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Small parts in the Bernoulli sieve
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Sampling from a random discrete distribution induced by a ‘stick-breaking’ process is considered. Under a moment
condition, it is shown that the asymptotics of the sequence of occupancy numbers, and of the small-parts counts
(singletons, doubletons, etc) can be read off from a limiting model involving a unit Poisson point process and a

self-similar renewal process on the half-line.
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1 Introduction

A multiplicative renewal process (also known as residual allocation model or stick-breaking) is a random
sequence3 = (P; : j € Ny) of the form

P =1Iw ()

(so Py = 1) where(W; : i € N) are independent copies of a random varidbleaking values irj0, 1.
We shall assume that the support of the distributiomodis not a geometric sequence or, equivalently,
that the distribution of the variabldog 1V | is non-lattice, and also assume that

p = E[—log W] < 0. (2)

The ‘stick-breaking’ se3 will be viewed as a simple point process, withbeing the only accumulation
point. The complemenB® = [0, 1] \ B is an open set comprised of the component inter\@ls, , P;|

for j € Np.
Let Uy, Us, ... be independent uniform [0,1] random points, also independet, aind for eachn
letU,1 < ... < Uy, be the order statistics df,,...,U,. These data define a random occupancy
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scheme, called the Bernoulli sieve, in whighballs’ 1,...,n are dropped into infinitely many ‘boxes’
Jj =1,2,...according to the rule: ballfalls in boxj if the eventU; €]P;, P;_;[ occurs. The allocation
of balls can be constructed sequentially by first sampling a Véllueand dropping every ball into box
1 independently with probability — Wy, then samplingV, and dropping each of the remaining balls
independently into box 2 with probability— 15, and so on until alh balls are distributed into boxes. In
the most studied and analytically best tractable case the |&Wisfbetd6, 1), # > 0, when the allocation
of balls-in-boxes belongs to the circle of questions around the Ewens sampling foiy@jla [

In [4, 5] the renewal theory was applied to explore the spectrum of possible limit laws for the number
of occupied boxeds,,, including normal, stable and Mittag-Leffler distributions. In the present note
we retain the conditiori2j and focus on the variablés,, ., which count the number of intervals &
occupied by some out of n uniform points,- € N. We also defin€s,, ( to be the number of unoccupied
interval components aB° N [U,, 1, 1], so thatk,, = I,, — K,, o, with I,, := min{i : P, < U,,1} being
the index of the last occupied interval. Note that the intervals are labelled right-to-left. We approach the
K, ,’s via theoccupancy counts

ZW .=#{1<j<n:Uj€ P, _i1,Pr,_il}, i €N,

labelled in the left-to-right order of the intervals, where wezygf = 0fori > I,. Extending a result

from [5] aboutZ,(q,l), we will show that thez{’s jointly converge to the sequence of occupancy numbers

in a limiting model that involves a Poisson process and another self-similar point process on the half-line.
From a viewpoint,B is the range ofexp(—S;) : t > 0) for some compound Poisson procéss :

t > 0). Asymptotics ofK,,, K, _’s have been studied in a similar situation with; : ¢ > 0) being an

increasing levy process whosedvy measure is infiniteZ] [7, 8]. In the infinite measure case neither

the countsZ.” nor I,, can be defined, becaughas then the topology of a Cantor set, thus the interval

components o3¢ cannot be simply enumerated by integers consistently with their natural order.

2 Occupancy counts

For 0 < m < n the probability that the intervdP, , Py[ containsm out of n uniform points is

plonsm) = ()

The sequence of cluster sizes of points within intervals can be representedeak aompositionf n,
meaning thatu; > 0,ns > 0,...,n, > 0andn; + ... +n, = n. The structured) and elementary
properties of the uniform distribution imply the product formula

n
( )p(nl +...+neing)pny+ ...+ ne—1:ne—1)...p(n1 1 n1) 3)
Ny, ... Ny

(where the multinomial coefficient can be factoreq’{afs:1 ("12]1*"3)) for the probability that the inter-
vals|P;, P;_,[ containn; uniform points;j = 1, ..., £. While this formula specifies the joint distribution

of the occupancy counts read right-to-left, there is no simple formula for the joint distribution of the
counts read left-to-right. We shall see, nevertheless, that imthe oo limit there is a considerable
simplification, as inlf).
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Observe thatZ,, := (Zﬁf) : 1 € N) can be defined in the same ‘balls-in-boxes’ fashion in terms of
the inflated set&B andf,, := {nU,,; : 1 < j < n}. From the extreme-value theory we know
that, asn — oo, the point proces#/, converges vaguely to a unit Poisson procksen R,. Here
and henceforth, the vague convergence means weak convergence on every finite interval bounded away
from 0. On the other handy B also converges vaguely to some point procgssn R which is self-
similar, i.e. ¢B =, B for everyc > 0. The intensity measure of the proce8ss (uz)~'dx. The
convergence of B is a consequence of the classical renewal theorem applied to the finite-mean random
walk (—log P; : j € Ny). The self-similarity in this context is analogous to the stationarity in the
(additive) renewal theory.

The setR, \ B is itself a collection of open intervals ('boxes’) which accumulate in some way the
points ofi/ ('balls’), hence we can define a nonnegative sequence of counts of ’balls-in-b6xes’
(z® . i € N) which starts with some positive numbgt!) of Poisson points falling in the leftmost
nonempty interval. In view of the convergence of the point processes, one can expect that the convergence
of the counting sequences also holds. This is stated in the following theesgrdénotes the convergence
in distribution).

Theorem 2.1 Asn — oo,
(Zr(Ll)?Zr(LZ)7> —d (Z(1)7Z(2)a) (4)

The distribution of the limit sequence is given by the formula

P(ZM =ny,..., 20 =ny) =
1 (nl—l—...—&—ng

_— n+...+np:n ni+...+np_1:n¢—1)...p(n1:n 5
p(ng + ...+ ny) )p(l ¢ :ne)p(ma e-1:m-1)...p(n1:n1)  (5)

ny,...,Ny

forany/ > 0andn; > 0,n0 >0,...,n, > 0.

Proof: Fix ¢ > 0 and restrict all point processes fia ¢~!]. By Skorohod's theorem we can select
probability space in such a way that the convergencéndf, /,,) to (B,U) holds almost surely, then
for the continuity reasons the occupancy numbers of the intervals within!] converge. The weak
convergenced) follows by sending — 0 and noting that the probability that any leftmost points ot/
fitin [e,e~!] goes to one.

Letn = n; + ...+ n, and denote byX the (n + 1)st leftmost point of4/. The generic sequence of
occupancy numbers which gives rise to the evenbjnig of the form(nq,...,ns,0,...,0,m) where
m is some positive number and the number0& is arbitrary. LetG = max(B N [0, X]) be the
largest point of8 smaller thanX; from selfsimilarity and/§] we know that the distribution o7/ X
has density uz) ~'P(W < x) on 0, 1], and from the order statistics property of the Poisson process we
know that givenX the firstn points ofi/ are distributed as a uniform sample frdf X]. The pattern
(n1,...,ne,0,...,0,m) occurs when the uniform-sample does not h[(Z, X] (eventE;) and within
[0, G] the occupancy numbers afe, ..., ns,0,...,0) (eventEsy). Integrating by parts, the probability

of E; is
1
P 1
/ "PW <), _ — (1 -EW").
0 pa pn
Fori € Ny let E5; be the event that the pattefn,...,n;,0,...,0) with exactly: zeros occurs. In

N[0, G]
G

view of the equalityB =4 B\{1}, the conditional probability(E, ;| X = z, E1) equals the
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probability 3) with ¥ =1+ i andn;; = ... = ny = 0. Sincek, = U;’io E,,; then summing the last
probability overi, we have

]P)(EQ‘X =T, El) =

]_—E[W”] N, Tk p\ny NnEg g )p\ny Nkg—1 *Ngg—1)...p\N1 N1 ) =
P(Es|Ey).

Since the probability ing) equalsP(F; () E2), the proof is complete. O

3 Small parts

We wish to connect the asymptotics:etounts to Theorer2.1. LetY be the leftmost atom dff. For
r > 0 let K be the number of intervals ¢, co[ \ 5 that contain exactly points of/. Forr > 0 we can
take]0, oo instead oflY, oo] in this definition.

Lemma 3.1 Let A, B be two simple (i.e. without multiple points) point processes defined and a.s. finite
in some intervals, t], and such thatd N B = @ a.s. Suppose we have weak convergéaGe B,,) —4

(A, B) for a sequence of bivariate point processes. Define a gap to be a subinterjsalkjofvhose
endpoints are consecutive atomshflLet L, be the number of gaps iR that contain exactly: points of

A (with the convention thak, counts the gaps to the right of the leftmeakpoint in [s, ¢]), and letL,, j

be defined similarly in terms ¢4,,, B,,). Then(L,, 0, Ly, 1,...) —a (Lo, L1,...) asm — cc.

Proof: By Skorohod’s theorem a version of the processes can be defined on some probability space in
such a way that with probability one the convergence is pointwise. That is to say, for large enough
#B, and#B are equal and the points &f,, (labelled, e.g. in the increasing order) arelose to the

points of B. Same forA,,, A. Thus for largen, there is a bijection between the gapsirand in B,, and
between the points od and 4,, that fall in each particular gap. O

A variation of the lemma allows accumulation of atoms of the gaps-generating process at the left endpoint
of the underlying interval. In our situation bothandi/ live on the half-line and accumulate at infinity,
hence to pass from the occupancy countdsip,’s we need to take further care by showing that the
contribution of the counts withifs, oo] is negligible for larges. To this end, it is enough to work with
expected values. Now, the mean contributiorf0o§] to E[K /] can be estimated by the expected number

of points inB N [min(Y, s), 5],

s d o0 s d s s q
/ & :/ e_zdz/ & :/ e_zdz/ & < 0. (6)
min(Y,s) H¥ 0 min(z,s) UL 0 z HT

Lemma 3.2 For r > 0 we haveE[K] = (ur)~!. Furthermore E[K;] = v/u, where

E

v:=E[-log(l — W)]

which may be finite or infinite.



Small parts in the Bernoulli sieve 5

Proof: Understanding &-atom indzx as theright endpoint of a gap we obtain for > 0
E[K*] = E U —(1-W) x(lw)d“] -1l U eyyrldy} _1
0 ! prl ! 0 ur

For » = 0 we have
E[K;] =E [/ e*(lfW):v(l —e W)
0

where the second factor in the integrand stands for the evenXtimsmaller than the left endpoint of the
gap. |
In the caser = oo the source of divergence & is co and not), as is seen frong}.

dz] _ E[-log(1-W)] v
pr| 1 w’

Theorem 3.3 Asn — oo we have
(Kmo, KnJ, .. ) —d (KS, Kf, - .),

along with
E[K,.] — E[K]].

T

The three conditions = co, EK; = oo and K; = oo a.s. are equivalent.

Proof: The limit set satisfie$s N [0,1] =4 Wy B where B and W, are independent, anid, has the
density
(px)'P(W < z)dz, = €]0,1]. (7)

We shall speak ofrr]-counts meaning the intervals withj#,, 1, 1] (or [Y, o], depending on the context)
that contain at most sampling points, and denofé*r] = K7, K, = >y Kn,i- Replacing in
the proof of LemméB.2 the lower limit of integratior) by sWW; we see that choosinglarge enough we
can achieve that the contribution )X | of the intervals with right endpoint ifsWo, oo] is arbitrarily
small. It remains to show that the contributiorifd<,, 1] of [s /n, 1] is small for large enoughuniformly
inn.

Observe that the number of components3§fN [e, 1] that contain no more than uniform points is
nonincreasing withe, because the number of ‘balls’ in a ‘box’ can only grow as more ‘balls’ are thrown.
Furthermore, observe that, for the purpose of estimate, the fixgdform sample can be replaced by the
Poisson sample of rateon [0, 1]. Indeed, the probability that a gap of sizés hit by > 0 uniform points
is (M) a"(1 — z)"~", and in the poissonised model itds"*(nz)" /r!. Using the elementary inequality
1—2 < e~* and some algebra it is easy to estimate from the above the mean numbezmfnts coming
from the gaps of siz8 < = < 1/2 within [s/n, 1] for the fixedn sample through the analogous quantity
in the Poisson model. The intervals larg¢e can be ignored, since the probability that they accomodate
at mostr sample points decays exponentially with

Arguing within the framework of Poisson sample\[0, 1], we compare occupancy of ‘boxes’ generated
by B with that forW, B. The ‘meander interval[lVy, 1] gives negligible contribution tp]-counts hence
will be ignored. Becaus8 N [Wys/n, Wy is a zoomed-in copy dfs/n, 1], the sequence of occupancy
counts forB N [Wys/n, W] has the same distribution as if we h&dN [s/n, 1] in the role of 'boxes’
and a mixed Poisson sample with ratd’; in the role of ’balls’. By monotonicity and becaudé, < 1,
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the number offr]-counts derived froms N [Wys/n, Wy] is larger than the number oefcounts from
B N [s/n, W], which implies that the mean number of such counts can be kept small by the cheice of
This implies the desired estimate of the contributionsgh, W] to B[/, ,].

If K§ = oo a.s. therE[K] = oo and by Lemmé.2 we conclude that = oo. The equivalence of the
conditionsr < co andK§ < oo a.s. will follow from the next lemma. O

Lemma 3.4 If v = co thenK§ = oo a.s.

Proof: Let (T; : i € N) be the points ot/ in increasing order. Consider the random points defined as
follows:
T =]
1 1 .
= — and & (= — — =2,3,...
51 WO gk i, ? 39y )

=1

whereW, is independent ofW; : ¢ € N) and has distribution as iff). Fori € N denote byF; the event
that the interval¢;, & +1] contains none df, for £ > 2. ThenK§ = Z;’il 1g, and we wish to show that
the series diverges with probability one.

The eventg E; : ¢ € N) are adapted to the filtratioff; : ¢ € Ny), whereZ; is theo-field generated by
Ty, Wy, (Wi, : k € N)and(E}, : k < ). By the conditional Borel-Cantelli lemm@&,[Theorem 2.8.5], it
is enough to show that

ZP(EL|fZ_1) =00 a.s. (8)
i=1

In view of the conditional independence of ti#&'s given 71, W, and (W, : i € N), we have
P(E;|Fi_1) = P(E;|Fo). Therefore,

n 1-W;
a; = P(E;|F;—1) = exp <_M/}OVV1VV> '

By the strong law of large numbers, there exists 1 such that

T
i 2 ——c(1=-W;) ) =0
oz exp (~ k=W))<
for large enough. Conditioning on the value &f; /W, we need to show divergence of the seNés , ;.
By the virtue of the ordinary Borel-Cantelli lemma= oo implies
—log(1 —W;
lim sup M =00 a.s.

i—00 1

Consequently, there exists an increasing sequéngesuch that3;, — 1 ask — oo, which means that
the serie$ ;- 8; cannot converge with probability one. Since, gi@i Wy, 31, (3, . . . are independent
and positive, the sum of the seriesstswith probability one, whencésj. O
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