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Abstract

The need to have a large amount of parallel data is a large hurdle for the practical use of voice conversion (VC). This

paper presents a novel framework of exemplar-based VC that only requires a small number of parallel exemplars. In

our previous work, a VC technique using non-negative matrix factorization (NMF) for noisy environments was

proposed. This method requires parallel exemplars (which consist of the source exemplars and target exemplars that

have the same texts uttered by the source and target speakers) for dictionary construction. In the framework of

conventional Gaussian mixture model (GMM)-based VC, some approaches that do not need parallel exemplars have

been proposed. However, in the framework of exemplar-based VC for noisy environments, such a method has never

been proposed. In this paper, an adaptation matrix in an NMF framework is introduced to adapt the source dictionary

to the target dictionary. This adaptation matrix is estimated using only a small parallel speech corpus. We refer to this

method as affine NMF, and the effectiveness of this method has been confirmed by comparing its effectiveness with

that of a conventional NMF-based method and a GMM-based method in noisy environments.
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1 Introduction

Background noise is an unavoidable factor in speech

processing. In the task of automatic speech recognition

(ASR), one problem is that the recognition performance

remarkably decreases under noisy environments, and this

creates a significant problem in regard to the development

of the practical use of ASR.

Non-negative matrix factorization (NMF) [1] is a pop-

ular approach for source separation or speech enhance-

ment [2, 3]. In some approaches for NMF-based source

separation, the exemplars, which are called “bases”, are

grouped for each source, and the mixed signals are

expressed with a sparse representation of these bases. By

using only the weights of the atoms related to the target

signal, the target signal can be reconstructed. Gemmeke

et al. [4] also propose an exemplar-based method for

noise-robust speech recognition using NMF.

*Correspondence: aihara@me.cs.scitec.kobe-u.ac.jp
1Graduate School of System Informatics, Kobe University, 1-1, Rokkodai, Nada,

Kobe, Japan

Full list of author information is available at the end of the article

In our previous work, we proposed an exemplar-based

method for noise-robust voice conversion (VC) using

NMF. VC is a technique for converting a speaker’s voice

individuality while maintaining phonetic information in

the utterance. In [5], we evaluated the conventional sta-

tistical VC method in a noisy environment and revealed

that noise in the input signal is not only output with the

converted signal but also tends to degrade the conver-

sion performance itself due to the unexpected mapping of

source features. In NMF-based VC, noise exemplars are

extracted from before- and after-utterance sections and

input noisy signals are decomposed into a linear combi-

nation of noise and speaker’s clean exemplars. For this

reason, no training processes related to noise signals are

required. Only the weights related to the source exemplars

are taken, and the target signal is constructed from the

target exemplars and the weights. This method showed

better performances than the conventional GMM-based

method in speaker conversion experiments using noise-

added speech data.

Moreover, we assume that our NMF-based VC creates a

natural-sounding voice compared to statistical VC. In [6],
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over-fitting and over-smoothing problems are reported in

statistical VC. Because our NMF-based VC is not a statis-

tical but an exemplar-based method, we assume that our

approach can avoid the over-fitting problem and create a

natural-sounding voice.

In spite of these efforts, VC is not used in practice.

One reason for this is that conventional VC needs a

large amount of parallel training data between the source

and target speakers. In recent years, some statistical

approaches that do not require parallel training data have

been proposed [7–10]. In this paper, we propose noise-

robust VC using a small parallel corpus based on an

NMF-based speaker adaptation technique.

In [11], adaptation of speaker-specific bases in NMF

for single-channel speech-music separation has been pre-

sented. In this framework, speaker-specific bases are

adapted to the other speaker using an affine matrix. We

call this method affine NMF (A-NMF) and apply it to

VC. In VC, the source dictionary is constructed using

sufficient source speaker data, and it is adapted using a

small amount of parallel data (about ten words only) in

order to obtain the target dictionary, where a linear regres-

sion transformationmatrix (affinematrix) is trained based

on NMF.

The contributions of this paper are summarized in two

points. First, we have decreased the total amount of par-

allel training data required for NMF-based VC. Conven-

tional NMF-based VC requires 216-word parallel data for

dictionary construction. However, experimental results

using our proposed approach, which requires only a small

amount of parallel data, demonstrate a conversion qual-

ity that is almost the same as that of the conventional

NMF-based VC. The second contribution is that there

needs to be no concern about differences between par-

allel dictionaries. The parallel dictionary, as used in the

conventional NMF-based VC, has a mismatched align-

ment, and this mismatch degrades the VC performance.

In our proposed method, there is no mismatch because

the target dictionary is estimated from the source dictio-

nary using affine NMF. Details of this effect are given in

Section 3.3.

The rest of this paper is organized as follows. Section 2

discusses related works, while Section 3 describes the con-

ventional NMF-based VC method. An adaptation tech-

nique in an NMF framework is described in Section 4.

Section 5 describes the results of the experiments, and the

final section presents the conclusions.

2 Related works

A Gaussian mixture model (GMM)-based approach is

widely used for VC because of its flexibility and good per-

formance [12]. In this approach, the conversion function is

interpreted as the expectation value of the target spectral

envelope. The conversion parameters are evaluated using

a minimum mean-square error (MMSE) on a parallel

training set. A number of improvements in this approach

have been proposed. Toda et al. [13] introduced dynamic

features and the global variance (GV) of the converted

spectra over a time sequence. Helander et al. [6] proposed

transforms based on partial least squares (PLS) in order to

prevent the over-fitting problem associated with standard

multivariate regression. However, over-smoothing and

over-fitting problems in these GMM-based approaches

have been reported [6] because of statistical averages and a

large number of parameters. These problems degrade the

quality of synthesized speech.

The above statistical VC needs a large parallel corpus

between the source and target speakers. In this paper,

“parallel” means that the text of the corpus between the

source and target speakers is the same. This constraint can

be a difficult requirement to meet in practice. In GMM-

based VC, there have been approaches that do not require

parallel data. Lee et al. [7] used maximum a posteriori

(MAP) in order to adapt training data. Mouchtaris et al.

[8] proposed non-parallel training for GMM-based VC.

Toda et al. [9] proposed eigen-voice GMM (EV-GMM) for

many-to-many VC in which the source and target speech

are represented by a super vector of the reference speak-

ers. Saito et al. [10] proposed tensor representation for

one-to-many GMM VC. However, these approaches do

not work well in noisy environments because they are

based on a statistical approach.

Our VC approach is exemplar-based, which is different

from the conventional GMM-based VC. Exemplar-based

VC using NMF has been proposed in [5]. In this frame-

work, parallel training data is stored as source and target

dictionaries. Input speech is decomposed into a linear

combination of source exemplars from the source dictio-

nary. Selected source exemplars are replaced with target

exemplars, and the input speech is converted.

We assume that our approach using NMF has two

advantages over conventional statistical VC. The first

advantage is noise robustness and the second is the resul-

tant natural-sounding converted voice. The noise robust-

ness of this method was confirmed in [14]. In [15], we

proposed multimodal NMF-based VC to enhance the

noise robustness of our method. The natural-sounding

converted voice in NMF-based VC was confirmed in [16].

Wu et al. [17] applied a spectrum compression factor

to NMF-based VC and improved the conversion quality.

The NMF-based VC has also been adapted for assistive

technology for those with articulation disorders [18].

3 NMF-based voice conversion

3.1 Sparse representations for voice conversion

Figure 1 shows an exemplar-based voice conversion

approach for a noisy environment. D, L, J, and K are the

numbers of feature dimensions, frames, clean exemplars,
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Fig. 1 Basic approach of exemplar-based voice conversion in a noisy environment

and noise exemplars, respectively. In approaches based on

sparse representations, the observed signal is represented

by a linear combination of a small number of bases. We

call the collection of these bases a “dictionary” and the

collection of its weights “activities”.

Figure 2 illustrates the process for constructing parallel

dictionaries. First, we construct the parallel dictionaries

of the source and target speakers. To do so, parallel spec-

tra are extracted from the parallel words of the source

and target speakers. Using dynamic time warping (DTW),

these spectra are then aligned so that they have the same

number of frames. Then, the source and target dictionar-

ies are obtained by lining up the parallel spectra, which

are used as parallel training data in GMM-based VC [13].

Therefore, the dictionary consists of short-time spectra

Fig. 2 Construction of parallel dictionaries

obtained from all training speech data using short-time

Fourier transform (STFT), where one spectrum corre-

sponds to one basis of the dictionary. Using this method,

unlike GMM-based VC, no dictionary training procedure

is required.

In the test stage, from the before- and after-utterance

sections in the observed signal, the noise dictionary is

extracted for each utterance. The spectrum of the noisy

source signal at frame l is approximately expressed by a

non-negative linear combination of the source dictionary,

noise dictionary, and their activities.

xl = x
s
l + x

n
l

≈

J
∑

j=1

a
s
jh

s
j,l +

K
∑

k=1

a
n
kh

n
k,l

= [As
A
n]

[

h
s
l

h
n
l

]

s.t. h
s
l ,h

n
l ≥ 0

= Ahl s.t. hl ≥ 0 (1)

where x
s
l and x

n
l are the magnitude spectra of the source

speaker and the noise, respectively. As, An, hsl , and h
n
l are

the source dictionary, noise dictionary, and their activities

at frame l. Given the spectrogram, (1) can be written as

follows:

X ≈ [As
A
n]

[

H
s

H
n

]

s.t. H
s,Hn ≥ 0

= AH s.t. H ≥ 0 (2)

where H
s and H

n denote the activity matrices of the

source and noise dictionaries, respectively.

In order to consider only the shape of the spectrum, X,

A
s, and A

n are first normalized for each frame or exem-

plar so that the sum of themagnitudes over frequency bins

equals unity.
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The joint matrix H is estimated based on NMF with

the sparse constraint that minimizes the following cost

function [4]:

d(X,AH) + ||
(

λ1(1×L)
)

. ∗ H||1 s.t. H ≥ 0. (3)

.∗ denotes element-wise multiplication. The first term

is the Kullback-Leibler (KL) divergence between X and

AH. The second term is the sparse constraint with a

L1-norm regularization term that causes H to be sparse.

The weights of the sparsity constraints can be defined for

each exemplar by defining λT =[ λ1 . . . λJ . . . λJ+K ]. In this

study, the weights for source exemplars [ λ1 . . . λJ ] were set

to 0.1, and those for noise exemplars [ λJ+1 . . . λJ+K ] were

set to 0 because the noise signal is less sparse compared to

the speech signal.Hminimizing (3) is estimated iteratively

applying the following update rule:

Hn+1 = Hn. ∗
(

A
T(X./(AHn))

)

./
(

1
((J+K)×L) + λ1(1×L)

)

. (4)

3.2 Target speech construction

A
t in Fig. 1 represents a target dictionary that consists

of the target speaker’s exemplars. As and A
t consisted of

the same words and are aligned with DTW just as the

conventional GMM-based VC is. This method assumes

that when the source signal and the target signal (which

are the same words but spoken by different speakers) are

expressed with sparse representations of the source dictio-

nary and the target dictionary, respectively, the obtained

activity matrices are approximately equivalent. For this

reason, we assume that when there are parallel dictionar-

ies, the activity of the source features estimated with the

source dictionary may be able to be substituted with that

of the target features.

The target dictionary is also normalized for each frame

in the same way the source dictionary was. From the esti-

mated joint matrix H, the activity of source signal Hs is

extracted, and by using the activity and the target dictio-

nary, the converted spectral features X̂t are constructed.

X̂
t = A

t
H

s (5)

The converted spectral features are de-normalized so

that the sum of the magnitudes over frequency bins equals

input spectral features.

3.3 Difference between parallel dictionaries

As mentioned in Section 3.2, this method assumes that if

the parallel source and target spectra are decomposed into

a parallel dictionary and its activities, the activity matri-

ces will be approximately equivalent. In this framework,

we assume that each basis in the dictionary represents a

phoneme part and the activity matrix represents the pho-

netic information of the utterance, which is independent

of the speaker.

Figure 3 shows an example of the activity matrices esti-

mated from a single parallel Japanese word, where one is

uttered by a male and the other by a female. These words

are aligned by using DTW in advance, and the parallel

dictionaries, which consist of 250 randomly chosen bases,

are used in activity estimation. As shown in the figure,

estimated activities are different although input features

and dictionaries are parallel. We assume that there are

two reasons for this. First, we assume that the alignment

difference between the source and the target dictionaries

causes this effect. Although the parallel dictionaries are

aligned by DTW, there still seems to be a mismatch of

alignment. These mismatch degrades the performance of

the exemplar-based VC [16]. Second, we assume that the

activity matrix contains not only phonetic information but

also speaker information. In [19], we proposed a frame-

work for solving this effect and improved the performance

of the NMF-based VC; however, a large amount of parallel

data is still needed when using this framework.

4 Exemplar-based voice conversion using a

small-parallel corpus

In the framework of the conventional NMF-based VC

which is described in Section 3, a large-parallel corpus of

source and target speakers is needed for dictionary con-

struction. In this section, we propose target dictionary

estimation from a small-parallel corpus only.

Figure 4 shows the estimation procedure of our pro-

posed method. Xs and X
t show a small amount of parallel

data between the source and target speakers. In the activ-

ity estimation stage, a source spectral exemplar matrix Xs

is decomposed into a linear combination of bases from the

source dictionaryAs. The source dictionary consists of the

source speaker’s exemplars. It is constructed the same way

the dictionary is constructed when using the conventional

NMF-based VC, as explained in Section 3. The indexes

and weights of the bases are estimated using (4) as source

activityHs.

In the dictionary adaptation stage, speaker adaptation

is conducted in order to obtain a target dictionary from

a source dictionary using a small amount of (parallel)

target speech data. The adaptation is performed using

a linear regression transformation matrix based on an

NMF framework. Given the transformation matrix, W,

the target feature vector at the l-th frame is obtained as

follows:

x
t
l ≈ WA

s
h
s
l (6)

where A
s is the source dictionary and h

s
l is the activity

vector of the source signal at the l-th frame.
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Fig. 3 Activity matrices for parallel utterances

In order to find the transformation matrix, an NMF

framework which minimizes the KL divergence between

X
t andWA

s
H

s is used.

W = argmin
W

d
(

X
t ,WA

s
H

s
)

s.t. W ≥0 (7)

The transformation matrix, W, is estimated using

A
s, Hs, and a small amount of the parallel target speech

data, Xt , as follows:

Wn+1 = Wn. ∗
(

(

X
t ./

(

Wn

(

A
s
H

s
))) (

A
s
H

s
)T

)

./
(

1
(D×L)

(

A
s
H

s
)T

)

. (8)

The new parallel target dictionary is given by Ât = WA
s.

In the test stage, the noisy input source speaker’s spectra

matrix X is decomposed into the multiplication of dic-

tionary A = [As
A
n] by its activity H =

[

H
sT
H

nT
]T

as

follows:

X = AH. (9)

The converted spectra matrix X̂t is constructed from

the estimated target dictionary Â
t , and the clean activity

H
s as follows:

X̂t = Â
t
H

s. (10)

In this method, we do not have to consider the dif-

ference between the parallel dictionaries in Section 3.3

because the parallel utterances are used as adaptation

data, not as a dictionary. The activity matrix estimated

Fig. 4 Estimation of parallel dictionary using a speaker transformation matrix
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from the source dictionary contains both the phoneme

information and speaker information of the input utter-

ance, as explained in Section 3.3. In this method, the

adaptation matrix is estimated from the fixed source dic-

tionary and source activity matrix, and target speaker

information is extracted using the adaptation matrix in

this procedure. In other words, the adaptation matrix is

independent of the phoneme, and it is the conversion

matrix from the source to the target speaker.

5 Experiments

5.1 Experimental conditions

The new VC technique was evaluated by comparing it

with conventional techniques based on GMM [12] and

NMF [5] in a speaker conversion task using noisy speech

data. Speaker MMY, MAU, MNM, FTK, FYN, and FMS

were selected from the ATR Japanese speech database

[20], and we conducted male-to-female (MMY→FTK

and MAU→FYN), male-to-male (MMY→MAU and

MNM→MMY), and female-to-female (FTK→FYN and

FMS→FTK) conversions. The sampling rate, frame shift,

and window length are 8 kHz, 5 ms, and 25 ms,

respectively.

We used 216 words of clean speech per each speaker

to construct a source dictionary in NMF with a speaker

adaptation and to train the GMM using the conventional

method. Table 1 shows the average number of frames in

each parallel dictionary. These training data were taken

from the ATR Japanese speech database set A (all of task

code B). The number of adaptation words was 10, 25, and

50 per each speaker. These adaptation words were ran-

domly chosen from the ATR Japanese speech database set

A (task code A). Fifty words, which are included in the

ATR Japanese speech database set A (task code A) and

are different from the training and adaptation data, were

randomly chosen as test data.

The noisy speech signals were obtained by adding noise

signals to clean speech data. We used three types of

noise signal (restaurant, station, and exhibition), and these

are randomly taken from the non-utterance section of

CENSREC-1-C database [21]. The SNRs for each noise

was set to 20 and 10 dB. They are added to a test

word independently to each other. (A noisy speech signal

includes one type of noise signal.) The average number of

exemplars in the noise dictionary for each word was 104.

In the objective evaluation, all 50 test words with three

types of noisy signal at two different types of SNRs were

converted. Therefore, a of total 1800 words (6 pairs × 50

words × 3 noise types × 2 SNRs) were used for subjective

Table 1 Number of frames in each parallel dictionary

No. of training data 216 50 25 10

No. of frames 61,168 13,839 6782 2826

Fig. 5 NSD for male-to-female conversion at 10 dB

evaluation. In subjective evaluation, the half of the test

data with restaurant noise at 10 dB were used. There-

fore, the total amount of test words was 150 (6 pairs × 25

words) in subjective evaluation.

The spectrum, F0, and aperiodic components were

extracted using STRAIGHT [22]. In the NMF-based

method, a 513-dimensional spectrum extracted using

STRAIGHT was used as the feature vector in the input

signal and source dictionary. The number of iterations

used to estimate the activity was 300 [16]. The activity

and the transformation matrix were initialized with non-

negative random values. In the GMM-based method, 40

linear-cepstral coefficients obtained from the STRAIGHT

[22] spectrum were used as the feature vectors. The num-

ber of Gaussian mixtures was 64 which was chosen to

obtain minimum distortion on test data. In this study,

F0 information was converted using conventional linear

regression in all VC methods based on the mean and

standard deviation [13] as follows:

ŷt =
σ (y)

σ (x)

(

xt − µ(x)
)

+ µ(y), (11)

Fig. 6 NSD for male-to-male conversion at 10 dB
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Fig. 7 NSD for female-to-female conversion at 10 dB

where xt and ŷt denote the log-scaled F0 of the source

speaker and the converted word at frame t, respectively.

µ(x) and σ (x) denote the mean and standard deviation of

the log-scaled F0, as calculated from the source speaker’s

training data. µ(y) and σ (y) are the mean and standard

deviation of the target speaker data. We made no conver-

sions to the aperiodic components. With STRAIGHT, we

used converted spectra, F0, and source aperiodic compo-

nents for synthesizing the target voice.

5.2 Experimental results

Objective tests were carried out using the normalized

spectrum distortion (NSD) [23]

NSD =

√

||Xt − X̂t||2/||Xt − Xs||2, (12)

where X
s, Xt , and X̂

t denote the source, target, and con-

verted spectrum, respectively.

Figures 5, 6, and 7 show the NSD for each speaker

at 10 dB. “NMF” shows the result using conventional

Fig. 8 NSD for male-to-female conversion at 20 dB

Fig. 9 NSD for male-to-male conversion at 20 dB

NMF without speaker adaptation, and “A-NMF” shows

the result using NMF with speaker adaptation. As shown

in these figures, the performance of NMF without speaker

adaptation decreases as the number of words used for

the parallel dictionaries decreases. On the other hand, the

performance of NMF with speaker adaptation does not

decrease in comparison to the conventional NMF without

speaker adaptation. Our A-NMF method obtained a bet-

ter result than NMF when we used 216 parallel words for

most speakers. We assume this to be due to the fact that

the difference between parallel dictionaries degrades the

performance of NMF.

Figures 8, 9, and 10 show the NSD for each speaker

at 20 dB. Because of the low SNR conditions, the noise

robustness of the NMF-based VC is lower, compared to

Figs. 5, 6, and 7. However, the performance of NMF

with speaker adaptation does not decrease as the num-

ber of words used for the parallel dictionaries decreases in

comparison with the conventional NMF without speaker

adaptation. Moreover, the performance of NMF with

Fig. 10 NSD for female-to-female conversion at 20 dB
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Fig. 11 Results of MOS test and XAB test

speaker adaptation is better than the conventional GMM-

based VC. These results show the effectiveness of our

NMF-based speaker adaptation technique.

For the speech quality evaluation, a mean opinion score

(MOS) [24] test was performed. The opinion score was set

to a five-point scale (5 excellent, 4 good, 3 fair, 2 poor, 1

bad). The number of participants was 8, and the SNR was

10 dB. Figure 11 shows the MOS test on the speech qual-

ity. As shown in Fig. 11, the NMF-based VC with speaker

adaptation (25 adaptation words) obtained a better score

than the conventional NMF-based VC (25 words). The

result was confirmed by a p value test of 0.05.

For the evaluation of speaker individuality, an XAB

test was carried out. In the XAB test, each participant

listened to the target speech. The participant then lis-

tened to the speech converted by the two methods and

selected the sample that sounded more similar to the tar-

get speech. Figure 11 shows that the NMF-based VC with

speaker adaptation obtained a higher score than the con-

ventional NMF-based VCwithout speaker adaptation.We

confirmed this result by a 0.05 p value test.

6 Conclusions

In this paper, an exemplar-based VC technique using

speaker adaptation was presented. This method requires

only a small amount of parallel data, where a linear regres-

sion transformation matrix is used to adapt a source

dictionary to a target dictionary and it is estimated in

an NMF framework. In comparison experiments between

GMM-based VC, NMF without speaker adaptation, and

NMF with speaker adaptation, the NMF-based VC with

speaker adaptation showed better performance.

Some problems remain with this method. The pro-

posed method requires higher computation times than

the GMM-based method. In [25], we proposed a frame-

work that reduces computational time for NMF-based

VC. In future work, we will investigate the optimal

number of bases and evaluate performance under other

noise conditions. In addition, this method is limited to

only one-to-one voice conversion because it requires a

small amount of parallel data. Hence, we will research

a method for many-to-many VC within this framework

and apply this method to other VC applications, such as

assistive technology [18] or emotional VC [26].
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