37 µM) or hybrid TASK-1/3 channels (IC
50

 ~ 9 µM) in mouse, whereas it is about equipotent 
vs. TASK-1 and TASK-3 in human cells (IC

50
 ~ 4 and ~ 2.5 µM, respectively) [259, 260]. Among 

relatively weak inhibitors one may mention molecules derived from dihydropyrrolo [2, 1-a]
isoquinoline [261]. Physiologically, the channel can be inhibited downstream of G protein-
coupled receptors (GPCRs) acting via phospholipase C and diacylglycerol, the ultimate 
modulator [262].Well-performing antagonists have been identified by SAR studies of series of compounds 
based on the THPP (5, 6,7, 8 tetrahydropyrido [4, 3-d]pyrimidine) scaffold [263-265]. The 
most poweful of these derivatives (PK-THPP) exhibited an IC

50
 of 10-35 nM vs. TASK-3, and 

little discrimination between TASK-1 and TASK-3 [258, 263]. A1899, is also a selective TASK-
1 inhibitor. It acts in the nM range, blocking also TASK-3 at approximately 10-fold higher 
concentrations [266]. These compounds probably share a binding site inside the pore, 
reached through “fenestrations” in the channel structure [258, 266, 267]. Flaherty and 
coworkers [268] have developed another series of powerful inhibitors, based on the 1, 3-bis-
amide structure. These drugs actually preferentially inhibit TASK-1, which may not be very 
relevant if the target is mitochondrial TASK(s). The most active towards TASK-3 showed an 
IC

50
 of 38 nM in patch-clamp assays. The thiotriazole ML308, developed by the same group, 

worked with an IC
50

 of ~ 0.4 µM, and a >50-fold selectivity for TASK-3 over TASK-1 [269]. Two small-molecule activators have also been identified: NPBA [270] and terbinafine and 
analogs [271]. In patch-clamp experiments, NPBA increased TASK-3 current with an EC

50
 of 6.7 µM (but the current was increased up to 6-fold at 10 µM). The allilamine terbinafine, 

a commercial antifungal medication, acts in the single-digit µM range. Schewe et al [272]. 
have recently described negatively charged activators (e.g. BL-1249) acting on multiple K

2P
 

channels, but TASKs are not mentioned in the paper.

VDAC

VDAC1
Long-studied VDAC1, or porin (revs.: [141, 273-275]), is a predominantly mitochondrial 

outer membrane protein, although its presence has been reported also in the ER/SR [276], 
endosomes [277] and PM [278-280]. From a pharmacological point of view, the challenge in 
this case may be not so much to selectively hit the mitochondrial population, as to spare the 
others. VDAC1 is by now well understood to exert control functions in the transport of Ca2+ 
[281], ATP [282], other metabolites [283], lipids [284] and (at least in yeast) precursors of 
mitochondrial proteins [285]. Its status thus impacts respiration and cellular ATP levels. It is 
furthermore at the center of a network of interactions – mediated mainly by the N-terminal 
- reaching up to 150 partners at a recent count [286]. It has been proposed to be heavily 
involved in apoptosis [287, 288]. It comes as no surprise that such a pivotal protein plays 
a major role in cancer (revs.: [274, 289-293]). In this context, two interactions of major 
relevance are those with Hexokinase (HK) [294, 295] and tubulin [296, 297] (rev.: [298, 
299]). Both are understood to contribute to the “Warburg phenotype” of cancerous cells and 
to repress apoptosis. Disrupting these interactions is therefore a strategy worth considering. 
In the former case, methyl jasmonate, a plant hormone, has been found to do the job, but 
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only at mM concentrations [300]. A more efficient approach was based on cell-penetrating 
peptides copying sequences of the VDAC N-terminal and competing with VDAC itself for 
binding of HK and possibly other proteins [301-303]. An analogous approach targeted 
VDAC-Bcl2/Bcl-xL interactions [302, 303]. The peptide agents were remarkably successful 
also in in vivo models.

A long list of small molecules has been found to act on VDAC reducing its conductance 
for ions and favoring apoptosis when supplied to cells. These include avicins – a family of 
plant stress metabolites [304], aspirin – which also induces hexokinase detachment from 
VDAC [305], erastin and erastin-like compounds – which interfere with tubulin binding [306, 
307], Fluoxetine (Prozac) [308], Oblimersen (G3139) – a phosphorothioate [309]. Anion 
transport inhibitors such as DIDS and SITS interact with VDAC and have been reported 
to inhibit oligomerization and thus antagonize apoptosis [310]. These agents may all act 
through other pathways as well, and further investigations are needed. For example, DIDS 
was found to directly inhibit caspase-3, -8 and -9 activity in HeLa cell lysates [311].

VDAC2 and 3
While VDAC1 is the most studied and best known of mitochondrial porins, two others 

exist. They are relatively minor: in HeLa cells for example VDAC2 expression is about 1/10, 
and VDAC3’s about 1/100, of VDAC1 [312]. Whether they form channels has been in doubt 
for a long time, and whether this is their main function is still an open question (e.g. [313]). In any case, purified VDAC2 can form large pores resembling those of VDAC1 [314, 315], 
while VDAC3 can yield mostly smaller conductances under reducing conditions [316]. The significance of these proteins in cell life and cancer seems to derive mainly from some specific 
functions (e.g. [293, 317, 318]), and in particular from their interactome [319]. Thus, in 2003 VDAC2 was found to bind Bak, preventing its oligomerization [320], an interaction confirmed 
in various subsequent studies (e.g.: [321, 322]). Indeed, WEHI-9625, a newly discovered 
tricyclic sulfone which binds VDAC2, prevented Bak-driven apoptosis [323]. However VDAC2 
seems to play an opposite, pro-apoptotic role in Bax-mediated apoptosis [324, 325]. The 
porin reportedly forms with Bax and Bak complexes involving different domains. Deletion of 
VDAC2 impaired the association of Bax and Bak with mitochondria, and inhibited Bax (but 
not Bak) function and cell killing by anti-cancer drugs acting via Bax (Etoposide, Venetoclax, 
BH3-mimetics) [325]. VDAC2 can also bind the mitochondria targeting domain of pro-death 
Noxa, and a peptide mimicking this domain has been reported to induce the mitochondrial 
permeability transition and necrotic cell death [326]. It has also been reported to provide the docking site for GSK-3β, an MPTP-activating kinase [327]. VDAC2 seems also to be co-
responsible for apoptosis induction by ceramide, which it binds at a site present also in 
VDAC1. Deletion or mutation of this binding site in VDAC2, but not in VDAC1, made colon 
cancer cells resistant to ceramide-induced apoptosis [328, 329]. Such a deep involvement in 
the mechanisms of extrinsic apoptosis makes VDAC2 a clear candidate for pharmacological 
intervention. Activity in this direction has however been limited so far. Besides WEHI-
9625, one compound binding VDAC2 (and VDAC1) is sulindac sulfone, a metabolite of the nonsteroidal anti-inflammatory drug sulindac [330]. VDAC2 is also involved in cell death 
induced by artesunate, a derivative of the antimalarian herbal drug artemisin [331]. A whole 
set of compounds, from resveratrol to paclitaxel to artesunate, act via Bak, and their action 
may therefore involve VDAC2. The possibility of an involvement of VDAC3 in cancer has 
received so far little attention. The protein has been proposed to function as a redox sensor, 
and may thus respond to the oxidizing conditions normally found in cancerous cells [332].

CLIC

Chloride intracellular channels (CLIC1-6) are one of the two classes of chloride channels identified in the IMM. They are still only partially understood [333]. CLICs exist 
in both soluble and membrane forms and are structurally similar to a family of glutathione 
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S-transferases, but they can insert into membranes to form ion channels [334]. Membrane-
associated CLICs are localized in the nuclear membrane, trans-Golgi network, endoplasmic reticulum and mitochondria, and their distribution is tissue specific. They participate in membrane trafficking, cytoskeletal function, apoptosis, cell cycle control, tubulogenesis and 
other cellular processes. It has been demonstrated that CLIC1, CLIC4 and CLIC5 are present in adult cardiac mitochondria [335]. Since a sub-fraction of CLIC4 has been identified in the 
IMM, it has been proposed to have a role in the regulation of membrane potential [335, 336]. 
CLIC4 has also been observed in the mitochondria of keratinocytes [337].CLICs definitely have a role in cancerogenesis, but our knowledge is still spotty [338]. 
Both up- and down-regulation have been reported in cancer cell lines, and the various 
members of the family clearly have different characteristics and functions. Thus, e.g., a 
correlation was found between tumor grade and percentage of CLIC1 positive cells in renal 
carcinoma [339]. CLIC1 expression was elevated in glioblastoma in comparison with low-
grade glioma [340] and its downregulation by shRNA or antibody treatment in neurospheres 
reduced the proliferation and tumorigenicity of cancer stem cells [341]. Biguanide drugs 
(including metformin) selectively inhibit CLIC1 in glioblastoma stem cells and oppose their 
proliferation and invasiveness, with little effect on normal stem cells [342, 343]. Over-
expression of CLIC-4 was reported in malignant pleura mesothelioma patients [344]. CLIC4 
was instead downregulated in several epithelial cancers and squamous cancer cell lines. 
The expression of the protein was inversely correlated with the malignancy of these tumors. CLIC4 expression is controlled by p53 and TNFα and the protein has been observed to translocate from the cytosol to the nucleus under conditions of oxidative stress. Auranofin, 
an inhibitor of thioredoxin reductase, induced this migration in v-rasHa-transformed 
primary keratinocytes but not normal primary keratinocytes [345]. ROS trigger the up-
regulation of CLIC4 expression in ovarian cancers [346]. Other studies reported, upon an 
increase in oxidative stress, an increase of CLIC4 protein expression in the glioma C6 cell 
line. This behavior was paralleled by an increased Bax/Bcl-2 ratio, cytochrome c and cleaved 
caspase-3 protein expression upon H

2
O

2
-induced C6 cell apoptosis, indicating that CLIC4 

could be involved in oxidative stress-triggered apoptosis [347]. CLIC4 is thus considered to 
be a tumor suppressor protein.

The pharmacology of these proteins is, unsurprisingly, still underdeveloped. In addition 
to the biguanide drugs mentioned above, Indanyloxyacetic acid (IAA)-94 (a chloride channel 
inhibitor) reduced colon cancer cell migration and invasion, and the effect was attributed to 
inhibition of CLIC1 [348].Summarizing, the knowledge on CLICs implications in cancer is still insufficient, 
especially with regard to mitochondrial populations of the channels. Despite the lack of 
causal evidences, variations in the expression pattern of (some of) these proteins in cancer 
makes them interesting topics for further mechanistic and pharmacological investigation.

Conclusion

Collectively, mitochondrial channels have an outstanding potential as targets for innovative chemotherapeutic approaches. Their location allows them to influence aspects 
of cell biochemistry/physiology of peculiar relevance in cancer, so that drugs targeting 
them have a selective impact on cancerous cells. In most cases (exceptions: MCUC, K

ATP
) 

the mitochondrial population is only a fraction of the total amount expressed by the cell. Focalized targeting thus requires fielding appropriately modified drugs, usually containing a lipophilic cation, and/or specially equipped nanovehicles. It should also be kept firmly in mind that each cancer has its own specific features, and this applies to mitochondrial 
channels as well as to many other aspects.

The progress made to date towards a possible clinical use varies greatly from case to 
case. For some mitochondrial channels the connection with cancer has hardly been made, and might not be significant (e.g. K

ATP
, BK

Ca
). In other cases it is known to exist, but it is 
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still insufficiently defined and/or there is essentially no pharmacology to build on (e.g., CLIC4). For a few channels definite steps forward have been made or are being taken. These 
are MCUC and VDAC, for which mitochondrial targeting is no – or a secondary – problem, 
and some of the IMM K+ channels. The latter have counterparts elsewhere in the cell, and thus a pharmacological approach directed specifically to mitochondria may be fruitful. A 
detailed investigation of the characteristics and functions of mitochondrial channels in 
cancer cell lines, including those that are known to exist but have been rather neglected thus 
far, is a prerequisite for the expansion and development of this emerging branch of onco-
pharmacology.
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