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Abstract

Small RNAs are important regulators of gene expression. They were first identified in
Caenorhabditis elegans, but it is now apparent that the main small RNA silencing pathways
are functionally conserved across diverse organisms. Availability of genome data for an
increasing number of parasitic nematodes has enabled bioinformatic identification of small
RNA sequences. Expression of these in different lifecycle stages is revealed by small RNA
sequencing and microarray analysis. In this review we describe what is known of the three
main small RNA classes in parasitic nematodes – microRNAs (miRNAs), Piwi-interacting
RNAs (piRNAs) and small interfering RNAs (siRNAs) – and their proposed functions.
miRNAs regulate development in C. elegans and the temporal expression of parasitic nema-
tode miRNAs suggest modulation of target gene levels as parasites develop within the host.
miRNAs are also present in extracellular vesicles released by nematodes in vitro, and in plasma
from infected hosts, suggesting potential regulation of host gene expression. Roles of piRNAs
and siRNAs in suppressing target genes, including transposable elements, are also reviewed.
Recent successes in RNAi-mediated gene silencing, and application of small RNA inhibitors
and mimics will continue to advance understanding of small RNA functions within the
parasite and at the host–parasite interface.

Introduction

Knowledge of small RNA structure and function has increased greatly in the last decade. The
free-living nematode Caenorhabditis elegans led the way, with the initial discovery of
microRNAs (miRNAs) and small interfering RNAs (siRNAs) in this species (Lee et al.,
1993; Reinhart et al., 2000; Fire et al., 1998). The subsequent identification of miRNAs in
diverse organisms using experimental and/or bioinformatics approaches (Pasquinelli et al.,
2000; Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001), and the discovery
of siRNA gene silencing pathways in plants (Hamilton and Baulcombe, 1999), established the
important roles that small RNAs play in suppressing gene expression. This review focuses on
small RNAs in nematodes and what we know about these from genome, transcriptome and
functional studies. Much progress has been made recently in characterizing nematode
miRNAs and these are discussed in most detail. miRNAs were initially identified as regulators
of nematode development (see below), however their presence in parasite excretory-secretory
(ES) products has stimulated interest in these molecules as modulators of host–parasite inter-
actions to promote parasite survival. The ability of miRNAs to alter levels of gene expression
suggests they could have multiple, as yet undefined roles, in parasitic nematode biology. For
example, altered expression of miRNAs may be associated with anthelmintic resistance
(Devaney et al., 2010; Gillan et al., 2017), akin to changes in miRNA levels observed in
drug-resistant tumour cells (reviewed in Ghasabi et al., 2019). This review will also discuss
nematode Piwi-interacting RNAs (piRNA), required for silencing of transposable elements
in the germline, but of which little is currently known in parasitic species. We also discuss
the forms and functions of siRNAs, recent successes in RNA interference (RNAi)-mediated
gene silencing in parasitic nematodes, and the application of this in progressing from genome
to function. A diagram summarizing different small RNA classes discussed in this review is
presented in Fig. 1.

MicroRNAs

miRNA discovery

miRNAs regulate gene expression post-transcriptionally by binding with partial sequence
complementary to the 3′-untranslated region (UTR) of their target mRNAs (Bartel, 2009,
2018). This interaction inhibits protein translation and results in miRNA degradation
(Chekulaeva and Filipowicz, 2009). The first miRNAs, lin-4 and let-7, were discovered in
C. elegans (Lee et al., 1993; Reinhart et al., 2000). The subsequent availability of genome
data for a range of vertebrates and invertebrates revealed conservation of miRNA-mediated
gene regulation (Pasquinelli et al., 2000; Lagos-Quintana et al., 2001; Lau et al., 2001; Lee
and Ambros, 2001). Their conservation in diverse organisms has benefited parasitic nematode
miRNA research through development of bioinformatics databases, such as miRBase (Release
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22.1; http://www.mirbase.org/) (Griffiths-Jones et al., 2008),
miRCarta (Version 1.1; https://mircarta.cs.uni-saarland.de/)
(Backes et al., 2018), miRGeneDB (Version 2.0; http://mirgen-
edb.org/) (Fromm et al., 2015, 2020) and target prediction pro-
grammes [e.g. TargetScan (Lewis et al., 2005)], together with
advancements in miRNA mimic and inhibitor chemistry. For
example, mammalian mir-122, expressed in hepatocytes, is
required for hepatitis C virus accumulation and a locked nucleic
acid-modified oligonucleotide complementary to mir-122 can
suppress viral load and is being evaluated as a therapeutic treat-
ment (Titze-de-Almeida et al., 2017). In addition, specific
miRNAs released into plasma or urine are being studied as poten-
tial diagnostic/prognostic biomarkers of diseases, including cancer
(Wang et al., 2018), and filarial nematode infections (Buck et al.,
2014; Tritten et al., 2014a, 2014b; Quintana et al., 2015).

miRNAs are derived from long primary transcripts that are
processed to precursor miRNAs of approximately 70 nucleotides
that fold into a hairpin structure (Kim et al., 2009; see Fig. 1).
Mature miRNAs are 20–26 nucleotides in length (Fromm et al.,
2015). Nucleotides 2–7 are referred to as the seed sequence and
are important in determining the specificity of binding to target
mRNAs. Novel miRNAs are most often identified by sequencing
of small RNA libraries, mapping the sequences to the genome,
where available, and testing that the region each miRNA is
derived from folds into a hairpin structure, using programmes
such as RNAfold (Hofacker et al., 1994). Discovery pipelines,
such as miRDeep2 (Friedländer et al., 2012), incorporate
RNAfold and other scoring criteria, and have been applied to
miRNA discovery and validation in a range of parasitic nema-
todes, as summarized in Table 1.

We applied a small RNA library sequencing approach to iden-
tify small RNAs from the clade V ovine gastrointestinal nematode
(GIN) Haemonchus contortus and the clade III filarial parasite
Brugia pahangi (Winter et al., 2012). Our data showed that
while some miRNAs were conserved across diverse organisms
or throughout the nematodes, many were unique to these species.
As genome annotation improves for parasitic nematodes, it is
likely that some of these unique miRNAs may be found to be
clade or niche specific. However, it does suggest that miRNAs
are evolving rapidly, perhaps reflecting roles in host–parasite
interactions. In general, H. contortus novel miRNAs were found

to be expressed at a low level compared to conserved miRNAs,
based on small RNA sequencing (Winter et al., 2012) and micro-
array data (Marks et al., 2019). This is consistent with findings in
other organisms (Liang and Li, 2009; Shen et al., 2011) and sug-
gests there is conservation of the machinery regulating miRNA
gene expression, of which little is currently known. More recent
work has identified motifs within the upstream promoter region
of C. elegans miRNA genes that may determine expression level
(Jovelin et al., 2016).

miRNAs in parasitic nematode development

In C. elegans, miRNAs lin-4 and let-7 were discovered through
genetic studies, based on their essential roles in regulating genes
involved in development. lin-4 suppresses expression of hetero-
chronic gene lin-14 to allow progression from larval stage L1 to
L2 (Lee et al., 1993), while let-7 modulates gene expression to pro-
mote adult development (Reinhart et al., 2000). For parasitic spe-
cies, sequencing or microarray analysis can identify miRNAs
expressed in different lifecycle stages, to help determine their
roles in regulating development. However, we currently know lit-
tle of the functions of parasite miRNAs and the genes they modu-
late. As mentioned above, bioinformatics programmes are
available to predict interactions between specific miRNA
sequences and target mRNAs. Some of these employ experimental
validation, such as mirWIP, which incorporates immunoprecipi-
tation (IP) data, using antibodies to miRISC (RNA-induced silen-
cing complex) proteins AIN-1 and AIN-2, to score miRNA target
sites (reviewed in Ambros and Ruvkun, 2018). However, currently
many programmes rely on custom databases designed for specific
species, such human, mouse, C. elegans, zebrafish (e.g.
TargetScan; http://www.targetscan.org/vert_72/), with only a few
programmes available that allow input of a test miRNA and
3′-UTR sequence. In addition, current assembly and annotation
of most parasitic nematode genomes is not of sufficient quality
to allow reliable identification of 3′-UTR sequences to predict
miRNA binding sites. We were able to generate 3′-UTR datasets
for H. contortus (Gillan et al., 2017), due to the advanced nature
of the genome data (Laing et al., 2013). With developments in
technology, such PacBio long read sequencing of RNA libraries

Fig. 1. Schematic of forms and functions of small RNA

classes in nematodes, based on C. elegans informa-

tion. (A) Mature miRNA strand, derived from precursor

miRNA, is incorporated into the miRNA-induced silen-

cing complex (miRISC) containing Argonaute protein

(Ago). This complex directs binding to mRNA target

sequences, commonly in the 3′-UTR. Binding specifi-

city is determined by complementarity between the

target sequence and miRNA seed sequence (nucleo-

tides 2–7). (B) Mature piRNA (21U-RNA) are processed

from a capped precursor and bind to Piwi Argonaute

PRG-1 to recognize target sequences, often transpo-

sons, by imperfect complementary base-pairing. This

initiates synthesis of secondary small inhibitory RNAs

(siRNAs) with 5′ triphosphate (5′TriP 22G-RNAs) by

RNA-dependent RNA polymerases (RdRPs) RRF-1 or

EGO-1. 22G-RNAs associate with worm-specific

Argonaute proteins (WAGOs) to mediate target silen-

cing. (C) Endogenous or exogenous dsRNA is processed

by dicer into siRNAs, which bind anti-sense to mRNA

exonic sequence to mediate mRNA cleavage by

RDE-1 Argonaute. siRNAs also act as primers for syn-

thesis of 22G-RNAs by RRF-1 or EGO-1 to amplify the

RNAi response, using target dsRNA as a template.
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(Iso-seq), improved annotation of UTRs in genomes of other
nematode species should be feasible.

By investigating stage-specific miRNAs using microarrays, we
identified the potential roles of some miRNAs in H. contortus
and B. pahangi development. Enrichment of specific miRNAs
was found in pre- and post-infective larval stages and in adult
male and female worms for both species (Winter et al., 2015;
Marks et al., 2019). For H. contortus, we focused on two
miRNAs that were significantly enriched in the arrested L3
stage. Target prediction and gene ontology analysis suggested
that these miRNAs suppress metabolism to maintain an arrested
state. Comparative functional studies using C. elegans mutants
indicated that the two miRNAs may suppress development by
synergizing with DAF-16 FOXO transcription factor (TF) activity
(Marks et al., 2019). By combining these different approaches, we
progressed from initial identification of miRNAs for determining
their expression patterns, and predicting target genes and

potential roles in regulating development. miRNAs often act to
fine-tune gene expression and can regulate key switches in devel-
opmental pathways. Therefore, identifying the potential target
genes and pathways regulated by miRNAs is important in
improving understanding of parasitic nematode development
and could prove useful in designing novel therapeutic
interventions.

Microarray analysis was similarly informative in identifying
enrichment of miRNAs in specific lifecycle stages of the filarial
nematode B. pahangi, from mosquito-derived L3, through to L4
and male and female adult worms (Winter et al., 2015). We
focused on B. pahangi mir-5364, which is significantly upregu-
lated in the post-infective L3 within 24 h of infection of a mam-
malian host and is a novel member of the let-7 family. Target
prediction programmes identified transcripts encoding several
putative TFs, and interaction between bpa-mir-5364 and the
3′-UTR of these mRNAs were confirmed experimentally using

Table 1. Animal and human parasitic nematode species for which miRNA data are available from parasite extracts, EVs, ES supernatant or released into host serum/

plasma. From small RNA sequencing data, unless indicated otherwise

Nematode species (clade)

Developmental stage/host

sample Small RNA class

GEO Acc. No./in

MiRBase Reference

Angiostrongylus cantonensis

(V)

Male and female adults miRNA, siRNA NA/No Chen et al. (2011a)

Ascaris lumbricoides (III) Female adults miRNA NA/No Shao et al. (2014)

Ascaris suum (III) Germline, zygote, embryo, L1–L3 miRNA, siRNA GSE 26956, GSE 26957/

Yes

Wang et al. (2011)

Male and female adults miRNA NA/No Xu et al. (2013)

Female adults miRNA NA/No Shao et al. (2014)

Brugia malayi (III) Male and female adults, mf miRNA, siRNA NA/Yes Poole et al. (2010)

Male and female adults, mf miRNA NA/Yes Poole et al. (2014)

L3 EV miRNA SRA PRJNA 285132/No Zamanian et al.

(2015)

Brugia pahangi (III) L3, mixed sex adults miRNA, siRNA GSE 34539/Yes Winter et al. (2012)

L3, L4, male and female adults miRNA microarray NA/No Winter et al. (2015)

Infected dog plasma miRNA NA/No Tritten et al. (2014a)

Dirofilaria immitis (III) Mixed sex adult worms miRNA GSE 35646/No Fu et al. (2013)

Infected dog plasma miRNA NA/No Tritten et al. (2014a)

Haemonchus contortus (V) L3, mixed sex adults miRNA, siRNA, piRNA GSE 34539/Yes Winter et al. (2012)

L3, L4, male and female adults,

gut

miRNA microarray GSE 101501/No Marks et al. (2019)

L4 EV and ES, adult EV and ES miRNA NA/No Gu et al. (2017)

Heligmosomoides polygyrus

(V)

Egg, L3, adults, adult EV and ES miRNA, siRNA, piRNA,

YRNA

GSE 55941/Yes Buck et al. (2014)

Litomosoides sigmodontis (III) Infected mouse serum miRNA GSE 55978/No Buck et al. (2014)

Loa loa (III) Infected baboon plasma miRNA NA/No Tritten et al. (2014b)

Onchocerca ochengi (III) Infected cow plasma miRNA NA/No Tritten et al. (2014b)

Infected cow nodule fluid miRNA GSE 63933/No Quintana et al.
(2015)

Onchocerca volvulus (III) Infected human serum miRNA NA/No Tritten et al. (2014a)

Infected human serum miRNA GSE 63933/No Quintana et al.
(2015)

Strongyloides ratti (IV) Infective L3 and mixed stage miRNA GSE 41402/Yes Ahmed et al. (2013)

Toxocara canis (III) Male and female adults miRNA GSE 68710/No Ma et al. (2016)

Trichinella spiralis (I) Muscle stage larvae miRNA NA/No Chen et al. (2011b)

Trichuris muris (I) Mixed sex adult EV miRNA GSE 93667/No Tritten et al. (2017)
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dual luciferase reporter assays. Further analysis of differentially
expressed B. pahangi and H. contortus miRNAs and their target
genes will help reveal the roles that miRNAs play in regulating
nematode development at key points in infection.

miRNAs in host–parasite interactions

In recent years there has been an explosion of interest in extracel-
lular vesicles (EVs). These are small vesicles, between 50 and 200
nm in size, released by cells and are considered to be important
for intercellular communication. EVs are released by a range of
cell types, including tumours, and their uptake by recipient cells
may alter cellular activity. Advances in protein and RNA sequen-
cing technology, combined with genome data, have allowed
detailed analysis of EV cargo from mammalian cells and from
parasitic nematodes (Buck et al., 2014; Zamanian et al., 2015;
Tzelos et al., 2016; Gu et al., 2017; Tritten et al., 2017, Hansen
et al., 2019). miRNAs and to a lesser extent Y RNAs (small non-
coding RNAs involved in RNA quality control and DNA replica-
tion), have been identified within parasitic nematode EVs (Buck
et al., 2014). It is speculated that packaging of small RNAs within
EV may protect them from degradation and facilitate their uptake
by other cell types.

Buck et al. (2014) first identified miRNAs in the ES super-
natant and within EV released by adult worms of the mouse
GIN Heligmosomoides polygyrus during in vitro culture.
Notably, within EV there was enrichment for miRNAs with iden-
tical seed sequences to mammalian miRNAs, including mir-100,
let-7, lin-4 and bantam. Subsequent small RNA sequencing of
ES supernatant and EV released in vitro by H. contortus L4 and
adult worms (Gu et al., 2017), B. pahangi L3 (Zamanian et al.,
2015) and Ascaris suum adults (Hansen et al., 2019) also found
enrichment of some of the same miRNAs. This raises the interest-
ing possibility that parasite miRNAs may be mimicking or hijack-
ing host cell gene regulation, perhaps for their own benefit (Buck
et al., 2014). Notably, the helminth-associated cytokine IL-13 was
identified as a predicted target of A. suum lin-4 and let-7 (Hansen
et al., 2019). From an evolutionary perspective, as the sequences
of these abundant, secreted miRNAs are conserved between the
parasite and the host, avoidance of this putative parasite manipu-
lation of host genes through mutation is less likely to occur
(Claycomb et al., 2017).

While presence within EV could reflect higher abundance of
specific miRNAs, there does seem to be selectivity in what is
loaded into EVs. Some miRNAs, abundant in somatic tissue,
are not present in EVs and studies in mammalian cell systems
also suggest that the EV profile is not a snapshot of total cellular
miRNAs (Driedonks et al., 2018). Determining how selectivity is
achieved and the mechanisms by which parasite miRNAs are
loaded into EVs require further work. This is likely to be guided
by data from mammalian cell culture systems, demonstrating that
RNA binding proteins recognize specific motifs that dictate
miRNA exosomal sorting (Villarroya-Beltri et al., 2013;
Shurtleff et al., 2016). EV released by adult worms of both
H. polygyrus and H. contortus show enrichment of miRNAs hom-
ologous to miRNAs expressed in C. elegans gut cells (e.g. mir-60
and mir-236; Martinez et al., 2008) and also identified in the gut
of H. contortus (Marks et al., 2019) and of the pig GIN A. suum
(Gao et al., 2017). This suggests that, at least for some nematodes,
EV miRNAs may be derived from the gut, perhaps reflecting the
metabolic activity of this tissue (Buck et al., 2014). In contrast,
immunolocalization using an antibody to ALG-2 interacting pro-
tein X, suggests that for the microfilariae stage of Brugia malayi
(which has no functional gut), EV are released from the excretory
pore (Harischandra et al., 2018).

Uptake of parasitic nematode EV by mammalian cells was
demonstrated for H. polygyrus (Buck et al., 2014) and for
B. malayi (Zamanian et al., 2015) using labelled EV.
Importantly, following exposure to H. polygyrus EV, alteration
of gene expression in recipient cells was observed: treated cells
showed down-regulation of immune-associated genes il-33r and
Dusp1. In addition, specific miRNAs enriched within the H. poly-
gyrus EV suppressed expression of a Dusp-3′-UTR reporter con-
struct. This suggested, for the first time, that secreted parasitic
nematode miRNAs may regulate host immune outcome. Studies
using EV from H. polygyrus or Trichuris muris have also demon-
strated the protective potential of parasitic nematode EV (Coakley
et al., 2017; Shears et al., 2018). As EV may deliver small RNAs
and proteins with immunoregulatory effects, vaccination has the
potential to neutralize their functions and enhance immunity.
Indeed, a reduction in worm burden of around 50% was observed
following immunization of mice with EV purified from ES pro-
ducts of adult H. polygyrus or T. muris. Importantly, EV vaccin-
ation induced high levels of antibodies to EV and to ES
supernatant, suggesting recognition of shared or cross-reactive
epitopes that may limit infection. In addition, Coakley et al.
(2017) detailed the suppressive effects of H. polygyrus EV on acti-
vation of both classical and alternatively stimulated macrophages.
Importantly, they showed that exposure of macrophages to
anti-EV antibodies abrogated this EV-mediated suppression. By
tracking labelled EV within macrophage cells it was observed
that, in the presence of anti-EV antibodies, EV localization was
altered and led to accumulation within lysosomes, which reduced
EV immunosuppressive effects. Whether the protective effect of
EV vaccination may be mediated by neutralization of EV small
RNA or protein function, or both, is currently unknown, however
these studies are important in stimulating further investigation of
the potential of EV to deliver parasite antigens for enhanced pro-
tection (Shears et al., 2018).

miRNAs released from GIN have not been identified in the
serum or plasma of infected hosts (Buck et al., 2014; Britton
et al., 2015), suggesting that they may act locally within the gastro-
intestinal tract. Consistent with this hypothesis, we were able to
detect parasite-specific miRNAs in abomasal tissue and draining
lymph nodes collected from H. contortus-infected, but not unin-
fected, sheep (Gu et al., 2017). Holz and Streit (2017) also failed
to detect small RNAs of the GIN Strongyloides ratti in infected rat
blood following infection. In contrast, parasite-derived miRNAs
have been detected in the serum or plasma of hosts infected
with tissue-dwelling parasitic nematodes, including the filariae
Dirofilaria immitis (Tritten et al., 2014a), Litomosoides sigmodon-
tis (Buck et al., 2014), Onchocerca volvulus and Onchocerca
ochengi (Tritten et al., 2014a, 2104b; Quintana et al., 2015) or
with the flatworm Schistosoma japonicum (He et al., 2013; Hoy
et al., 2014). It was proposed that these released miRNAs may
be involved in host–parasite interactions, although whether circu-
lating parasite miRNAs have any effects on host gene expression
are not yet known. Their release into the circulation has also sti-
mulated interest in exploiting filarial and schistosome miRNAs as
novel biomarkers of infection (reviewed in Cai et al., 2016 and
Quintana et al., 2017). Parasite infection has also been shown
to modulate expression of host miRNAs and many of these regu-
late genes involved in host innate and adaptive immune mechan-
isms. This has been detailed in previous reviews (e.g. Arora et al.,
2017; Entwistle and Wilson, 2017). It is interesting to speculate on
whether host miRNAs or other small RNAs could have any effect
on the parasite. Uptake of labelled small RNAs by parasitic hel-
minths maintained in vitro has been shown (e.g. Winter et al.,
2014; Britton et al., 2016; Anandanarayanan et al., 2017).
Whether sufficient levels of small RNAs could be transferred
from the host to the parasite and whether these may be
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complexed to Ago or other RNA-binding proteins warrants fur-
ther investigation to determine if host miRNAs could influence,
for example, worm growth or reproduction.

Interestingly, recent work has shown that the widely-used
anthelmintic drug ivermectin can reduce the release of EV from
all life cycle stages of B. malayi (Mf, L3 and adult males and
females) 24 h after exposure in vitro (Harischandra et al., 2018).
The same approach showed a reduction in EV release from L3
of the related canine filarial nematode D. immitis, but not from
an ivermectin resistant isolate, suggesting that the effect may be
drug-specific (Harischandra et al., 2018). Ivermectin was previ-
ously shown to inhibit protein secretion by B. malayi microfilar-
iae, leading to the hypothesis that one effect of ivermectin may be
to reduce the release of immunosuppressive molecules from the
excretory pore and thus enhance parasite clearance (Moreno
et al., 2010). It is also possible that blocking the release and func-
tion of protein and/or small RNAs within EV may be responsible
for this effect.

Piwi-interacting RNAs

Identification of piRNAs

While miRNAs repress mRNA translation by interacting with the
Ago subfamily of Argonaute proteins, a different class of small
RNA interacts with Piwi Argonautes (Seto et al., 2007). These
are referred to as Piwi-interacting RNAs (piRNAs) of approxi-
mately 21–30 nucleotides in length that function mainly to silence
mobile genetic elements, such as transposons. piRNAs have been
identified from C. elegans and other animals, including
Drosophila and mouse, and are required for fertility by protecting
the germline from transposon insertion (Siomi et al., 2011).

The discovery that Piwi proteins interacted with small RNAs
that were distinct from miRNA and siRNAs was first made in
Drosophila. Sequencing of these piRNAs revealed that they
mapped to retrotransposons and other repetitive sequences and
were referred to as repeat-associated siRNAs (Saito et al., 2006).
Parallel studies in mammals also identified Piwi-interacting
small RNAs showing great complexity of sequence but with less
identity to repetitive elements compared to those from flies
(Lau et al., 2006). The diversity of piRNA sequences, both within
and between species, makes their identification difficult, although
in most species in which they have been identified, piRNAs are
found clustered in the genome and are characterized by the pres-
ence of uracil as the 5′ nucleotide, with 5′ monophosphate and
2′-O-methyl 3′ termini (Brennecke et al., 2007).

While the function of piRNAs is conserved in different organ-
isms, their biogenesis and mechanisms of silencing have diverged
through evolution. In mouse and Drosophila, piRNAs are pro-
duced from long single-stranded precursors that are processed
into multiple piRNA sequences (Brennecke et al., 2007). In con-
trast to miRNAs and siRNAs, processing does not depend in
Dicer ribonuclease. Following the generation of initial primary
piRNAs, sequences targeting active transposons are amplified by
slicing of the target RNA to give rise to secondary piRNAs
(referred to as the ping-pong cycle) (Gunawardane et al., 2007).
It is thought that this amplification fine-tunes the piRNA
response against active transposons (reviewed in Siomi et al.,
2011).

Nematode piRNAs

Caenorhabditis elegans piRNAs differ in several aspects to those
in other animals. In C. elegans, mature piRNAs are characterized
as 21 nucleotides in length that are produced from short precur-
sors of 26–30 nucleotides expressed from individual genetic loci

(Weick et al., 2014). They have a bias for uracil as the 5′ nucleo-
tide (referred to as 21U-RNAs), in common with mature piRNAs
in other species, and possess an upstream promoter motif
(GTTTC) (Batista et al., 2008). Rather than slicing their target
RNA sequence, C. elegans piRNAs direct binding of the piRISC
to the target sequence, which initiates the synthesis of siRNA
molecules complementary to the target (see Fig. 1). These
siRNA molecules, referred to as 22G-RNAs, also mediate target
gene silencing in the RNAi pathway (see below). Importantly,
piRNAs are present in parasitic nematodes but only those of
clade V. Their absence from other nematode clades stimulated a
study to discover alternative pathways involved in transposon
silencing (Sarkies et al., 2015). This identified 22G-RNAs, map-
ping antisense to transposons, in nematodes of clades III and
IV, while a different mechanism, involving Dicer-dependent
RNA-directed DNA methylation, functions in nematode clades
I and II. Currently, it is not known why Piwi and piRNAs are
maintained in clade V species.

The above features of C. elegans piRNAs are conserved in the
clade V parasitic nematodes in which they have been identified,
including Pristionchus pacificus, H. contortus, H. polygyrus and
Nippostrongylus brasiliensis, based on small RNA sequencing
and genome data (de Wit et al., 2009; Winter et al., 2012; Buck
et al., 2014; Sarkies et al., 2015), although their organization is dif-
ferent. Two large clusters of piRNAs are found in C. elegans on
chromosome IV (Ruby et al., 2006), while clustering of piRNA
loci is not observed in P. pacificus (de Wit et al., 2009) nor in
H. contortus (Winter et al., 2012). Recent work by Beltran et al.
(2019) also identified differences in the chromatin structure of
domains encoding piRNAs between nematode species, suggesting
different modes of regulation. Two types of genomic organization
of piRNA genes were characterized: P-type (e.g. P. pacificus) in
which piRNA loci are found within active chromatin
(H3K36me3), and C-type (e.g. C. elegans) where piRNA genes
are in regions of repressive chromatin, associated with
H3K27me3. How and why these different control mechanisms
have evolved and whether they can co-exist are areas of ongoing
investigation.

From H. contortus small RNA libraries, we identified >1000
reads representing putative piRNA sequences in adult worms,
but not in L3 stage, consistent with a role in germline develop-
ment and maintenance (Winter et al., 2012). piRNAs were not
identified in Brugia (Winter et al., 2012) nor A. suum (Wang
et al., 2011). We, and others, speculated that piRNAs may be
required for adaptation/survival of progeny in varying environ-
mental conditions, such as differences in temperature (Wang
et al., 2011; Winter et al., 2012). However, piRNAs are not
found in Strongyloides nematodes (clade IV) that have environ-
mental larval stages (Holz and Streit, 2017). Sarkies et al.
(2015) suggested that there may be clade V-specific transposable
elements that require piRNA for silencing, rather than other small
RNA pathways. This hypothesis is consistent with the differences
in transposable element loads across nematode clades identified
by Szitenberg et al. (2016). Caenorhabditis elegans mutants of
the piRNA Argonaute PRG-1 show fertility defects and become
sterile over many generations (Simon et al., 2014), demonstrating
the importance of piRNAs in protecting the germline against
transposon-mediated mutations. Interestingly, in gonochorist spe-
cies, that mate every generation, there are greater numbers of
piRNAs than in androdioecious species (self-fertilize) (Shi et al.,
2013). This suggests that additional piRNAs may be required to
defend against paternal transposons. Of potential relevance to
this, female worms of the clade V parasitic nematodes H. contor-
tus and T. circumcincta are known to be polyandrous (mate with
multiple males) (Redman et al., 2008; Doyle et al., 2017). It is
interesting to speculate that the piRNA pathway may be required
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in these clade V parasites to maintain genome viability in the face
of high levels of paternal transposon mixing.

Other functions of piRNAs

Recent small RNA sequencing has also identified differences in
the number of piRNAs in different strains of H. contortus
(Laing and Sarkies, unpublished data). Interestingly, this analysis
compared H. contortus adult worms that are susceptible to anthel-
mintic drugs (MHco3.ISE) with a drug-resistant strain
(MHco18.UGA). Whether these differences in piRNA levels
have any consequence on drug sensitivity or may reflect different
traits between the strains is not yet known.

While Piwi proteins and piRNAs localize predominantly to the
germline, they have also been found in somatic stem cells. As
germ cells and stem cells have the ability to replicate, the function
of piRNAs in both may be to maintain genome integrity. The
planarian flatworm Schmidtea mediterranea is used as model
for stem cell proliferation and differentiation due to the presence
of somatic stem cells (neoblasts) that allow tissue regeneration
(Reddien and Sanchez Alvarado, 2004). Importantly, inhibition
of S. mediterranea Piwi-encoding genes smedwi-2 or -3 resulted
in lower abundance of piRNAs and failure of neoblast renewal
and differentiation (Reddien et al., 2005). Studies in other flat-
worms and in cnidarians reported similar findings (De Mulder
et al., 2009; Juliano et al., 2013). Piwi and piRNAs have been iden-
tified in lineage-restricted stem cells that do not give rise to germ-
line cells, suggesting that they function to regulate gene expression
and protect the genome in other cell types outside of the germline
(reviewed in van Wolfswinkel, 2014). The progress being made in
understanding the mechanisms and functions of piRNAs and
Piwi proteins will help reveal new mechanisms of gene control.

Small interfering RNAs (siRNAs)

siRNAs are approximately 21–25 bases in length and, like
miRNAs, are derived from longer double-stranded RNA
(dsRNA) molecules processed by Dicer. The dsRNA precursor
can be derived from infective pathogens, such as viruses,
endogenous genes, or be introduced artificially into cells to induce
RNAi-mediated gene silencing. siRNAs bind to siRISC, with the
antisense strand guiding the active RISC to its target mRNA,
which is cleaved by Argonaute protein within RISC (Hammond
et al., 2000) (Fig. 1). In contrast to miRNAs, which can potentially
interact with hundreds of target mRNAs through seed sequence
interaction, siRNAs bind with sequence complementarity along
their entire length to direct specific gene silencing. The RNAi
pathway was first identified in C. elegans (Fire et al., 1998) and
shown to be a natural defense against viral infection (Felix
et al., 2011). The discovery that siRNAs could also silence genes
in mammalian cells (Elbashir et al., 2001) (but not dsRNA >30
bp, which induces an interferon response) stimulated great inter-
est in developing these small RNAs as potential therapeutics. A
number of siRNAs targeting specific genes of viruses or cancer
have been tested (reviewed in Haussecker, 2012 and
Chakraborty et al., 2017), although ensuring specificity of silen-
cing, with no off target effects, and delivery of siRNAs into
cells, can be challenging.

RNAi in parasitic nematodes

Following the success of RNAi in C. elegans, a number of studies
tested whether this approach could be applied as a functional gen-
omics tool to identify novel drug and/or vaccine candidates for
parasitic helminths (e.g. Hussein et al., 2002; Aboobaker and
Blaxter, 2003; Skelly et al., 2003; Lustigman et al., 2004;

Geldhof et al., 2006). While some parasite genes could be
silenced, RNAi was not as effective as in C. elegans, particularly
when dsRNA or siRNA was delivered by soaking (referred to as
environmental RNAi). Our work in H. contortus showed that
while some genes could be silenced using the soaking method,
this was most effective for genes expressed in sites accessible to
the environment, such as the gut, amphids and excretory cell.
This suggested limited uptake and/or spreading of dsRNA in
the non-feeding infective L3 stage used (Samarasinghe et al.,
2011). This was supported by comparative genomic studies show-
ing that while most genes required for siRNA-mediated gene
silencing can be identified in parasitic nematodes (Dalzell et al.,
2011; reviewed in Britton et al., 2016), a homologue of the trans-
membrane transporter SID-2, required for environmental RNAi
in C. elegans (Winston et al., 2007), was absent in parasitic
species.

More recent work has focused on delivering siRNA to the pre-
infective L2 stage of H. contortus, which feed constitutively, in
contrast to the more easily available, but non-feeding, infective
L3 stage used previously. These recent studies by Blanchard
et al. (2018) and Menez et al. (2019) were successful in determin-
ing a role for acetylcholine receptor subunit Hco-ACR-8 in medi-
ating levamisole sensitivity and for Hco-NHR-8 in conferring
tolerance to ivermectin, respectively. Their approach suggests
that with improvements to the RNAi toolbox, including opti-
mized delivery of siRNA, parasite stage examined, and phenotypic
assays available, RNAi still holds promise for determining gene
function. In addition, delivery by viral vectors may overcome
the transient effect of exogenous siRNA or dsRNA. Effective
gene silencing has been demonstrated following transfection of
schistosome parasites with viral vectors expressing siRNAs
(Hagen et al., 2014) and is being tested for the mouse GIN N. bra-
siliensis (Hagen and Selkirk, personal communication). Direct
microinjection of siRNA or dsRNA can also be effective at gene
silencing. The addition of lipofectamine to the microinjection
mix used to deliver dsRNA was shown to enhance RNAi efficacy
in a newly described nematode genus, Auanema, and to facilitate
RNAi in an otherwise ‘resistant’ species, P. pacificus (Adams et al.,
2019). These recent successes in determining function from RNAi
phenotype, and development of new siRNA delivery methods,
should stimulate further studies to progress from genome to func-
tion, in parallel with development of CRISPR/Cas9 gene editing
for nematode species (Gang et al., 2017).

Forms and functions of nematode siRNAs

From sequencing studies in C. elegans, different types of endogen-
ous siRNAs have been identified. These are: 26G siRNAs, 26
nucleotides long with a bias for guanosine monophosphate at
the 5′ end, produced by RNA-dependent RNA-polymerase
(RdRP) RRF-3; and 22G siRNAs, 22 nucleotides long with a 5′

bias for guanosine triphosphate, produced by RdRPs RRF-1 and
EGO-1 (reviewed in Almeida et al., 2019). 22Gs have been iden-
tified as the secondary siRNAs that are produced downstream of
exogenous dsRNA, 26G RNAs and piRNAs (Fig. 1). They map
antisense to target transcripts and, in C. elegans, are responsible
for amplification of the RNAi response (Sijen et al., 2001).
Interestingly, while siRNAs can silence target gene sequences
within nematodes, recent work from the Buck lab suggests that
siRNAs may also be involved at the host–parasite interface.
Much of the data on small RNAs present within EVs have focused
on miRNAs and their potential targets within host cells. However,
Chow et al. (2019) generated small RNA datasets from EVs that
included only 5′ monophosphate RNAs (miRNAs, piRNAs,
26G siRNAs) or alternatively, all small RNAs. The latter included
those with 5′ triphosphate, using 5′ polyphosphatase treatment,
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not carried out in previous studies of EV small RNAs. This iden-
tified enrichment of 23G triphosphate secondary siRNAs (equiva-
lent to C. elegans 22G siRNAs) in EVs from adult
Heligmosomoides bakeri (H. polygyrus) and these were bound to
the worm-specific Argonaute WAGO. Interestingly, these
siRNAs mapped to recently evolved regions and repeat sequences
in the parasite genome. It is not yet known if or how these may be
taken up by host cells and what roles they may play either within
the host or within the parasite.

Conclusions and future directions

Genome data have enabled the identification of small RNA classes
in parasitic nematodes. The challenge is to better understand the
functions of these, both within the parasite and in host–parasite
interactions.

With more advanced genome assembly and annotation, target
identification based on miRNA–3′-UTR interaction, will improve.
In addition, it is now feasible to sequence the transcripts
expressed by each individual cell of an organism, including nema-
todes, using single cell RNA sequencing (Cao et al., 2017).
Profiling of mRNAs and miRNAs in each cell can determine
when and where these are expressed and, through inverse correl-
ation analysis, identify potential regulatory functions (Wang et al.,
2019). Microscopic or laser dissection of specific nematode tissues
or cells, followed by mRNA and miRNA sequencing, is an alter-
native approach to reveal potential miRNA–mRNA networks.
Dissection is possible with larger adult stage parasites and
miRNA microarray profiling was successful for H. contortus gut
tissue, isolated from adult female worms (Marks et al., 2019).
However, confirmation of miRNA–mRNA interaction requires
experimental verification, such as IP studies using antibodies to
Argonaute proteins to isolate interacting complexes. While this
has been achieved in C. elegans, only a few antibodies specific
to parasite RNA binding proteins have been generated. These
are available for ALG-2 interacting protein X (Harischandra
et al., 2018) and extracellular WAGO, associated with EV of H.
bakeri (Chow et al., 2019), but not yet for the major RISC com-
plex Argonautes. IP studies, together with gene knockout
approaches, would greatly advance knowledge of the specific
interactions and functions of parasite small RNAs.

Little is currently known about how expression of small RNAs is
regulated. Detailed studies in C. elegans and related species are
beginning to reveal the mechanisms involved. Intergenic
miRNAs have promoters similar to those of protein-coding
genes and recent work has identified specific sequence motifs
that determine expression pattern (Jovelin et al., 2016). As gene
annotation improves, the same approach, using motif discovery
tool MEME, can be applied to parasitic species. Interestingly,
while miRNAs may be regulated by TFs, a number of miRNAs
are known to target TFs, forming regulatory loops (Shalgi et al.,
2007). Further details of the regulatory mechanisms and networks
of miRNAs will help identify their control, function and evolution.

piRNAs target transposons and give rise to the 22G class of
small RNAs. While 22G-RNAs are present in all nematode clades,
piRNAs are restricted to clade V. It would be of interest to deter-
mine if this reflects a biological/genetic feature of this clade, such
as mating behaviour, larger number of progeny, larger genome
size for some species, and whether piRNAs are essential for fertil-
ity in parasitic species. It may be speculated that in sexually repro-
ducing worms, and especially in polyandrous species, piRNAs
may protect against male transposons to allow fertilization and
development of progeny. Interestingly, Sargison et al. (2019)
observed a reduced proportion of inter-strain hybrid F1 progeny
developing following genetic mating of different H. contortus
strains, relative to that observed following intra-strain mating.

The underlying mechanisms of this post-zygotic incompatibility
are as yet unknown but it would be important to determine if dif-
ferences in expression of piRNAs or 22G-RNAs between strains
could be responsible. As discussed above, approaches to enhance
RNAi efficacy in parasitic nematodes are in progress; in the near
future it may therefore be feasible to determine the roles of each
class of small RNA, through knockout/knockdown of genes
encoding Argonaute, RNA biogenesis or RNA binding proteins,
such as PRG-1, required for piRNA function, as well as inhibition
of specific small RNAs.

In addition to roles within parasitic nematodes, small RNAs,
predominantly miRNAs, have been sequenced from EV released
by parasites in vitro (Buck et al., 2014; Zamanian et al., 2015;
Gu et al., 2017). As EV can be taken up by host cells, it is thought
that these transported miRNAs play a role at the host–parasite
interface. Development of tagged parasite miRNAs or knockout
of miRNAs, combined with recipient host cell analysis, would
be a useful approach to determine potential targets and functions
within host cells. Studies to date have characterized EV released in
vitro; whether EVs are released in vivo and transport the same
RNAs and proteins is unknown. Evidence indicates release of
miRNAs during infection with filarial (clade III) parasites and
schistosomes, although it is not clear if these are released freely
or may be derived from degraded EV or dying worms. Detailed
analysis of small RNAs in EV of H. bakeri revealed, for the first
time, the presence of 23G siRNAs (Chow et al., 2019). These
are proposed to target repeat sequences and novel genomic
regions of the parasite and were associated with Argonaute
WAGO. While their abundance within EV may suggest host–
parasite interaction, EV could also be a means of parasite–parasite
communication. Determining the complete small RNA profile of
EV from other parasitic nematode species, as well as C. elegans,
and whether this changes following exposure to different environ-
mental conditions may help determine if this is a novel and
potentially important route of communication between worms.

In conclusion, recent studies have revealed novel mechanisms
of small RNA regulation and packaging, helping advance our
understanding of the diverse roles of these RNAs. Further efforts
to effectively silence parasite genes by RNAi-mediated pathways
will continue to reveal the importance of the different RNA
classes in parasite development, communication, protection
from invading genetic elements and in host–parasite interactions.

Acknowledgements. We acknowledge the input of Alan Winter, Neil

Marks, Henry Gu, Victoria Gillan and Kirsty Maitland to some of the work

described here.

Financial support. Funding for some of the work reviewed here was pro-

vided by The Wellcome Trust in project grants awarded to ED and CB (WT

086823/Z/08/Z and WT 094751) and by PhD studentships funded by UK

Biotechnology and Biological Sciences Research Council (BBSRC; BB/

J500732)/Knowledge Transfer Network (KTN)/Zoetis, and by EBLEX and

the University of Glasgow. RL is supported by BBSRC BUG consortium

LoLa grant (BB/M003949).

Conflict of interest. None.

Ethical standards. Not applicable.

References

Aboobaker AA and Blaxter ML (2003) Use of RNA interference to investigate

gene function in the human filarial nematode parasite Brugia malayi.

Molecular and Biochemical Parasitology 129, 41–51.

Ahmed R, Chang Z, Younis AE, Langnick C, Li N, Chen W, Brattig N and

Dieterich C (2013) Conserved miRNAs are candidate post-transcriptional

regulators of developmental arrest in free-living and parasitic nematodes.

Genome Biology and Evolution 5, 1246–1260.

Parasitology 861

https://doi.org/10.1017/S0031182019001689 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182019001689


Adams S, Pathak P, Shao H, Lok JB and Pires-daSilva A (2019)

Liposome-based transfection enhances RNAi and CRISPR-mediated muta-

genesis in non- model nematode systems. Scientific Reports 9, 483.

Almeida MV, Andrade-Navarro MA and Ketting RF (2019) Function and

evolution of nematode RNAi pathways. Non-coding RNA 5, 8.

Ambros V and Ruvkun G (2018) Recent molecular genetic explorations of

Caenorhabditis elegans microRNAs. Genetics 209, 651–673.

Anandanarayanan A, Raina OK, Lalrinkima H, Rialch A, Sankar M and

Varghese A (2017) RNA interference in Fasciola gigantica: establishing

and optimization of experimental RNAi in the newly excysted juveniles of

the fluke. PLoS Neglected Tropical Diseases 11, e0006109.

Arora N, Tripathi S, Singh AK, Mondal P, Mishra A and Prasad A (2017)

Micromanagement of immune system: role of miRNAs in helminthic

infections. Frontiers Microbiology 8, 586.

Backes C, Fehlmann T, Kern F, Kehl T, Lenhof H-P, Meese E and Keller A

(2018) miRCarta: a central repository for collecting miRNA candidates.

Nucleic Acids Research 46, D160–D167.

Bartel DP (2009) MicroRNAs: target recognition and regulatory functions.

Cell 136, 215–233.

Bartel DP (2018) Metazoan microRNAs. Cell 173, 20–51.

Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD,

Chaves DA, Gu W, Vasale JJ, Duan S, Conte Jr D , Luo S, Schroth

GP, Carrington JC, Bartel DP and Mello CC (2008) PRG-1 and

21U-RNAs interact to form the piRNA complex required for fertility in

C. elegans. Molecular Cell 31, 67–78.

BeltranT,BarrosoC,BirkleTY, Stevens L, SchwartzHT, SternbergPW,Fradin

H,GunsalusK,PianoF, SharmaG,CerratoC,Ahringer J,Martınez-PerezE,

Blaxter M and Sarkies P (2019) Comparative epigenomics reveals that RNA

polymerase II pausing and chromatin domain organization control nematode

piRNA biogenesis. Developmental Cell 48, 793–810.

Blanchard A, Guegnard F, Charvet CL, Crisford A, Courtot E, Sauve C,

Harmache A, Duguet T, O’Connor V, Castagnone-Sereno P, Reaves B,

Wolstenholme AJ, Beech RN, Holden-Dye L and Neveu C (2018)

Deciphering the molecular determinants of cholinergic anthelmintic sensi-

tivity in nematodes: when novel functional validation approaches highlight

major differences between the model Caenorhabditis elegans and parasitic

species. PLoS Pathogens 14, e1006996.

Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R and

Hannon GJ (2007) Discrete small RNA-generating loci as master regulators

of transposon activity in Drosophila. Cell 128, 1089–1103.

Britton C, Winter AD, Marks ND, Gu H, McNeilly TN, Gillan V and

Devaney E (2015) Application of small RNA technology for improved

control of parasitic helminths. Veterinary Parasitology 212, 47–53.

Britton C, Marks ND and Roberts AB (2016) Functional genomics tools for

Haemonchus contortus and lessons from other helminths. Advances in

Parasitology 93, 599–623.

Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T,

Kumar S, Abreu-Goodger C, Lear M, Harcus Y, Ceroni A, Babayan

SA, Blaxter M, Ivens A and Maizels RM (2014) Exosomes secreted by

nematode parasites transfer small RNAs to mammalian cells and modulate

innate immunity. Nature Communications 5, 5488.

Cai P, Gobert GN and McManus DP (2016) MicroRNAs in parasitic

helminthiases: current status and future perspectives. Trends in

Parasitology 32, 71–86.

Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee

C, Furlan SN, Steemers FJ, Adey A, Waterston RH, Trapnell C and

Shendure J (2017) Comprehensive single-cell transcriptional profiling of

a multicellular organism. Science 357, 661–667.

Chakraborty C, Sharma AR, Sharma G, Doss CGP and Lee S-S (2017)

Therapeutic miRNA and siRNA: moving from bench to clinic as next gen-

eration medicine. Molecular Therapy: Nucleic Acids 8, 132–143.

Chekulaeva M and Filipowicz W (2009) Mechanisms of miRNA-mediated

post-transcriptional regulation in animal cells. Current Opinion in Cell

Biology 21, 452–460.

Chen MX, Ai L, Xu MJ, Zhang RL, Chen SH, Zhang YN, Guo J, Cai YC,

Tian LG, Zhang LL, Zhu XQ and Chen JX (2011a) Angiostrongylus can-

tonensis: identification and characterization of microRNAs in male and

female adults. Experimental Parasitology 128, 116–120.

Chen MX, Ai L, Xu MJ, Chen SH, Zhang YN, Guo J, Cai YC, Tian LG,

Zhang LL, Zhu XQ and Chen JX (2011b) Identification and characteriza-

tion of microRNAs in Trichinella spiralis by comparison with Brugia malayi

and Caenorhabditis elegans. Parasitology Research 109, 553–558.

Chow FW-N, Koutsovoulos G, Ovando-Vazquez C, Neophytou K,

Bermudez-Barrientos JR, Laetsch DR, Robertson E, Kumar S,

Claycomb JM, Blaxter M, Abreu-Goodger C and Buck AH (2019)

Secretion of an Argonaute protein by a parasitic nematode and the evolu-

tion of its siRNA guides. Nucleic Acids Research 47, 3594–3606.

Claycomb J, Abreu-Goodger C and Buck AH (2017) RNA-mediated com-

munication between helminths and their hosts: the missing links. RNA

Biology 14, 436–441.

Coakley G, McCaskill JL, Borger JG, Simbari F, Robertson E, Millar M,

Harcus Y, McSorley HJ, Maizels RM and Buck AH (2017) Extracellular

vesicles from a helminth parasite suppress macrophage activation and con-

stitute an effective vaccine for protective immunity. Cell Reports 19, 1545–

1557.

Dalzell JJ, McVeigh P, Warnock ND, Mitreva M, Bird DM, Abad P, Fleming

CC, Day TA, Mousley A, Marks NJ and Maule AG (2011) RNAi effector

diversity in nematodes. PLoS Neglected Tropical Diseases 5, e1176.

De Mulder K, Pfister D, Kuales G, Egger B, Salvenmoser W, Willems M,

Steger J, Fauster K, Micura R, Borgonie G and Ladurner P (2009)

Stem cells are differentially regulated during development, regeneration

and homeostasis in flatworms. Developmental Biology 334, 198–212.

Devaney E, Winter AD and Britton C (2010) MicroRNAs: a role in drug

resistance in parasitic nematodes? Trends in Parasitology 26, 428–433.

de Wit E, Linsen SEV, Cuppen E and Berezikov E (2009) Repertoire and evo-

lution of miRNA genes in four divergent nematode species. Genome

Research 19, 2064–2074.

Doyle SR, Laing R, Bartley DJ, Britton C, Chaudhry U, Gilleard JS,

Holroyd N, Mable BK, Maitland K, Morrison AA, Tait A, Tracey A,

Berriman M, Devaney E, Cotton JA and Sargison ND (2017) A genome

resequencing-based genetic map reveals the recombination landscape of an

outbred parasitic nematode in the presence of polyploidy and polyandry.

Genome Biology and Evolution 10, 396–409.

Driedonks TAP, van der Grein SG, Ariyurek Y, Buermans HPJ, Jekel H,

Chow FWN, Wauben MHM, Buck AH, ’t Hoen PAC and Nolte-’t

Hoen ENM (2018) Immune stimuli shape the small non-coding transcrip-

tome of extracellular vesicles released by dendritic cells. Cellular and

Molecular Life Sciences 75, 3857–3875.

Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T

(2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in

mammalian cell culture. Nature 411, 494–498.

Entwistle LJ and Wilson MS (2017) MicroRNA-mediated regulation of

immune responses to intestinal helminth infections. Parasite Immunology

39, e12406.

Felix M-A, Ashe A, Piffaretti J, Wu G, Nuez I, Belicard T, Jiang Y, Zhao G,

Franz CJ, Goldstein LD, Sanroman M, Miska EA and Wang D (2011)

Natural and experimental infection of Caenorhabditis nematodes by

novel viruses related to nodaviruses. PLoS Biology 9, e1000586.

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC (1998)

Potent and specific genetic interference by double-stranded RNA in

Caenorhabditis elegans. Nature 391, 806–811.

Friedländer MR, Mackowiak SD, Li N, Chen W and Rajewsky N (2012)

MiRDeep2 accurately identifies known and hundreds of novel microRNA

genes in seven animal clades. Nucleic Acids Research 40, 37–52.

Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb

JM, Sempere LF, Flatmark K, Hovig E and Peterson KJ (2015) A uniform

system for the annotation of vertebrate microRNA genes and the evolution

of the human microRNAome. Annual Review of Genetics 49, 213–242.

Fromm B, Domanska D, Høye E, Ovchinnikov V, Kang W, Aparicio-Puerta

E, Johansen M, Flatmark K, Mathelier A, Hovig E, Hackenberg M,

Friedländer MR and Peterson KJ (2020) MirGeneDB 2.0: the metazoan

microRNA complement. Nucleic Acids Research 48, D132–D141.

Fu Y, Lan J, Wu X, Yang D, Zhang Z, Nie H, Hou R, Zhang R, Zheng W,

Xie Y, Yan N, Yang Z, Wang C, Luo L, Liu L, Gu X, Wang S, Peng X and

Yang G (2013) Identification of Dirofilaria immitis miRNA using illumina

deep sequencing. Veterinary Research 44, 3.

Gang SS, Castelletto ML, Bryant AS, Yang E, Mancuso N, Lopez JB,

Pellegrini M and Hallem EA (2017) Targeted mutagenesis in a human-

parasitic nematode. PLoS Pathogens 13, e1006675. https://doi.org/10.1371/

journal.ppat.1006675.

Gao X, Tyagi R, Magrini V, Ly A, Jasmer DP and Mitreva M (2017)

Compartmentalization of functions and predicted miRNA regulation

among contiguous regions of the nematode intestine. RNA Biology 14,

1335–1352.

862 Collette Britton et al.

https://doi.org/10.1017/S0031182019001689 Published online by Cambridge University Press

https://doi.org/10.1371/journal.ppat.1006675
https://doi.org/10.1371/journal.ppat.1006675
https://doi.org/10.1371/journal.ppat.1006675
https://doi.org/10.1017/S0031182019001689


Geldhof P, Murray L, Couthier A, Gilleard JS, McLauchlan G, Knox DP and

Britton C (2006) Testing the efficacy of RNA interference in Haemonchus

contortus. International Journal for Parasitology 36, 801e810.

Ghasabi M, Mansoori B, Mohammadi A, Duijf PH, Shomali N, Shirafkan

N, Mokhtarzadeh A and Baradaran B (2019) MicroRNAs in cancer drug

resistance: basic evidence and clinical applications. Journal of Cellular

Physiology 234, 2152–2168.

Gillan V, Maitland K, Laing R, Gu H, Marks ND, Winter AD, Bartley D,

Morrison A, Skuce PJ, Rezansoff AM, Gilleard JS, Martinelli A,

Britton C and Devaney E (2017) Increased expression of a microRNA cor-

relates with anthelmintic resistance in parasitic nematodes. Frontiers in

Cellular and Infection Microbiology 7, 452.

Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ (2008) miRBase:

tools for microRNA genomics. Nucleic Acids Research 36, D154–D158.

GuHY,MarksND,WinterAD,WeirW,Tzelos T,McNeilly TN, BrittonC and

Devaney E (2017) Conservation of a microRNA cluster in parasitic nematodes

and profiling of miRNAs in excretory-secretory products and microvesicles of

Haemonchus contortus. PLoS Neglected Tropical Diseases 11, e0006056.

Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami

T, Siomi H and Siomi MC (2007) A slicer-mediated mechanism for

repeat-associated siRNA 5′ end formation in Drosophila. Science 315,

1587–1590.

Hagen J, Young ND, Every AL, Pagel CN, Schnoeller C, Scheerlinck J-PY,

Gasser RB and Kalinna BH (2014) Omega-1 knockdown in Schistosoma

mansoni eggs by lentivirus transduction reduces granuloma size in vivo.

Nature Communications 5, 5375.

Hamilton AJ and Baulcombe DC (1999) A species of small antisense RNA in

posttranscriptional gene silencing in plants. Science 286, 950–952.

Hammond S, Bernstein E, Beach D and Hannon G (2000) An RNA-directed

nuclease mediates post-transcriptional gene silencing in Drosophila cells.

Nature 404, 293–296.

Hansen EP, Fromm B, Andersen SD, Marcilla A, Andersen KL, Borup A,

Williams AR, Jex AR, Gasser RB, Young ND, Hall RS, Stensballe A,

Ovchinnikov V, Yan Y, Fredholm M, Thamsborg SM and Nejsum P

(2019) Exploration of extracellular vesicles from Ascaris suum provides evi-

dence of parasite-host cross talk. Journal of Extracellular Vesicles 8, 1578116.

Harischandra H, Yuan W, Loghry HJ, Zamanian M and Kimber MJ (2018)

Profiling extracellular vesicle release by the filarial nematode Brugia malayi

reveals sex-specific differences in cargo and a sensitivity to ivermectin. PLoS

Neglected Tropical Diseases 12, e0006438.

Haussecker D (2012) The business of RNAi therapeutics in 2012. Molecular

Therapy-Nucleic Acids 1, e8.

He X, Sai X, Chen C, Zhang Y, Xu X, Zhang D and Pan W (2013) Host

serum miR-223 is a potential new biomarker for Schistosoma japonicum

infection and the response to chemotherapy. Parasites & Vectors 6, 272.

Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M and Schuster

P (1994) Fast folding and comparison of RNA secondary structures.

Chemical Monthly 125, 167–188.

Holz A and Streit A (2017) Gain and loss of small RNA classes – character-

ization of small RNAs in the parasitic nematode family Strongyloididae.

Genome Biology and Evolution 9, 2826–2843.

Hoy AM, Lundie RJ, Ivens A, Quintana JF, Nausch N, Forster T, Jones F,

Kabatereine NB, Dunne DW, Mutapi F, MacDonald AS and Buck AH

(2014) Parasite-derived microRNAs in host serum as novel biomarkers of

helminth infection. PLoS Neglected Tropical Diseases 8, e2701.

Hussein AS, Kichenin K and Selkirk ME (2002) Suppression of secreted acet-

ylcholinesterase expression in Nippostrongylus brasiliensis by RNA interfer-

ence. Molecular and Biochemical Parasitology 122, 91–94.

Jovelin R, Krizus A, Taghizada B, Gray JC, Phillips PC, Claycomb JM and

Cutter AD (2016) Comparative genomic analysis of upstream miRNA

regulatory motifs in Caenorhabditis. RNA 22, 968–978.

Juliano CE, Reich A, Liu N, Gotzfried J, Zhong M, Uman S, Reenan RA,

Wessel GM, Steele RE and Lin H (2013) PIWI proteins and

Piwi-interacting RNAs function in Hydra somatic stem cells. Proceedings

of the National Academy of Sciences USA 111, 337–342.

Kim VN, Han J and Siomi MC (2009) Biogenesis of small RNAs in animals.

Nature Reviews Molecular and Cellular Biology 10, 126–139.

Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T (2001)

Identification of novel genes coding for small expressed RNAs. Science

294, 853–858.

Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, Holroyd N,

Bartley DJ, Beasley H, Britton C, Curran D, Devaney E, Gilabert A,

Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison AA, Reid

AJ, Sargison N, Saunders GI, Wasmuth JD, Wolstenholme A,

Berriman M, Gilleard JS and Cotton JA (2013) The genome and tran-

scriptome of Haemonchus contortus, a key model parasite for drug and vac-

cine discovery. Genome Biology 14, R88.

Lau NC, Lim LP, Weinstein EG and Bartel DP (2001) An abundant class of

tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science

294, 858–862.

Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP

and Kingston RE (2006) Characterization of the piRNA complex from

rat testes. Science 313, 363–367.

Lee RC and Ambros V (2001) An extensive class of small RNAs in

Caenorhabditis elegans. Science 294, 862–864.

Lee RC, Feinbaum RL and Ambros V (1993) The C. elegans Heterochronic

gene lin-4 encodes small RNAs with antisense complementarity to lin-14.

Cell 75, 843–854.

Lewis BP, Burge CB and Bartel DP (2005) Conserved seed pairing, often

flanked by adenosines, indicates that thousands of human genes are

microRNA targets. Cell 120, 15–20.

Liang H and Li WH (2009) Lowly expressed human microRNA genes evolve

rapidly. Molecular Biology and Evolution 26, 1195–1198.

Lustigman S, Zhang J, Liu J, Oksov Y and Hashmi S (2004) RNA interfer-

ence targeting cathepsin L and cathepsin Z-like cysteine proteases of

Onchocerca volvulus confirmed their essential function during L3 molting.

Molecular and Biochemical Parasitology 138, 165–170.

Ma G, Luo Y, Zhu H, Luo Y, Korhonen PK, Young ND, Gasser RB and

Zhou R (2016) MicroRNAs of Toxocara canis and their predicted func-

tional roles. Parasites & Vectors 9, 229. doi: 10.1186/s13071-016-1508-3.

Marks ND, Winter AD, Gu HY, Maitland K, Gillan V, Ambrož M,

Martinelli A, Laing R, MacLellan R, Towne J, Roberts B, Hanks E,

Devaney E and Britton C (2019) Profiling microRNAs through

development of the parasitic nematode Haemonchus identifies

nematode-specific miRNAs that suppress larval development. Scientific

Reports 9, 17594.

MartinezNJ, OwMC, Reece-Hoyes JS, BarrasaMI, Ambros VR andWalhout

AJ (2008) Genome-scale spatiotemporal analysis of Caenorhabditis elegans

microRNA promoter activity. Genome Research 18, 2005–2015.

Menez C, Alberich M, Courtot E, Guegnard F, Blanchard A, Aguilaniu H

and Lespine A (2019) The transcription factor NHR-8: a new target to

increase ivermectin efficacy in nematodes. PLoS Pathogens 15, e1007598.

Moreno Y, Nabhan JF, Solomon J, Mackenzie CD and Geary TG (2010)

Ivermectin disrupts the function of the excretory-secretory apparatus in

microfilariae of Brugia malayi. Proceedings of the National Academy of

Sciences USA 107, 20120–20125.

Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI and

Maller B (2000) Conservation of the sequence and temporal expression

of let-7 heterochronic regulatory RNA. Nature 408, 86–89.

Poole CB, Davis PJ, Jin J and McReynolds LA (2010) Cloning and bioinfor-

matic identification of small RNAs in the filarial nematode, Brugia malayi.

Molecular and Biochemical Parasitology 169, 87–94.

Poole CB, Gu W, Kumar S, Jin J, Davis PJ, Bauche D and McReynolds LA

(2014) Diversity and expression of microRNAs in the filarial parasite,

Brugia malayi. PLoS One 9, e96498.

Quintana JF, Makepeace BL, Babayan SA, Ivens A, Pfarr KM, Blaxter M,

Debrah A, Wanji S, Ngangyung HF, Bah GS, Tanya VN, Taylor DW,

Hoerauf A and Buck AH (2015) Extracellular Onchocerca-derived small

RNAs in host nodules and blood. Parasites and Vectors 8, 58.

Quintana JF, Babayan SA and Buck AH (2017) Small RNAs and extracellular

vesicles in filarial nematodes: from nematode development to diagnostics.

Parasite Immunology 39, e12395.

Reddien PW and Sanchez Alvarado A (2004) Fundamentals of planarian

regeneration. Annual Review of Cell and Developmental Biology 20,

725–757.

Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC and Sanchez Alvarado A

(2005) SMEDWI-2 is a Piwi-like protein that regulates planarian stem

cells. Science 310, 1327–1330.

Redman E, Grillo V, Saunders G, Packard E, Jackson F, Berriman M and

Gilleard JS (2008) Genetics of mating and sex determination in the para-

sitic nematode Haemonchus contortus. Genetics 180, 1877–1887.

Reinhart J, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE,

Horvitz HR and Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates

developmental timing in Caenorhabditis elegans. Nature 403, 901–906.

Parasitology 863

https://doi.org/10.1017/S0031182019001689 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182019001689


Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H and Bartel

DP (2006) Large-scale sequencing reveals 21U-RNAs and additional

microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207.

Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H

and Siomi MC (2006) Specific association of Piwi with rasiRNAs derived

from retrotransposon and heterochromatic regions in the Drosophila gen-

ome. Genes & Development 20, 2214–2222.

SamarasingheB,KnoxDPandBrittonC (2011) Factors affecting susceptibility

to RNA interference inHaemonchus contortus and in vivo silencing of anH11

aminopeptidase gene. International Journal for Parasitology 41, 51–59.

Sargison ND, Redman E, Morrison AA, Bartley DJ, Jackson F, Hoberg E

and Gilleard JS (2019) Mating barriers between genetically divergent

strains of the parasitic nematode Haemonchus contortus suggest incipient

speciation. International Journal for Parasitology 49, 531–540.

Sarkies P, Selkirk ME, Jones JT, Blok V, Boothby T, Goldstein B, Hanelt B,

Ardila-Garcia A, Fast NM, Schiffer PM, Kraus C, Taylor MJ,

Koutsovoulos G, Blaxter ML and Miska EA (2015) Ancient and novel

small RNA pathways compensate for the loss of piRNAs in multiple inde-

pendent nematode lineages. PLoS Biology 13, e1002061.

Seto AG, Kingston RE and Lau NC (2007) The coming of age for Piwi pro-

teins. Molecular Cell 26, 603–609.

Shalgi R, Lieber D, Oren M and Pilpel Y (2007) Global and local architecture

of the mammalian microRNA-transcription factor regulatory network.

PLoS Computational Biology 3, e131.

Shao CC, Xu MJ, Alasaad S, Song HQ, Peng L, Tao JP and Zhu XQ (2014)

Comparative analysis of microRNA profiles between adult Ascaris lumbri-

coides and Ascaris suum. BMC Veterinary Research 10, 99.

Shears RK, Bancroft AJ, Hughes GW, Grencis RK and Thornton DJ (2018)

Extracellular vesicles induce protective immunity against Trichuris muris.

Parasite Immunology 40, e12536.

Shen Y, Lv Y, Huang L, Liu W, Wen M, Tang T, Zhang R, Hungate E, Shi S

and Wu CI (2011) Testing hypotheses on the rate of molecular evolution in

relation to gene expression using microRNAs. Proceedings of the National

Academy of Sciences USA 108, 15942–15947. https://doi.org/10.1073/pnas.

1110098108.

Shi Z, Montgomery TA, Qi Y and Ruvkun G (2013) High- throughput

sequencing reveals extraordinary fluidity of miRNA, piRNA, and siRNA

pathways in nematodes. Genome Research 23, 497–508.

Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S and Schekman R (2016)

Y-box protein 1 is required to sort microRNAs into exosomes in cells and in

a cell-free reaction. eLife 5, e19276. https://doi.org/10.7554/eLife.19276.001.

Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk

RH and Fire A (2001) On the role of RNA amplification in

dsRNA-triggered gene silencing. Cell 107, 465–476.

Simon M, Sarkies P, Ikegami K, Doebley A-L, Goldstein LD, Mitchell J,

Sakaguchi A, Miska EA and Ahmed S (2014) Reduced insulin/IGF-1 sig-

naling restores germ cell immortality to Caenorhabditis elegans Piwi

mutants. Cell Reports 7, 762–773.

Siomi MC, Sato K, Pezic D and Aravin AA (2011) PIWI-interacting small

RNAs: the vanguard of genome defence. Nature Reviews. Molecular Cell

Biology 12, 246–258.

Skelly PJ, Da’dara A and Harn DA (2003) Suppression of cathepsin B expres-

sion in Schistosoma mansoni by RNA interference. International Journal for

Parasitology 33, 363–369.

Szitenberg A, Cha S, Opperman CH, Bird DM, Blaxter ML and Lunt DH

(2016) Genetic drift, not life history or RNAi, determine long-term evolu-

tion of transposable elements. Genome Biology and Evolution 8, 2964–2978.

Titze-de-Almeida R, David C and Titze-de-Almeida SS (2017) The race of 10

synthetic RNAi-based drugs to the pharmaceutical market. Pharmacology

Research 34, 1339–1363.

Tritten L, Burkman E, Moorhead A, Satti M, Geary J, Mackenzie C and

Geary T (2014a) Detection of circulating parasite-derived microRNAs in

filarial infections. PLoS Neglected Tropical Diseases 8, e71.

Tritten L, O’Neill M, Nutting C, Wanji S, Njouendoui A, Fombad F,

Kengne-Ouaffo J, Mackenzie C and Geary T (2014b) Loa loa and

Onchocerca ochengi miRNAs detected in host circulation. Molecular and

Biochemical Parasitology 198, 14–17.

Tritten L, Tam M, Vargas M, Jardim A, Stevenson MM, Keiser J and Geary

TG (2017) Excretory/secretory products from the gastrointestinal nematode

Trichuris muris. Experimental Parasitology 178, 30–36.

Tzelos T, Matthews JB, Buck AH, Simbari F, Frew D, Inglis NF, McLean K,

Nisbet AJ, Whitelaw CB, Knox DP and McNeilly TN (2016) A preliminary

proteomic characterisation of extracellular vesicles released by the ovine para-

sitic nematode, Teladorsagia circumcincta. Veterinary Parasitology 221, 84–92.

van Wolfswinkel JC (2014) Piwi and potency: PIWI proteins in animal stem

cells and regeneration. Integrative and Comparative Biology 54, 700–713.

Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F,

Perez-Hernandez D, Vazquez J, Martin-Cofreces N, Martinez-Herrera

DJ, Pascual-Montano A, Mittelbrunn M and Sanchez-Madrid F (2013)

Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes

through binding to specific motifs. Nature Communications 4, 2980.

Wang J, Czech B, Crunk A, Wallace A, Mitreva M, Hannon GJ and Davis

RE (2011) Deep small RNA sequencing from the nematode Ascaris reveals

conservation, functional diversification, and novel developmental profiles.

Genome Research 21, 1462–1477.

Wang H, Peng R, Wang J, Qin Z and Xue L (2018) Circulating microRNAs

as potential cancer biomarkers: the advantage and disadvantage. Clinical

Epigenetics 10, 59. doi: 10.1186/s13148-018-0492-1.

Wang N, Zheng J, Chen Z, Liu Y, Dura B, KwakM, Xavier-Ferrucio J, Lu Y-C,

Zhang M, Roden C, Cheng J, Krause DS, Ding Y, Fan R and Lu J (2019)

Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogen-

eity andmechanisms ofmicroRNA regulation.Nature Communications 10, 95.

Weick E-M, Sarkies P, Silva N, Chen RA, Moss SMM, Cording AC,

Ahringer J, Martinez-Perez E and Miska EA (2014) PRDE-1 is a nuclear

factor essential for the biogenesis of Ruby motif-dependent piRNAs in C.

elegans. Genes & Development 28, 783–796.

Winston WM, Sutherlin M, Wright AJ, Feinberg EH and Hunter CP (2007)

Caenorhabditis elegans SID-2 is required for environmental RNA interference.

Proceedings of the National Academy of Sciences USA 104, 10565–10570.

Winter AD, Weir W, Hunt M, Berriman M, Gilleard JS, Devaney E and

Britton C (2012) Diversity in parasitic nematode genomes: the

microRNAs of Brugia pahangi and Haemonchus contortus are largely

novel. BMC Genomics 13, 4.

Winter AD, Gillan V, Maitland K, Emes RD, Roberts B, McCormack G, Weir

W, Protasio AV, Holroyd N, Berriman M, Britton C and Devaney E (2015)

A novel member of the let-7 microRNA family is associated with develop-

mental transitions in filarial nematode parasites. BMC Genomics 16, 331.

Xu MJ, Fu JH, Nisbet AJ, Huang SY, Zhou DH, Lin RQ, Song HQ and Zhu

XQ (2013) Comparative profiling of microRNAs in male and female adults

of Ascaris suum. Parasitology Research 112, 1189–1195.

Zamanian M, Fraser LM, Agbedanu PN, Harischandra H, Moorhead AR,

Day TA, Bartholomay LC and Kimber MJ (2015) Release of small

RNA-containing exosome-like vesicles from the human filarial parasite

Brugia malayi. PLoS Neglected Tropical Diseases 9, e0004069.

864 Collette Britton et al.

https://doi.org/10.1017/S0031182019001689 Published online by Cambridge University Press

https://doi.org/10.1073/pnas.1110098108
https://doi.org/10.1073/pnas.1110098108
https://doi.org/10.1073/pnas.1110098108
https://doi.org/10.7554/eLife.19276.001
https://doi.org/10.7554/eLife.19276.001
https://doi.org/10.1017/S0031182019001689

	Small RNAs in parasitic nematodes -- forms and functions
	Introduction
	MicroRNAs
	miRNA discovery
	miRNAs in parasitic nematode development
	miRNAs in host--parasite interactions

	Piwi-interacting RNAs
	Identification of piRNAs
	Nematode piRNAs
	Other functions of piRNAs

	Small interfering RNAs (siRNAs)
	RNAi in parasitic nematodes
	Forms and functions of nematode siRNAs

	Conclusions and future directions
	Acknowledgements
	References


