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Abstract: As one type of object detection, small object detection has been widely used in daily-life-related
applications with many real-time requirements, such as autopilot and navigation. Although deep-learning-
based object detection methods have achieved great success in recent years, they are not effective in small
object detection and most of them cannot achieve real-time processing. Therefore, this paper proposes a
single-stage small object detection network (SODNet) that integrates the specialized feature extraction and
information fusion techniques. An adaptively spatial parallel convolution module (ASPConv) is proposed
to alleviate the lack of spatial information for target objects and adaptively obtain the corresponding
spatial information through multi-scale receptive fields, thereby improving the feature extraction ability.
Additionally, a split-fusion sub-module (SF) is proposed to effectively reduce the time complexity of
ASPConv. A fast multi-scale fusion module (FMF) is proposed to alleviate the insufficient fusion of both
semantic and spatial information. FMF uses two fast upsampling operators to first unify the resolution of
the multi-scale feature maps extracted by the network and then fuse them, thereby effectively improving
the small object detection ability. Comparative experimental results prove that the proposed method
considerably improves the accuracy of small object detection on multiple benchmark datasets and achieves
a high real-time performance.

Keywords: small object detection; adaptive spatial parallel convolution; multi-scale fusion

1. Introduction

Since the advent of deep convolutional neural networks, the performance of object
detection methods has been rapidly improving. At present, the representative object detec-
tors, as the core components of various object detection methods, are mainly divided into
two categories: (1) two-stage proposal-based detectors with the advantage of accuracy [1,2];
(2) single-stage proposal-free detectors with the advantage of speed [3,4]. Many recently
proposed two-stage detectors [5–7] focus on improving the accuracy of object detection.
Some single-stage detection frameworks, such as YOLO [8,9] and those using improved
YOLO, are applied to different datasets such as MS COCO [10] and PASCAL VOC [11], and
their performance is better than some two-stage detectors. Additionally, the real-time per-
formance of these single-stage detectors shows an improvement over two-stage detectors.
As an important objective evaluation indicator, the frames per second (FPS) of the real-
time performance are generally greater than or equal to 30 [2,12]. Therefore, single-stage
detectors [4,9,13] have been widely used in scenes with high real-time requirements.

Most of the current mainstream object detection frameworks have not made special
improvements for small objects. However, a large number of cases involve small objects in
actual scenes, such as recognizing a disaster victim in an unmanned aerial vehicle (UAV)
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search-and-rescue, and recognizing distant traffic signs and vehicles using autopilot. In
this paper, both the training and testing stages of small object detection are implemented
on images with a resolution range 51 × 72 ≤ size ≤ 4064 × 6354. According to the
image resolution range used in this paper, the objects with a resolution of 32 × 32 or
lower are generally called small objects. When the objects’ resolution is 20× 20 or lower,
the corresponding objects are specifically called tiny objects. As shown in Figure 1, the
absolute size represents the actual pixel size of the object in the image, and the relative
size represents the ratio of the pixel size of the object in the image to the entire image.
As shown in Figure 1a–c, TinyPerson [14], Tsinghua–Tencent 100K [15], and unmanned
aerial vehicles’ detection and tracking (UAVDT) [16] are three small object datasets, which
contain a high number of UAV and autopilot object detection scenes, respectively. The
resolution range of all the images in TinyPerson is 497× 700 ≤ size ≤ 4064× 6354. The
resolution of all the images in both Tsinghua–Tencent 100K and UAVDT is 2048× 2048
and 1024 × 540, respectively. The resolution range of all the images in MS COCO is
51× 72 ≤ size ≤ 640× 640. As shown in Figure 1d,e, when objects have a small absolute
or relative size, the object detection performance of existing detectors decreases to a certain
extent. Many small object detection methods have been proposed to meet the needs
of practical applications. Most of them were developed based on the improvement of
existing object detection methods. Additionally, these developed methods mainly focus on
improving the accuracy of small object detection. However, a high real-time performance
of detectors is usually necessary in small object detection scenes.

Figure 1. Dataset visualization analysis. (a–c) are sample images of TinyPerson, Tsinghua–Tencent
100K, and UAVDT benchmark datasets, respectively. (d,e) are the statistical histograms of the absolute
and relative size of objects in the datasets.
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Positioning and classification are two main object detection subtasks [17]. Therefore,
object detection should not only accurately locate all objects in an image, but also correctly
identify their categories. Object detection tasks usually require the spatial and semantic
information extracted from neural networks to assist in object positioning and classifica-
tion [18,19]. However, due to the inconspicuous/weak features of small objects, small object
detection needs to be optimized for the following two aspects. First, the existing research
results show that the surrounding environment is essential for humans to recognize small
objects [20]. In object detection, local context information represents the visual information
of the area around the object to be detected [21]. Additionally, the experimental results
of existing computer vision research show that the proper modeling of the spatial back-
ground can improve the accuracy of object detection [22]. Therefore, the existing methods
capture the local context information of an object through a relatively large receptive field,
thereby trying to obtain the abundant fine-grained spatial information of the object [23–26].
However, the excessive use of large-scale convolution kernels with large receptive fields
causes an increase in the time and space complexity of detection models, which is not
conducive for single-stage detectors to achieve real-time performance. Second, due to
their small size, the spatial information of small objects usually disappears in the feature
transmission process. In neural networks, image features are gradually transmitted to
deep layers. Additionally, the corresponding image size simultaneously decreases. If any
relevant processing is not applied to the small objects shown in the image, the related small
objects disappear in the feature transmission process. The multi-scale fusion of feature
maps between different network levels is an effective way to solve the above issue [21].
For example, some existing solutions, such as [6,27–29], generally adopt a top-down path
to construct a feature pyramid [27], thereby alleviating feature disappearance to a certain
extent. Additionally, a feature pyramid can be used to fuse both the spatial and semantic
feature information, which can optimize small object detection.

This paper proposes a SODNet composed of an adaptively spatial parallel convolu-
tion module (ASPConv) and fast multi-scale fusion module (FMF) to optimize both the
extraction of spatial information and fusion of spatial and semantic information, thereby
achieving real-time processing. ASPConv is used to adaptively extract features by using
multi-scale receptive fields. FMF optimizes both the semantic and spatial information of
output features to achieve feature map upsampling and multi-scale feature fusion. Addi-
tionally, the real-time-related factors are considered in both modules to ensure the high
real-time performance of the proposed SODNet.

The proposed SODNet is applied to four public datasets, TinyPerson, Tsinghua-
Tencent 100K, UAVDT and MS COCO. According to the comparative experimental results,
the proposed SODNet can effectively improve the accuracy of small object detection in
real-time. This paper has three main contributions, as follows:

• This paper proposes an adaptive feature extraction method using multi-scale receptive
fields. Due to the small proportion in the image and inconspicuous features, the spatial
information of small objects is always missing. The proposed method divides the
input feature map equally among the channels and performs feature extraction on
the separated feature channels in parallel. Additionally, the cascading relationship
of multiple convolution kernels is used to achieve the effective extraction of local
context information for different channels. Therefore, the features related to small
objects with multi-scale spatial environmental information can be obtained by fusing
the extracted information.

• This paper proposes a new feature map upsampling and multi-scale feature fusion
method. This method uses both nearest-neighbor interpolation and sub-pixel convolu-
tion algorithm to map a low-resolution feature map with rich semantic information
to a high-resolution space, thereby constructing a high-resolution feature map with
rich semantic features. A feature map with sufficient spatial and semantic information
is obtained by the fusion of the constructed feature map and a feature map with rich
spatial information, thereby improving the detection ability of small objects.
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• This paper designs a one-stage, real-time detection framework of small objects. The
ASPConv module is proposed to extract image features from multiple channels in
parallel, which effectively reduces the time complexity of feature extraction to achieve
real-time small object detection. The FMF module is proposed to apply both nearest-
neighbor interpolation and sub-pixel convolution to achieve a fast upsampling. The
processing time of multi-scale feature map fusion is reduced by improving upsampling
efficiency to ensure real-time small object detection.

The rest of this paper is organized as follows: Section 2 discusses the related work;
Section 3 describes the details of the proposed method, including the implementation of
both ASPConv and FMF modules; Section 4 presents the experimental results, a com-
parative analysis, and an ablation study on TinyPerson, Tsinghua-Tencent 100K, UAVDT
and MS COCO datasets to verify the effectiveness of the proposed method; and Section 5
concludes the paper.

2. Related Work

With the rapid development of deep learning, the performance of object detection
methods was accordingly improved. Object detectors are usually classified into two
categories: two-stage detectors [2,5–7] and single-stage detectors [4,8,9,13]. Although most
of the existing methods achieved a relatively good object detection performance, they do
not have any specialized optimization for small objects. However, most existing small
object detection methods were proposed based on the optimization of conventional object
detection methods. Generally speaking, small object detection methods usually optimize
the following aspects:

Feature extraction. Well-designed convolution modules can adaptively extract the
rich feature information of small objects in complex scenes.Dilated convolution [24,30]
controls the size of receptive fields by changing the sampling center distance. Receptive
field block net (RFB) [23] introduces a dilated convolution on the basis of inception [25],
and strengthens the network extraction ability by simulating the receptive fields of human
vision. Deformable convolution [31] adaptively learns the unique resolution of a single
object to adapt it to multi-scale features. Selective kernel networks (SKNet) [32] design a
selection module to adaptively adjust the size of receptive fields according to the multi-
scale input information. These methods use a specifically designed convolution module to
make receptive fields rich enough to adjust for the inconsistency in object size. However,
they do not focus on improving the detection performance of small objects and ignore the
importance of spatial information.

High-resolution features. Since small objects are difficult to find and locate, spatial
information is necessary, which can easily be obtained from high-resolution feature maps.
Li et al. [33] proposed a feature-level super-resolution method, specialized for small object
detection, which used the features of large objects to enhance the features of small objects
through Perceptual GAN. Noh et al. [34] first applied super-resolution techniques to
enhance the region of interest (RoI) features of small objects. Then, appropriate high-
resolution object features were used as supervision signals in the model training process
to enhance the model’s small object learning ability. The efficient sub-pixel convolutional
neural network (ESPCN) [35] performs super-resolution reconstruction through sub-pixel
convolution and uses a series of convolution operations to reconstruct low-resolution
features into high-resolution features, to achieve the purpose of upsampling. A reference-
based method proposed by Zhang et al. [36] uses the rich texture information of high-
resolution reference images to compensate for the missing details in low-resolution images.
Although these methods are helpful when obtaining high-resolution feature maps, they
do not fully fuse the spatial and semantic information in the features. Therefore, it is still
difficult to detect small objects.

Multi-scale feature maps. Many studies have proved that the fusion of multi-scale
feature maps is also conducive to small object detection. Due to the slow speed of image
pyramids and high memory consumption, the current mainstream object detection methods
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use feature pyramid structures to achieve cross-scale connections and fusion. Feature
pyramid networks (FPN) [27,37] use a top-down method to build one feature pyramid and
fuse the features of different scales to improve the multi-scale detection performance. The
path aggregation network (PANet) [28] adds a bottom-up path based on FPN to transmit
detailed spatial information. Gated feedback refinement network (G-FRNet) [38] is a gated
feedback optimization network. It adds a gated structure based on FPN. It uses the feature
layer with rich semantic information to filter the fuzzy information and ambiguity in the
feature layer with rich spatial information. Therefore, the transmission of key information
is achieved to block ambiguous information. The bi-directional feature pyramid network
(BiFPN) structure used in an efficient detection net [6] overlaps the optimized FPN in a
repeated form to improve feature richness. Although these feature pyramid-like structures
improve the performance of multi-scale detection, they cannot improve the detection
performance on small objects.

Therefore, this paper proposes the ASPConv module to perceive the local context of the
target through multi-scale receptive fields and enrich the spatial information. In addition,
this paper proposes the FMF module to integrate high-resolution feature map generation
and multi-scale feature map fusion. Both spatial and semantic feature information is fused.
The suitable high-resolution feature maps are generated for small object detection.

3. The Proposed Method

Figure 2 shows the structure of the proposed SODNet. In the feature extraction stage,
the detailed spatial information of small objects is first extracted by the ASPConv module.
Then, further feature extraction is performed to obtain the feature maps Ci, i = 1, 2, 3, 4
that were downsampled by the sub-backbone in the proposed backbone module. The
obtained feature maps contain features from different network levels and can be used in
the subsequent feature fusion (shown in Table 1). In the feature fusion stage, the element-
by-element addition to the horizontal connection of FPN is replaced by a concatenation
operation and the fine-tuned FPN structure is applied to the fusion of feature maps to
obtain the new feature maps P2, P3, and P4. Specifically, the feature map P4 is obtained by
the convolution of the feature map C4, the feature map P3 is obtained by fusing the feature
maps P4 and C3, and the feature map P2 is obtained by fusing the feature maps P3 and C2.
Additionally, the FMF module maps the low-resolution feature maps (P2, P3, and P4) with
rich semantic information to the high-resolution space, and integrates the feature map C1
with rich spatial information from the ASPConv module to generate the high-resolution
feature map P1 with rich semantic and spatial information. Therefore, the obtained feature
maps Pj, j = 1, 2, 3, 4 can be used to improve the detection ability of small objects.

As shown at the bottom of Figure 2, the predictor uses four independent convolu-
tion units to perform positioning and classification. The feature maps Pj, j = 1, 2, 3, 4 are
processed to obtain the detection results [9]. The size and step length of the convolution
kernel of each convolution unit are 1× 1 and 1, respectively. The predictor predicts the
categories and bounding boxes of all objects in the corresponding feature maps through
these convolution units. In the training stage, the categories and bounding boxes obtained
by the predictor and ground-truth are classified and regressed. The loss of each image is
calculated, and the network weights are continuously updated through backpropagation
until the model converges. In the inference stage, threshold filtering and non-maximum
suppression are applied to the classification and positioning results obtained by the predic-
tor to eliminate overlapping or abnormal bounding boxes and obtain the final detection
result. This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results and their interpretation, as well as the experimental
conclusions that can be drawn.
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Figure 2. The structure of SODNet. SODNet consists of four components. (1) ASPConv module
(shown in Section 3.1) extracts rich spatial information of objects from the input image. (2) The
proposed backbone module (shown in Section 3.2) is composed of two components: sub-backbone and
FPN. The sub-backbone further extracts the output features of the ASPConv module and generates
multi-scale feature maps through FPN. (3) FMF module (shown in Section 3.3) quickly fuses both
semantic and spatial information in multi-scale feature maps to generate high-resolution feature
maps that are conducive to small object detection. (4) Predictor (shown in Section 3.4) classifies and
locates the fused multi-scale feature maps.

3.1. Adaptively Spatial Parallel Convolution Module

As shown in Figure 3, this paper proposes an adaptively spatial parallel convolution
module to enable neurons to adaptively learn the spatial information of objects in the original
image. This module can associate with local context to obtain rich spatial information. Conv
module consists of Conv2d, Bacth Normalization [39] and Hardswish function [40]. Conv2d
represents a standard convolution operation. k represents the size of the convolution kernel. s
is the stride (unless specified, the default size of the convolution kernel is 3× 3; the default
stride is 1). C represents the channel number of a feature map. ASPConv module first
downsamples the original image to obtain the feature map X. Then, the obtained feature map
X is equally divided on the channel to obtain feature maps X1 and X2. Next, the obtained
feature maps X1 and X2 are convolved in a parallel manner. Additionally, the cascading
relationship of multiple convolutions is used to realize the effective extraction of the local
context of the objects in the feature maps X1 and X2. Subsequently, all the information is
fused by a jumping connection [41] to obtain the detailed spatial information that is conducive
to the detection of small objects. Finally, downsampling and further feature extraction are
performed on the fused feature map to obtain the feature map C1.

C
1

Figure 3. The structure of ASPConv. The multi-scale local context information of small objects is first
adaptively learned in a split-fusion sub-module, and then fused to form detailed spatial information.
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Local context information. The size of receptive fields (RF) is important for the recogni-
tion of small objects. The size of the area mapped on the original image is defined through
the pixels on the feature map output by each convolutional neural network layer [42]
as follows:

RFi+1 = RFi + (k− 1)×
n

∏
i=1

Stridei (1)

where RFi+1 represents the receptive field of the (i+1)-th layer (the current layer), RFi
represents the receptive field of the i-th layer (the previous layer), Stridei represents the
stride in the i-th layer of convolution or pooling operation, and k represents the convo-
lution kernel size of the (i+1)-th layer (the current layer). According to the calculation of
Equation (1), the pixel points on the feature map have a mapping area size of 3, 7, and 11
on the original image, respectively, after the convolution of X, X1, and X2. Therefore, the
parallel convolution operations in the ASPConv module can capture the multi-scale local
context information. In addition, unlike some existing structures [24,25], the ASPConv
module captures rich local context information through the multi-convolution cascading
relationship of the SF sub-module. Additionally, the reduction in feature maps in the SF
sub-module also effectively reduces the time complexity of ASPConv.

Split. Given any feature map X ∈ RC×H×W , two transformations are first performed
on the feature map, and then the feature map is divided into two components, F1 : X →
X1 ∈ R C

2 ×H×W and F2 : X → X2 ∈ R C
2 ×H×W . The transformation F1 consists of Conv2d,

Batch Normalization [39], and Hardswish function [40]. The transformationF2 is composed
of Conv2d. To further improve the efficiency, two convolutions with 3× 3 kernel size are
used to replace the convolution with 5× 5 kernel size on the channel of the feature map
X1, so the amount of both the calculation and parameters can be reduced under the same
receptive field conditions [43].

Fuse. The multi-scale local context information of objects is adaptively learned and
fused in a different receptive field size to construct the spatial position relationship between
objects and environment. Therefore, the spatial information that is conducive to the
detection of small objects can be obtained. The calculation process of the fused feature map
X′3 is given as follows:

X′3 = δ(B(X3)) + X (2)

where δ(·) and B(·) represent Hardswish function and Batch Normalization, respectively,
and X3 ∈ RC×H×W . X3 is the intermediate result of the feature maps X1 and X2 after
parallel convolution and concatenation operation, which is defined as follows.

X3 = Cat[F1,F2] = Cat[C(G(X1)), C(X2)] (3)

where Cat[·] represents a concatenation operation, C(·) represents a standard convolution
operation with a 3× 3 kernel size and a stride of 1, and G(·) = δ(B(C(·))).

Extract. After the Split and Fuse operations, the ASPConv module effectively fuses the
multi-scale local context information from the same layer, enriches the spatial information
and obtains the fused feature map X′3. Subsequently, the feature map X′3 is downsampled
to reduce its resolution and a further feature extraction is performed to obtain the output
feature map Xout of the ASPConv module, which is defined as follows:

X4 = G
(
X′3
)

(4)

Xout = X4 + G(G(X4)) (5)

Finally, the ASPConv module effectively extracts and fuses the multi-scale local context
information through operations Split, Fuse, and Extract, and obtains a feature map Xout
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with rich spatial information, which corresponds to the feature map C1 in Figure 2. In
addition, the feature map C1 is applied to the multi-scale feature map fusion used in the FMF
module (Section 3.3) to improve the small object detection ability of the proposed model.

3.2. Proposed Backbone Module

As shown in Figure 4, the proposed backbone module consists of a sub-backbone
and FPN. The sub-backbone is mainly improved by the cross-stage partial darknet (CSP-
DarkNet) [9] to balance the speed and accuracy. The original structure of CSPDarkNet is
Ci, i = 1, 2, 3, 4 shown in Table 1. In the sub-backbone, the structure of the feature map C1
is changed to the proposed ASPConv module. Therefore, feature maps with rich spatial
information can be obtained, which are conducive to small object detection. In addition, as
shown in Table 1, the original PANet [28] is replaced by FPN [27] in the multi-scale feature
map (Pj, j = 2, 3, 4) generation stage. The specific implementation details of FPN are shown
in Figure 4.
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Figure 4. The structure of the proposed backbone module.

Table 1. Structure comparison between Yolov5s [9] and the proposed SODNet. Ci and Pj are consistent
with the definitions in Figure 2. CBTC1 and CSBTC are consistent with the definitions in Figure 4.

Layer Name
Layer Components

Yolov5s [9] SODNet (Proposed)

C1
Focus [9] ASPConv (Proposed)

CBTC1 (BTi × 1)

C2 CBTC1 (BTi × 3) CBTC1 (BTi × 3)

C3 CBTC1 (BTi × 3) CBTC1 (BTi × 3)

C4 CBTC1 (BTi × 1) CBTC1 (BTi × 2)

P2/P3/P4 PANet [28] FPN [27]

P1 - FMF (Proposed)

In Figure 4, the sub-backbone is composed of the CBTCi and CSBTC modules, respec-
tively. They all consist of some convolution units and feature extraction units, in which the
BTCi module obtained after CSP-related operations is the basic component of CBTCi and
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CSBTC modules. N feature extraction units of BTi integrated into the BTCi module. The
number of BTi owned by Ci (C2, C3, and C4) is adjusted to 3, 3, and 2, respectively. For the
middle layer of CBTC1 module, Conv module, as its component, is set to k = 3, s = 2 to
achieve the downsampling according to the parameter settings in [9]. The Conv module of
CBTC2 in FPN is set to k = 3, s = 1 to further extract features and eliminate the aliasing
effects that may be caused by feature fusion. In addition, the module CSBTC consists of
convolution units and SPP [44]. SPP is applied to pool and cascade multi-scale local area
features. Meanwhile, global and local multi-scale features are used to improve the detection
accuracy. The parameter settings of max pooling in SPP are the same as the corresponding
ones used in [9]. The core size of max pooling is set to 1× 1, 5× 5, 9× 9, and 13× 13,
respectively, in the following experiments in this paper. Finally, the proposed backbone
module improves the sub-backbone with a low computational cost to increase the inference
speed of the overall model and enhance the feature extraction ability. Meanwhile, the
feature maps P2, P3, and P4 required for fusion and detection are generated through FPN.

3.3. Fast Multi-Scale Fusion Module

The fusion of multi-scale feature maps is conducive to the detection of small objects. In
addition, the effective spatial information of small objects usually exists in the feature map
C1 [45]. A fast multi-scale fusion module is proposed to fuse multi-scale feature maps and
generate high-resolution feature maps with rich semantic and spatial information, thereby
improving the detection ability of small objects.

As shown in Figure 5, the FMF module uses the sub-pixel convolutional layer [35]
to learn an ascending filter array, upscales the feature map P3 to a high-resolution space,
and automatically learns the interpolation function in the transformation process from
low-resolution to high-resolution through the previous convolutional layers. The sub-pixel
convolution is highly efficient, dispersing pixels in the channel dimension and adding
pixels in the width and height dimensions. The feature dimension of the input sub-pixel
convolutional layer is L ∈ RCr2×H×W . Therefore, the feature dimension isH ∈ RC×rH×rW

after rearrangement. The corresponding operation can be formalized as follows.

Figure 5. The structure of FMF. The low-resolution feature maps P2 and P3 with rich semantic
information are mapped to the high-resolution space and fused with the feature map C1 with rich
spatial information to generate a high-resolution feature map P1 with rich semantic and spatial
information. P2 and P3 are generated by FPN shown in Figure 4. C1 is the output feature map in the
APSConv module.

SPC(T )x,y,c = Tb x
r c,b

y
r c,C·r·mod(y,r)+C·mod(x,r)+c (6)
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where SPC(T )x,y,c is the output pixel value on the spatial coordinates (x, y, c) after the
pixel scatter operation SPC(·), and r is the upscaling ratio. The proposed method uses
r = 2 to double the spatial scale of feature map P3 for fusion with the feature map P2.

The FMF module first concatenates the feature map P2 withH on the channels, then
passes through the BTC2 module to eliminate the aliasing effects that may be caused by
concatenation, and further extracts the fused feature information. At the same time, an
element-wise addition method is adopted to ensure that the output Ĥ fuses the semantic
and regional information from feature maps P2 and P3 as follows.

Ĥ = fBTC2(Cat[H,P3]) +H (7)

H = SPC( fConv(P4)) (8)

where fConv and fBTC2 represent the Conv module in Figure 3 and BTC2 module in Figure 4
respectively, and Ĥ ∈ RC×rH×rW . SPC is first used to perform the channel-to-space
transformation, and then fBTC2 is used to enhance the transformation in the spatial range.
Finally, the high-resolution feature map P1 is generated by fusing semantic and spatial
information, as follows:

P1 = fBTC2

(
Cat
[
NNI

(
Ĥ
)
, fConv(C2)

])
(9)

where NNI(·) represents the nearest neighborhood interpolation operation, and P1 ∈
R C

2 ×2rH×2rW . Similarly, NNI is first used to transform the input features in space, and
then fBTC2 is used to further spread their spatial influence.

In the FMF module, SPC and NNI are alternately used in upsampling to achieve
the fusion of semantic and spatial information. Therefore, the loss of detailed information
on small objects caused by the too-high upsampling rate can effectively be avoided. The
convolution kernel of 1× 1 or 3× 3 size is used in the FMF module. Compared with
large-size convolution kernels, the time complexity of the FMF module is lower.

3.4. Predictor

SODNet finally inputs four feature maps P1, P2, P3, and P4 to the predictor to detect the
classification and positioning. According to the existing research [3,9,14], the loss function
specialized for classification and positioning in SODNet mainly includes three components:
location loss, confidence loss, and classification loss.

The position loss is the error between the predicted bounding boxes and the ground-
truth, which is calculated using the generalized intersection over union (GIoU) [46]
loss function. Assuming that the coordinates of bounding boxes and ground-truth are
Bp =

(
xp

1 , yp
1 , xp

2 , yp
2

)
and Bg =

(
xg

1 , yg
1 , xg

2 , yg
2

)
, respectively, the area of Bp and Bg can be

calculated as follows.

Ap =
(

x̂p
2 − x̂p

1

)
×
(

ŷp
2 − ŷp

1

)
(10)

Ag =
(

xg
2 − xg

1

)
×
(

yg
2 − yg

1

)
(11)

where Ap and Ag represent the area of Bp and Bg, respectively, x̂p
1 = min

(
xp

1 , xp
2

)
, x̂p

2 =

max
(

xp
1 , xp

2

)
, ŷp

1 = min
(

yp
1 , yp

2

)
, and ŷp

2 = max
(

yp
1 , yp

2

)
. The overlapping area I of Bp and

Bg is obtained as follows:

I =
{ (

xI
2 − xI

1
)
×
(
yI

2 − yI
1
)

xI
2 > xI

1, yI
2 > yI

1
0 otherwise

(12)
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where xI
1 = max

(
x̂p

1 , xg
1

)
, xI

2 = min
(

x̂p
2 , xg

2

)
, yI

1 = max
(

ŷp
1 , yg

1

)
, and yI

2 = min
(

ŷp
2 , yg

2

)
.

Additionally, the minimum area Ac of the bounding box containing Bp and Bg can be
calculated as follows:

Ac = (xc
2 − xc

1)× (yc
2 − yc

1) (13)

where xc
1 = min

(
x̂p

1 , xg
1

)
, xc

2 = max
(

x̂p
2 , xg

2

)
, yc

1 = min
(

ŷp
1 , yg

1

)
, and yc

2 = max
(

ŷp
2 , yg

2

)
.

The Intersection over Union (IoU) of Bp and Bg is shown as follows:

IoU =
I

U
(14)

where I as the area intersection of the coordinates Bp and Bg is obtained by Equation (12),
U is the area union of the coordinates Bp and Bg, and U = Ap + Ag − I. So, GIoU can be
calculated as follows:

GIoU = IoU − Ac −U
Ac (15)

The final position loss LGIoU can be obtained by GIoU as follows:

LGIoU = 1− GIoU (16)

Confidence loss Lcon f is the relative error of the object confidence score prediction [3],
which can be calculated as follows:

Lcon f = −
S2

∑
i=0

B

∑
j=0

Iobj
ij log

(
Cij
)
− λnoobj

S2

∑
i=0

B

∑
j=0

Inoobj
ij log

(
1− Cij

)
(17)

where S is the side length of the feature map that is input into the predictor; B is the number
of anchors in each cell of the feature map; λnoobj as the balance coefficient is set to 0.5

during training; Iobj
ij indicates whether the j-th anchor in the i-th cell is responsible for the

probability of falling into the area’s bounding box. If it is responsible, the value of Iobj
ij is

1, otherwise the value of Iobj
ij is 0. The definition and value of Inoobj

ij are opposite to that of

Iobj
ij ; Cij is the confidence score of the j-th anchor in the i-th cell predicted by the proposed

SODNet, and Cij ∈ [0, 1].
The classification loss Lcls is the error between the predicted category of the object and

the corresponding true category [3], which is calculated as follows.

Lcls = −
S2

∑
i=0

B

∑
j=0

Iobj
ij ∑

c∈cls

[
p̂c

ij log
(

pc
ij

)
+
(

1− p̂c
ij

)
log
(

1− pc
ij

)]
(18)

where pc
ij is the predicted category of the j-th anchor in the i-th cell, and p̂c

ij is the true
category. Therefore, the total loss L of SODNet is obtained as follows.

L = LGIoU + Lcon f + Lcls (19)

In the training stage, SODNet continuously optimizes the loss L and updates the
network weights through backpropagation until the model converges. In the testing stage,
SODNet does not perform backpropagation. It directly performs post-processing opera-
tions, such as confidence threshold screening and non-maximum suppression processing,
on the classification and positioning results obtained by the predictor to obtain the final
detection results.
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4. Experiments

This section evaluates the performance of the proposed SODNet on the benchmark
datasets of TinyPerson [14], Tsinghua–Tencent 100K [15], UAVDT [16] and MS COCO [10].
In the following experiments, Yolov5s [9] is used as the baseline. Both the training and
testing of comparative experiments were conducted on a server equipped with 4 Nvidia
Tesla P100 16 G, 256 G memory, and an Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20 GHz.
First, this section introduces the basic information of two datasets and the corresponding
evaluation indicators, and specifies the experimental details. Then, the proposed method is
compared with the two-stage detectors, FRCNN-FPN [27], Libra RCNN [5], Grid RCNN [7],
FRCNN-FPN-SM [14], FRCNN-FPN-SM S− δ [47], and single-stage detectors, FCOS [48],
SSD512 [4], FS-SSD512 [49], RetinaNet [13], RetinaNet-MSM [14], RetinaNet-SM S− δ [47],
Scaled-YOLOv4-CSP [8] on the TinyPerson dataset. RCNN-FPN-SM [14], FRCNN-FPN-SM
S− δ [47], FS-SSD512 [49], RetinaNet-MSM [14], RetinaNet-SM S− δ [47] are specifically
optimized methods for small objects. The processing efficiency of the proposed method
is compared with the processing efficiency of part of the above detectors [4,8,9,14,27,49]
with published source codes. On the Tsinghua–Tencent 100K dataset, the proposed method
is compared with the methods that were especially optimized for small objects, such
as FRCNN [2] +ResNet101 [41], Zhu et al. [15], Perceptual GAN [33], EFPN [45], SOS-
CNN [50], and Noh et al. [34]. On the UAVDT dataset, the proposed method is compared
with R-FCN [1], SSD [4], RON [51], FRCNN [2], FRCNN-FPN [27], and ClusDet [52]. On the
MS COCO dataset, the proposed method is compared with R-FCN [1], SSD [4], YOLOv3 [3],
FRCNN [2], FRCNN-FPN [27], and Noh et al. [34]. In addition, an ablation study is
carried out for both of the proposed modules, ASPConv and FMF and baseline. Finally, a
qualitative analysis of the proposed SODNet and baseline is given.

4.1. Experiment Preparation
4.1.1. Datasets and Evaluation Metrics

TinyPerson. TinyPerson [14] is a small object benchmark dataset containing a high
number of small objects. All the images were collected from real-world scenes by unmanned
aerial vehicles (UAVs). TinyPerson contains 1610 images with 72,651 labeled frames, of
which 794 and 816 are used as training and testing images, respectively. The objects in
TinyPerson are very small. According to the area occupied by each object, the objects are
divided into tiny1 (area ≤ 8× 8), tiny2 (8× 8 < area ≤ 12× 12), tiny3 (12× 12 < area ≤
20× 20), tiny (area ≤ 20× 20) consisting of tiny1, tiny2 , and tiny3, small (20× 20 < area ≤
32× 32), and non-small (area > 32× 32) objects. As shown in Figure 1, their corresponding
proportions are 25.2%, 21.4%, 24.4%, 71%, 14.0%, and 15.0%, respectively. The object
proportion of the interval area ≤ 32× 32 in the TinyPerson dataset is 85%. This means that
the TinyPerson dataset can be used to evaluate the small object detection performance of
the proposed model. Therefore, both real-time testing experiments and an ablation study
were carried out on this dataset.

According to Tiny Benchmark [14], average precision (AP) and miss rate (MR) are
used to evaluate the performance of object detection. AP, as a widely used evaluation
indicator in object detection, reflects the precision and recall of detection results. When
the value of AP increases, the detector performance improves. MR is usually used in
pedestrian datasets. It reflects the object loss rate. When the value of MR decreases, the
detector performance improves. The comparative experiments were implemented over
five intervals of small and tiny objects respectively, including tiny1, tiny2, tiny3, tiny, and
small. A detailed analysis is provided. The threshold of intersection over union (IoU) was
set to 0.25, 0.5, and 0.75, and both MRtiny and APtiny at IoU = 0.5 were used as the main
indicators to evaluate the small object detection performance in the TinyPerson dataset [14].
IoU = 0.5 means that when IoU ratio between bounding boxes and ground-truth in the
detection result was greater than or equal to 0.5, the detection was correct [34]. The objects
in the TinyPerson dataset are quite small. When the value of IoU exceeds 0.5, the detector
performance dropped considerably. Therefore, only three IoU values, 0.25, 0.5, and 0.75,
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were selected to evaluate the detection performance of small objects on the TinyPerson
dataset, instead of an IoU interval.

Tsinghua-Tencent 100K. Tsinghua–Tencent 100K [15] is a large-scale traffic sign bench-
mark dataset, which contains 100,000 high-resolution (2048× 2048) images and 30,000 traffic
sign instances. According to the area occupied by each object, Tsinghua–Tencent 100K
divides objects into smaller objects (area ≤ 32× 32 pixels), medium objects (32× 32 <
area ≤ 96× 96 pixels), and large objects (area > 96× 96 pixels). The original division of
objects is applied to the following experiments on the Tsinghua–Tencent 100K dataset [15].
The proportions of small, medium, and large objects are 42%, 50%, and 8%, respectively.
Since small and medium objects are dominant in this dataset, it is also a good benchmark
to evaluate the performance of small object detection.

According to the protocols in Tsinghua–Tencent 100K [15], classes with fewer than
100 instances are ignored. A total of 45 classes were finally selected for evaluation, and
accuracy and recall were used as evaluation indicators. Additionally, F1 score was also used
as an evaluation indicator. In the Tsinghua–Tencent 100K experiments, when IoU (the ratio
of bounding boxes to ground-truth) was greater than or equal to 0.5, the corresponding
detection was considered successful [34].

UAVDT. UAVDT [16] is a large-scale challenging benchmark dataset. It contains about
80,000 frames of images with annotated information. It is used to achieve three basic computer
vision tasks (object detection, single-object tracking, and multiple-object tracking). For the object
detection, the UAVDT dataset has three categories of objects (car, truck, bus), and contains
23,829 training images and 16,580 testing images, with 1024 × 540 resolution. The object
classification standard of UAVDT also uses the classification standard in MS COCO [10], which
is the same as that of Tsinghua–Tencent 100K. According to Figure 1, the proportion of objects
in the small interval area ≤ 32× 32 of the UAVDT dataset is 61.5%. Therefore, this dataset is
also a good benchmark to evaluate the performance of small object detection.

The indicators used in MS COCO [10], including AP[0.5], AP[0.75], and AP[0.5,0.95], are
applied to evaluate the performance of the experimental results on the UAVDT dataset.
AP[0.5] and AP[0.75] represent the average accuracy when the IoU ratios of bounding boxes
and ground-truth in the detection result are at least 0.5 and 0.75, respectively. As the main
indicator used in MS COCO [10], AP[0.5,0.95] represents the average accuracy when the
value range of IoU was [0.5, 0.95] and the growth rate was 0.05. The above three indicators
were used to evaluate the experimental results of all types of targets in the dataset. The
indicator APsmall

[0.5,0.95] is used to further evaluate the detection performance of small objects
(the object size in the interval area ≤ 32× 32) in the UAVDT dataset.

MS COCO. MS COCO [10] is a widely used benchmark dataset for object detection. It
consists of 115K train, 5K val and 20K test-dev images in 80 object categories. The division
of the instance size of MS COCO is consistent with Tsinghua–Tencent 100K, including
small (area ≤ 32 × 32 pixels), medium (32 × 32 < area ≤ 96 × 96 pixels), and large
(area > 96× 96 pixels) objects. The proportions of small, medium, and large objects are
41.43%, 34.32%, and 24.24%, respectively.

For the MS COCO dataset, this paper used six evaluation indicators AP[0.5], AP[0.75],

AP[0.5,0.95], APsmall
[0.5,0.95], APmedium

[0.5,0.95], and APlarge
[0.5,0.95] to evaluate the experimental results. The

definitions of indicators AP[0.5], AP[0.75], AP[0.5,0.95], and APsmall
[0.5,0.95] are consistent with

the corresponding evaluation indicators used on the UAVDT dataset. APmedium
[0.5,0.95] and

APlarge
[0.5,0.95] represent the experimental results in (32× 32 < area ≤ 96× 96 pixels) and

(area > 96× 96 pixels), respectively.

4.1.2. Implementation Details

The aspect ratio of people in most of the TinyPerson images varies considerably. There-
fore, according to the approach used in [14], the original images were segmented into
overlapping sub-images during training and inference. In comparative experiments, the
original images in TinyPerson were adjusted to 640× 640 size for training and testing. Kaim-
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ing normal [53] was used to initialize the network. The experiments in all four datasets use
the default parameters in [9] for training. The number of training rounds was 300 epochs.
The initial learning rate was 0.01. The warm-up strategy [41] was used to adjust the learning
rate. A stochastic gradient descent (SGD) with a weight decay of 0.0005 and a momentum
of 0.937 was used to train the entire network.

According to the settings used in [15,33,34], the image size was adjusted to 1600× 1600
for training and testing in Tsinghua–Tencent-100K-related experiments. In UAVDT-related
experiments, the original image resolution 1024× 540 was used for training and testing.
Both Tsinghua–Tencent-100K- and UAVDT-related experiments used models that were
pre-trained on the MS COCO dataset to initialize the network. In MS-COCO-related
experiments, the original image resolution 640× 640 was used for training and testing.

For both TinyPerson and UAVDT datasets, one GPU was used for training, and the
batch size was 32. For the Tsinghua–Tencent 100K dataset, due to the large image resolution,
four GPUs were used for training, and the batch size was 20. For the MS COCO dataset,
due to the high amount of data, four GPUs were used for training, and the batch size was
64. For all four datasets, only one GPU was used in testing.

4.2. Experiment Preparation

TinyPerson. The proposed method was compared with the state-of-the-art single-stage
and two-stage object detection methods. Tables 2 and 3 show the detailed experimental
results of the TinyPerson test dataset.

Table 2. Comparisons of MRs on TinyPerson test dataset. The best results are marked in bold.

Methods MRtiny
[0.5] MRtiny1

[0.5] MRtiny2
[0.5]

MRtiny3
[0.5] MRsmall

[0.5] MRtiny
[0.25] MRtiny

[0.75]

Libra RCNN [5] 89.22 90.93 84.64 81.62 74.86 82.44 98.39
Grid RCNN [7] 87.96 88.31 82.79 79.55 73.16 78.27 98.21

FRCNN-FPN [27] 87.57 87.86 82.02 78.78 72.56 76.59 98.39
FRCNN-FPN-SM [14] 86.22 87.14 79.60 76.14 68.59 74.16 98.28

FRCNN-FPN-SM S− δ [47] 85.96 86.57 79.14 77.22 69.35 73.92 98.30

FCOS [48] 96.28 99.23 96.56 91.67 84.16 90.34 99.56
SSD512 [4] 93.56 94.55 90.42 85.54 76.79 82.80 99.23

FS-SSD512 [49] 94.01 93.98 91.18 86.01 78.10 83.78 99.35
RetinaNet [13] 92.66 94.52 88.24 86.52 82.84 81.95 99.13

RetinaNet-MSM [14] 88.39 87.80 79.23 79.77 72.18 76.25 98.57
RetinaNet-SM S− δ [47] 87.00 87.62 79.47 77.39 69.25 74.72 98.41
Scaled-YOLOv4-CSP [8] 86.77 87.36 79.76 76.04 67.69 73.03 98.25

YOLOv5s [9] 85.98 87.73 80.09 75.26 68.77 72.32 98.23
SODNet (Proposed) 83.30 82.99 76.30 72.29 68.05 67.52 98.04
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Table 3. Comparisons of APs on TinyPerson test dataset. The best results are marked in bold.

Methods APtiny
[0.5] APtiny1

[0.5] APtiny2
[0.5] APtiny3

[0.5] APsmall
[0.5] APtiny

[0.25] APtiny
[0.75]

Libra RCNN [5] 44.68 27.08 49.27 55.21 62.65 64.77 6.26
Grid RCNN [7] 47.14 30.65 52.21 57.21 62.48 68.89 6.38

FRCNN-FPN [27] 47.35 30.25 51.58 58.95 63.18 68.43 5.83
FRCNN-FPN-SM [14] 51.33 33.91 55.16 62.58 66.96 71.55 6.46

FRCNN-FPN-SM S− δ [47] 51.76 34.58 55.93 62.31 66.81 72.19 6.81

FCOS [48] 17.90 2.88 12.95 31.15 40.54 41.95 1.50
SSD512 [4] 34.00 13.54 35.16 48.73 57.14 61.21 2.52

FS-SSD512 [49] 34.10 14.11 36.17 49.50 56.37 61.58 2.13
RetinaNet [13] 33.53 12.24 38.79 47.38 48.26 61.51 2.28

RetinaNet-MSM [14] 49.59 31.63 56.01 60.78 63.38 71.24 6.16
RetinaNet-SM S− δ [47] 52.56 33.90 58.00 63.72 65.69 73.09 6.64
Scaled-YOLOv4-CSP [8] 51.25 33.07 56.04 61.94 65.39 73.31 7.04

YOLOv5s [9] 49.61 32.21 52.11 60.95 64.23 71.51 6.63
SODNet (Proposed) 55.55 40.53 59.52 64.62 66.22 75.98 7.61

Although some SOTA detectors (such as Libra RCNN [5], Grid RCNN [7], etc.) per-
formed well on MS COCO [10] or PASCAL VOC [11], they did not achieve good results
for small object datasets. A potential reason for this is that the target size in the TinyPer-
son dataset is too small, which causes the performance of these detectors to considerably
decrease. The proposed method uses YOLOv5s [9] as the baseline. Although YOLOv5s
achieved good results, the proposed method still improves the core indicators MRtiny

[0.5]

and APtiny
[0.5] by 2.68% and 5.94%, respectively. Compared with some methods, which

are specialized for small object detection, such as FS-SSD512 [49], FRCNN-FPN-SM [14],
FRCNN-FPN-SM S − δ [47], etc., the proposed method performed better than the best
one, RetinaNet-SM S− δ [47], and the corresponding core indicators MRtiny

[0.5] and APtiny
[0.5]

were improved by 3.7% and 2.99%, respectively. Although the indicators MRsmall
[0.5] and

APsmall
[0.5] of the proposed method were 0.36% and 0.74% lower than the corresponding ones

of Scaled-YOLOv4-CSP [8] and FRCNN-FPN-SM [14], respectively, the performance of the
proposed method was better than the performance of other methods. Compared with the
baseline, the indicators MRsmall

[0.5] and APsmall
[0.5] of the proposed method were improved by

0.72% and 1.99%, respectively. The results confirm that the proposed method can pay more
attention to small objects and improve the recognition ability of small objects. Therefore,
the proposed method significantly improves the small object detection performance and
achieves a better performance than the state-of-the-art methods.

Tsinghua-Tencent 100K. According to the experimental results shown in Table 4, the
proposed method can significantly improve the small object detection performance of
the baseline. Table 4 shows the experimental results of the proposed SODNet and other
state-of-the-art methods on the Tsinghua–Tencent 100K test dataset in detail. Since the
object size of the large interval is greater than 96× 96 pixels and this paper focuses on
evaluating the recognition performance of the methods on small objects, the large interval is
not evaluated. The object size range of the overall interval in Table 4 is area ≤ 400× 400, the
test results in this interval are used to comprehensively evaluate the detection performance.
According to Table 4, the proposed method can achieve a similar performance to that of
the state-of-the-art method proposed by Noh et al. [15] and achieve a higher real-time
performance. The method proposed by Noh et al. [15] is developed based on the two-stage
detector FRCNN [2] as the benchmark model. As the source codes are lacking, we were
unable to reproduce Noh’s method. In addition, compared with the baseline, the F1 scores
obtained by the proposed method improved the corresponding performance on small,
medium, and overall classes by 1.3%, 1%, and 0.8%, respectively. The performance in the
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three classes was improved to varying degrees, but the performance improvement of the
small class was greater than the corresponding improvements in the other two classes.

Table 4. Performance comparison with the state-of-the-art models on the Tsinghua–Tencent 100K test
dataset. Partial experimental data shown in this table are missing, because some models [15,33,45,50]
only provide a part of the related data. The best results are marked in bold.

Methods Small Medium Overall

Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1

FRCNN [2] +ResNet101 [41] 80.3 81.6 80.9 94.5 94.8 94.7 89.1 89.7 89.4
Zhu et al. [15] 87.0 82.0 84.4 94.0 91.0 92.5 - - -

Perceptual GAN [33] 89.0 84.0 86.4 96.0 91.0 93.4 - - -
EFPN [45] 87.1 83.6 85.3 95.2 95.0 95.1 - - -

SOS-CNN [50] - - - - - - 93.0 90.0 91.5
Noh et al. [34] 92.6 84.9 88.6 97.5 94.5 96.0 95.7 90.6 93.1

YOLOv5s [9] 88.7 84.1 86.3 95.6 94.7 95.2 92.9 90.0 91.4
SODNet (Proposed) 90.0 85.5 87.6 96.6 95.8 96.2 94.0 91.2 92.6

UAVDT. According to the experimental results shown in Table 5, the proposed method
achieved a state-of-the-art performance on the UAVDT [16] dataset. In this dataset, the
indicator AP[0.5,0.95] was used to evaluate the experimental results of all the targets in
the dataset, and the indicator APsmall

[0.5,0.95] was used to evaluate the experimental results
of the targets within the size interval area ≤ 32 × 32. Specifically, the results of the
first four rows in Table 5 were calculated by the indicators used in MS COCO [10] for
the experimental results provided by Du et al. [16]. According to Table 5, compared
with the best performance achieved by ClusDet [52], the proposed method improves the
main evaluation indicator AP[0.5,0.95] of MS COCO [10] by 3.4%. For the baseline, the
proposed method improves the indicator AP[0.5,0.95] by 4.8%. For the indicator APsmall

[0.5,0.95],
the proposed method in this paper shows improvements of 2.8% and 2.1%, respectively,
compared to ClusDet and baseline. This verifies the improvement in the proposed method
for small objects. In addition, the indicator means that the detection is correct when the
ratio of the bounding boxes’ IoU to ground truth is greater than or equal to 0.75. This means
that the indicator AP[0.75] has strict requirements for positioning accuracy. The results of
0.5 and 0.75 refer to the overlap ratio of the predicted frame to the actual frame, at 50% and
75%, respectively. A higher value indicates a higher overlap ratio. For the indicator AP[0.75],
the proposed method shows improvements of 5.5% and 5.6%, respectively, over ClusDet
and baseline. This also verifies the improvement in the proposed method regarding the
accuracy of small object positioning. The main reason for this improvement is that the
proposed ASPConv and FMF modules optimize the spatial information of small objects.

Table 5. Performance comparison with the baselines and proposed method on the UAVDT
test dataset. The best results are marked in bold.

Methods AP[0.5,0.95] AP[0.5] AP[0.75] APsmall
[0.5,0.95]

R-FCN [1] 7.0 17.5 3.9 4.4
SSD512 [4] 9.3 21.4 6.7 7.1
RON [51] 5.0 15.9 1.7 2.9

FRCNN [2] 5.8 17.4 2.5 3.8
FRCNN-FPN [27] 11.0 23.4 8.4 8.1

ClusDet [52] 13.7 26.5 12.5 9.1

YOLOv5s [9] 12.3 22.4 12.4 9.8
SODNet (Proposed) 17.1 29.9 18.0 11.9
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MS COCO. The experimental results on MS COCO [10] dataset are shown in Table 6.
The baseline of AP[0.5,0.95] and APsmall

[0.5,0.95] is 35.2% and 18.8%, respectively. The proposed

method improves the baseline by 1.2% and 1.3% on AP[0.5,0.95] and APsmall
[0.5,0.95], respectively.

The proposed method also makes some improvements to the indicators APmedium
[0.5,0.95] and

APlarge
[0.5,0.95]. For AP[0.5] and AP[0.75], the proposed method improves the corresponding

baseline by 2.3% and 1.6%, respectively. AP[0.5] and AP[0.75] represent that the detection is
correct when the IoU ratio between bounding boxes and ground-truth is greater than or
equal to 0.5 and 0.75, respectively. This confirms that the proposed method can effectively
improve the spatial information of features, thereby improving the positioning accuracy
of objects. According to Table 6, the network Noh et al. [34] focused on small objects and
achieved good results on the Tsinghua–Tencent 100K dataset but did not achieve good
results on the MS COCO dataset. Compared with Noh et al. [34], the result obtained
by SODNet is 3.9% higher than Noh et al. [34] on the small object interval. In addition,
according to the experimental results of FRCNN-FPN [27] in Table 6 and the FPS testing
results in Table 7, the proposed method achieved a similar detection accuracy to FRCNN-
FPN, which is about three times higher than the FPS obtained by FRCNN-FPN. Therefore,
the experimental results on the MS COCO dataset also confirm that the proposed method
can effectively improve the accuracy of small object detection while ensuring a certain
real-time performance.

Table 6. Performance comparison with the proposed method and baseline on MS COCO 2017
test-dev dataset. The best results are marked in bold.

Methods AP[0.5,0.95] AP[0.5] AP[0.75] APsmall
[0.5,0.95] APmedium

[0.5,0.95] APlarge
[0.5,0.95]

R-FCN [1] 29.9 51.9 - 10.8 32.8 45.0
SSD512 [4] 28.8 48.5 30.3 10.9 31.8 43.5

YOLOv3 [3] 33.0 57.9 34.4 18.3 35.4 41.9
FRCNN [2] 34.9 55.7 37.4 15.6 38.7 50.9

FRCNN-FPN [27] 36.2 59.1 39.0 18.2 39.0 48.2
Noh et al. [34] 34.2 57.2 36.1 16.2 35.7 48.1

YOLOv5s [9] 35.2 53.9 37.8 18.8 39.1 44.0
SODNet (Proposed) 36.4 56.2 39.4 20.1 40.1 45.7

4.3. Real-Time Comparison

Not all the comparative methods shown in Tables 2 and 3 have public source codes.
Therefore, an efficiency comparison is only performed on the methods with public source
codes and the proposed SODNet. Table 7 shows the FPS of each model. The proposed
SODNet has the second highest FPS, which is considerably better than the other six com-
parative models. According to the real-time performance mentioned in [2], FPS need to
be greater than or equal to 30. Therefore, the proposed SODNet achieved a high real-time
performance.

According to Tables 2, 3 and 7, the proposed method only adds a low computational
cost to the baseline, but significantly enhances the original baseline performance. According
to Table 7, the proposed method is about four times faster than the compared two-stage
detectors, such as [14,27], and about three times faster than the compared single-stage
detectors, such as [4,8,49], under the same input size.
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Table 7. TinyPerson test dataset was performed on a Nvidia Tesla P100 for testing, where the Batch
size and IoU thresholds were set to 1 and 0.5, respectively. The best results are marked in bold.

Methods Default Input Size FPS Uniform Input Size FPS

FRCNN-FPN [27] 1333× 800 13 512× 512 24
FRCNN-FPN-SM [14] 1333× 800 13 512× 512 22

SSD512 [4] 512× 512 33 512× 512 33
FS-SSD512 [49] 512× 512 30 512× 512 30

RetinaNet-MSM [14] 1333× 800 10 512× 512 23
Scaled-YOLOv4-CSP [8] 640× 640 33 512× 512 39

YOLOv5s [9] 640× 640 88 512× 512 96
SODNet (Proposed) 640× 640 81 512× 512 91

4.4. Ablation Study

Since the proportion of small objects in the (area ≤ 32× 32) interval on the TinyPerson
and UAVDT datasets reached 85% and 61.5%, respectively, the corresponding ablation
experiments of both ASPConv and FMF modules on the TinyPerson and UAVDT test
datasets are discussed in this section. As shown in Table 8, the ASPConv module improves
the baseline by 0.52% (MRtiny

[0.5]) and 0.99% (APtiny
[0.5]), respectively, on the TinyPerson testing

dataset. This confirms that the ASPConv module can improve the spatial expression
ability of small object features to a certain extent and alleviate the attenuation of spatial
information in the feature transmission process, thereby improving the detection ability of
small objects. After adding an FMF module to the baseline and ASPConv module, MRtiny

[0.5]

and APtiny
[0.5] were further improved by 2.16% and 4.95%, respectively. Compared with the

baseline, MRtiny
[0.5] and APtiny

[0.5] were improved by 2.68% and 5.94%, respectively. Therefore,
the combination of the two modules can make a significant performance improvement. As
shown in Figure 2, the FMF module fuses the feature map C1 from the ASPConv module
and fuses multi-scale feature maps with rich semantic and spatial information, so the model
performance is considerably improved. According to Table 8, MRtiny

[0.5] and APtiny
[0.5] can be

improved by 1.35% and 4.34%, respectively, by using the FMF module only. Since the FMF
module effectively integrates spatial information that is conducive to the detection of small
objects, this improvement is reasonable. As shown in Table 8, the corresponding FPS is
reduced by 10 after adding the ASPConv module, compared with the baseline. The number
of convolutions in ASPConv is significantly higher than that of the focus module [9], so
the corresponding computation time increases. After adding the FMF module, the FPS is
increased by 4 compared with the baseline. Since SODNet uses the FMF module to replace
the original PANet [28] and reduces the bottom-up path enhancement, the FPS is slightly
improved. When the ASPConv and FMF modules are added, SODNet only reduces the FPS
by 7 compared with the baseline, but the detection accuracy of small objects is considerably
improved. In addition, the ASPConv module improves the baseline by 1.1%(AP[0.5,0.95])
and 0.4%(APsmall

[0.5,0.95]), respectively, on the UAVDT dataset. However, the corresponding
FPS is reduced by 7. After adding an FMF module to the baseline and ASPConv module,
AP[0.5,0.95] and APsmall

[0.5,0.95] are further improved by 2.8% and 1.0%, respectively. The corre-
sponding FPS is increased by 4. After adding both ASPConv and FMF, SODNet improves
the baseline by 17.1%(AP[0.5,0.95]) and 11.9%(APsmall

[0.5,0.95]), respectively. The corresponding
FPS is only reduced by 4. In the ablation experiments, although the ASPConv module
reduces a certain real-time performance, it can enrich the spatial information in the feature
maps of Ci, i = 2, 3, 4 and Pj, j = 1, 2, 3, 4. The ASPConv module can effectively improve
the detection accuracy of small objects when it works with the FMF module. According
to the ablation study, when the two proposed modules work together, they can achieve a
better improvement in small object detection than any single module.
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Table 8. Ablation study of ASPConv and FMF on TinyPerson and UAVDT testing datasets, where the
batch size and IoU threshold are set to 1 and 0.5, respectively. The best results are marked in bold.

Methods
TinyPerson UAVDT

MRtiny
[0.5] APtiny

[0.5] Input Size FPS AP[0.5,0.95] APsmall
[0.5,0.95] Input Size FPS

Baseline YOLOv5s 85.98 49.61 640× 640 88 12.3 9.8 1024× 540 49
+ ASPConv 85.46 51.60 640× 640 78 13.4 10.2 1024× 540 43

+ FMF 84.63 53.95 640× 640 92 15.1 10.8 1024× 540 50
+ ASPConv + FMF 83.30 55.55 640× 640 81 17.1 11.9 1024× 540 45

4.5. Qualitative Results

As shown in Figure 6, for TinyPerson, the magnified sub-image in the green frame
represents the bounding box predicted by the SODNet. For Tsinghua–Tencent 100K, the
magnified sub-image in the red frame represents the ground-truth, and the magnified sub-
image in the blue frame represents the object frame predicted by the SODNet. For UAVDT,
the magnified sub-image in the green frame represents the bounding box predicted by
the SODNet. For MS COCO, comparative experiments were performed on the MS COCO
test-dev dataset. Since there is no ground-truth on the MS COCO test-dev dataset, all
the rectangular boxes in Figure 6j–l are the bounding boxes predicted by the SODNet.
For each pair of images, the images on the left- and right-hand sides are the detection
results of the baseline and the proposed SODNet. Figure 6 shows some selected testing
results for the TinyPerson, Tsinghua-Tencent 100K, UAVDT, and MS COCO test sets. For
each pair of figures, the detection results of the baseline and the proposed method are
shown on the left-hand and right-hand sides, respectively. Compared with the baseline, the
proposed method can achieve a better detection performance on small and dense objects.
In Tsinghua–Tencent 100K, the proposed method still detected some existing but unmarked
objects, which can be regarded as reasonable examples of false positives.

Figure 6. Sample testing results of TinyPerson (shown in subfigures (a–c)), Tsinghua-Tencent 100K
(shown in subfigures (d–f)), UAVDT (shown in subfigures (g–i)) and MS COCO (shown in subfigures
(j–l)) test datasets.
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5. Conclusions

The proposed method is applied to the single-stage detector YOLOv5s to solve the
issues of small object detection. First, an adaptive spatial parallel convolution module (AS-
PConv) is proposed to extract the multi-scale local context information of small objects and
enhance the spatial information of small objects. Second, a fast multi-scale fusion module
(FMF) is designed, which effectively integrates the high-resolution feature maps with rich
spatial information output from the APSConv module. The low-resolution feature maps
with rich semantic information can be efficiently mapped to high-resolution space. Multi-
scale feature map fusion is performed to generate high-resolution feature maps with rich
spatial and semantic information that are conducive to small object detection. In addition,
according to the ablation study results shown in Table 8, the two modules can effectively be
integrated to achieve fast and accurate detection. The experimental results of the TinyPer-
son, Tsinghua–Tencent 100K, UAVDT, and MS COCO benchmark datasets confirm that
the proposed method efficiently and significantly improves the detection performance of
small objects, and the corresponding results are highly competitive. In TinyPerson-related
experiments, compared with the most advanced methods in the literature, the proposed
method improves APtiny

[0.5] by 5.94%, and achieves a 91 FPS on a single Nvidia Tesla P100.
Therefore, the proposed SODNet can effectively enhance the detection performance of
small objects and realize real-time performance. Therefore, the proposed method can be
transferred to many small object detection scenes, such as UAV search-and-rescue and
intelligent driving. In future research, the optimization and applications of the proposed
method will be further explored in more fields.
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