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Abstract 

The nuclear transcription factor c-Myc is a member of the Myc gene family with multiple functions 
and located on band q24.1 of chromosome 8. The c-Myc gene is activated by chromosomal 
translocation, rearrangement, and amplification. Its encoded protein transduces intracellular sig-
nals to the nucleus, resulting in the regulation of cell proliferation, differentiation, and apoptosis, 
and has the ability to transform cells and bind chromosomal DNA. c-Myc also plays a critical role 
in malignant transformation. The abnormal over-expression of c-Myc is frequently observed in 
some tumors, including carcinomas of the breast, colon, and cervix, as well as small-cell lung 
cancer, osteosarcomas, glioblastomas, and myeloid leukemias, therefore making it a possible target 
for anticancer therapy. In this minireview, we summarize unique characteristics of c-Myc and 
therapeutic strategies against cancer using small molecules targeting the oncogene, and discuss the 
prospects in the development of agents targeting c-Myc, in particular G-quadruplexes formed in 
c-Myc promoter and c-Myc/Max dimerization. Such information will be of importance for the 
research and development of c-Myc-targeted drugs. 
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Introduction 

As chronic non-infectious diseases, malignancy 
has become a serious threat to human health, and 
morbidity and mortality rates have been rising in re-
cent years. At its most basal level, cancer is a genetic 
disease. It is challenging and interesting to develop 
effective therapy for cancer, because it comprises a 
heterogeneous group of diseases. Multiple factors are 
generally involved in its onset. As a result of syner-
gistic or sequential damages of DNA, several pro-
to-oncogenes such as c-Myc are activated and tumor 

suppressor genes are inactivated, leading to the alter-
ation of DNA repair system and apoptosis regulation. 
Accumulation of the DNA damages may ultimately 
cause cell transformation.  

Myc gene family comprises c-Myc, l-Myc, n-Myc, 
and so on. Based on the analysis so far, as many as 
20% of human cancers can be associated with the 
overexpression of c-Myc. As a vital transcription reg-
ulator, c-Myc plays an essential role in the regulation 
of many physiological processes including cell cycle 
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control, apoptosis, protein synthesis, and cell adhe-
sion [1]. Aberrant expression of c-Myc is likely to as-
cribable to direct gene alteration, which associates 
with tumorigenesis and sustained tumor growth [2-4]. 
Thus, the inhibition of c-Myc has promise as a thera-
peutic strategy for human cancer [5, 6]. Here we re-
view structural and functional features of c-Myc and 
highlight to discuss possible small molecule modula-
tors of c-Myc as promising anti-cancer therapeutics. 

Structure of c-Myc 

    Some 20 years ago, c-Myc was discovered in 
human Burkitt’s lymphoma, as a celluar homologue 
of the viral oncogene v-Myc which was isolated from 
an avian retrovirus [7, 8]. On the basis of the study of 
v-Myc in chicken, the expression of human c-Myc was 
found to be altered in cancer. c-Myc is deregulated in 
a wide range of malignancies, such as mammary car-
cinoma, colon carcinoma, cervical carcinoma, myeloid 
leukaemia, melanoma osteosarcoma, glioblastoma, 
and small-cell lung carcinoma [8]. Human c-Myc (Fig. 
1) is located on chromosome 8 q24.1 and consists of 
three exons and two introns [9].  

 

 
Figure 1: A schematic diagram of human c-Myc gene structure. 
The diagram shows the location of exons ( ) and promoters indicated 
by arrows. The region ( ) of a combination of transcription activators 
with DNA, the nuclease hypersensitivity element III1 (NHE III1), is located 
in the upstream of the P1 promoter.  

 
The c-Myc transcription is regulated by multiple 

promoters. The nuclease hypersensitivity element III1 
(NHE III1), also known as Pu27 with 27bp, controls 
80-90% of the transcriptional activity of this gene 
[10-12]. This guanine (G)-rich element is located at 
-142~-115 bp upstream of the P1 promoter and forms 
transcriptionally active double helix structure (Fig. 2). 
The G-rich strand can also form intramolecular 
G-quadruplex structure consisting of repeated se-
quences with three or four guanine residues to sup-
press c-Myc transcription in a silenced form [13]. 
Hence, the element is a potential target to 
down-regulate c-Myc overexpression in tumor cells.  

As shown in Fig. 3, c-Myc protein is a 65 kDa 
nuclear phosphoro-protein belonging to a basic he-
lix-loop-helix leucine zipper (b/HLH/LZ) protein 
family [6, 13]. It is considered as a master regulatory 
factor of cell proliferation, metabolism, differentia-
tion, and apoptosis. In humans, c-Myc dysregulation 
is one of the most common abnormalities found in 
cancer [14-19]. The c-Myc protein is composed of 439 
amino acids (aa), which consists of an N-terminal 
transactivation domain (NTD), a C-termianl domain 
(CTD) and a central region. The N-terminal domain 
contains transcription activation domain (TAD) and 
three ~20 aa segments termed MYC box-I, II, and III 
(MBI, MBII, and MBIII), which are essential for the 
biological functions of this protein [19, 20]. MBI and 
MBII are located at aa 45-63 and 129-143, respectively, 
and are responsible for the regulation of transcription 
and transformation. The C-terminal domain extends 
aa 360-437, which is essential for the association with 
b/HLH/LZ-interacting proteins such as the 

Myc-associated factor X (MAX). The heterodimeri-
zation of c-Myc with MAX plays a cardinal role in the 
proliferation, transformation, and apoptosis [21, 22]. 

 

 
Figure 2: The diagram of equilibrium between two forms of NHE III1 (nuclease hypersensitivity element III1). The left part represents a 
transcriptionally active form, which can regulate 80-90% of c-Myc transcription, and the right one a silenced form, with both G-quadruplex and i-motif 
structures being shown, that represses the transcription of c-Myc. CNBP: cellular nucleic acid binding protein; hnRNP: heterogeneous nuclear ribonu-
cleoprotein; TBP: TATA-box-binding protein; RNA Pol II: RNA polymerase II. 
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Figure 3: Structure of human c-Myc protein. The C-terminal domain (CTD) of c-Myc is pivotal for the association with MAX, a basic–helix-loop-helix 
(HLH)-leucine zipper (L Zip)-interacting protein. The N-terminal transactivation domain (NAD) consists of three elements, Myc box-I, II, III (MBI, MBII and 
MBIII), which are the regulatory motifs necessary for c-Myc functions. 

 

Diverse Functions of c-Myc  

    The c-Myc oncoprotein has been shown to 
regulate the expression of about 15% of all human 
genes and to be involved in many physiological func-
tions, such as cell cycle control, metabolism, protein 
biosynthesis, and microRNA regulation. In addition, 
c-Myc is involved in cell apoptosis and senescence, 
and DNA damage responses. c-Myc overexpression 
induces DNA damage response through the genera-
tion of reactive oxygen species and formation of ab-
errant DNA-replication intermediates. DNA damage 
response showed a dual role in tumor progression, 
including tumor suppression and tumor maintenance 
[1, 12, 23, 24]. The endogenous c-Myc thus has inher-
ently contradictory features [24]. Herein, the current 
trends and perspectives in main c-Myc functions are 
summed up.  

Regulation of cell cycle  

The primary functions of c-Myc are to promote 
cell proliferation and to arrest cell differentiation 
[25-28]. The effect of c-Myc is mainly on the regulation 
of G1 phase transition in the cell cycle [33]. c-Myc has 
been shown to be involved in the activation and re-
pression of cyclins D1 and D2, cyclin E, CDK4 (cy-
clin-dependent kinase 4) and cyclin B1 [22, 29-32]. By 
inducing the cyclin D-CDK2 (cyclin-dependent kinase 
2) activity in the G1 phase of the cell cycle, c-Myc 
regulates the cell proliferation [33, 34]. The activation 
of CDK4 and cyclin D2 can lead to segregating 
p27Kip1 (cyclin-dependent kinase inhibitor 1B) from 
the cyclin D2-CDK4 complexes [35]. Under the condi-
tions where KIPI is dissociated with the cyclin 
E-CDK2 complexes, the complexes can be phosphor-
ylated by the CAK (cyclin activating kinase) [22]. 
Other studies demonstrated that at the core promoter, 
c-Myc serves as a repressor of CDK inhibitors P15 and 
P21 through the interaction of c-Myc-Max heterodi-
mer with transcription factors such as MIZ-1 [36-40]. 
But, the control of cellular proliferation and differen-
tiation is a complex process requiring the coordina-

tion of growth factor induced signaling pathways, 
such as NF-κB (nuclear factor κB), HIFs (hypoxia in-
ducible factors). NF-κB is an important DNA-binding 
transcription factors, which can activate of c-Myc and 
cyclin D1 to promote cell proliferation. Meanwhile, 
c-Myc also can repress NF-κB transactivation and 
induce sensitivity to TNF (tumor necrosis fac-
tor)-induced apoptosis [41]. And HIFs can alter 
cell-cycle progression through a putative transcrip-
tion target such as cyclin D1 and indirect modulation 
of p21 and p27. The two α subunits of HIF-α, HIF-1α 
and HIF-2α respectively inhibits cell cycle progression 
and increases proliferation by promoting c-Myc and 
opposing c-Myc [42]. c-Myc is thus considered as a 
direct regulator of cell cycle regulation. 

Ribosome biogenesis and protein synthesis 

Besides as a cell cycle regulator, c-Myc has been 
also shown to coordinate protein synthesis. Many 
observations suggested that protein synthesis is reg-
ulated by c-Myc in multiple ways, in which the tran-
scription of various RNA, iRNA, and ribosomes is 
controlled by the oncogene product [43]. In vivo, the 
rate of protein synthesis in c-Myc-overexpressed fi-
broblasts is three times higher than that in their parent 
cell lines [44]. The mechanisms underlying the regu-
lation of protein synthesis by c-Myc are attributed to 
the regulation of transcription and ribosome biogene-
sis. Ribosome biogenesis has its own role in many 
coordination steps, such as synthesis and processing 
of ribosome RNA and ribosome proteins [43]. Until 
now, many genes of ribosomal proteins have been 
shown to be controlled by c-Myc [29, 45, 46]. Notably, 
c-Myc has a coordination action with nuclear RNA 
polymerases (RNA pol I and III) required in ribosome 
biogenesis and translation [33, 47-49]. Promotion of 
pol III transcription by c-Myc that directly binds 
TFIIIB (transcription factor ШB), a pol III-specific 
transcription factor, and pol III-transcribed tRNA and 
5SrRNA genes plays an essential role in the regulation 
of cell cycle progression [33]. In addition, c-Myc also 
stimulates the transcription of rRNA (ribosomal 
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RNA), resulting in enhanced protein synthesis [47, 48, 
50]. And recently research showed that c-Myc en-
hances protein synthesis during tumorigenesis not 
only through transcriptional control but also by acti-
vating mTOR (the mammalian target of rapamycin) 
-dependent phosphorylation of 4EBP1 (eukaryotic 
translation initiation factor 4E binding protein 1). 
4EBP1 is a master regulator of protein synthesis con-
trol and essential for cancer cells survival in 
c-Myc-dependent tumor development [51]. 

Regulation of stem cell functions  

Many studies have proven that c-Myc plays a 
role in the regulation of stem cell function. With the 
cooperation of n-Myc, c-Myc inhibits the differentia-
tion of stem cells, such as embryonic stem cells [52] 
and neural stem cells [52-54], and maintains their 
pluripotency and self-renewal. In addition, the func-
tions of hematopoietic stem cells are regulated by 
c-Myc and n-Myc [55]. The ability of c-Myc to regulate 
the expression and function of stem cells is thus inex-
tricably linked to its oncogenic acitivity. 

Cell apoptosis 

c-Myc is not only an inducer of cell proliferation, 
but also has the ability to regulate cell apoptosis via 
various signaling pathways [56, 57]. The mechanism 
by which c-Myc induces apoptosis has not been fully 
elucidated. Two major pathways have been, however, 
proposed [57]. One signaling pathway is that c-Myc 
induces expression of ARF, a tumor suppression pro-
tein which is transcribed from an alter-

nate reading frame of the INK4a/ARF locus. When P 

19Arf binds Mdm2 (mouse double minute 2), P53 
(tumor protein p53) is activated and promotes apop-
tosis via activation of proapoptotic genes and cell cy-
cle mediators [56, 58-60]. The other one is that c-Myc 
regulates apoptosis by repressing the expression of 
anti-apoptotic proteins, such as Bcl-2 (B-cell lym-

phoma 2), which blocks mitochondrial outer mem-

brane permeabilization and inhibits cytochrome c 
release from mitochondria [61-63].   

miRNA expression  

Recently, evidence has been accumulating that 
c-Myc also regulates the expression of miRNAs, 
which are a set of small, non-protein-coding RNAs 
and regulate gene expression at the 
post-transcriptional level [64-69]. Little is, however, 
known about how c-Myc regulates the expression of 
miRNAs [70]. So far, many factors, such as SMAD 
(drosophila mothers against decapentaplegic) [71, 72], 
P53 (tumor protein p53) [73], ATM (atax-
ia telangiectasia mutated) [74], MutLα (MLH1-PMS2 
heterodimer) [75], and BRCAl (breast cancer 1) [76], 

have been shown to interact with microprocessor 
complexes and modulate the expression of miRNAs. 
Through enhancing the expression of Drosha (Fig. 4), 
a c-Myc target gene, c-Myc indirectly promotes the 
processing of miRNAs [70]. Proper manipulation of 
the c-Myc-niRNA may lead to a novel therapy for 
malignancies.  

 
 

 
Figure 4: A schematic representation of the c-Myc regulation of 
miRNAs biogenesis. Directly interacting with the E-box of the drosha 
gene promoter, c-Myc activates the transcription of Drosha, which in turn 
promotes the biogenesis of miRNAs. 

 

c-Myc as a Therapeutic Target  

c-Myc is expressed in most human hepatic cells, 
and is closely involved in cell cycle, differentiation, 
protein synthesis, and apoptosis in normal as well as 
neoplastic cells. Hence, c-Myc is one of the most im-
portant targets in the development of cancer treat-
ment [77]. Here, we particularly review current pro-
gress in main small-molecule ligands that can induce 
and stabilize G-quadruplexes formed in c-Myc pro-
moter sequences and inhibit c-Myc/Max dimeriza-
tion, leading to the inhibition of cancer cell prolifera-
tion. Whereas until now people have not succeeded in 
developing any drug targeting c-Myc, which can be 
utilized in clinics [78]. Therefore, it is worth chal-
lenging to create novel small molecule compounds 
that can specifically inhibit the functions of c-Myc and 
be used to alleviate the suffering of cancer patients. 

Small-molecule ligands targeting the c-Myc 
promoter G-quadruplexes  

Advances in the development of anti-tumor 
drugs targeting the c-Myc promoter 
G-quadruplexes. G-quadruplexes have been shown 
to be a promising target for anti-cancer therapy, based 
on their functions in regulating c-Myc transcription 
and suppressing tumorigenicity. As shown in Fig. 1, 
nuclease hypersensitive element (NHE) III1, a G-rich 
sequence of c-Myc promoter, has two different forms, 
transcriptionally active and silenced forms; When the 
G-rich sequence exists in the form of double helix, 
RNA polymerases in cooperation with various other 
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factors can transcribe c-Myc gene, and in contrast, the 
silenced form, containing G-quadruplexes, prevents 
the various transcription factors from interacting with 
the element, leading to a down-regulation of c-Myc 
transcription [77]. Under physiological conditions, 
however, very few G-quadruplexes exist in the c-Myc 
promoter region [7880]. Since G-quadruplexes play 
important roles in the repression of c-Myc, 
small-molecule ligands that can specifically induce 
the formation of and stabilize the G-quadruplex in 
vivo may be developed as promising anti-cancer 
drugs [77, 81]. Until now, only one small-molecule 
compound CX-3543 (Quarfloxin) (Fig. 5) has entered 
phase II clinical trials for neuro-endocrine carcinomas 
(NCT00780663), which targets selectively the Myc 
G-quadruplexes by interacting with the site between 
planes in the π-π patterns in vitro based on the de-
termination through NMR (nuclear magnetic reso-
nance), PCR-stop, and MSi (molecular simulation 
studies). Although CX-3543 was selected as a binder 
of Myc G-quadruplex, it was preferred to disrupt nu-

cleolin/G-quadruplex complexes in the nucleolus to 
interact with the biosynthesis of ribosomal RNA in 
cancer cells and induce apoptosis in cancer cells [82, 
83]. 

Perylene derivatives: Perylene compounds have 
been reported to strongly interact with 
G-quadruplexes [86]. As shown in Fig. 5, a repre-
sentative of these derivatives, N,N’-bis(2-(1- 
piperidino)ethyl)-3,4,9,10-perylenetetracarboxylic 
acid diimide (PIPER), induces the formation of 
G-quadruplex from duplex of the c-Myc Pu27-mer 
sequence through end stacking interaction with 
G-tetrads [84, 85]. In addition, Pivetta and colleagues 
[86] synthesized a number of perylene derivatives 
[Fig. 5] with linear or cyclic amines in the side chains. 
The binding affinity and selectivity of perylenes to 
G-quadruplexes depends on the structure of the side 
chains. To develop novel compounds with higher 
affinity on the basis of the structure-affinity relation-
ship, further synthetic studies should be carried out. 

 
 
 
 
 

 
Figure 5: Some small-molecules that bind c-Myc promoter G-quadruplexs. 
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Cationic porphyrins: As a G-quadruplex ligand 
and a representative of cationic porphyrins, TMPyP4 
(Fig. 5) [87] is of special concern. Based on microcalo-
rimetric (ITC, isothermal titration calorimitry, and 
DSC, differential scanning calorimetry), spectrometric 
(UV-vis and CD, circular dichroism), and molecular 
simulation (MSi) studies, TMPyP4 has been proven to 
down-regulate the expression level of c-Myc through 
combining with G-quadruplexs of Pu27 [77]. Upon 
incubation with TMPyP4, G-quadruplex structure 
undergoes transformation from a parallel type to hy-
brid with parallel and anti-parallel types, with the 
ratio of 1:4 at a saturated condition [89]. In addition, 
TMPyP4 can also interact with some G-rich sequences 
and stabilize i-motif structures that promote the for-
mation of G-quadruplexes [89, 90. TMPyP4 is thus a 
promising agent as a lead compound for a novel an-
ti-cancer therapy targeting G-quadruplexes [91]. 
Owing to the poor selectivity of TMPyP4, however, 
TMPyP4 itself cannot be used as a therapeutic. Hurley 
and colleagues designed and synthesized a novel de-
rivative, Se2SAP (Fig. 5), with a porphyrin ring core 
[92]. Compared to TMPyP4, Se2SAP has higher affin-
ity to G-quadruplexes of c-Myc in comparison with 
double-stranded DNA and other G-quadruplexes. 
Se2SAP can convert the parallel G-quadruplexes of 
the c-Myc Pu27 into a hybrid G-quadruplex with par-
allel and anti-parallel structures. Based on these 
studies, Se2SAP is hopefully to become the first 
compound that can identify different conformations 
of G-quadruplexes because of its lower photosensi-
tiveness and less toxicity [12].  

Quindolines: Gu and colleagues designed and 
synthesized a series of quindolines [93], which can 
induce the sequence of the c-Myc promoter Pu27 to 
form G-quadruplex structure and stabilize it. By re-
pressing the transcription of c-Myc in HepG2 cells, 
these compounds inhibit the growth of tumour cells. 
These derivatives have higher affinity to 
G-quadruplexes than to other DNA structures. The 
side chains are shown to determine the binding affin-
ity and selectivity. Quindoline derivatives with ter-
tiary amine in the side chains (Fig. 5), such as 
SYUIQ-05, are more likely to interact with c-Myc 
G-quadruplexes than telomere G-quadruplexes [94]. 
The π-π docking is considered to be the primary de-
terminant in the interaction. 

Hoechst 33258: It has been demonstrated that the 
synthetic dye Hoechst 33258 (Fig. 5) can convert Pu27 
to G-quadruplexes [84]. The compound interacts with 
AAGT loop of G-quadruplexes of Pu27. 

Alkaloids: From a long-term perspective, natural 
products have been a prodigious source of com-
pounds with therapeutic activity and low toxicity in 
the development of tumor-selective therapies [95, 96], 
of which telomestatin has been shown to be one of the 
most potent G-quadruplex ligands [97]. Thus, natural 
products are a pre-existing small molecule library for 
screening new anti-cancer targeted drugs [98]. Natu-
ral alkaloids, a series of compounds of traditional 
Chinese medicine (TCM), can interact with DNA to 
form complexes [99]. Ji and coworkers examined the 
interaction of a number of natural alkaloids [Fig. 6] 
with G-quadruplexes formed by c-Myc Pu27.  

 
 

 
Figure 6: Structures of some natural alkaloids. (A) Structures of four natural alkaloids with similar structures: sanguinarine (San), palmatine (Pal), 
berberine (Beb), tetrahydropalmatine (Tep) and several Beb derivatives; (B) structures of 7 alkaloids with a backbone of bis-benzltetrahydroisoquinoline. 
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Among them, sanguinarine (San), beberine (Beb), 
palmatine (Pal), and tetrahydropalmatine (Tep) (Fig. 
6) can induce the formation of and stabilize 
G-quadruplexes. Except for Tep, the examined com-
pounds contain unsaturated ring C and positively 
charged centers N+ that enhance the interaction with 
G-quadruplexes through expanding the conjugate 
system. Especially, the study by Ji et al showed that 
San had the highest ability to stabilize the structure of 
G-quadruplexes and inhibit cell growth and that the 
interaction is mediated by external stacking or inter-
calating [100]. Other alkaloids with similar structures 
in Fig. 6 also have comparable ability to stabilize 
G-quadruplexes. A 9-substituted derivative of Beb 
with an alkyl side chain carried with a terminal amino 
group synthesized by Huang and colleagues had 
higher binding affinity to G-quadruplexes than the 
original compound [101, 102]. Furthermore, quino-
lino-benzo dihydroisoquindolium (QBDI) was syn-
thesized by modifying the 9-substituted Beb. All of 
the Beb and QBDI derivatives can interact with the 
c-Myc G-quadruplex with high selectivity [103].  

Metal complexes: Varieties of metal-containing 
small molecules have been demonstrated to interact 
with G-quadruplexes [104, 105]. As clinical drugs 
used in chemotherapy, cisplatin and its analogs have 
conceivable adverse effects, such as renal toxicity and 
treatment-induced resistance. It is thus indispensable 
to design novel, well-tolerated metal complexes for 
anti-cancer therapies [106, 107]. In recent years, a 
number of metal complexes have been reported to 
interact with G-quadruplexes and stabilize them 
[108]. Platinum (II) complexes (Pt (II)) can serve as 
stabilizers of G-quaduplexes [108, 109], since they can 
strongly interact with G-quadruplexes. It is worthy of 
note that these studied complexes show only weak 
binding affinity to duplex DNA. Wang and coworkers 
designed and synthesized a Pt (II) (Fig. 5) which im-
proved the selectivity of Pt (II) binding to 
G-quadruplexes over duplex DNA. Based on the ex-
perimental data, [Pt(Dip)2](PF6)2 shows greater bind-
ing affinity to c-Myc parallel G-quadruplexes than to 
duplex DNA [110]. In addition, many other complex-
es containing Zn+, Ni+, Cu+, Mn2+, Ru2+, V4+ and so on, 
have been evaluated for binding to G-quadruplexes 
[109]. As well as traditional organic heteroaromatic 
compounds, various metal complexes have emerged 
as an increasing important type of compounds in 
search of novel G-quadruplex binders with strong and 
selective affinity and potential anticancer activity. 

Many small-molecule ligands discussed above, 
such as quindolines [86], cationic porphyrins [93], 
platinum complexes [111], can repress the transcrip-

tion of c-Myc by inducing the formation of c-Myc 
G-quadruplexes and stabilizing them. Most 
G-quadruplex ligands containing aromatic planes can 
stack on the end of G-quadruplexes by a π-π interac-
tion [105]. Only a few ligands, such as Hoechst 33258, 
have been reported to bind to G-quadruplex grooves 
and loops [112], which have high selectivity in inter-
acting with different topologies of G-quadruplexes 
[113]. Also, Chen et al. predicted that 3, 
3’-diethyloxadicarbocyanine (DODC) can bind to 
G-quadruplex grooves [114], and it was proved in 
their subsequent studies [115, 116].  

Carbamide and its analogues: Different from 
most above-discussed compounds with a few large 
conjugated aromatic planes, Carbamide 1 (Fig. 7) 
identified by Ma and colleagues, a natural product, 
can act as a stabilizer of c-Myc G-quadruplexes 
through binding with G-quadruplex grooves. NMR 
and MSi revealed that carbamide 1 could control 
c-Myc gene transcription. The interaction of car-
bamide analogues 1-5 with G-quadruplexes was ex-
amined and it was demonstrated that carbamide 1 
with variable diphenyl ether units had the highest 
activity in binding to G-quadruplexes [117].  

Other ligands: In process of exploring 
small-molecule ligands, the effect of telomerase in-
hibitors (Fig. 7) on the stabilization of c-Myc promoter 
G-quadruplexes was examined. It was demonstrated 
that a variety of telomerase inhibitors effectively sta-
bilized G-quadruplexes of the c-Myc promoter, and 
that the affinity of compounds TMPyP4 and 12459 to 
the c-Myc promoter G-quadruplexes was two-fold 
higher than that to the G-quadruplexes of telomere 
[118].  

 Binding modes of ligands to the c-Myc gene 
promoter G-quadruplexes. Through targeting 
G-quadruplexes, small-molecule ligands play pivotal 
roles in the regulation of c-Myc gene transcription. 
There are three basic binding modes of the ligands 
with G-quadruplexes (Fig. 8) [104, 119]: (1) external 
stacking: ligands with a π-delocalized system stack on 
the end of G-quadruplexes via π-π stacking; (2) in-
tercalating: ligands insert into the interspace of two 
G-tetrad planes; and (3) groove or loop nonspecific 
binding: ligands bind to the grooves or loops of the 
G-quadruplexes. In the absence of the interaction 
between internal cation and electrical body of 
G-quadruplexes, the binding of the molecules at the 
end of the G-tetrad is easier and more stable than in-
tercalating in lower energy [120]. Therefore, the 
small-molecule ligands are prone to interact with the 
c-Myc G-quadruplexes in an external stack-
ing-manner. 
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Figure 7:  Chemical structures of a variety of G-quadruplex ligands. (A) Structures of carbamide and its analogues; (B) structures of 
low-molecular weight ligands of telomerase promoter with affinity to the c-Myc gene promoter G-quadruplexes 

 
 

 
Figure 8: Three modes of interaction of small ligands with 
G-quadruplexes. 

 

Small molecule modulators of c-Myc/Max 
dimerization  

c-Myc, a DNA-binding transcriptional regulator, 
functions through heterodimerization with another 
basic-helix-loop-helix leucine zipper (BHLH-LZ) 
transcription factor, MAX [1, 121]. The c-Myc/Max 
complex recognizes DNA response elements, such as 
a specific sequence E-box or other target genes to ac-
tivate c-Myc-mediated transcription [121]. The inter-
action and heterodimerization between c-Myc and 
Max are required in the regulation of all known func-
tions of c-Myc, including regulation of cell prolifera-
tion, apoptosis, and target gene transcription [1, 2, 
121]. There are two ways to modulate the c-Myc/Max 

functions (Fig. 9): to inhibit c-Myc/Max dimerization 
and to disrupt their DNA recognition [122]. Some 
small molecules can downregulate c-Myc functions 
through not only inducing the formation of and stabi-
lizing G-quadruplexes, but also targeting c-Myc in a 
different manner, such as inhibiting c-Myc/Max di-
merization or their binding to E-box motifs, and dis-
turbing the interaction of c-Myc with other factors. 
Thus, small molecules that can inhibit the c-Myc/Max 
dimerization or binding to E-box motifs may serve as 
potential tumor therapeutics.   

Small-molecule inhibitors of c-Myc/Max di-
merization. As well as small nonpeptide molecules, 
which interfere with the dimerization of c-Myc/Max, 
a number of small-molecule inhibitors of c-Myc/Max 
dimerization have been discovered in the last decade 
[123-125]. However, the design of c-Myc inhibitors is 
still challenging due to a lack of obvious binding sites 
in the c-Myc/Max interface [1]. Most of the inhibitors 
thus far obtained were screened from chemical li-
braries [126]. The peptide mimetic compound IIA6B17 
(Fig. 10) was identified as the first small- molecule 
inhibitor of c-Myc/Max by Vogt and colleagues [127]. 
Recently, using a reporter system, it was shown that 
IIA6B17 inhibited c-Myc transcription and interfered 
with c-Myc/Max dimerization [128]. These high 
throughput screening studies pave the way of the 
discovery of new inhibitors of c-Myc/Max heterodi-
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mer or c-Myc/Max/DNA complex formation 
[123-125, 129-135]. Likewise, a compound NY2267 
(Fig. 10) and its structurally related derivatives were 
shown to strongly inhibit c-Myc/Max binding to 
DNA by groups of Janda and Vogt [124]. NY2267, 
however, indiscriminately inhibits transcription me-
diated by c-Jun and c-Myc, since they are similar in 
their dimer structures [123]. Because all of these small 
molecules so far identified require high concentra-
tions for the inhibition of c-Myc/Max/DNA complex, 
it has been difficult to develop c-Myc-targeted an-
ti-cancer therapeutics [124]. Prochwnik and 
co-workers designed and reported seven 
small-molecule inhibitors of c-Myc/Max including 
10058-F4 and 10074-G5 (Fig. 10) [136]. They first syn-
thesized derivatives based on the structure of 
10058-F4 (IC50 = 49 μM on HL60 cells), of which 

28RH-NCN-1 exhibited more potent activity in inhib-
iting the binding of c-Myc/Max to E-box motifs than 
the parent compound 10058-F4 [124, 129]. On the basis 
of the structure-activity relationship of the deriva-
tives, pharmacophore analysis demonstrated that 
31122-64-2 and 307545-04-6 inhibited the 
c-Myc/Max/DNA complex formation through inhib-
iting DNA binding of c-Myc [137]. Then, it was re-
ported that JY-3-094 (Fig. 10), an analog of 10074-G5, 
could interfere with the association between recom-
binant c-Myc and Max five-times more efficiently than 
the parent compound, whereas the analog has poor 
cell permeability. Thus, a p-carboxylic acid moiety of 
the analog was esterified to optimize the cellular up-
take and retention. The prodrug compound JY-3-094 
[138] and its derivatives would warrant further opti-
mization of small-molecule c-Myc/Max inhibitors.  

 

 
Figure 9: Transcriptional regulation by c-Myc and inhibition of c-Myc functions by small molecules. Left: The binding of c-Myc/Max dimers to 
E-box elements (CACGTG) activates the transcription of c-Myc-regulated genes. Right: The inhibition of the c-Myc/Max dimerization or c-Myc/Max DNA 
binding represses the transcription of genes regulated by c-Myc/Max.  

 

 
Figure 10: Small molecules capable of inhibiting transcriptional regulation by c-Myc. (A) Small-molecule inhibitors of c-Myc/Max dimerization; 
(B) small-molecule inhibitors of c-Myc/Max/DNA complex formation. 
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Berg and co-workers designed and synthesized 
two other small molecules, the pyrazolo [1,5-a] py-
rimidine Mycro l and its derivative Mycro 2 (Fig. 10), 
which inhibit the interaction between c-Myc and Max 
[125]. Based on the structure of the compounds, py-
razolo [1,5-a] pyrimidine Mycro 3 was also synthe-
sized, which had high selectivity and inhibited 
c-Myc/Max dimerization and conjugation with DNA 
[131]. Because Mycro 3 is potent and selective for 
c-Myc in whole cell assays, with weak inhibitory ac-
tivity against AP-1, this compound has a superior 
specificity profile to its predecessors. Mycros are the 
first inhibitors of c-Myc/Max dimerization, and also 
inhibit c-Myc/Max/DNA binding, in which the 
compounds preferentially interact with c-Myc/Max 
over other related dimeric transcription factors [125].   

The mechanisms underlying the inhibition of 
c-Myc/Max heterodimerization by these small mole-
cules have been unclear until recently. Small-molecule 
inhibitors were shown to bind one of the three dis-
crete binding sites on the c-Myc bHLH-Zip domain 
[132, 139]. Using a fluorescence polarization (FP) as-
say, Metallo and colleagues demonstrated that 
10058-F4 and 10074-G5 interacted with c-Myc402-412 
and c-Myc363-381, respectively. These two com-
pounds could bind to their specific amino acid resi-
dues simultaneously and independently. Besides 
these two distinct binding sites, a third one in the 
c-Myc bHLH-Zip domain was identified, with which 
the compound 10074-A4 could interact. It is worthy of 
note that the three binding sites are functionally in-
dependent and mutually exclusive [132]. When the 
molecules bind to their distinct binding sites of c-Myc, 
the oncoprotein may form a more rigid and defined 
conformation than c-Myc/Max heterodimer, resulting 
in the dissociation between c-Myc and Max [139].  

Small-molecule inhibitors of c-Myc/Max DNA 
binding. Inhibitors of c-Myc/Max/DNA complexes 
block c-Myc induced transcription. It is worth noting 
that two compounds, MYRA-A and NSC308848 (Fig. 
10), have high selectivity in targeting the DNA bind-
ing domain of c-Myc/Max. The inhibitors thus can 
suppress the expression of gene products regulated 
by c-Myc and the induction of apoptosis [136, 140].  

Future Prospects  

Because of its oncogenic properties in neoplastic 
cells, c-Myc has become an interesting and feasible 
target for novel therapies of a variety of human ma-
lignancies related to c-Myc. It has been shown that 
several small molecules target the transcription of 
c-Myc gene directly or the c-Myc downstream path-
way. Especially, G-rich region of c-Myc promoter has 
become a promising target. Many reports demon-
strate that low-molecular weight compounds have a 

potential to be developed into therapeutic drugs in 
indivisualized cancer therapy. Even with the advanc-
es in the field of drug design and in the mechanisms 
underlying the c-Myc overexpression in tumor cells, it 
is still difficult to obtain highly specific and active 
anti-cancer drugs. Through the identification of vari-
ous small molecular compounds that interfere with 
c-Myc, it may be possible to develop novel and effec-
tive therapeutic agents to treat cancer.  
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