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ABSTRACT

A stochastic model of autoregulated bursty gene expression by Kumar et al. [Phys. Rev. Lett. 113, 268105 (2014)] has been exactly solved in
steady-state conditions under the implicit assumption that protein numbers are sufficiently large such that fluctuations in protein numbers
due to reversible protein–promoter binding can be ignored. Here, we derive an alternative model that takes into account these fluctuations
and, hence, can be used to study low protein number effects. The exact steady-state protein number distribution is derived as a sum of
Gaussian hypergeometric functions. We use the theory to study how promoter switching rates and the type of feedback influence the size
of protein noise and noise-induced bistability. Furthermore, we show that our model predictions for the protein number distribution are
significantly different from those of Kumar et al. when the protein mean is small, gene switching is fast, and protein binding to the gene is
faster than the reverse unbinding reaction.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5144578., s

I. INTRODUCTION

One of themost common gene networkmotifs is an autoregula-
tory feedback loop whereby protein expressed from a gene activates
or represses its own expression.1 It has been estimated that 40% of
all transcription factors in Escherichia coli self-regulate2 with most
of them participating in negative autoregulation.1 Feedback leads
to a regulation of the magnitude of intrinsic noise3–6 and also to
changes in the response time and relaxation time of transcription
networks.2,7

The predictions by stochastic models of autoregulation have
also been shown to lead to considerably different dynamics than
those by deterministic models. For example, while deterministic
models of non-cooperative autoregulation predict monostable gene
expression for all parameter values, stochastic models of the same
set of reactions show switching between two distinct gene expres-
sion levels and, thus, lead to bistability.8,9 It has also been shown
that in the presence of noise, feedback loops can lead to sustained
oscillations in protein numbers in regions of the parameter space
where deterministic models predict damped oscillations.10–12 These
results suggest that stochastic models are necessary to understand

the intracellular dynamics of biological systems utilizing a combina-
tion of positive and negative feedback loops and in which at least one
molecular component is present in low copy numbers, e.g., circadian
clocks.13,14

The stochastic properties of an autoregulatory gene circuit
have been explored mostly by stochastic simulations and to a
lesser extent by analytical solutions of various discrete, continu-
ous, and hybrid gene expression models (see Ref. 15 for a recent
review). Discrete models are those in which gene, mRNA, and pro-
tein numbers change by discrete integer amounts when reactions
occur; in continuous models, fluctuations correspond to hops on
the real axis rather than on the integer axis;16–19 in hybrid models,
some fluctuations are modeled discretely (such as those of genes),
while other types of fluctuations (such as those of mRNAs and
proteins) are modeled in a continuous sense.20–23 Here, we focus
on discrete models since these are the most realistic among the
three types (continuous and hybrid models have the advantage
of possessing simpler distribution solutions that can be easier to
interpret).

In the literature, there are two exact solutions for the steady-
state protein number distribution of stochastic autoregulatory
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models.9,24 Both models assume that a single gene can exist in one
of two states (with two different protein production rates) and that
reversible binding of a protein molecule to a gene leads to switching
from one gene state to the other. The differences between the two
models are as follows. The model solved by Grima et al.9 [hence-
forth referred to as the Grima model; see Fig. 1(a) for an illus-
tration] assumes that (i) protein molecules are produced one at a
time and (ii) when a protein molecule binds to a gene, the pro-
tein copy number decreases by one, whereas it increases by one
when unbinding occurs. In contrast, the model solved by Kumar
et al.24 [henceforth referred to as the Kumar model; see Fig. 1(b)
for an illustration] assumes that (i) proteins are produced in ran-
dom bursts whose size is a random number sampled from a geo-
metric distribution and (ii) when a protein molecule binds to a
gene or unbinds from it, there is no change in the protein copy
number. The advantage of the Kumar model is its modeling of
bursty protein expression which is in agreement with experimen-
tal data;25 its disadvantage (unlike the Grima model) is the implicit
neglect of fluctuations due to reversible protein–promoter binding
which necessarily implies that it cannot precisely capture low pro-
tein number effects. Taking into account the latter is important
because the copy number of DNA-binding proteins can be in single
digits.26

In this paper, we remedy the shortcomings of both the Grima
and Kumar models, by deriving and solving a discrete stochastic

model of autoregulatory feedback loops that takes into account both
translational bursting and protein number fluctuations during the
binding–unbinding process. The paper is organized as follows. In
Sec. II, starting from a stochastic model of autoregulation describing
both mRNA and protein dynamics [henceforth referred to as the full
model; see Fig. 1(c) for an illustration], we use multiscale decimation
theory to derive a reduced stochastic model of autoregulation for the
protein dynamics in the limit of fast mRNA degradation. The chemi-
cal master equation (CME) of this reducedmodel is similar to that of
the Kumarmodel except that the propensities include protein fluctu-
ations during the binding–unbinding process—we henceforth refer
to this as the modified Kumar model which is illustrated in Fig. 1(d).
In Sec. III, we provide an exact analytical solution for the steady-state
protein distribution of the modified Kumar model in terms of Gaus-
sian hypergeometric functions, show its simplification in the cases
of fast and slow gene switching, discuss the influence of feedback on
protein noise and bistability, and verify the theory using stochastic
simulations. In Sec. IV, we show that the modified Kumar model
reduces to the Grima model under certain conditions. In Sec. V, we
compare the modified Kumar model with the Kumar model, show-
ing agreement between the two under slow gene switching and dis-
agreement under fast gene switching and strong protein–promoter
interactions. We also investigate how the relative sensitivity of pro-
tein noise to model parameters differs between the two models. We
conclude in Sec. VI.

FIG. 1. Discrete models of an autoregulatory gene network. (a) Grima model:9 this model describes protein dynamics only. It neglects translational bursting but takes into

account fluctuations in the protein number due to binding to and unbinding from the gene. (b) Kumar model:24 this model describes protein dynamics only. It takes into
account translational bursting but neglects protein fluctuations during the binding–unbinding process, i.e., when a protein molecule binds to the promoter, there is no change

in the protein number. There are two dotted boxes in this figure: the left one displays the reaction G + P
σb
Ð→ G∗ + P and the right one displays the reaction G∗

σu
Ð→ G.

(c) Fine-grained full model: this model has both mRNA and protein descriptions. It (implicitly) takes into account translational bursting (via the mRNA description) and also
fluctuations in the protein number during the binding–unbinding process. (d) Modified Kumar model: this model, which is derived from the full model in the limit of fast mRNA
degradation, takes into account both translational bursting and protein fluctuations during the binding–unbinding process.
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II. DERIVATION OF THE MODIFIED KUMAR MODEL
FROM A FINE-GRAINED MODEL

Based on the central dogma of molecular biology, the gene
expression kinetics for an autoregulatory gene network in an indi-
vidual cell has a standard three-stage representation involving
gene switching, transcription, and translation [Fig. 1(c)].27 Due to
autoregulation, the promoter could either be free or bound to a
protein molecule to form a promoter–protein complex. Let G and
G∗ denote the unbound and bound states of the gene, respectively,
let M denote the corresponding mRNA, and let P denote the cor-
responding protein. Then, the effective reactions describing the
autoregulatory gene circuit are given by

G + P
σb
Ð→ G∗, G∗

σu
Ð→ G + P,

G
ρu
Ð→ G +M, G∗

ρb
Ð→ G∗ +M,

M
u
Ð→M + P, M

v

Ð→ ∅, P
d
Ð→ ∅.

Here, σb is the binding rate of protein to the promoter that character-
izes the strength of feedback; σu is the unbinding rate of protein from
the promoter; ρu and ρb are the transcription rates when the gene is
unbound and bound to protein, respectively; u is the translation rate;
and v and d are the degradation rates of mRNA and protein, respec-
tively. The reaction scheme describes a positive feedback loop if
ρb > ρu and describes a negative feedback loop if ρb < ρu. We shall
refer to this fine-grained model as the full model.

The microstate of the gene of interest can be represented by an
ordered triple (i, m, n): the gene state i with i = 0, 1 correspond-
ing to the unbound and bound states, respectively, the mRNA copy
number m, and the protein copy number n. Let pi ,m ,n denote the
probability of having m copies of mRNA and n copies of protein
when the gene is in state i. Then, the stochastic gene expression
kinetics can be described by the Markov jump process illustrated

in Fig. 2(a). The evolution of the Markovian model is governed by
the CME

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ0,m,n ≙ ρup0,m−1,n + (m + 1)vp0,m+1,n +mup0,m,n−1

+ (n + 1)dp0,m,n+1 + σup1,m,n−1

− (ρu +mv +mu + nd + nσb)p0,m,n,

ṗ1,m,n ≙ ρbp1,m−1,n + (m + 1)vp1,m+1,n +mup1,m,n−1

+ (n + 1)dp1,m,n+1 + (n + 1)σbp0,m,n+1

− (ρb +mv +mu + nd + σu)p1,m,n.

Experimentally, it is commonly observed that mRNA decays
much faster than protein. For example, mRNA lifetimes in prokary-
otes are usually of the order of a few minutes, whereas protein life-
times are generally of the order of tens of minutes to many hours.28

Due to timescale separation of the underlying biochemical reaction
kinetics, the full model can be reduced to a simpler one. The model
reduction technique described below is similar to but slightly differ-
ent from the one described in Ref. 29, where the author considered
a different full model which neglects fluctuations in protein number
during the binding–unbinding process.

Specifically, let λ = v/d denote the ratio of the degradation rates
of mRNA and protein. Here, we make the classical assumption that
λ ≫ 1 and u/v is strictly positive and bounded.27 In addition, let
q(i ,m ,n),(i′ ,m′ ,n′ ) denote the transition rate of the Markovian model

from microstate (i,m, n) to microstate (i′,m′, n′) and let

q(i,m,n) ≙ ∑
(i′ ,m′ ,n′)≠(i,m,n)

q(i,m,n),(i′ ,m′ ,n′)

denote the rate at which the system leaves microstate (i,m, n), which
is defined as the sum of transition rates from (i, m, n) to other
microstates. Since λ≫ 1, we say that (i,m, n) is a fast state if

FIG. 2. Full and reduced Markovian models of autoregulatory gene networks. (a) Transition diagram of the full Markovian model, where the microstate of the gene is described
by an ordered triple (i, m, n). (b) Transition diagram of the reduced Markovian model when mRNA decays much faster than protein, where the microstate of the gene is
described by an ordered pair (i, n). (c) Schematic diagram of the decimation method of multiscale model simplification. The effective transition rate from microstate (i, 0, n)
to microstate (i′, 0, n′) is the sum of the direct transition rate and the contribution of indirect transitions via all fast transition paths. (d) A typical fast transition path of the full
model.
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lim
λ→∞

q(i,m,n) ≙∞,

and we say that (i,m, n) is a slow state if

lim
λ→∞

q(i,m,n) <∞.

If (i, m, n) is a fast state, then the time that the system stays in this
state will be very short. Note that the limit of λ → ∞ is taken at
constant u/v and d. It is easy to check that the leaving rates of all
microstates are given by

q(0,m,n) ≙ ρu +mv+mu+nd+nσb ≙ mλd(1+u/v)+nd+nσb +ρu,
q(1,m,n) ≙ ρb +mv+mu+nd+σu ≙ mλd(1+u/v)+nd+σu +ρb,

which imply that

lim
λ→∞

q(i,m,n){≙∞, ifm ≥ 1,
<∞, ifm ≙ 0.

Therefore, all microstates (i, m, n) for m ≥ 1 are fast states and all
microstates (i, 0, n) are slow states. By using a classical simplification
method ofmultiscaleMarkov jump processes called decimation,29–33

the full Markovian model can be simplified to a reduced one by
removal of all fast states. For simplicity, microstate (i, 0, n) will be
denoted by (i, n) in the reduced model.

The remaining question to address is how to determine the
transition diagram and effective transition rates of the reduced
Markovian model. This process is described as follows. Suppose that
the full model jumps frommicrostate (i,m, n) to another microstate
at a particular time. When λ≫ 1, the transition probability from (i,
m, n) to another microstate (i′,m′, n′) is given by

w(i,m,n),(i′ ,m′ ,n′) ≙ lim
λ→∞

q(i,m,n),(i′ ,m′ ,n′)

q(i,m,n)

.

Let (i1, m1, n1), ⋯, (ik, mk, nk) be a sequence of microstates. We say
that

c : (i,m,n)→ (i1,m1,n1)→ ⋯→ (ik,mk,nk)→ (i′,m′,n′)
is a fast transition path from (i,m, n) to (i′,m′, n′) if the intermediate
microstates

(i1,m1,n1), . . . , (ik,mk,nk)
are all fast states. Moreover, the probability weight wc of the fast
transition path c is defined as

wc ≙ q(i,m,n),(i1 ,m1 ,n1)w(i1 ,m1 ,n1),(i2 ,m2 ,n2)⋯w(ik ,mk ,nk),(i′ ,m′ ,n′).

According to decimation theory,29–33 the effective transition rate
q̃(i,n),(i′ ,n′) from microstate (i, n) to microstate (i′, n′) is given by

q̃(i,n),(i′ ,n′) ≙ q(i,0,n),(i′ ,0,n′) +∑
c

wc,

where c ranges over all fast transition paths from (i, 0, n) to (i′, 0, n′).
This formula indicates that the effective transition rate from (i, n) to
(i′, n′) is the superposition of two parts: the direct transition rate and
the contribution of indirect transitions via all fast transition paths, as
depicted in Fig. 2(c).

Since the intermediate microstates of a fast transition path c
are all fast states, in order for the path to have a positive proba-
bility weight, all the intermediate transitions along this path must
satisfy

lim
λ→∞

q(i1 ,m1 ,n1),(i2 ,m2 ,n2) ≙ ⋯ ≙ lim
λ→∞

q(ik ,mk ,nk),(i′ ,m′ ,n′) ≙∞. (1)

By using this criterion, it is easy to see that the full model has only
one type of fast transition paths with positive probability weights,
which is given by [see the red arrows in Fig. 2(d)]

(i, 0,n)→ (i, 1,n)→ (i, 1,n + 1)→ ⋯
→ (i, 1,n′)→ (i, 0,n′), n

′

> n. (2)

This is because any fast transition path from (i, 0, n) to (i, 0, n′) with
a positive probability weight cannot pass throughmicrostate (i,m, k)
for some m ≥ 2 and k ≥ 0. Otherwise, there must be an intermediate
transition along the path from (i,m − 1, k) to (i,m, k) with transition
rate being ρu or ρb, which does not diverge as λ →∞. This contra-
dicts the criterion (1). Moreover, since the intermediate transition
rates along the path (2) are all given by u or v, and u, v→∞ as λ→∞,
it follows that the path (2) satisfies the criterion (1).

To proceed, we define two constants p and q as

p ≙
u

u + v
, q ≙

v

u + v
.

Since λ ≫ 1, the transition probabilities along the path (2) are
given by

w(i,1,n),(i,1,n+1) ≙ lim
λ→∞

u

q(i,1,n)
≙ p,

w(i,1,n),(i,0,n) ≙ lim
λ→∞

v

q(i,1,n)
≙ q.

Therefore, the probability weight of this path is ρup
n′−nq if i = 0 and

is ρbp
n′−nq if i = 1. Since there is no direct transition, the effective

transition rate from (i, n) to (i, n′) with n′ > n is exactly the indirect
transition rate via the fast transition path (2),

q̃(i,n),(i,n′) ≙

⎧⎪⎪⎨⎪⎪⎩
ρup

n′−nq, i ≙ 0,

ρbp
n′−nq, i ≙ 1.

This formula indicates that the reduced model may produce large
jumps of protein number within a very short period, which cor-
respond to random translational bursts. Each random burst corre-
sponds to a fast transition path of the full Markovian model. The
above computations can be understood intuitively as follows. Since
v ≫ d and u/v is strictly positive and bounded, the process of pro-
tein synthesis followed by mRNA degradation is essentially instan-
taneous. Once a transcript is synthesized, it can either produce a
protein molecule with probability p = u/(u + v) or be degraded with
probability q = 1 − p = v/(u + v). Thus, the probability that a tran-
script produces k copies of protein before it is finally degraded will

be pkq, which follows a geometric distribution. Note that since the
protein burst size is geometrically distributed, its expected value is
given by

B ≙
∞

∑
k=0

kp
k
q ≙

p

q
≙
u

v
.
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So far, we have obtained the transition diagram and all effective transition rates of the reduced model, as depicted in Fig. 2(b). Let pi ,n
denote the probability of having n copies of protein when the gene is in state i. Then, the evolution of the reduced model is governed by the
coupled set of master equations,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ṗ0,n ≙
n−1

∑
k=0

ρup
n−k

qp0,k + (n + 1)dp0,n+1 + σup1,n−1 − (ρup + nd + nσb)p0,n,
ṗ1,n ≙

n−1

∑
k=0

ρbp
n−k

qp1,k + (n + 1)dp1,n+1 + (n + 1)σbp0,n+1 − (ρbp + nd + σu)p1,n.
(3)

This is exactly the CME of the following chemical reaction system
[see Fig. 1(d) for an illustration]:

G + P
σb
Ð→ G∗, G∗

σu
Ð→ G + P,

G
ρup

kq
Ð→ G + kP, G∗

ρbp
kq
Ð→ G∗ + kP, k ≥ 1,

P
d
Ð→ ∅.

(4)

This reaction scheme takes into account both translational bursting
resulting from short-lived mRNA and protein fluctuations during
the binding–unbinding process, i.e., when a protein molecule binds
to the promoter, the protein number in a single cell is decreased by
one and, conversely, it is increased by one when unbinding occurs.
In fact, the reduced model modifies a model of autoregulatory gene
networks proposed by Kumar et al.24 In the Kumar model, the
authors also take into account translational bursting but neglect pro-
tein fluctuations during the binding–unbinding process, i.e., when a
protein molecule binds to or unbinds from the promoter, the pro-
tein number remains the same. In the following, we shall refer to the

reduced model as the modified Kumar model. This model was first
introduced (using intuitive arguments) and studied using approx-
imation methods in Ref. 34. A method of efficiently inferring the
parameters of this model from noisy experimental data by means of
Markov chain Monte Carlo has been described in Ref. 35.

III. EXACT ANALYTIC SOLUTION OF THE MODIFIED
KUMAR MODEL

A. General case

Here, we derive the exact analytic solution for the steady-state
protein number distribution of the modified Kumar model. For
convenience, we normalize all model parameters by the protein
degradation rate as

r ≙
ρu

d
, s ≙

ρb
d
, μ ≙

σb
d
, b ≙

σu

d
.

At steady-state, all probabilities are time-independent, and thus,
Eq. (3) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n−1

∑
k=0

rp
n−k

qp0,k + (n + 1)p0,n+1 + bp1,n−1 − (rp + n + nμ)p0,n ≙ 0,
n−1

∑
k=0

sp
n−k

qp1,k + (n + 1)p1,n+1 + (n + 1)μp0,n+1 − (sp + n + b)p1,n ≙ 0.
(5)

To proceed, we define a pair of generating functions

f (z) ≙ ∞∑
n=0

p1,nz
n, g(z) ≙ ∞∑

n=0

p0,nz
n.

Let pn = p1,n + p0,n denote the probability of having n copies of
protein and let F(z) = f (z) + g(z) denote its generating function.
Then, Eq. (5) can be converted into the following system of ordinary
differential equations (ODEs):

∥sp(1 − z) + b(1 − pz)∥ f (z) − (1 − z)(1 − pz)f ′(z)
−μ(1 − pz)g′(z) ≙ 0, (6)

rp(1−z)g(z)−∥(1−z)−μz∥(1−pz)g′(z)−bz(1−pz)f (z) ≙ 0. (7)
Solving these equations leads to (see Appendix A for details)

f (z) ≙ rμpK

(q + μ)β(1 − pz)−s2F1(α1 + 1,α2 + 1;β + 1;w(z − z0)),
(8)

F(z) ≙ K(1 − pz)−s∥2F1(α1,α2;β;w(z − z0))
+A(1 − az)2F1(α1 + 1,α2 + 1;β + 1;w(z − z0))∥,

where 2F1(α1, α2; β; z) is the Gaussian hypergeometric function,
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α1 + α2 ≙
b + r

1 + μ
− s − 1, α1α2 ≙ s +

b(r − s) − r
1 + μ

, β ≙
b

1 + μ
+

rμp

(1 + μ)(q + μ) ,
A ≙
(s − r + rμ)p
(q + μ)β , a ≙

s − r + sμ

s − r + rμ
, w ≙

(1 + μ)p
q + μ

, z0 ≙
1

1 + μ
,

(9)

and

K ≙ q
s∥2F1(α1,α2;β;w(1 − z0))
+A(1 − a)2F1(α1 + 1,α2 + 1;β + 1;w(1 − z0))∥−1

is a normalization constant that can be determined by solving
F(1) = 1. Recall that the steady-state distribution of the protein
number can be obtained by taking the derivatives of the generating
function F(z) at zero,

pn ≙
1

n!

dn

dzn
∣
z=0

F(z).
Taking the derivatives of the generating function given by Eq. (8)
yields

pn ≙ K
n

∑
k=0

(α1)k(α2)k(s)n−k(β)k(1)k(1)n−k 2F1(α1 + k,α2 + k;β + k;−wz0)wk
p
n−k

+KA
n

∑
k=0

(α1 + 1)k(α2 + 1)k(s)n−k(β + 1)k(1)k(1)n−k
× 2F1(α1 + 1 + k,α2 + 1 + k;β + 1 + k;−wz0)wk

p
n−k

−KAa
n−1

∑
k=0

(α1 + 1)k(α2 + 1)k(s)n−1−k(β + 1)k(1)k(1)n−1−k
× 2F1(α1 + 1 + k,α2 + 1 + k;β + 1 + k;−wz0)wk

p
n−1−k. (10)

We next focus on two trivial special cases. In the case of
σu ≫ σb, ρuρb, d, the gene is mostly in the unbound state and the
parameters in Eq. (9) reduce to

α1 ≙ β ≙
b

1 + μ
, α2 ≙ r − s, A ≙ 0.

Since α1 = β, we have [see Eq. (15.4.6) in Ref. 36]

2F1(α1,α2;β;w(z−z0)) ≙ ∥1−w(z−z0)∥−α2 ≙ (1 + μ

q + μ
)s−r(1−pz)s−r ,

and thus, the generating function reduces to

F(z) ≙ K(1 + μ

q + μ
)s−r(1 − pz)−r .

Therefore, the protein number distribution is negative binomial and
given by27,37

pn ≙
(r)n
n!

p
n
q
r , (11)

where (x)n = x(x + 1)⋯ (x + n − 1) = Γ(x + n)/Γ(x) is the Pochham-
mer symbol. Similarly, in the case of σb ≫ σu, ρuρb, d, the gene is

mostly in the bound state and the protein number distribution is
negative binomial and given by

pn ≙
(s)n
n!

p
n
q
s. (12)

Our analytic results can also be used to derive explicit expres-
sions for several other quantities of interest. For example, the steady-
state probability that the gene is in the bound state can be recovered
from the generating function f (z) at z = 1,

pG∗ ≙
rμpq−sK

(q + μ)β 2F1(α1 + 1,α2 + 1;β + 1;w(1 − z0)). (13)

In addition, solving Eqs. (6) and (7) simultaneously for f ′(z) and
g′(z), we obtain

zf
′(z) + g

′(z) ≙ spz

1 − pz
f (z) + rp

1 − pz
g(z).

Substituting z = 1 in this equation yields

F
′(1) ≙ sBf (1) + rBg(1),

where B = p/q is the mean protein burst size. Since ⟨n⟩ = F′(1), the
steady-state mean of the protein number is given by

⟨n⟩ ≙ sBpG∗ + rBpG, (14)

where pG is the steady-state probability of the gene being in the
unbound state. The first term on the right-hand side is themean pro-
tein number sBwhen the gene is in the bound state multiplied by the
corresponding probability pG∗ , and similarly, the second term is the
mean protein number rBwhen the gene is in the unbound state mul-
tiplied by the corresponding probability pG. We stress here that the
protein mean of the stochastic model given by Eqs. (13) and (14) is
not generally the same as that obtained by solving the corresponding
deterministic rate equations in steady-state conditions. Similarly, the
steady-state second moment of the protein number is given by (see
Appendix B for details)

⟨n2⟩ ≙ sB∥(1 + s)B + 1∥pG∗ + rB∥(1 + r)B + 1∥pG
+ (1 − sB + rB)[σu

σb
pG∗ − rBpG]. (15)

This is the sum of three terms: the first term is the second moment
of the negative binomial distribution associated with the bound
gene state, i.e., the second moment of Eq. (12), multiplied by the
corresponding probability; the second term is the second moment
of the negative binomial distribution associated with the unbound
gene state, i.e., the second moment of Eq. (11), multiplied by the
corresponding probability; the last term can, hence, be interpreted
as that arising from the difference between the exact probability
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distribution and a mixture of two negative binomials (this term
becomes negligible in the limit of slow gene switching, as we show in
Sec. III C).

B. Regime of fast gene switching

Wenext focus on two nontrivial special cases. Consider the lim-
iting case when the gene switches rapidly between the unbound and
bound states, i.e., σu, σb≫ ρu, ρb, d. In this case, the modified Kumar
model depicted in Fig. 1(d) can be further simplified using another
classical simplificationmethod of multiscaleMarkov jump processes
called averaging.33,38 Since σu and σb are large, for any n ≥ 1, the two
microstates (0, n) and (1, n − 1) are in rapid equilibrium and, thus,
can be aggregated into a group that is labeled by group n, as shown in
Fig. 3(a). In addition, group 0 is composed of the single microstate
(0, 0). In this way, the modified Kumar model can be further sim-
plified to the Markovian model illustrated in Fig. 3(b), whose state
space is given by

{group 0, group 1,⋯, group n,⋯}.
Here, we emphasize that the group index n cannot be interpreted as
the protein number. This is because when n ≥ 1, group n is composed
of two microstates with different protein numbers.

The remaining question to address is how to calculate the
effective transition rates between two groups. In the fast switch-
ing limit, the two microstates (0, n) and (1, n − 1) will reach a
quasi-steady-state with quasi-steady-state distribution,

p
qss

(0,n)
≙

σu

σu + nσb
, p

qss

(1,n−1)
≙

nσb
σu + nσb

.

For convenience, we define the effective transcription rate as

cn ≙
σuρu + nσbρb
σu + nσb

(16)

and the effective protein degradation rate as

dn ≙ d[1 − σb
σu + nσb

]. (17)

It is important to here emphasize that fast switching leads to
effective transcription and degradation rates, whereas it is customary
to write reduced master equations in this parameter regime which
only have effective transcription rates; this explains the discrepancies
between conventional and exact master equation reduction reported
in Ref. 39.

According to averaging theory,33,38 the effective transition rate
from group n to group n + k is given by

p
qss

(0,n)
q̃(0,n),(0,n+k) + p

qss

(1,n−1)
q̃(1,n−1),(1,n−1+k) ≙ cnp

k
q

and the effective transition rate from group n to group n − 1 is given
by

p
qss

(0,n)
q̃(0,n),(0,n−1) + p

qss

(1,n−1)
q̃(1,n−1),(1,n−2) ≙ ndn.

So far, we have obtained all effective transition rates for the group
dynamics [Fig. 3(b)].

Let p
group
n denote the probability of being in group n. Then, the

evolution of the group dynamics is governed by the master equation

ṗ
group
n ≙

n−1

∑
k=0

ckp
n−k

qp
group

k
+ (n + 1)dn+1pgroupn+1 − (cnp + ndn)pgroupn .

To solve this equation, we notice that it is recursive with respect
to the group index n. It involves two variables when n = 0, three
variables when n = 1, and so on. At steady-state, solving this master
equation by induction leads to

p
group
n ≙ K

pn

n!

c0

d1
⋅
c1 + d1

d2
⋯
cn−1 + (n − 1)dn−1

dn
,

FIG. 3. Multiscale simplification of the modified Kumar model using the averaging method under fast and slow gene switching. (a) Transition diagram of the modified Kumar
model. When the gene switches rapidly between the unbound and bound states, for each n ≥ 1, the two microstates (0, n) and (1, n − 1) can be combined into a group that
is labeled by group n. (b) Transition diagram of the group dynamics in the limit of fast gene switching. Since group n is composed of two microstates with different protein
numbers, the group index n cannot be interpreted as the protein number. (c) Transition diagram of the modified Kumar model. When the gene switches slowly between the
unbound and bound states, all unbound microstates (0, n), as well as all bound microstates (1, n), can be combined into a group. (d) Transition diagram of the two-state group
dynamics in the limit of slow gene switching.
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where K is a normalization constant. Given that there are n copies of
protein in an individual cell, the gene can exist in either microstate
(0, n) or microstate (1, n). Since microstate (0, n) is contained in
group n andmicrostate (1, n) is contained in group n + 1, the steady-
state distribution of the protein number is given by

pn ≙ p
group
n p

qss

(0,n)
+ p

group
n+1 p

qss

(1,n)

≙ K
(p/d)n
n!

c0(c1 + d1)⋯(cn−1 + (n − 1)dn−1)
× [1 + σbp(cn + ndn)

σud
]. (18)

In fact, this steady-state protein distribution is exactly the same
as that obtained from the generating function given by Eq. (8) in the
fast switching limit. To see this, we note that when σu, σb≫ ρu, ρb, d,
the generating function reduces to

F(z) ≙ K(1 − pz)−s[2F1(α1,α2;β; pz)
+
rp

β
(1 − s

r
z)2F1(α1 + 1,α2 + 1;β + 1; pz)],

where

α1 + α2 ≙
b

μ
− s − 1, α1α2 ≙ s +

b(r − s)
μ

, β ≙
b

μ
.

To proceed, we recall the following Euler–Pfaff transformation for
hypergeometric functions:

2F1(α1,α2;β; z) ≙ (1 − z)β−α1−α2 2F1(β − α1,β − α2;β; z).
Using this transformation, the generating function can be simplified
as

F(z) ≙ K[(1 − pz)2F1(β − α1,β − α2;β; pz)
+
rp

β
(1 − s

r
z)2F1(β − α1,β − α2;β + 1; pz)].

Therefore, the steady-state protein distribution can be recovered by
taking the derivatives of the generating function at zero,

pn ≙ rK
pn(β − α1)n(β − α2)n

n!(β + 1)n
× [p

β
+

β + n

(β − α1 + n − 1)(β − α2 + n − 1)]. (19)

Straightforward computations show that

(β − α1 + n − 1)(β − α2 + n − 1)
β + n

≙
cn + ndn

d
. (20)

This equality, together with the fact that r = c0/d, shows that

r(β − α1)n(β − α2)n(β + 1)n ≙
c0

d
⋅
c1 + d1

d
⋯
cn + ndn

d
. (21)

Inserting Eqs. (20) and (21) into Eq. (19) again yields Eq. (18).

C. Regime of slow gene switching

We next consider the limiting case when the gene switches
slowly between the unbound and bound states, i.e., σu, σb≪ ρu, ρb, d.
In this case, the modified Kumar model can also be simplified using
the averaging method.33,38 Since σu and σb are small, all unbound
microstates (0, n), as well as all bound microstates (1, n), are in rapid
equilibrium and, thus, can be aggregated into a group, as shown in
Fig. 3(c). In this way, the modified Kumar model can be further sim-
plified to the Markovian model illustrated in Fig. 3(d), which has
only two states.

In the slow switching limit, it follows from Eqs. (11) and (12)
that all unbound microstates (0, n) will reach a quasi-steady-state
with quasi-steady-state distribution

p
qss

(0,n)
≙
(r)n
n!

p
n
q
r ,

and all bound microstates (1, n) will reach a quasi-steady-state with
quasi-steady-state distribution

p
qss

(1,n)
≙
(s)n
n!

p
n
q
s.

According to averaging theory,33,38 the effective transition rate from
the unbound group to the bound group is given by

∞

∑
n=1

p
qss

(0,n)
q̃(0,n),(1,n−1) ≙ rBσb

and the effective transition rate from the bound group to the
unbound group is given by

∞

∑
n=0

p
qss

(1,n)
q̃(1,n),(0,n+1) ≙ σu.

So far, we have obtained all effective transition rates for the two-state
group dynamics [Fig. 3(d)].

Let pG and pG∗ denote the steady-state probabilities of being in
the unbound and bound groups, respectively. Clearly, we have

pG ≙
σu

σu + rBσb
, pG∗ ≙

rBσb
σu + rBσb

.

Therefore, the steady-state distribution of the protein number is
given by

pn ≙ pGp
qss

(0,n)
+ pG∗p

qss

(1,n)

≙
σu

σu + rBσb

(r)n
n!

p
n
q
r +

rBσb
σu + rBσb

(s)n
n!

p
n
q
s,

which is a mixed negative binomial distribution. Since a negative
binomial distribution is unimodal, the mixture of two negative bino-
mials can yield a bimodal steady-state protein distribution. It is not
hard to show that this steady-state protein distribution is exactly the
same as that obtained from the generating function given by Eq. (8)
in the slow switching limit. The details are omitted here. Note that
in the slow switching limit, we have σupG∗ ≙ rBσbpG, implying that
the third term in Eq. (15) vanishes, leaving only the terms associated
with the conditional negative binomials of each gene state.
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D. Gene expression noise

In single-cell experiments, the size of fluctuations around the
protein mean is often measured by the squared coefficient of varia-
tion η = σ2/⟨n⟩2, where ⟨n⟩ is the mean and σ2 = ⟨n2⟩ − ⟨n⟩2 is the
variance. From Eqs. (14) and (15), the steady-state variance of the
protein number is given by

σ
2
≙ (1 + B)⟨n⟩ + (s − r)2B2

pG∗pG + (1 − sB + rB)(LpG∗ − rBpG),
where L = σu/σb. Therefore, the size of protein number fluctuations
can be decomposed into three terms as

η ≙
1 + B

⟨n⟩ + η+ + η−,

where

η+ ≙
(s − r)2B2pG∗pG(sBpG∗ + rBpG)2 , η− ≙

(1 − sB + rB)(LpG∗ − rBpG)(sBpG∗ + rBpG)2 . (22)

Here, (1 + B)/⟨n⟩ is the noise due to unregulated bursty gene expres-
sion which has been previously derived in the literature.40 In the
presence of autoregulation, two additional terms η+ and η− emerge.
In Fig. 4, we show how η+, η−, their sum η+ + η−, and the total
noise η vary as a function of the gene switching rates σu and σb
for positive (upper panels) and negative (lower panels) feedback
loops.

Clearly, η+ is always positive. Since 0 ≤ pG∗ , pG ≤ 1 and
pG∗ + pG ≙ 1, the term η+ has the following lower and upper bounds:

0 ≤ η+ ≤
(s − r)2
4sr

.

When L ≫ 1 or L ≪ 1, we have pG ≈ 0 or pG∗ ≈ 0. In this case,
the lower bound is achieved and η+ vanishes. Moreover, the upper
bound is achieved when

pG∗ ≙
s

s + r
.

In this case, the ratio L of σu and σb is neither too small nor too large.
In other words, in order to obtain a large η+, log σb − log σu must be
controlled within a “narrow” belt [Fig. 4(a)].

We next focus on the term η−. In the slow switching limit, we
have LpG∗ ≙ rBpG, and thus, η− vanishes [Fig. 4(b)]. In the fast
switching limit, however, the pair of reversible reactionsG + P⇌G∗

are in rapid equilibrium, and thus, the following approximation is
appropriate:

⟨n⟩pG ≈ LpG∗ .
This approximation, together with Eq. (14), shows that

LpG∗ − rBpG ≈ (⟨n⟩ − rB)pG ≙ (s − r)BpG∗pG. (23)

In addition, we note that |s − r|B, i.e., the absolute difference
between the protein mean in the two genetic states, is usually
larger than 1 in living cells, so the signs of 1 − sB + rB and
(r − s)B are typically the same. Therefore, in most biologically
relevant cases, η− is the product of two terms with different
signs and is, thus, negative in the regime of fast gene switching
[Fig. 4(b)].

In previous works, it has been shown that for an unregulated
gene, the protein noise only contains the Poisson noise and mRNA
noise.40 Therefore, the sum of η+ and η− characterizes the contri-
bution of an autoregulatory feedback loop to protein fluctuations.
In the slow switching limit, η− vanishes, and thus, the overall feed-
back contribution is η+. In the fast switching limit, η− is strictly
negative, and thus, the overall feedback contribution η+ + η− is
less than that in the slow switching limit. From Eq. (23), in the

FIG. 4. Dependence of steady-state protein noise on gene switching rates. Upper panels are for positive feedback and lower panels are for negative feedback. In (a)–(d),
we show the dependence of η+, η−, η+ + η−, and η, respectively, on the gene switching rates, σu and σb. In the positive feedback case, the model parameters are
chosen as ρu = 5, ρb = 15, d = 1, p = 0.5, while in the negative feedback case, the model parameters are chosen as ρu = 15, ρb = 5, d = 1, p = 0.5.
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fast switching limit, η− counteracts most of η+ and the remaining
term is given by

η+ + η− ≈
(s − r)BpG∗pG(sBpG∗ + rBpG)2 , (24)

which is proportional to s − r. Consequently, the overall feedback
contribution is positive (negative) for positive (negative) feedback
loops. This clearly shows that in the regime of fast gene switch-
ing, positive feedback enhances protein noise and negative feedback
diminishes it [Fig. 4(c)]. This is consistent with the recent theoreti-
cal results obtained in Ref. 6. In the fast switching limit, comparing
Eqs. (22) and (24), we obtain

η+ ≈ (s − r)B(η+ + η−).
Since |s − r|B is the absolute difference between the protein mean in
the two genetic states, the overall feedback contribution in the fast
switching limit is much smaller than that in the slow switching limit
when the protein mean is relatively large [Fig. 4(c)].

The total noise η is, then, the superposition of the unregulated
contribution (1 + B)/⟨n⟩ and the regulated contribution η+ + η−.
When L≫ 1, the gene is mostly in the unbound state, and thus, the
protein number has a negative binomial distribution with mean rB
and variance rB(B + 1). In this case, the total noise is given by

η ≙
rB(B + 1)
(rB)2 ≙

B + 1

rB
.

Similarly, when L ≪ 1, the gene is mostly in the bound state, and
thus, the protein number has a negative binomial distribution with

mean sB and variance sB(B + 1). In this case, the total noise is
given by

η ≙
sB(B + 1)
(sB)2 ≙

B + 1

sB
.

This explains why the upper-left and lower-right corners in Fig. 4(d)
have different colors. Due to large feedback contribution, the total
noise is also large in the regime of slow gene switching, as can be
seen from the lower-left corner in Fig. 4(d). In the regime of fast gene
switching, feedback regulation gives rise to a weaker enhancement or
suppression of the total noise, depending on the sign of the feedback
loop.

E. Numerical simulations

To validate our analytic solution given by Eq. (10), we compare
it with the numerical solution obtained using the stochastic simula-
tion algorithm (SSA) for both positive and negative feedback loops
in the regimes of slow [Figs. 5(a) and 5(c)] and fast [Figs. 6(a) and
6(c)] gene switching. Clearly, the analytic solution coincides per-
fectly with the SSA. In the regime of slow gene switching, both posi-
tive and negative feedback loops can lead to bistable gene expression.
In the positive (negative) feedback case, the low expression peak
becomes higher as the feedback strength σb decreases (increases) and
the high expression peak becomes higher as σb increases (decreases)
[Figs. 5(a) and 5(c)].

To gain a deeper insight into the bimodal gene expression, we
define the strength of bistability as

FIG. 5. Steady-state protein number distribution in the regime of slow gene switching. (a) Comparison of the analytic solution given by Eq. (10) (solid blue curve) with the
numerical solution obtained using the SSA (red circles) for positive feedback loops. The model parameters are chosen as ρu = 10, ρb = 50, σu = 0.1, d = 1, p = 0.6. The

feedback strength is chosen as σb = 2 × 10−3 (left), 8 × 10−3 (middle), and 3.2 × 10−2 (right). (b) Strength of bistability κ defined by Eq. (25) vs the gene switching rates σu

and σb for positive feedback loops. The model parameters in (b) are chosen to be the same as in (a). (c) Comparison of the analytic solution (solid blue curve) with the SSA
(red circles) for negative feedback loops. The model parameters are chosen as ρu = 50, ρb = 10, σu = 0.1, d = 1, p = 0.6. The feedback strength is chosen as σb = 7 × 10−5

(left), 7 × 10−4 (middle), and 7 × 10−3 (right). (d) Strength of bistability vs gene switching rates for negative feedback loops. The model parameters in (d) are chosen to be
the same as in (c). Note that the region designated as bimodal is that satisfying the criterion κ > 0.
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FIG. 6. Steady-state protein number distribution in the regime of fast gene switching. (a) Comparison of the analytic solution given by Eq. (10) (solid blue curve) with the SSA
(red circles) for positive feedback loops. The model parameters are chosen as ρu = 0.5, ρb = 50, σu = 1000, d = 1, p = 0.6. The feedback strength is chosen as σb = 101.3

(left), 101.37 (middle), and 101.44 (right). (b) Strength of bistability vs gene switching rates for positive feedback loops. The model parameters in (b) are chosen to be the
same as in (a). (c) Comparison of the analytic solution (solid blue curve) with the SSA (red circles) for negative feedback loops. The model parameters are chosen as
ρu = 50, ρb = 0.5, σu = 1000, d = 1, p = 0.6. The feedback strength is chosen as σb = 0.1 (left), 10 (middle), and 105 (right). (d) Strength of bistability vs gene switching rates
for negative feedback loops. The model parameters in (d) are chosen to be the same as in (c).

κ ≙
hlow − hvalley

hhigh
, (25)

where hlow and hhigh are the heights of the low and high expression
peaks, respectively, and hvalley is the height of the valley between
them. Obviously, κ is a quantity between 0 and 1 for bimodal dis-
tributions and is set to be 0 for unimodal distributions. In gen-
eral, to display strong bistability, the following two conditions are
necessary: (i) the two peaks should have similar heights and (ii)
there should be a deep valley between the two peaks. The former
ensures that the time periods spent in the low and high expres-
sion states are comparable, while the latter guarantees that the
two expression levels are distinguishable. Clearly, κ is large if the
two conditions are both satisfied and κ is small if any one of the
two conditions is violated. Therefore, κ captures both features of
bistability and serves as an effective indicator that characterizes its
strength.

Using this definition, we investigate how the strength of bista-
bility κ varies with the gene switching rates σu and σb for positive
[Fig. 5(b)] and negative [Fig. 5(d)] feedback loops when the low
expression mode is away from zero. It can be seen that both posi-
tive and negative feedback loops can only produce bistability in the
regime of slow gene switching. When all model parameters are fixed
(except a possible interchange between ρu and ρb), a positive feed-
back loop requires a larger feedback strength to achieve bistability
than a negative feedback loop.

The situation is totally different when the low expression mode
lies at zero (see Fig. 6). Interestingly, we find that in this case, a pos-
itive feedback loop can produce strong bistability under fast gene
switching. This is nontrivial because when gene switching is fast,
the effective transcription rate cn is a Hill-like function with Hill

coefficient being equal to 1. In this case, there is no cooperativ-
ity in the protein–promoter binding process and the conventional
deterministic theory predicts that bistability can never occur (see
Appendix C for a proof of this result). However, our stochastic
model predicts that a positive feedback loop is capable of bistable
behavior when gene switching is fast even in the absence of coopera-
tive binding. Note that this is not an artifact of the assumptions used
to derive the modified Kumar model since simulations verify that it
is also a property of the full model. On the other hand, according
to our simulations, a negative feedback loop fails to achieve bistable
behavior in the regime of fast gene switching whether the low expres-
sion mode is away from zero [Fig. 5(d)] or lies at zero [Fig. 6(d)].
This is consistent with the deterministic prediction.

IV. REDUCTION OF THE MODIFIED KUMAR MODEL
TO THE GRIMA MODEL

Consider the limiting case when ρu, ρb → ∞ and p → 0 while
keeping ρup ≙ ρ̄u and ρbp ≙ ρ̄b as constants. Since the mean protein
burst size is B = p/(1 − p) and the effective protein production rates
in the two gene states are ρuB and ρbB, the limits considered above
can be interpreted as the limit of negligible mean protein burst size,
i.e., B → 0, taken at constant effective protein production rates. In
this case, since q = 1 − p, we have

ρupq→ ρ̄u, ρbpq→ ρ̄b,
ρup

nq→ 0 ρbp
nq→ 0, n ≥ 2,

and thus, the master equation of the modified Kumar model given
by Eq. (3) reduces to the master equation
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{ṗ0,n ≙ ρ̄up0,n−1 + (n + 1)dp0,n+1 + σup1,n−1 − (ρ̄u + nd + nσb)p0,n,
ṗ1,n ≙ ρ̄bp1,n−1 + (n+1)dp1,n+1 + (n+1)σbp0,n+1 − (ρ̄b +nd+ σu)p1,n.

This is exactly the CME of the following chemical reaction system
[see Fig. 1(a) for an illustration]:

G + P
σb
Ð→ G∗, G∗

σu
Ð→ G + P,

G
ρ̄u
Ð→ G + P, G∗

ρ̄b
Ð→ G∗ + P,

P
d
Ð→ ∅.

This reaction scheme coincides with the classical model of autoreg-
ulatory non-bursty gene networks proposed by Grima et al.9 The
Grima model takes into account changes in the protein number
during the binding–unbinding process but neglects translational
bursting, i.e., it assumes that protein molecules are produced one
at a time. Here, we have derived the Grima model rigorously as
the non-bursty limit of the modified Kumar model which itself
is the fast mRNA decaying limit of the full model illustrated in
Fig. 1(c).

To derive the analytic distribution for the Grima model, we
normalize all model parameters by the protein degradation rate as

r̄ ≙
ρ̄u

d
, s̄ ≙

ρ̄b
d
, μ ≙

σb
d
, b ≙

σu

d
.

Recall that when α1 →∞ and z→ 0 while keeping α1z as a constant,
the Gaussian hypergeometric function has the following limit:

2F1(α1,α2;β; z)→ 1F1(α2;β;α1z),
where 1F1(α; β; z) is the confluent hypergeometric function. Taking
ρu, ρb →∞ and p→ 0 in Eq. (8) and applying the above formula, we
obtain

f (z) ≙ r̄μK

(1 + μ)β es̄z1F1(α + 1;β + 1;w(z − z0)),
F(z) ≙ Kes̄z∥1F1(α;β;w(z − z0))

+A(1 − az)1F1(α + 1;β + 1;w(z − z0))∥,
where

α ≙
b(r̄ − s̄)
r̄ − s̄ − s̄μ

− 1, β ≙
b

1 + μ
+

r̄μ

(1 + μ)2 ,

A ≙
s̄ − r̄ + r̄μ

(1 + μ)β , a ≙
s̄ − r̄ + s̄μ

s̄ − r̄ + r̄μ
, w ≙

r̄

1 + μ
− s̄, z0 ≙

1

1 + μ
,

and

K ≙ e
−s̄∥1F1(α;β;w(1−z0))+A(1−a)1F1(α+1;β+1;w(1−z0))∥−1

is a normalization constant that can be determined by solving
F(1) = 1. This is fully consistent with the results obtained in Ref. 9.
The steady-state protein distribution for the Grima model can be
obtained by taking the derivatives of the generating function F(z) at

zero,

pn ≙ K
n

∑
k=0

(α)k(β)k(1)k(1)n−k 1F1(α + k;β + k;−wz0)wk
s
n−k

+KA
n

∑
k=0

(α + 1)k(β + 1)k(1)k(1)n−k
× 1F1(α + 1 + k;β + 1 + k;−wz0)wk

s
n−k

−KAa
n−1

∑
k=0

(α + 1)k(β + 1)k(1)k(1)n−1−k
× 1F1(α + 1 + k;β + 1 + k;−wz0)wk

s
n−1−k.

V. COMPARISON OF THE MODIFIED KUMAR MODEL
WITH THE KUMAR MODEL

A. Regime of slow gene switching

Themodified Kumarmodel solved in the present paper can also
be compared with the classical model of an autoregulatory bursty
gene circuit proposed by Kumar et al.,24

G + P
σb
Ð→ G∗ + P, G∗

σu
Ð→ G,

G
ρup

kq
Ð→ G + kP, G∗

ρbp
kq
Ð→ G∗ + kP, k ≥ 1,

P
d
Ð→ ∅.

The Kumar model takes into account translational bursting but
neglects protein fluctuations during the binding–unbinding process,
i.e., when a protein molecule binds to the promoter, the protein
number remains the same. The dynamics of this reaction scheme
can be described by the Markovian model illustrated in Fig. 7(a).

It has been shown in Ref. 24 that the generating function of the
Kumar model is given by

F(z) ≙ K(1 − pz)−s2F1(α1,α2;β;w(z − z0)),
where K is a normalization constant and

α1 + α2 ≙
b + r

1 + μ
− s, α1α2 ≙

b(r − s)
1 + μ

,

β ≙
b

1 + μ
+

rμp

(1 + μ)(q + μ) , w ≙
(1 + μ)p
q + μ

, z0 ≙
1

1 + μ
.

(26)

We can see that the generating function of the Kumar model has
only one hypergeometric term, but as we proved earlier, the gener-
ating function of the modified Kumar model is the superposition of
two hypergeometric terms. Comparing Eqs. (9) and (26), we find
that the parameters β, w, and z0 for the two models are exactly
the same, while the parameters α1 and α2 for the two models are
different.

We next focus on the limiting case when the gene switches
slowly between the unbound and bound states, i.e., σu, σb ≪ ρu,
ρb, d. Using the averaging method, the Kumar model can be simpli-
fied to the same two-state Markovian dynamics [compare Figs. 7(c)
and 7(d) with Figs. 3(c) and 3(d)]. Thus, the Kumar model leads to
the same steady-state protein distribution as the modified Kumar
model in the slow switching limit,
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FIG. 7. Multiscale simplification of the Kumar model using the averaging method. (a) Transition diagram of the Kumar model. When the gene switches rapidly between the
unbound and bound states, the two microstates (0, n) and (1, n) can be combined into a group that is labeled by group n. (b) Transition diagram of the group dynamics in
the limit of fast gene switching. Since group n is composed of two microstates with the same protein number, the group index n can be interpreted as the protein number.
(c) Transition diagram of the Kumar model. When the gene switches slowly between the unbound and bound states, all unbound microstates (0, n), as well as all bound
microstates (1, n), can be combined into a group. (d) Transition diagram of the two-state group dynamics in the limit of slow gene switching.

pn ≙
σu

σu + rBσb

(r)n
n!

p
n
q
r +

rBσb
σu + rBσb

(s)n
n!

p
n
q
s.

In other words, the Kumar and modified Kumar models share
the same steady-state behavior when gene switching is slow. Fig-
ures 8(a)–8(c) illustrate the steady-state protein distributions for the
twomodels in different regimes of gene switching. It can be seen that
the two models agree with each other very well when gene switching
is slow, while they disagree, as expected, when gene switching rates
are moderate or large.

B. Regime of fast gene switching

There is still another case when the Kumar model agrees with
the modified Kumar model. In the case of σu ≫ σb, d, we have
b ≫ 1 + μ, and thus, all five parameters α1, α2, β, w, z0 for the
two models are the same. Moreover, since β ≫ 1, we have A ≈
0 in Eqs. (8) and (9), and thus, the generating functions for the
two models also coincide with each other. Hence, in this case, the
two models lead to the same steady-state protein distribution, which
can be obtained by taking the derivative of the generating function
at zero,

pn ≙
n

∑
k=0

(α1)k(α2)k(s)n−k(β)k(1)k(1)n−k
2F1(α1 + k,α2 + k;β + k;−wz0)

2F1(α1,α2;β;w(1 − z0)) w
k
p
n−k

q
s.

(27)

We next focus on the limiting case when the gene switches
rapidly between the unbound and bound states. Since σu, σb ≫ ρu,
ρb, d, the two microstates (0, n) and (1, n) of the Kumar model
are in rapid equilibrium and, thus, can be aggregated into a group,
as shown in Fig. 7(a). Similarly, using the averaging method, the
Kumar model can be simplified to the Markovian model illustrated
in Fig. 7(b), where cn is the effective transcription rate defined in
Eq. (16).

There are two differences between the Kumar and modified
Kumar models in the fast switching limit. For the modified Kumar

model, both an effective transcription rate cn and an effective pro-
tein degradation rate dn < d should be introduced [Fig. 3(b)]. For
the Kumar model, however, only an effective transcription rate
cn should be introduced. In addition, unlike the modified Kumar
model, the group index n in the Kumar model can be inter-
preted as the protein number since each group is composed of two
microstates with the same protein number. The steady-state pro-
tein distribution for the Kumar model in the fast switching limit is
given by6,18

pn ≙ K
(p/d)n
n!

c0(c1 + d)⋯(cn−1 + (n − 1)d), (28)

where K is a normalization constant.
In the fast switching limit, we have seen that the two models

lead to the same steady-state protein distribution given by Eq. (27)
when σb ≪ σu. However, the two models may deviate significantly
from each other when σb ≫ σu or when σb and σu are compara-
ble. In particular, when σb ≫ σu, it follows from Eq. (12) that the
steady-state protein distribution for the modified Kumar model is
the negative binomial distribution

pn ≙
(s)n
n!

p
n
q
s.

Moreover, note that the effective transcription rate cn has the follow-
ing approximation when σb ≫ σu:

c0 ≙ ρu, cn ≙ ρb, n ≥ 1.

Inserting these equations into Eq. (28), we find that the steady-state
protein distribution for the Kumar model is given by a zero-inflated
or zero-deflated negative binomial distribution,

pn ≙ γδ0(n) + (1 − γ)(s)n
n!

p
n
q
s,

where δ0(n) is Kronecker’s delta which takes the value of 1 when
n = 0 and takes the value of 0 otherwise and
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FIG. 8. Comparison between the steady-state behavior for the Kumar and modified Kumar models under different gene switching rates. [(a)–(c)] Steady-state protein
distributions (up) and relative sensitivities of protein noise to all model parameters (down) for the modified Kumar (blue) and Kumar (red) models. (a) Regime of slow gene
switching. (b) Regime of moderate gene switching. (c) Regime of fast gene switching. The model parameters are chosen as ρu = 0.1, ρb = 8, d = 1, p = 0.5. The gene

switching rates are chosen as σu = 10−5, σb = 8 × 10−4 in (a), σu = 1, σb = 80 in (b), and σu = 105, σb = 8 × 106 in (c).

γ ≙
s − r

s + r(q−s − 1) (29)

is a constant. We make a crucial observation that γ > 0 for a posi-
tive feedback loop and γ < 0 for a negative feedback loop. Therefore,
when σb ≫ σu, the Kumar model leads to a zero-inflated nega-
tive binomial protein distribution in the positive feedback case and
leads to a zero-deflated negative binomial protein distribution in the
negative feedback case.

To validate our theoretical analysis, we compare the steady-
state protein distributions obtained using the SSA for the twomodels
in the regime of fast gene switching (Fig. 9). Clearly, the two mod-
els agree with each other perfectly when σb ≪ σu, but they fail as
predicted when σb≫ σu. In the latter case, there is an apparent zero-
inflation or zero-deflation in the protein number, depending on the
type of feedback loop. In the positive (negative) feedback case, the
Kumar model has a much higher (lower) probability of having zero
protein copy than the modified Kumar model, and the probabil-
ity of having nonzero protein copies for the Kumar model is lower
(higher).

From Eq. (14), we can see that there are two ways of increas-
ing the steady-state protein mean: increasing the transcription rates
ρu and ρb or increasing the mean burst size B = p/q. In either case,
the term q−s in Eq. (29) becomes larger, and thus, the constant γ
becomes closer to zero. When the protein mean is very large, γ is
almost zero, and thus, the zero-inflation/deflation effect becomes
almost invisible. In other words, the Kumar and modified Kumar

models share similar steady-state behavior when the protein mean is
large.

C. Sensitivity analysis for protein noise

Here, we investigate the relative sensitivities of protein noise
to various model parameters for the Kumar and modified Kumar
models. Recall that the relative sensitivity of protein noise with
respect to a parameter s is defined as Λ(s) = ∂ log η/∂ log s, which
means that 1% change in s leads to Λ(s)% change in protein
noise.41

Since the two models coincide with each other in the regime
of slow gene switching, the relative sensitivities of protein noise for
the two models should be the same. This prediction is validated by
the numerical simulations in Figs. 8(a)–8(c), where the relative sen-
sitivities of protein noise with respect to all model parameters for the
twomodels are compared in different regimes of gene switching. It is
clear that the two models lead to the same relative sensitivities when
gene switching is slow, while they fail to agree when gene switching
rates are moderate or large.

In the regime of fast gene switching, we also compare the rela-
tive sensitivities of protein noise for the two models in positive and
negative feedback cases. The relative sensitivities for the two models
agree with each other when protein unbinding is much faster than
protein binding [Figs. 9(a) and 9(b)], while they disagree when pro-
tein binding is much faster than protein unbinding [Figs. 9(c) and
9(d)]. In the positive feedback case, the Kumar model has larger

J. Chem. Phys. 152, 084115 (2020); doi: 10.1063/1.5144578 152, 084115-14

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

FIG. 9. Comparison of the steady-state behavior for the Kumar and modified Kumar models under fast gene switching. [(a) and (b)] Steady-state protein distributions (left)
and relative sensitivities of protein noise to all model parameters (right) for the modified Kumar (blue) and Kumar (red) models when σb ≪ σu. (a) Positive feedback loops.
(b) Negative feedback loops. The model parameters are chosen as σu = 104, σb = 102, d = 1, p = 0.8. The transcription rates in the two gene states are chosen as ρu = 0.5,
ρb = 20 in (a) and ρu = 2.5, ρb = 0.1 in (b). [(c) and (d)] Steady-state protein distributions (left) and relative sensitivities of protein noise to all model parameters (right) for the

modified Kumar (blue) and Kumar (red) models when σb ≫ σu. (c) Positive feedback loops. (d) Negative feedback loops. The model parameters are chosen as σu = 102,
σb = 104, d = 1, p = 0.8. The transcription rates in the two gene states are chosen as ρu = 0.2, ρb = 3 in (c) and ρu = 15, ρb = 0.5 in (d).

relativity sensitivities than the modified Kumar model. In the neg-
ative feedback case, however, the modified Kumar model has larger
relativity sensitivities to most of the model parameters compared to
the Kumar model. An interesting observation is that the relative sen-
sitivity with respect to a parameter can have a different sign in one
model compared to the other model. One such example is the rela-
tive sensitivity with respect to B in the negative feedback case with
σb ≫ σu; in this case, an increased burst size enlarges protein noise
for the Kumar model but diminishes protein noise for the modified
Kumar model [Fig. 9(d)].

VI. CONCLUSIONS

In this paper, starting from a stochastic model of an autoreg-
ulatory genetic circuit with both mRNA and protein descriptions
(the full model), we use the multiscale decimation method to obtain
a reduced model with only the protein description, which we refer
to as the modified Kumar model. This model takes into account
both translational bursting resulting from short-lived mRNA and
protein fluctuations stemming from the binding/unbinding reac-
tions with the promoter. Hence, it generalizes two classical models
of an autoregulatory feedback loop proposed in previous papers: the
Kumar model,24 which takes into account translational bursting but
neglects protein fluctuations during the binding–unbinding process,
and the Grimamodel,9 which takes into account protein fluctuations
during the binding–unbinding process but neglects translational
bursting.

We have solved the CME of the modified Kumar model to
obtain an exact expression for the steady-state protein number dis-
tribution in terms of Gaussian hypergeometric functions. Using the
multiscale averaging method, we also obtain the analytic protein

distributions in the limits of fast and slow gene switching. In the
regime of slow gene switching, the steady-state protein distribu-
tion is a mixture of two negative binomials and, thus, can lead to
bistable gene expression for both positive and negative feedback
loops. We show that a positive feedback loop requires a larger feed-
back strength to achieve bistability than a negative feedback loop.
Interestingly, we discover that a positive feedback loop can produce
noise-induced bistability in the regime of fast gene switching even in
the absence of cooperative binding, while a negative feedback loop
cannot.

Moreover, we examine steady-state fluctuations in protein
abundance in detail. Based on the exact solutions of steady-state
protein mean and protein variance, we decompose protein noise,
measured by the squared coefficient of variation, into three terms.
The first term characterizes fluctuations due to unregulated bursty
gene expression that has been reported in previous work.27,37,40 The
other two terms emerge due to the presence of autoregulation, one is
positive and one is negative in most biologically relevant situations,
which collectively characterize the overall feedback contribution to
protein noise.When gene switching is slow, the positive term is large
and the negative terms vanish. In this situation, the overall feed-
back contribution is large, which results in large protein noise in the
regime of slow gene switching. When gene switching is fast, how-
ever, the negative term counteracts most of the positive term, and
thus, the overall feedback contribution is much weaker, with its sign
depending on the type of feedback loop.

We further study the relationship between the modified Kumar
model and the other two classical stochastic models of autoregu-
lation. In the limit of small mean burst size, we have proved that
the modified Kumar model reduces to the Grima model. In addi-
tion, we show that the modified Kumar model shares the same
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steady-state behavior as the Kumar model under slow gene switch-
ing. In the regime of fast gene switching, however, the two models
agree with each other when the binding rate of the protein to the pro-
moter is much smaller than the unbinding rate, but deviate signifi-
cantly from each other when the binding rate is much larger than the
unbinding rate. In the latter case, the Kumar model yields an appar-
ent zero-inflation (zero-deflation) in the protein number for positive
(negative) feedback loops. We have also shown that the relative sen-
sitivities of protein noise with respect to all model parameters, as
predicted by the modified Kumar and Kumar models, are typically
considerably different in magnitude and in some cases also in sign.
These differences as well as the artificial zero-inflation/deflation
effect predicted by the Kumar model become increasingly signifi-
cant as the protein mean decreases, and hence, our modified Kumar
model provides a more accurate description of fluctuations in the
low protein number regime.

In this paper, we have obtained the steady-state solution of
the modified Kumar model. Potential extensions that are currently
under investigation include the derivation of approximate results for
the time-dependent protein number distribution for both constant
and time-varying transcription rates.
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APPENDIX A: EXACT SOLUTION OF THE GENERATING
FUNCTION EQUATIONS

In the main text, we have shown that the generating functions
of the modified Kumar model satisfy the following system of ODEs:

⎧⎪⎪⎨⎪⎪⎩
∥sp(1 − z) + b(1 − pz)∥ f − (1 − z)(1 − pz)f ′ − μ(1 − pz)g′ ≙ 0,
rp(1 − z)g − ∥(1 − z) − μz∥(1 − pz)g′ − bz(1 − pz)f ≙ 0.

(A1)

Adding the above two equations gives

(1 − pz)f ′ − ∥b(1 − pz) + sp∥ f + (1 + μ)(1 − pz)g′ − rpg ≙ 0. (A2)

Taking the derivative of this equation yields

(1 − pz)f ′′ − ∥b(1 − pz) + (1 + s)p∥ f ′ + bpf + (1 + μ)(1 − pz)g′′
− (1 + r + μ)pg′ ≙ 0. (A3)

To proceed, we set

f (z) ≙ (1 − pz)−sh(z).
It is easy to verify that

f
′

≙ (1 − pz)−sh′ + sp(1 − pz)−s−1h,
(A4)

f
′′

≙ (1 − pz)−sh′′ + 2sp(1 − pz)−s−1h′ + s(s + 1)p2(1 − pz)−s−2h.

Combining Eqs. (A2) and (A4) shows that

μg
′

≙ −(1 − z)(1 − pz)−sh′ + b(1 − pz)−sh. (A5)

Taking the derivative of this equation yields

μg
′′

≙ −(1 − z)(1 − pz)−sh′′ − sp(1 − z)(1 − pz)−s−1h′
+ (1 − pz)−sh′ + b(1 − pz)−γh′ + bsp(1 − pz)−s−1h. (A6)

Inserting Eqs. (A4)–(A6) into Eq. (A3), we find that h satisfies the
second-order ODE

a(z)h′′ + b(z)h′ − c(z) ≙ 0,
where

a(z) ≙ (1 + μ)(z − z0)(1 − pz),
b(z) ≙ ∥1 + p + b + μ + rp − sp∥ − ∥(b + r) + (2 − s)(1 + μ)∥pz,
c(z) ≙ b(1 + r − s)p.

Note that we have defined

z0 ≙
1

1 + μ
.

Since a(z) is a quadratic function of z, b(z) is a linear function of
z, and c(z) is a constant function, the above second-order ODE is a
hypergeometric differential equation whose solution is given by

h(z) ≙ K̃2F1(α1 + 1,α2 + 1;β + 1;w(z − z0)),
where K̃ is a constant and

α1 + α2 ≙
b + r

1 + μ
− s − 1, α1α2 ≙ s −

r

1 + μ
+
b(r − s)
1 + μ

,

β ≙
b

1 + μ
+

rμp

(1 + μ)(q + μ) , w ≙
(1 + μ)p
q + μ

.

Therefore, we obtain

f (z) ≙ K̃(1 − pz)−s2F1(α1 + 1,α2 + 1;β + 1;w(z − z0)). (A7)

Moreover, it follows from Eq. (A2) that

rpg ≙ (1 − pz)f ′ − ∥b(1 − pz) + sp∥ f + (1 + μ)(1 − pz)g′.
This equation, together with the first equation of Eq. (A1), implies
that

rμpg ≙ (1 + μ)(z − z0)(1 − pz)f ′ − s(1 + μ)p(z − z0)f + b(1 − pz)f .
This shows that

rμpF ≙ rμpf + rμpg

≙ (1 + μ)(z − z0)(1 − pz)f ′ − s(1 + μ)p(z − z0)f
+ b(1 − pz)f + rμpf . (A8)

It follows from Eq. (A7) that

f
′(z) ≙ K̃[(α1 + 1)(α2 + 1)

β + 1
w(1 − pz)−sH2 + sp(1 − px)−s−1H1],

(A9)
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where

H1 ≙ 2F1(α1 + 1,α2 + 1;β + 1;w(z − z0)),
H2 ≙ 2F1(α1 + 2,α2 + 2;β + 2;w(z − z0)).

Inserting Eqs. (A7) and (A9) into Eq. (A8) yields

rμp

K̃
F ≙ (1 + μ)w (α1 + 1)(α2 + 1)

β + 1
(z − z0)(1 − pz)1−sH2

+ b(1 − px)1−sH1 + rμp(1 − px)−sH1. (A10)

Recall the following important property of Gaussian hypergeometric
functions [see Eq. (15.5.19) in Ref. 36]:

z(1 − z)(α1 + 1)(α2 + 1)2F1(α1 + 2,α2 + 2;β + 2;w(z − z0))
+ ∥β − (α1 + α2 + 1)z∥(β + 1)
× 2F1(α1 + 1,α2 + 1;β + 1;w(z − z0))
−β(β + 1)2F1(α1,α2;β;w(z − z0)) ≙ 0.

This equality implies that

w(1 +wz0)(α1 + 1)(α2 + 1)
β + 1

(z − z0)(1 − pz)H2

≙ βH0 − ∥β − (α1 + α2 + 1)w(z − z0)∥H1, (A11)

where

H0 ≙ 2F1(α1,α2;β;w(z − z0)).
Inserting Eq. (A11) into Eq. (A10) yields

rμp

K̃
(1 − pz)sF ≙ (q + μ)βH0 + (C −Dz)H1,

where

C ≙ b + rμp − (q + μ)∥β + (α1 + α2 + 1)wz0∥,
D ≙ bp − (q + μ)(α1 + α2 + 1)w.

Straightforward calculations show that C and D can be simplified as

C ≙
(s − r) + rμ

(q + μ)β , D ≙
(s − r) + sμ

(q + μ)β .

Therefore, we finally obtain

F(z) ≙ K̃

rμp
(1 − pz)−s∥(q + μ)β2F1(α1,α2;β;w(z − z0))

+(C −Dz)2F1(α1 + 1,α2 + 1;β + 1;w(z − z0))∥.

APPENDIX B: DERIVATION OF THE EXPRESSION
FOR THE SECOND MOMENT OF PROTEIN NOISE

Here, we shall derive the analytic expression for the steady-state
second moment of protein number fluctuations given by Eq. (15).
Substituting z = 1 in Eq. (6), we obtain

μg
′(1) ≙ bf (1). (B1)

Taking the derivative of Eq. (6) yields

(s + b)pf − ∥(1 + s)p(1 − z) + (1 + b)(1 − pz)∥ f ′ − μpg′
+ (1 − z)(1 − pz)f ′′ + μ(1 − pz)g′′ ≙ 0. (B2)

Substituting z = 1 in this equation gives

μg
′′(1) ≙ −(s + b)Bf (1) + (1 + b)f ′(1) + μBg

′(1). (B3)

Moreover, taking the derivative of Eq. (7) yields

b(1 − 2pz)f + rpg + bz(1 − pz)f ′
− ∥(1 + r)p(1 − z) + (1 + μ)(1 − pz) − μpz∥g′
+ ∥(1 − z) − μz∥(1 − pz)g′′ ≙ 0. (B4)

Substituting z = 1 in this equation gives

μg
′′(1) ≙ b(1−B)f (1)+rBg(1)+bf ′(1)−∥(1+μ)−μB∥g′(1). (B5)

Combining Eqs. (B3) and (B5), we obtain

f
′(1) + (1 + μ)g′(1) ≙ (sB + b)f (1) + rBg(1).

Inserting Eq. (B1) into this equation yields

μf
′(1) ≙ (sBμ − b)f (1) + rBμg(1). (B6)

On the other hand, taking the derivative of Eq. (B2) yields

2(1 + s + b)pf ′ − ∥(2 + s)p(1 − z) + (2 + b)(1 − pz)∥ f ′′ − 2μpg′′
+ (1 − z)(1 − pz)f ′′′ + μ(1 − pz)g′′′ ≙ 0.

Substituting z = 1 in this equation gives

μg
′′′(1) ≙ −2(1 + s + b)Bf ′(1) + (2 + b)f ′′(1) + 2μBg′′(1). (B7)

Moreover, taking the derivative of Eq. (B4) yields

−2bpf + 2b(1 − 2pz)f ′ + 2(1 + r + μ)pg′ + bz(1 − pz)f ′′
− ∥(2 + r)p(1 − z) + 2(1 + μ)(1 − pz) − 2μpz∥g′′
+ ∥(1 − z) − μz∥(1 − pz)g′′′ ≙ 0.

Substituting z = 1 in this equation gives

μg
′′′(1) ≙ −2bBf (1) + 2b(1 − B)f ′(1) + 2(1 + r + μ)Bg′(1)

+ bf
′′(1) − 2∥(1 + μ) − μB∥g′′(1). (B8)

Combining Eqs. (B7) and (B8), we obtain

f
′′(1) + (1 + μ)g′′(1) ≙ −bBf (1) + ∥(1 + s)B + b∥ f ′(1)

+ (1 + r + μ)Bg′(1). (B9)
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FIG. 10. Fixed points of the mean-field approximation of the modified Kumar model. [(a)–(c)] The graphs of the function y = c(x)B which describes protein synthesis (blue) and
the function y = dx which describes protein degradation (red). The intersections of the two functions give the fixed points of the deterministic model. (a) Negative feedback
loops. (b) Positive feedback loops with ρu ≠ 0. (c) Positive feedback loops with ρu = 0. In (a)–(c), the model parameters are chosen as σu = σb = d = 1, p = 0.5. The
transcription rates in the two gene states are chosen as ρu = 10, ρb = 1 in (a), ρu = 1, ρb = 6 in (b), and ρu = 0, ρb = 6 in (c).

Inserting Eq. (B5) into this equation yields

F
′′(1) ≙ −bf (1) − rBg(1) + (1 + s)Bf ′(1) + ∥(1 + r)B + 1 + μ∥g′(1).

Moreover, inserting Eqs. (B1) and (B6) into this equation, we obtain

μF
′′(1) ≙ s(1 + s)B2

μf (1) + r(1 + r)B2
μg(1)

+ (1 − sB + rB)∥bf (1) − rBμg(1)∥.
It follows from Eq. (14) that

F
′(1) ≙ ⟨n⟩ ≙ sBf (1) + rBg(1).

Therefore, we have

F
′′(1) + F

′(1) ≙ sB∥(1 + s)B + 1∥ f (1) + rB∥(1 + s)B + 1∥g(1)
+ (1 − sB + rB)[b

μ
f (1) − rBg(1)].

Since ⟨n2⟩ = F′′(1) + F′(1), we finally obtain Eq. (15) in the main
text.

APPENDIX C: PROOF THAT THE DETERMINISTIC
THEORY ONLY PREDICTS MONOSTABILITY

In the main text, we have shown that a noisy autoregula-
tory gene network can perform bistability. Here, we show that the
traditional deterministic theory fails to predict bistability in any
parameter region.

According to the chemical reaction scheme of the modified
Kumar model (4) and the law of mass action, the deterministic the-
ory of the modified Kumar model is given by the following set of
coupled ODEs:

{ ġ ≙ σbx(1 − g) − σug,
ẋ ≙ −σbx(1 − g) + σug + ρuB(1 − g) + ρbBg − dx,

where g is the mean number of genes in the bound state and x is the
mean protein number. In steady-state conditions, the gene number
equilibrates to

g ≙
σbx

σu + σbx
.

Substituting this equation into the time-evolution equation for the
protein number, we obtain

ẋ ≙ c(x)B − dx,
where

c(x) ≙ ρuσu + ρbσbx

σu + σbx

is the effective transcription rate defined in Eq. (16). Figure 10 shows
the graphs of the functions y = c(x)B and y = dx, whose intersections
give the fixed points of the deterministic model. Clearly, there is only
one intersection in the negative feedback case, which means that the
deterministic model has only one fixed point, which is an attractor
[Fig. 10(a)]. In the positive feedback case, however, there are one
or two intersections, depending on whether ρu vanishes or not. If
ρu ≠ 0, the deterministic model has only one fixed point that is an
attractor [Fig. 10(b)]. If ρu = 0, the deterministic model has two fixed
points: one is an attractor which is away from zero and the other is
a repeller which lies exactly at zero [Fig. 10(c)]. In all cases, there is
only one attractor, which implies that the deterministic theory of the
modified Kumar model does not allow bistability for any choice of
model parameters.
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