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Abstract

We show that the property of being a (weakly) admissible mesh
for multivariate polynomials is preserved by small perturbations on
real and complex Markov compacts. Applications are given to smooth
transformations of polynomial meshes and to polynomial interpolation.
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1 Introduction.

Global polynomial approximation is still a challenging topic in the multi-
variate setting. The geometry of the interpolation domain and of its discrete
models play a key role, substantially not yet well understood.

A breakthrough has been recently given by the theory of admissible
meshes by Calvi and Levenberg [12]. These are sequences of discrete subsets
{An} of a compact set K ⊂ R

d (or K ⊂ C
d), such that a polynomial

inequality of the form

‖p‖K ≤ C ‖p‖An
, ∀p ∈ P

d
n (1)

is satisfied, where P
d
n denotes the space of d-variate polynomials of degree

not greater than n, and ‖f‖X = supx∈X |f(x)| for f bounded function on
the compact X. These sets and inequalities are known also under different
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names in various contexts: (L∞) norming sets and Marcinkiewicz-Zygmund
inequalities (especially for the sphere), stability inequalities (even in more
general functional settings); cf., e.g., [14, 20, 26].

A key feature of admissible meshes is that the cardinality of An grows
at most polynomially with n,

card(An) = O(ns) , s > 0 (2)

In the case when C = C(An) is not constant but grows at most polynomially
with n, namely

C = C(An) = O(nα) , α > 0 (3)

they speak of a weakly admissible mesh. Observe that necessarily card(An) ≥
N = dim(Pd

n), since An is P
d
n-determining.

In [12] it is shown that such meshes are near optimal for least squares
approximation, and contain Fekete-like interpolation sets with a slowly in-
creasing Lebesgue constant. Among their properties, it is worth to recall
that (weakly) admissible meshes are preserved by affine mapping, and can
be extended by finite union and product.

In some recent papers, the role of (weakly) admissible meshes in multi-
variate polynomial approximation has been deepened from both the theoret-
ical and the computational points of view. It has been shown that discrete
extremal sets of Fekete and Leja type can be extracted from such meshes
working on the corresponding rectangular Vandermonde matrices, and using
only basic procedures of numerical linear algebra, such as the QR and LU
factorizations with pivoting; cf. [6, 7, 28] and references therein. Moreover,
resorting to a recent deep result on the asymptotics of Fekete points (cf.
[3]), in [6] it has been proved that such discrete extremal sets distribute
asymptotically as the continuous Fekete points, i.e., the corresponding dis-
crete measures converge weak-∗ to the pluripotential equilibrium measure
(cf. [15]).

In principle, following [12, Thm.5], it is always possible to construct
an admissible mesh on a compact set which satisfies a Markov polynomial
inequality (termed for brevity Markov compacts)

‖∇p‖K ≤ Mnr‖p‖K , ∀p ∈ P
d
n (4)

where ‖∇p‖K = maxz∈K ‖∇p(z)‖∞, ‖ · ‖∞ denoting the max-norm of d-
dimensional complex vectors. This can be done essentially by a uniform
discretization of the compact set (or even only of its boundary in complex
instances) with O(n−r) spacing, but the resulting mesh has then O(nrd)
cardinality for real compacts and, in general, O(n2rd) for complex compacts.
Since r = 2 for many compacts, for example real convex compacts (cf. [17]),
the computational use of such admissible meshes becomes difficult or even
impossible already for d = 2, 3 at moderate degrees.
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On the other hand, weakly admissible meshes with approximately n2

points and C(An) = O(log2 n), and even (nonuniform) admissible meshes
with O(n2) points, can be constructed on some standard real bidimensional
compacts like disks, triangles, quadrangles; cf. [8, 9]. Admissible and weakly
admissible meshes with O(n2) points can then be obtained on any con-
vex or concave simple polygon (by polygon triangulation and finite union).
These constructions are based on suitable algebraic or mixed algebraic-
trigonometric transformations and one-dimensional Chebyshev-like points,
and can be extended to higher dimension (balls, cylinders, tori, polyhedra),
to obtain (weakly) admissible meshes with O(nd) cardinality.

General results on the construction of admissible meshes in d-dimensional
real compacts, have been recently proved by Kroó in [18]. In particular, it is
shown that “optimal” admissible meshes, i.e., meshes with O(nd) cardinality,
always exist in d-dimensional polynomial graph domains (domains bounded
by graphs of polynomial functions), in convex polytopes, and in star-like do-
mains with C2 boundary. It is also conjectured that any real convex body
possesses an optimal admissible mesh. Moreover, admissible meshes with
O(nd logk(d) n) cardinality, k(d) = O(d2), are constructed in d-dimensional
analytic graph domains (domains bounded by graphs of analytic functions).
The fact that near optimal admissible meshes can be obtained on Markov
compacts by analytic transformations has been recently proved also in [22].

In this paper, we prove a general perturbation result: the property of
being a (weakly) admissible mesh for multivariate polynomials is preserved
by small perturbations on real and complex Markov compacts. This has a
number of consequences. For example, it shows under which conditions small
errors on the sampling points preserve unisolvence and the size of Lebesgue
constants in multivariate polynomial interpolation. On the other hand, the
result can be applied to the construction of (weakly) admissible meshes by
smooth transformations, recovering also the case of analytic transformations
studied in [22].

2 Some perturbation results.

We state and prove a general result on the perturbation of L∞ finite norming
sets for polynomials of a given degree on Markov compacts (say, a “pertur-
bation principle”). We shall use the notion of Hausdorff distance of two
d-dimensional compact sets, is defined as

δ(K,H) = inf {η > 0 : K ⊆ H + B∞[0, η] and H ⊆ K + B∞[0, η]}
where B∞[0, η] denotes the closed ball (in the max-norm) centered at 0 with
radius η (usually termed polydisk in the complex case); cf., e.g., [27].

Remark 1 We generally work in C
d and consider polynomials with complex

coefficients; when K ⊂ R
d, “real” results can be obtained by considering
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polynomials with real coefficients.

Remark 2 Observe that An ⊂ K ⊂ R
d is a (weakly) admissible mesh for

polynomials with complex coefficients if and only if it is a (weakly) admissi-
ble mesh for polynomials with real coefficients. Concerning sufficiency, since
for x ∈ K we have |p(x)| =

√
(Rep(x))2 + (Im p(x))2, we simply obtain

that inequality (1) holds with
√

2C replacing C.

Theorem 1 Let K ⊂ C
d be a Markov compact with constant M and expo-

nent r, cf. (4). Assume that there exists a compact Kn, n ∈ N, such that
the polynomial inequality

‖p‖Kn
≤ Cn ‖p‖Nn

, ∀p ∈ P
d
n (5)

is satisfied for a suitable finite subset Nn ⊂ Kn, and δ(K,Kn) ≤ en in the
Hausdorff metric δ, with

en = en(θ) =
θ

(1 + Cn)Mnr
(6)

for a fixed θ ∈ (0, t∗/d), where t∗ = 0.703 . . . solves the equation

t exp (t/2) = 1 . (7)

Consider a small perturbation of Nn, say Ñn ⊂ K, constructed by choosing
a point ξ̃ ∈ B∞[ξ, en] ∩ K for every ξ ∈ Nn.

Then, the following polynomial inequality holds

‖p‖K ≤ Cn

1 − dθ exp (dθ/2)
‖p‖ eNn

, ∀p ∈ P
d
n . (8)

Proof. Fix p ∈ P
d
n and z ∈ K, take zn ∈ Kn such that ‖z − zn‖∞ ≤ en.

By the mean-value inequality we can write

|p(z)| ≤ |p(zn)| + |p(z) − p(zn)| ≤ |p(zn)| + max
s∈[z,zn]

‖∇p(s)‖∞ ‖z − zn‖1

≤ |p(zn)| + ‖∇p(sn)‖∞ d‖z − zn‖∞ ≤ |p(zn)| + d‖∇p(sn)‖∞ en

for a suitable sn in the segment [z,zn]. Observe that dist∞(sn,K) ≤ en.
Using the fact that K is a Markov compact, by the estimate |q(s)| ≤
exp (dMnrε)‖q‖K , valid for every q ∈ P

d
n and for every s ∈ C

d such that
dist∞(s,K) ≤ ε (cf. [12, Lemma 6]), applied to components of ∇p =
(∂1p, · · · , ∂dp), we get

‖∇p(sn)‖∞ ≤ exp (dMnren) max
1≤i≤d

‖∂ip‖K = exp (dMnren)‖∇p‖K ,
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and hence

|p(z)| ≤ |p(zn)| + exp (dMnren)‖∇p‖K den ≤ |p(zn)| + σn‖p‖K (9)

where

σn = dMnren exp (dMnren) =
dθ exp (dθ/(1 + Cn))

(1 + Cn)
. (10)

Now, by (5) we have |p(zn)| ≤ Cn‖p‖Nn
and thus, taking the maximum in

the left-hand side of (9),

‖p‖K ≤ Cn‖p‖Nn
+ σn‖p‖K . (11)

The next step is to bound ‖p‖Nn
in a similar fashion. Fix ξ ∈ Nn, and

take ξ̃ ∈ Ñn such that ‖ξ − ξ̃‖∞ ≤ en. Exploiting the Markov inequality as
above, we arrive to the estimate

|p(ξ)| ≤ |p(ξ̃)| + σn‖p‖K ≤ ‖p‖ eNn
+ σn‖p‖K .

Taking the maximum in the left-hand side and inserting the resulting bound
for ‖p‖Nn

into (11) we get finally

‖p‖K ≤ Cn‖p‖ eNn
+ βn‖p‖K (12)

where (observe that necessarily Cn ≥ 1)

βn = (1 + Cn)σn ≤ dθ exp (dθ/2) (13)

which in view of (12) gives (8). �

2.1 Weakly admissible meshes and interpolation sets.

A first relevant consequence of Theorem 1 concerns perturbation of (weakly)
admissible meshes, cf. (1)-(3). This can be stated by the following:

Corollary 1 Let K ⊂ C
d be a Markov compact, and let An be a (weakly)

admissible mesh for K. Fix θ ∈ (0, t∗/d) and consider a small perturbation
of An, say Ãn ⊂ K, constructed by choosing a point ξ̃ ∈ B∞[ξ, εn] ∩ K for
every ξ ∈ An, where

εn =
θ

Mnr(1 + C(An))
(14)

Then Ãn itself is a (weakly) admissible mesh for K, such that C(Ãn) ≤
C(An)/(1 − dθ exp (dθ/2)) and card(Ãn) ≤ card(An).

The proof of this Corollary is immediate, simply by taking Kn ≡ K,
Nn ≡ An and thus Cn ≡ C(An), Ñn ≡ Ãn. The cardinality inequality
follows immediately by construction of Ãn. When the mesh is admissible,
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Corollary 1 says that we get still an admissible mesh under perturbations
not exceeding εn = O(n−r).

A special instance is that of subsets An unisolvent for polynomial in-
terpolation, card(An) = dim(Pd

n) and nonzero Vandermonde determinant,
such that the Lebesgue constant Λn = C(An) grows (at most) polynomially
with n. Here Corollary 1 ensures that we get still a unisolvent interpola-
tion set, with a Lebesgue constant proportional to the original one, under
perturbations not exceeding εn = O((nrΛn)−1). Indeed, the characteristic
polynomial inequality of a weakly admissible set

‖p‖K ≤ C(Ãn) ‖p‖ eAn
, ∀p ∈ P

d
n

ensures that Ãn is unisolvent for polynomial interpolation of degree n, since
card(Ãn) ≤ card(An) (and thus, necessarily, card(Ãn) = card (An)). Notice
that the latter result also implies that, for any pair ξ, η ∈ An, the intersec-
tion B[ξ, εn] ∩ B[η, εn] ∩ K must be empty (otherwise, we could choose a
unisolvent interpolation set Ãn with card (Ãn) < dim(Pd

n)). In the case of
a convex compact, for example, this means that the separation distance of
the interpolation set An (the minimal distance between pairs of points) is
greater than 2εn.

Moreover, denoting by Lnf the polynomial that interpolates a continu-
ous function f at Ãn, the chain of inequalities

‖Lnf‖K ≤ C(Ãn) ‖Lnf‖ eAn
= C(Ãn) ‖f‖ eAn

≤ C(Ãn) ‖f‖K

ensures for general Markov compacts that the Lebesgue constant of the
interpolation set Ãn, say Λ̃n, is such that Λ̃n ≤ C(Ãn).

Consider for example the case of Fekete points of a (Markov) compact,
that are points that maximize the modulus of the Vandermonde determi-
nant. Here Λn ≤ N , and the considerations above ensure that we get uni-
solvent interpolation points with a Lebesgue constant proportional to N ,
under perturbations not exceeding εn = O((nrN)−1). This is clearly an
underestimate of the size of the possible perturbations. In the only two ex-
plicitly known instances of Fekete points, the interval (n + 1 Gauss-Lobatto
points) where r = 2 and the complex circle (2n + 1 equispaced points)
where r = 1, we have Λn = O(log n), and thus εn = O((n2 log n)−1) and
εn = O((n log n)−1), respectively.

The perturbation estimate for Gauss-Lobatto points is shared by many
near optimal interpolation sets on an interval [a, b], which have Λn = O(log n),
such as for example its Chebyshev-Lobatto points. In this case there is the
explicit estimate Λn ≤ 1 + 2

π log (n + 1), cf. [11]. Moreover, a Markov in-
equality with r = 2 and M = 2/(b − a) holds. Corollary 1 ensures that any
perturbation of the Chebyshev-Lobatto points of [a, b] not exceeding

εn =
θ(b − a)

4n2(1 + 1
π log (n + 1))
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with θ < t∗ = 0.703 . . . , is a unisolvent interpolation set, with Lebesgue
constant not greater than (1 + 2

π log (n + 1))/(1 − θ exp (θ/2)). This result
is on the same line of the so-called mock-Chebyshev subset interpolation
proposed in [10], where numerical evidence is given that interpolation at the
points of a sufficiently dense uniform grid that are closest to the Chebyshev-
Lobatto points, defeats the Runge phenomenon.

We stress that Corollary 1 has a nontrivial practical meaning:

• weakly admissible meshes (in particular, good interpolation sets) are
“stable” under small perturbations on Markov compacts.

That is, if we make small errors on the sampling locations of a weakly ad-
missible mesh, then stability and convergence of polynomial least-squares
approximation (cf. [12, Thm.1]), and in particular of polynomial interpo-
lation, are preserved. This is not only qualitative, since we have at hand
an explicit (over)estimate of such errors by (14), that allows to control the
sampling when (estimates of) some parameters are at hand (namely, the
Markov constant and exponent, and the mesh constant).

To give a multivariate example of the stability property stated above,
in Figure 1 we show the (numerically evaluated) Lebesgue constants corre-
sponding to small random perturbations of the Padua interpolation points
in [−1, 1]2, for degree n = 5, . . . , 30. These points are the only explicitly
known instance of near optimal total-degree interpolation sets for d > 1,
cf. [5]. We have Λn = O(log2 n), r = 2 (and M = 1, cf. [12, 17]), thus
εn = O((n2 log2 n)−1). In the example, for any given Padua point, say ξ,
we take ξ̃ = ξ + (u1, u2), where u1 and u2 are uniformly random distributed
in [−α/(n2 log2 n), α/(n2 log2 n)], α = 0, 1, 5, 10 (with the constraint that
ξ̃ ∈ [−1, 1]2). For α = 1 the Lebesgue constants are quite close to those of
the unperturbed case, whereas they begin to oscillate by increasing α, but
with good values even for α = 10.

2.2 Smooth transformations of (weakly) admissible meshes.

In this Section we prove two Corollaries of Theorem 1 on smooth geometric
transformations of (weakly) admissible meshes, and we give two applications
concerning complex parametric curves and planar domains with smooth
boundary. Indeed, also transformations of polynomial meshes can be treated
in the framework of the “perturbation principle” on Markov compacts. We
begin by recalling some definitions from polynomial approximation theory
in R

d and in C
d.

A fat compact set Q ⊂ Rd (i.e., Q = intQ) is termed a Jackson compact
if it admits a Jackson inequality, namely for each k ∈ N there exist a positive
integer mk and a positive constant ck such that

nk distQ(f, Pd
n) ≤ ck

∑

|i|≤mk

‖Dif‖Q , n > k , ∀f ∈ Cmk(Q) (15)
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Figure 1: Lebesgue constants of randomly perturbed Padua points in [−1, 1]2

for n = 5, . . . , 30, with perturbation radius α/(n2 log2 n): Padua points
(α = 0, lowest solid line), α = 1 (◦), α = 5 (�), α = 10 (⋄).

where distQ(f, Pd
n) = inf {‖f − p‖Q , p ∈ P

d
n}. Examples of Jackson com-

pacts are d-dimensional cubes (with mk = k + 1, cf. [21]) and euclidean
balls (with mk = k, cf. [25]); see [2, 23] for some recent results on the
multivariate Jackson inequality.

Given a compact set Q ⊂ C
d, its polynomial convex hull is

Q̂ = {z ∈ C
d : |p(z)| ≤ ‖p‖Q , ∀p ∈ P

d
n} (16)

and Q is termed polynomially convex if Q̂ = Q. In one complex variable,
this is equivalent to the fact that Q has a connected complement (Q̂ being
the union of Q with the bounded components of its complement). On the
other hand, any compact Q ⊂ R

d is polynomially convex. We refer the
reader e.g. to [15, 19] for a discussion on this concept in the context of
pluripotential theory and multivariate polynomial approximation. Finally,
we specify that by analytic function on a compact set we mean a function
that is holomorphic in an open neighborhood of the set.

Corollary 2 Let K ⊂ Cd be a Markov compact, cf. (4). Let Q ⊂ Cd be a
compact such that K = φ(Q), and let An be a (weakly) admissible mesh for
Q, cf. (1)-(3). Assume that

(A) φ is analytic on Q̂ (the polynomial convex hull of Q, cf. (16)).

Then, there exist a logarithmic sequence of natural numbers, say j(n) =
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O(log n), such that A′
n = φ(Anj(n)) is a (weakly) admissible mesh for K,

with C(A′
n) = O(C(Anj(n))) and card(A′

n) ≤ card(Anj(n)).

Corollary 3 Let K ⊂ C
d be a Markov compact, cf. (4). Let Q ⊂ R

d be a
compact such that K = φ(Q), and let An be a (weakly) admissible mesh for
Q, cf. (1)-(3). Assume that

(B) Q is a Jackson compact and φ ∈ Cmk(Q) for some k > r + 2α (cf.
(15)), with α = 0 if C(An) = o(nq) for every q > 0 (in particular,
when An is an admissible mesh).

Then, there exist a sublinear sequence of natural numbers, say j(n) =

O(n
r+2α

k ), such that the same conclusions of Corollary 2 hold.

Proof of the Corollaries. Let πj be the best uniform vector polyno-
mial approximation to φ on Q of degree not greater than j, and εj =
maxw∈Q ‖πj(w) − φ(w)‖∞ the corresponding error. Observe that πj(Anj)
is a (weakly) admissible mesh for πj(Q), with constant C(Anj) = O((nj)α).

By the Uniform Bernstein-Walsh-Siciak Theorem for analytic functions
of several complex variables on polynomially convex compacts [23, Lemma
3], applied componentwise to φ, under assumption (A) of Corollary 2 we
have that εj = O(aj) for a suitable a ∈ (0, 1).

On the other hand, under assumption (B) of Corollary 3 we have that
εj = O(j−k), applying componentwise to φ the multivariate Jackson in-
equality (15).

Fix θ ∈ (0, t∗/d), and define

j(n) = min {j : (1 + C(Anj))εj ≤ θ/(Mnr)} (17)

(observe that C(Anj)εj → 0 as j → ∞). The assumptions of Theorem 1
are then all satisfied, with Kn = πj(n)(Q), Nn = πj(n)(Anj(n)) and Cn =

C(Anj(n)), Ñn = A′
n = φ(Anj(n)), since δ(K,Kn) ≤ εj(n) ≤ en(θ).

Now, define m(n) = ⌈b log n⌉ with b > (r + α)/| log a| for Corollary 2,

and m(n) =
⌈
n

r+2α

k

⌉
for Corollary 3: in both cases, nrCm(n) εm(n) → 0 as

n → ∞, thus m(n) satisfies the inequality in (17) and j(n) ≤ m(n) for n
sufficiently large. We conclude by (8). The assertion on cardinalities follows
from the fact that φ is not injective, in general. �

Corollary 2 is essentially Theorem 1 in [22], where in addition it is proved
that C(A′

n) ∼ C(Anj(n)) as n → ∞. Indeed, this is true also here, if
we take j(n) = m(n) for n sufficiently large, observing that σn in (10)
can be substituted by σ̂n = dMnrεj(n) exp (dMnrεj(n)), which becomes an
infinitesimal sequence.

The two Corollaries above allow the contruction of low cardinality ad-
missible meshes by geometric transformations. This is on the line of what
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is done in [18], concerning a class of compacts, the so-called “graph do-
mains”. We state the following Proposition, whose proof is immediate. In
the analytic case we may speak of a near optimal admissible mesh.

Proposition 1 Let the assumptions of Corollary 2 or 3 be satisfied, and
assume in addition that Q possesses an optimal admissible mesh (i.e., an
admissible mesh with O(nd) cardinality). Then K = φ(Q) possesses an
admissible mesh with cardinality O(nd logd n), or O

(
nd(1+(r+2α)/k)

)
, respec-

tively.

2.2.1 Complex parametric curves.

To make a first example, we can consider the case of a complex para-
metric curve, K = φ([a, b]) ⊂ C, admitting a smooth parametrization
φ ∈ Ck([a, b]), k ≥ 1. Being a one-dimensional connected compact, K
satisfies a Markov inequality with exponent at most 2, in view of a well-
known result of Pommerenke [24]. Then, being at least C1 the curve has
in any case an admissible mesh with O(n2) cardinality, which is the image
of a suitable set of equally spaced parameters, as it has been shown in [4,
Prop.17] following the construction of [12, Thm.5].

On the other hand, further regularity allows to construct admissible
meshes with a lower cardinality. The assumptions of Proposition 1 are sat-
ified, when k > 2, or when φ is even analytic. In fact, Q = [a, b] is a
Jackson compact, and is also polynomially convex (i.e., it coincides with its
polynomial convex hull) like all real compacts. Moreover, it has optimal
admissible meshes (for real polynomials, but see Remark 2), for example its
2n + 1 Chebyshev-Lobatto points, as it has been shown in [9] using a classi-
cal polynomial inequality by Ehlich and Zeller. The φ-image of 2nj(n) + 1
Chebyshev-Lobatto points of [a, b] is then an admissible mesh on the curve
(see Corollaries 2 and 3 for the definition of j(n)).

Summarizing, as already proved in [22], we get that

• any analytic parametric curve in C possesses a near optimal admissible
mesh with O(n log n) cardinality.

Moreover, we can also assert that

• any Ck parametric curve in C, k > 2, possesses an admissible mesh
with O

(
n1+2/k

)
cardinality.

Observe that the curve doesn’t need to be geometrically regular (tangent
defined everywhere), simple or closed. The results extend immediately by
finite union to any piecewise smooth (analytic) parametric curve, and by
definition to the polynomial convex hull of the curve (cf. (16)).

In order to show a numerical example, in Figure 2 we display the (numer-
ically evaluated) Lebesgue constants of approximate Fekete points extracted
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from meshes with different cardinality on the complex unit circle, compared
with the Lebesgue constant of the true Fekete points (that in this case are
known to be n + 1 equally spaced points). Such approximate Fekete points
have been computed by the algorithm developed in [6, 28], specialized to
the one-dimensional complex case. Notice that starting from Chebyshev-
Lobatto meshes of increasing O(n log n) cardinality we obtain soon good
quality interpolation sets, with a very low computational cost (essentially
that of a QR factorization of a rectangular O(n log n)×(n+1) Vandermonde
matrix, cf. [28]).

0 5 10 15 20 25 30 35 40
1

2

3

4

5

6

7

8

9

10

Figure 2: Lebesgue constants of approximate Fekete points extracted from
different meshes on the complex unit circle φ(θ) = exp(iθ), 0 ≤ θ ≤ 2π, for
n = 3, . . . , 40: true Fekete points (lowest solid line), φ-image of n2 equally
spaced points (△), φ-image of ⌈bn log n⌉ Chebyshev-Lobatto points in [0, 2π],
b = 1 (⋄), b = 2 (�), b = 3 (◦).

2.2.2 Planar domains with smooth boundary.

As a second example, we treat a class of compact domains in two real vari-
ables. Consider K = Ω, the closure of a simply connected bounded open
set Ω ⊂ R

2, such that ∂Ω is a regular closed parametric curve of class Ck,
k ≥ 1. Being a Lipschitz domain (the boundary is locally the graph of a
Lipschitz continuous function), K satisfies a uniform interior cone condition
[13] and thus a Markov inequality with exponent 2. By [12, Thm.5], we can
always construct an admissible mesh on K with O(n4) cardinality.

On the other hand, if we consider Ω as a subset of the complex plane,
it is known that every conformal map from Ω to the interior of the complex
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unit disk D, can be extended to a Ck−1 map Ω → D, and the same is
true for its inverse by the Painlevé Lemma (cf. [16, Thm.5.2.4]). This
means that, starting from a conformal map as above (that always exists
with holomorphic inverse by the Riemann Mapping Theorem), and taking
the real and imaginary parts of its inverse extended to the boundary, we have
at hand a Ck−1 transformation φ : (D ⊂ R2) → K. It is worth recalling
that recently some advances have been made in the numerical construction of
smooth conformal mappings for domains with (piecewise) smooth boundary,
cf. [1].

The assumptions of Proposition 1 concerning Corollary 3 are satisfied,
when k > 3. Indeed, the closed unit disk is a Jackson compact in R

2 with
mk = k (as every d-dimensional euclidean ball, cf. [25]), and, as it has been
shown in [9], it has an optimal admissible mesh with 4n2 points (and mesh
constant C = 2). Then we can assert that

• any planar simply connected compact domain with Ck boundary, k > 3,
possesses an admissible mesh with O

(
n2+4/(k−1)

)
cardinality.

Acknowledgements. The authors wish to thank Len Bos and Jean-Paul
Calvi for some helpful discussions and suggestions.

References

[1] A. Andersson, Modified Schwarz-Christoffel mappings using approxi-
mate curves factors, J. Comput. Appl. Math. 233 (2009), 1117–1127.

[2] T. Bagby, L. Bos and N. Levenberg, Multivariate Simultaneous Ap-
proximation, Constr. Approx. 18 (2002), 569–577.

[3] R. Berman, S. Boucksom and D. Witt Nyström, Fekete points and
convergence towards equilibrium measures on complex manifolds, Acta
Math. 207 (2011), 1–27.
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