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Small-sample asymptotic distributions of M-estimators of

location
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AND FRANK R. HAMPEL

Fachgruppe fur Statistik, ETH Zurich, Switzerland

SUMMARY

Asymptotic formulae for the distribution of M-estimators, i.e. maximum likelihood
type estimators, of location, including the arithmetic mean, are derived which numerical
studies show to give relative errors for densities and tail areas of the order of magnitude
of 1% down to sample sizes 3 and 4 even in the extreme tails. The paper is the
continuation of earlier work by the second author and is also closely related to Daniels's
work on the saddlepoint approximation. The method consists in expanding the
derivative of the logarithm of the unstandardized density of the estimator in powers of
l/n at each point, using recentring by means of conjugate distributions. This method
yields a unified point of view for the comparison of other asymptotic methods, namely
saddlepoint method, Edgeworth expansion and large deviations approach, which are
also compared numerically.

Some key words: Arithmetic mean; Central limit theorem; Conjugate distributions; Edgeworth expansion;
Huber-estimator; Large deviation; Pearson curve; Saddlepoint method; Small-sample asymptotics.

1. INTRODUCTION

The paper discusses asymptotic approximations to the distributions of certain
estimators for very small sample sizes. It extends the applicability of a new method of
asymptotic expansion (Hampel, 1974a) from the arithmetic mean to so-called M-
estimators of location with a monotone i^-function. If \j/ is also bounded, meaning
essentially that the 3f-estimator is robust, the method is applicable to sufficiently
smooth but arbitrarily long-tailed distributions, such as the Cauchy distribution, and
yields a very accurate approximation even in the extreme tails and even for sample sizes
around 3. The method has very close ties to the saddlepoint approximation used by
Daniels (1954), but is more elementary and provides in some sense a complementary
aspect of the same phenomenon. Besides supplying highly accurate approximations for
the distributions of some estimators, which are considerably cheaper to obtain on the
computer than the exact distributions, the method allows a unified comparison and
better intuitive understanding of saddlepoint approximation, Edgeworth expansion
and large deviation theory, and it provides a deeper intuitive understanding of the
central limit theorem and various related topics.

Let Xl,X2,... be independent and identically distributed with zero expectation,
density /, and no longer than exponential tails, and let pn denote the density of the
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arithmetic mean, Tn = Xn, of the first n observations. Hampel (1973) showed that it is
reasonable to consider the expansion of the logarithmic derivative of the density

-Kn(t) = p'n(t)/Pn(t) = -rui(t)-m-y(t)ln- ....

It was found empirically there that the first two terms, which for each t are linear in n,
provide already an excellent approximation. Integration, which can be done in closed
form, yields logpn up to the normalizing constant which is obtained by exponentiation
and numerical integration.

In order to obtain the expansion, one has to recentre the density/around each point t
by multiplying it with a suitable exponential function and restandardizing it so that the
expectation of X — t becomes 0 and the total mass remains 1. This corresponds to a mere
shift of / ' / / and is the well-known trick of conjugate or associated distributions
(Khinchin, 1949; Feller, 1966, p. 518). Now by somewhat tedious but elementary
calculations p'n(t)/pn(t) can be expressed as n times a weighted average of/'//, the weight
function being a convolution integral of the conjugate distribution centred at t. If this
convolution is approximated by the Edgeworth expansion at the expectation, one
obtains the desired asymptotic expansion in powers of 1/n. The first two terms require up
to the third moments of the conjugate distributions, which are obtainable from the
moment generating function; their integrals require only up to the second moments.

It turns out (Hampel, 1974a) that this method is formally nearly equivalent to the
saddlepoint method as used by Daniels (1954) and can be viewed as another, more
elementary, way of deriving its results, except for two slight differences: the infinite
expansion of/'// leads to a series in the exponent which Daniels (1954, equations (25),
(26)) expanded beyond the first terms into a sum; moreover, the saddlepoint method
automatically yields the trivial constant of integration n*/(27t)* while the new method
automatically has to determine the best-fitting constant in each case by integration.
When the saddlepoint approximation, i.e. the first two terms, which are not yet
expanded and which appear as the first term of Daniels (1954, equation (2-6)), is
renormalized to make the total probability unity the two methods give identical results.
There is also an expansion for pn(t) directly which is technically simpler than that for
P'JPn a n d strictly equivalent to the full saddlepoint expansion. By contrast, the classical
Edgeworth expansion is an expansion of pn only around t = 0 and thus disastrously bad
for large \t\; for small 111, it is quite good but can apparently still be improved by putting
the expansion back into the exponent where it arrives naturally by integration of the
expansion for KH(t) around I = 0.

Finally, the large deviation expansion is only the expansion of the first term a(t) in
powers oft around t = 0 in the exponent for pn, or the cumulative Pn. Since the first term
alone yields a very bad fit (Hampel, 1974a, p. 118), the large deviation fit is very poor,
often even worse than the normal approximation, even for small \l\, except for t = 0
itself when it coincides with the normal and the saddlepoint approximation.

Another class of local approximations is given by the system of Pearson curves which
start out with a different form of approximation for Kn(t); see, for example, Jeffreys
(1961, Chapter 2). Formally, one can either match the local behaviour of Kn(t) at t = 0,
for example with that of the new second-order approximation, or match the first four
moments, or, in some cases, use partly information about the limits of range. In general,
of course, Pearson curves may be much less accurate than the present approaches, as
they utilize basically only the first four moments of / and none of the conjugate
distributions.
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So far, only the distribution of the arithmetic mean Xn has been considered, partly for
ease of description, partly for sake of its importance in connexion with the central limit
problem and partly for ease of comparison with other asymptotic methods. The
derivation of the new method for Xn, as well as the most essential relations to other
methods, are already described by Hampel (1974a) and are only partly reviewed and
partly extended here for ease of reference and for completeness. The main new feature of
this paper, however, is the full generalization of the new method to M-estimators of
location in the sense of Huber (1964) with monotone \p, as already referred to briefly by
Hampel (1974a).

An M-estimate of location is defined via some function iff as the solution T of the
implicit equation Z \j/(Xi — T ) = 0, which is a slightly generalized form of the likelihood
equation, for which \p = —f'/f. Arithmetic mean and median are special cases with
\(/(x) = x and \f/(x) = sgn (x) respectively. If \p is monotone nondecreasing and takes on
positive and negative values, the solution of the defining equation is essentially unique;
it may be a unique interval, or there may be a unique point of transition from positive to
negative values of the left-hand side. These M-estimators play a considerable role in the
theory of robust estimation, and the most important condition for them to be robust, i.e.
insensitive against gross errors and other deviations from an ideal parametric model, is
that the i/f-function is bounded (Hampel, 1971, 1974b). Now, if ip is bounded with ifr o r /
suflficiently smooth, then the moment generating function ofip(X) as well as all conjugate
distributions of the form c,exp{a, ^(x — t)}f(x) always exist, and we can abandon the
artificial restriction to rather short-tailed, i.e. at most exponentially-tailed, /, which
causes certain limitations in the central limit problem and which is intimately connected
with the nonrobustness of the arithmetic mean.

It was noted empirically by Hampel (1974a) that a linear function of n gave an
excellent fit to Kn(t) for the Huber-estimator H^k), with \//(x) = x for |x|^A;,
\j/(x) = kagn(x) otherwise (Huber, 1964), under several distributions, including the
Cauchy distribution. Also, the first-order terms for Kn(t) were given there. An exact
second-order formula was found for quantiles regarded as M-estimators but the general
second-order term contained an error and was not included. Now, the correct second-
order term is available and numerical comparisons between exact and approximate
distributions can be made.

There is an indirect way of obtaining the distribution of M-estimators with monotone
\j/ by reducing the problem to that of the arithmetic mean. This fact was noted by
Daniels and was used by him to compute the values shown under 0 in Tables 1 and 2 by
his kind permission; it was also proposed independently by Huber (1977, pp. 21, 22) for
the generalization of the method of Hampel (1974a). The resulting approximations are
different from the direct ones with or without renormalization; but they are of similar
quality, as the tables show. Meanwhile, Daniels, in oral remarks and an internal research
note of March 1978, was also able to find the analogue of our direct approach by applying
the saddlepoint method and showed that his new result is again equivalent to our result
for ?„(<)•

The present paper is organized as follows. After a section on the heuristic motivation
for the approach used, the main body of the paper contains the derivation of the second-
order formula for M-estimators of location with strictly monotone ip both for p'JpH and
foTpn. Strict monotonicity is then relaxed to weak monotonicity to include cases like the
median and the Huber-estimator. Special cases which reduce to known results are
quantiles including the median, and the arithmetic mean. Following this theoretical
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part, the formula is applied to two situations: Huber-estimators under a 5%
contaminated normal distribution and the Cauchy distribution, and compared both
with the exact distributions and Daniels's indirect version of the saddlepoint method.
The final sections discuss the relation of our method to the saddlepoint approximation,
to the indirect approach, and last but not least to Edgeworth expansions and large
deviations, with some new variants and two comparative examples.

2. HEURISTIC MOTIVATION

The method of approximation used in this paper differs from the more customary
methods like Edgeworth expansions and large deviations in three respects. First, the
distribution of Tn is not blown up by the usual factor n*, but rather is allowed to
concentrate towards a point mass. While this is of course formally equivalent, it allows a
more lucid description of what is happening with increasing sample size.

Secondly, instead of a high-order expansion around a single point, the expectation, a
low-order expansion around each point is used. High-order expansions can be at most
locally accurate, and the higher-order terms are superfluous for large n, while the other
approach yields a very accurate fit globally even for small n.

Thirdly, and this is also a difference from the saddlepoint method, neither the density
nor the cumulative are expanded, but rather the derivative of the log density
— Kn(t) = p'H(t)/pn(t) is approximated. This quantity permeates much of mathematical
statistics as an auxiliary function, perhaps most noticeably as the score function of
maximum likelihood estimators, but it is rarely considered in its own right. This is
surprising, since the first great system of frequency curves, the Pearson curves, with all
its important special cases, is based on a simple class of functions for K{t) = —f'(t)/f(t).
This K(t) can also be regarded as a transform of a density function, like a characteristic
function or a Laplace transform, with its own special properties; it even has a physical
interpretation, namely as the local force in a field which under suitable circumstances
causes a mass of particles to have density proportional to exp{ — JK(t)dt}.

Another aspect is that asymptotic theory may be regarded as studying purely local
properties of a distribution which are not affected by adding, deleting or shifting
probability masses elsewhere. But neither the cumulative F nor the density / describe
purely local properties.

A further argument is simplicity. It has been said that the role of the normal
distribution in probability is similar to that of the straight line in geometry; however,
there is not much in the form of the normal cumulative or density to support such a
statement, while K(t) is in fact a straight line. As just about every 'smooth' function is
locally linear, about every 'smooth' distribution is locally normal and if the distribution
is highly concentrated, only the local behaviour matters; this is the essence of the central
limit theorem. And while the normal distribution is distinguished by its linearity of K in
t, our second-order approximation for Kn(t) is linear in n for each t, a form which can
hardly be matched in simplicity and generality simultaneously.

Numerical computations confirm that we have found an asymptotic theory which can
often be used down to n = 1, as is sometimes demanded of a good asymptotic theory and
as is beautifully exemplified by Stirling's formula. For some more heuristic aspects, see
an ETH Zurich Research Report. Field (1978), Barndorff-Xielsen & Cox (1979), Daniels
(1980) and Durbin (1980a, b) also give related work.
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3. ASYMPTOTIC FORMULA FOR p'n(t)/pn(t)

It is assumed that Xlz... ,Xm are n independent observations from a location family
with density f(x — 6) and that the estimate T of 9 is defined as the implicit solution of the
equation T.i4i{xt — T ) = 0. In order to develop the formula,/and if/ must satisfy certain
regularity conditions as follows.

I. The function ijf is a strictly monotone increasing continuous function.
II. The functions/ and xp are piecewise differentiable.

III. The density m,(x) = c,exp {a[f>(x — t)}f(x), with

c, * = \ex-p{aip(x — t)}f(x)dx,

where the integral is over ( — 00,00), exists as do all moments of if/(x — t)
computed with mt(x) for arbitrary a.

IV. The following random variables have finite expected values with respect to the
density m,(x):

x-t), 4,'(x-t)f'{x)lf{x),

where \p' is to be interpreted as the piecewise derivative.
V. The function/ must be sufficiently regular so that

\f(x + t)dx = /'(xd/dt \f(x + t)dx

As will be shown, assumption I can be weakened by requiring only monotone,
continuous \p. The results given will also hold for discontinuous \p with some minor
modifications in proofs to allow for point masses in the conjugate distribution. If \p is
bounded, as it is for robust estimators, conditions III and IV may be satisfied even if/
has no moments as in the case of the Cauchy distribution. If \\i is not bounded, as for the
arithmetic mean, conditions III and IV restrict the length of the tails of the underlying
distribution (Hampel, 1974a).

To begin, assume \p is strictly monotone with range R and let pn(t) denote the density
of T. Denote the density of \p(x — t) by g,(y), where

, , _ f/{<A(y)+O/^{'A(J/)} a yes,
9l[y) [0 otherwise.

Then

t) = pr|JT ^(xt-t)^o\ = \...\ffig,

pB(t) = n\...Kg,(yl)d/dt{g,(ym)}dyl...dyl,,

where the integrals are over the range



34 CHRISTOPHER A. FIELD AND FRANK R. HAMPEL

But jd/dtg,(yt)dy = f{ip-l(y) + t} iiyeR. Hence

Pn(t) = n[...

In this and following integrals, it is assumed that the integration is over the range for
which the argument of \j/~l belongs to R. Thus

p'n(t) = n ( » -

The next step is to recentre gt about t by replacing gt with a conjugate or associated
density ht.

Let ht(y) = ctexp(atty)gt(y), where the constants c, and a, are determined by
$ht(y) dy = 1 and jyh,(y) dy = 0. Later we shall also need a] = \y2 ht{y) dy,
A3i, = jy3h,(y)dy/af. Note that ht(y)dy = crexp{a,i/r(a; — t)}f(x)dx = m,(x)dx, so that
all the moments of ht exist by assumption III.

Now

(
-1 N"-!

Denote the density of the sum of v independent random variables each with density ht(y{)

by

jv..(r) = ... hi r- £

In the first term of pJ,(O» let z( = y{ (i = 1,..., n — 3), r = S/^j, where the sum is over
i= l,...,n— 1, a = yn_1 and in the second term of pJ,(O and in pn(t), let zt = yt

(i = I, ...,n — 2),8 = Yiyi summed over i = \,...,n— 1.

Then

]!!
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p'n(t) = n ( n - l ) c f " | \4>'{<l>-1(-r)}f'/f{if>-1(8) + t}ht(-r)ht(8)

If / " f }drds{ J• • • jIff *•(*«) A / r - s ~ " f 2J d 2 i • •• d**-3}

I J ' J f l A ' ( 2 f ) A ~ J i 7 zi-dz»-*

(3-2)

whence p'n(t)/pH(t) is obtained as a fraction not involving c,.
When n increases, jni,(s) flattens out while the other terms in the integrands stay the

same. Thus, only the local behaviour of a standardized sum of random variables at zero
matters. To proceed further, jnt(s)/jnt(O) is approximated by a series with the coefficients
determined by the Edgeworth expansion of jnt(s) at the origin. This enables us to use
locally the good properties of the Edgeworth expansion at the origin.

Let S be the sum of n independent random variables with density h,(s) and let/,(«) be
the density of «S/(n*<T,). The Edgeworth expansion (Cramer, 1946, p. 229) gives

f,(s) =

+ 10Xlt(s
6-15s* + 45s2-l5)/(6\n) + O(l/n312)},

where 4>(s) = (27t)~*exp(— ̂ s2). Since jn,t(s) is the density of S, we have

Now
Jn,,(0) = c£(0){l + (3A4it/4!- \5X\J12) n~l+O(l/n2)}/(n*ct),

{0(l/n2)}/(n*ot).

In addition, we note th&tf^l(a) = 0(l/n2)/(n*a,) for any 8. Now, with

s2/{jnit(0) 2!}

= jn,t(0){l-X3,,s/(2o,n)-s2/(2<T?n)

Continuing this way, we obtain an infinite expansion of jn,,(s)/jn ,(0) in powers of I/TO,
which is closely related to the Edgeworth expansion, but which yields only purely local
properties and thus does not contain the absolute height jmt,(0), or normalizing constant,
of the density. It is true that for somewhat larger n only the local properties around 1 = 0
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matter and thus the normalizing constant can also be approximated satisfactorily by the
Edgeworth expansion, but for very small n it is good to have an expansion that does not
claim information about the tail areas which it cannot possess.

We insert this expansion into numerator and denominator of p'H(t)/pn(t), where jn ,(0)
essentially disappears. More precisely, we need in addition the expansion of
•7(1-2,f(O)/?B-i,t(O) which can also be obtained from the Edgeworth expansion. Dividing
and multiplying these infinite series and recollecting terms we obtain the desired purely
local expansion of the form

-Kn(t)=p'n(t)/pn{t) = -

We now determine the first- and second-order terms of this expansion. Define the
following quantities in terms of the original variables. To obtain the expressions
in terms of the transformed variables, let s = 4>(x — t) and note that
ht(y)dy = c,exp {atij/(x-t)}f(x) dx. Then

A\,t= W(x-t)ctexp{at4/(x-t)}f(x)dx, A2t = \ctexp{ctt\l/(x-t)}f'(x)dx,

A3,t = W(x-t)ip'(x-t)ctexp{atip(x-t)}f(x)dx,

AA,t = \ij/(x-t)ctexp{atil/(x-t)}f'(x)dx>

A5,t = L'(x-t)ctexp{at4,(x-t)}f'(x)dx, A6,t = L2(z-<)ctexp{a,«A(x-<)}/'(x)dz.

AXt = \ip2(x-W(x-t)ctexp{oL,il/(x-t)}f(x)dx,

where all the integrals are over the range ( — 00,00).
Condition IV guarantees that these integrals exist. There are a number of relations

between the integrals, such as^42
 = - 8 , 4 ^ 4 , = A^ — a.tA3 and 2A3 + atA-j + A6 = 0, if

we drop temporarily the t in Aiv With these terms the approximations to pn(t) and p'n(t),
as given in (3-1) and (3-2) are as follows:

Pn(t) = ncrnjn

Divide p'n(t) by pn(t) to obtain

+ A5/Al

But

where Cj is determined by the Edgeworth expansion. Hence finally we have that if/and
\p satisfy conditions I-V, and pn(t) is the density of T where T fulfills l.iij/(xi — T) = 0,
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then

(3-3)

where At , to A6 , are given above, c, and a, satisfy the equations

\ctexp{atil/(x-t)}f{x)dx= 1, U(x-t)ctexj>{atip(x-t)} f(x)dx = 0,

<7,2= U2(a;-0crexp{af^(a;-0}/(x)dx, X3, = U3(x-t)c,exp{atij/{x-t)} f(x)dx/af,

where all the integrals are over the range ( — 00,00).

4. ASYMPTOTIC FORMULA FOR pn(t)

It is technically much simpler, though theoretically slightly less satisfactory, to obtain
a slightly different expansion directly for pn(t). At first, we proceed exactly as in the
previous section, except that we can ignore all formulae for p'n(t). Instead of dividing the
expansions in p'H and pn, we just multiply the expansions of jH ,(0) and jnit(s)ljn ,(0) and
thus obtain an expansion of which the first few terms are

After replacing {n/(n— 1)}* by its expansion, we have that if/and i/f satisfy conditions I—
IV and pn(t) is the density of T where Z \j/(xt — T) = 0, then an approximation for pn(t) is

pm{t) = n*

+ l3ttA3J(2<jt)-A1J(2<T?)}/n + O(l/n2)], (4-1)

where Alt, A3 „ An „ ct, <xt, of, X3 t are given in the previous section and

Formula (41) corresponds to the third-order formula for p'JpH, since the 'constant'
contains terms of order n and one. The precise relations are explained in §8. To second
order, we have

pn(t) = n*<t>(0)crnar1AUt{l + O(l/n)}. (4-2)

For higher accuracy in numerical computations one will determine the normalizing
constant empirically by numerical integration, and thus one needs only the
approximation

pn(t)ccct-"ar1AUt. (4-3)

5. RELAXING THE STRICT MONOTONICITY CONDITION

The formulae (33) and (41) can be shown to be valid if condition I, the strict
monotonicity of \p, is replaced by I' that \j/ is a bounded monotone increasing continuous
function.
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This becomes important for some of the standard robust estimators such as those
where ip is linear in an interval and constant outside the interval. The development of the
formula just given cannot be directly extended because the distribution of ij/(x — t) now
has point masses as does the appropriate conjugate distribution.

The idea is to approximate if/ by an increasing sequence of strictly monotone functions
{t/fm} and to verify that the density of T under i/fm converges to pn; similarly for p'n. Then
one can show that all terms, in particular a,, in the approximating formulae for tpm

converge to the corresponding terms for \p, and one can also verify that the remainder is
still of the same order as in the formulae. For some more details, see the aforementioned
report.

6. SPECIAL CASES OF \j/

Consider first the M-estimate version of a-quantiles with \p(x) = a — 1 for x < 0,
\p(x) = 0 for x = 0 and {//(x) = a for x > 0. For those n where the defining equation
Ei/>(a;, — T) = 0 has a unique solution, the exact density of M — a-quantiles is the density
of the appropriate order statistic and hence well known. From this, the exact result
(Hampel, 1974a) is

PM/PnV) = (n-l)oLf(t)/F(t)-(n-l)(l-<x)f(t)/{l-F(t)}+f'/f(t).

That is, remarkably, we obtain precise linearity in n for each t.

If the computations are carried out with (33), then after calculation we get the exact
result for p'JpH given above. Hence for M — a-quantiles, including the median for odd n,
the second-order formula (3-3) is exact.

A second case is that of the arithmetic mean which can also be considered as an M-
estimate with \j/{x) = x. As has been noted earlier, the unboundedness of 4> necessitates
conditions on the tail behaviour.
For p'Jpn we obtain the simple exact form (Hampel, 1974a, p. 116)

. (6-1)

This means that Kn(t) is just n times a weighted average of/'//, with the weight function
consisting of one fixed localizing part and one part that flattens out with increasing n.
This remarkable fact may open the new possibility of deriving results about the central
limit theorem by smoothing techniques and arguments.

I t can be checked that Alt = 1, A2i, = — a,, A3tt = 0, AAt= — 1, A5t= —a,,
A6t = -a,af and A1<t = of.

The formula (33) gives the approximation (Hampel, 1974a)

-1). (6-2)

The third-order formula (41) for pn becomes

pn{t) = n* tf>(0)cf o-r1 {1 + (X4J8- bX\j'24)71-' +O( r r 2 )} . (6-3)

7. COMPUTATIONS AND COMPARISON WITH EXACT RESULTS

The results given by the formula for the arithmetic mean have already been compared
with some known exact results (Daniels, 1954; Hampel, 1974a); see also Table 4 and
Fig. 1. The exact density for the Huber-estimator with known scale with i/̂ (ar) = x if



Table 1. Cumulative distribution of Huber-estimator H\ (Ic = 1-4) under 5% contaminated

normal ioith contamination at ± oo; E, exact; N, new approximation, from formula (3"3) or

(4-3); G, indirect method via X (§ 9; Daniels, 1954)

n = 5

/

0-1
O5
1-0
1-5
2-0
2-5
30

E

0-53779
068168
0-82399
0-91130
0-95326
0-96905
0-97370

N

0-53771
0-68020
0-81572
0-89227
092655
094000
094480

G

O53414
066860
O80347
O88358
O92125

E

056234
078124
093241
098112
099371
099710
099795

N

O56260
078213
O93284
098061
O99237
O99540
099627

G

056266
O78159
093210
098027
O99224

E

O57974
084016
097201
099586
O99912
0-99970
O99982

N

057991
084065
097221
099587
099904
O99957
099969

G

057996
084039
097199
099580
0-99902

E

O59384
O87979
O98788
099906
O999875
0999967
O999984

N

059397
088010
098796
099907
0999870
0999956
0999972

E

060597
090808
O99462
0999783
0-999982
0-999996
0999998

N

060607
090829
099465
O999784
0999982
0999995
0999997

n = 1

Table 2. Cumulative distribution of Huber-estimator H1 (Ic = 1-5) under Cauchy; E, exact; N,

new, from (3-3) or (4-3); G, indirect (Daniels; §9)

n = 3 n = 5 n = 7

075000 071918
O89758 087603
003717 091608

E N G G

n = 9

G

O83387 082653 082880
O97187 096832 O96837
O98894 098619 O98621

088715 088542 088716 092230 092175 092280 O94578 094553
O99175 0-99117 099116 O99751 O99741
099790 099756 099754 O99959 O99954

094610
099739 099924 099922 099921
099954 0999918 0999912 099991

O95483 0-93156 O99416 099199 O99199 O99918 O99895 O99894 O99988 O99986 O99985 O999982 0999979 0-99998
096478 0-94673 O99640 099468 O99467 O99960 O99945 O99944 O999953 0999939 O99994 0-999994 0999993 099999

CO
CO



40 CHRISTOPHER A. FIELD AND FRANK R. HAMPEL

|a;| < k,\p{x) = ksgnx if | z | ^ & has been calculated by P. J. Huber by direct convolu-
tion and checked in double precision by D. Zwiers for two contaminated normal
distributions and by A. Marazzi with fast Fourier transformation via characteristic
functions for the Cauchy distribution. The results from our formulae, which were
computed by A. Marazzi, using (3-3), and later recomputed by D. Zwiers, using (43), will
be compared with these exact distributions.

The e-contaminated normal used by Huber is a standard normal density with
probability 1—e plus point masses at ±oo, each with probability -̂e. In our numerical
approximations the contaminating point masses were replaced by standard normal
distributions at ± 12. For a fine grid of t values, a, and the other constants
(cr, at, X3 r, At,) were determined by an iterative search and by integrations using some
special properties of the Huber t^-function, in general by numerical integration. Note
that these constants remain unchanged as n varies, so they need be computed just once.
The approximation (33) for p'n(t)/pn(t) was numerically integrated, exponentiated and
again integrated to obtain the normalizing constant and the cumulative distribution.
The exact and the approximate values for the 5%-contaminated normal and the Cauchy
distribution are given in Tables 1 and 2; more extensive, as well as additional tables can
be found in the aforementioned report. Tables 1 and 2 contain also an indirect
approximation by means of the saddlepoint method via the arithmetic mean; see §9.

The approximations require significantly less time and storage on the computer than
the exact computations. For example, even though the first numerical integration of
(3-3), along with several constants, later turned out to be superfluous, since it can be
replaced by (4-3), the exact computations for the Cauchy for n = 1 —9 at only 5 points
t = 1, 3, 5, 7,9 required more than ten times as much costs and CPU time, 22 min versus
2min on a CDC 6500, than the approximate computations using (33) for a grid of 108
points, t = 0(0-2)7(2)153.

The relative percent error of the tail area 100(N — E)/(1 — E), where N is the approximate
and E the exact cumulative, has been calculated. For the contaminated normal with
e = 5% the relative error is about or below 1% for t = 0-5 down to n = 1, for t = 1 down
to n = 3, for t = 15 down to n = 5. In terms of percentage points, for the same
distribution, the relative error is about or below 1% down to n = 3 at the one-sided 5%-
point, 7i = s at the 1% point, n = 7 at the 01%-point and n = 9 at the 001%-point. For
the same critical values and sample sizes, the relative errors in the Cauchy case are about
or below 7%. It is only with small n and large t that the relative errors become larger and
even here the estimate is fairly good; see, for instance, the 5% contaminated normal with
n = 3 and t = 30, a relative error of 82%, the actual difference being 0002
(0-99795-0-99627).

Relative tail area errors obtained by use of the first-order approximation
p'n(t)/pn(t) — nA2,t, which is the basis for large deviations, § 10, and by use of the third-
order formula (41) with renormalization have been computed. They show that a big

Table 3. First and second order terms in (33), written as p'Jpm = nA2+B, along with at,Jor

Hj (k = 1-4) under normal 5%-contaminated at ± oo.

t A2 B a,

O2 -0-15803 -0-15129 0-19921
0-4 -0-30867 -0-30939 O39425
0-8 -0-55249 -0-66703 0-75214
1-2 -0-65315 -1-06915 1-02918
1-6 -0-57664 -1-42561 119706
2-0 -0-39724 —1 69161 1-27391
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improvement is achieved by inclusion of the second-order term, while the third-order
term yields only a small and usually unimportant further improvement. As an example,
for the contaminated normal with e = 5°/0,n = 7and< = 1, the relative tail area errors are
— 57%, 066% and 025% for the three different orders of approximation. Thus, the
second-order formula (3*3), with its nice linearity in n, appears to be the most reasonable
one.

The need for including the second-order terms becomes also clear from Table 3, which
shows what happens in the KH(t) domain and which also demonstrates nicely the
approximate proportionality of the constants with t for small t, corresponding to
normality, and the deviations from linearity, even up to downbending of A2,„ for larger
t. This complicated behaviour of Kn(t) makes it hard for any expansion about a single
point to achieve good accuracy in the tails.

8. RELATIONSHIP TO THE SADDLEPOINT METHOD

The method closest to those used in this paper is the saddlepoint expansion (Daniels,
1954). Hampel (1974a) noted that integration of formula (6-2) for the arithmetic mean
gave precisely Daniels's (1954, p. 633) saddlepoint approximation, apart from the
normalizing constant. More recently, H. E. Daniels, in a private communication, has
shown that (4-2) can also be obtained by means of a saddlepoint approximation. That
this is possible is indicated by the close relationship between the saddlepoint approxi-
mation and conjugate distributions (Daniels, 1954, p. 639). In fact, the saddlepoint
expansion and the expansion starting with (41) {ovpn(t) obviously yield identical results.

On the other hand, the expansion ofp'Jpn and the saddlepoint expansion, infinite, and
without renormalization, differ in two minor aspects: first, the free constant of
integration in logpB to be determined by numerical integration of pn is fixed in the
saddlepoint expansion to be log {n* <f>(0)}; secondly, integration and exponentiation of
the expansion of p'Jp yields an expansion of pH entirely in the exponent, namely of the
form, §10,

pn{t) oc

with a'(t) = ix(t), etc., while in the saddlepoint expansion (2-6) of Daniels (1954) the third
and further terms exp{ — y(t)/n—...} are expanded into {l—y(t)/n±...}. This expansion
of the exponent can cause finite sections of the saddlepoint expansion to yield negative
densities. For the Edgeworth expansion, formulae (10*3), (10*4) and Table 4, an example
is given later where expansion of an exponent roughly doubles the approximation error
in the best range. However, in our case the first two terms give an excellent
approximation, and here the methods differ only by their normalizing constant. The
constant of the saddlepoint approximation can be improved (Hampel, 1974a) by using the
third, that is l/n, term for t = 0; and as noted by Daniels (1954), it can be even more
improved by exact renormalization using numerical or analytical integration. Thus, the
second-order formula (3-3) and the saddlepoint approximation with renormalization give
identical results.

9. INDIRECT APPROACH VIA ARITHMETIC MEAN

It is possible to utilize the older results for the arithmetic mean in order to derive
asymptotic approximations for M-estimators with monotone \p, by noting that the event
T ^ / is essentially the same as the event 11\l/(Xi — t) < 0. Thus one can, for each t
separately, determine the approximate cumulative distribution of 7, = £, i/^X, — t)/n by
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using either the results of Daniels (1954) or Hampel (1974a) for the arithmetic mean of the
if/'s, and then read off pr (Yt ^ 0) = pr(T ^ t). Obviously, this approach needs more
computation than the direct approach; and in the case of M — a-qu&ntiles, the result is
not exact even using renormalization, and T, does not even have a density. But, as H. E.
Daniels has pointed out, if only a single tail area instead of the full density function is
required, this approach is simpler. The accuracy achieved is comparable with that of the
direct approach. This is also shown by the numerical results, G in Tables 1 and 2, by
Daniels, which are included with his kind permission and which were computed by D.
Guest using the saddlepoint approximation for Yt with the renormalization. Both
approximate cumulatives N, direct method, and Q in Tables 1 and 2 are about equally
close to E, exact cumulative, but they show different behaviour.

10. RELATIONSHIP TO EDGEWORTH EXPANSION AND LARGE DEVIATIONS

In this section, our formula for p'Jpn and the saddlepoint method are compared to the
classical methods of Edgeworth expansion (Cramer, 1946, pp. 133, 223, 229, etc.;
Daniels, 1954, p. 635) and large deviations (Richter, 1957, pp. 212, 214; Feller, 1966,
p. 520, etc.; Cramer, 1938). In addition, from the formula for p'Jpm some other variants,
including a new variant of the Edgeworth expansion, are derived.

First we recall that our expansions for p'H(t)/pH(t) and pn(t) as well as the saddlepoint
method differ from other methods by expanding not only at one point t = 0, but
rather at every t. For the arithmetic mean, this is merely a shift in ifn-space:
h't(x)/ht(x) =f'(x)/f(x) + at. All three methods utilize the Edgeworth expansion only at
the expectation, though in slightly different ways; see also Daniels (1954, p. 634) for
relations between saddlepoint approximation and Edgeworth expansion.

To facilitate comparisons we consider the arithmetic mean TH = Xn with density pn of
independent identically distributed observations Xt with underlying density / and

E{X,) = 0, var (X,) = a2, E(X?)/o3 = X3, E{Xf)/a*-3 = kA.

Assume / fulfills all necessary regularity conditions such as those of Richter (1957,
p. 208).

Assume that the following general form of expansion basic to this paper holds:

P'At)/Pn(t) = -n<x(t)-p(t)-y(t)/n-..., (10-1)

where a(t) = a, and fi(t) = X3 J(2ot) in the previous notation. Now expand the terms into
Taylor series around t = 0: a(t) = a(0) + a'(0)t+±a"(0)t2 +..., etc. Integration yields

-y(0)t/n-$y'(0)t2/n-.... (10-2)

We assume that the constant of integration can be expanded as

QB = log {n/(2no2)}*(l +<ojn+...).

Exponentiation of (102) yields a doubly infinite expansion for pn(t), from which most
other known expansions can be derived, as well as new ones.

The main question is at which rate t —* 0 as n —> oo. If we aim for good accuracy at a
fixed multiple of the standard deviation of the distribution of Tn, as does the Edgeworth
expansion, we are led to the choice nt2 = const > 0. This choice induces an ordering of
the terms of (102) and thus an infinite expansion for \ogpn(t) which appears to be new.
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The leading terms up to third order using A4, which empirically seem to give a good fit
near 0 even for small n, are, using a(0) = 0 because of centring,

pn(t) ^ {n/(27ta2)}±exp{-i7ia'(0)<2}

x exp { - a"(0) nt3/6 - 0(0) t - a(3)(0) n/4/24 - \fi\0) t2 + OJ Jn). (103)

Expansion of the second exponential yields precisely the usual third-order Edgeworth
approximation and corresponding expansion of the infinite series obviously yields the
Edgeworth series:

pn(t) — {n/(27t<72)}*exp{— %na'(0)t2}

x {1 -a"(0) ni3/Q-p(0) *-a<3)(0) nt*/24-tf'(0) t 0)2 n2 «6/72

(1O4)

Comparison of terms, e.g. with Cramer (1946, p. 229), provides the bridge to the
moments of the Xt:

a(0) = 0, a"(0)= -/l3/(73,

= kJ(2o2)-k2/G2,

a(3)(0) =

(10-5)

Formula (1O3), which we may call 'Edgeworth in exponent', proves in an example, Table
4, to be about twice as good as Edgeworth (104) in the central region where both are
good. Outside about two standard deviations of Tn from its mean both are very bad; so it
matters little that (103) loses the norming of (104) and may sometimes explode, namely
if A4 —3A3 ^ 0 and not X3 = A4 = 0, while (104) may lead to negative densities.

There are, of course, many possibilities for the speed with which / —» 0. For instance,
the expansion with nt = const has as its leading term

pn(t) ^ {n/(27tff2)}*exp{-i7M£'(0)f2-^(0)< + cu1/n}.

This is the nonnormalized 'best fitting normal density' which uses A3 for a shift of the
mean and in addition A4 for approximate adjustment of the height at t = 0. The
normalized counterpart can be obtained from the expansion of (10-1) around t = 0 by
integrating p'n(t)/pH(t) — — na'(0)t — fi(0). These and other variants were studied for the

Table 4. Comparison of approximations for density of mean of four independent exponen-
tially distributed observations

Large
Exact EDG exp EDO Norm. dev.

I

025
0
0-25
0-5
0-75
]

1-25
1-5
1 75
2

density

0
0
0-24525
0-72179
089617
078147
056150
O35694
020852
011451

(1O3)

000168
004596
029544
070413
089126
O78143
056358
036151
020305
008952

%err.

205
-2-4
-O5
-O005
O4
1-3

-2-6
-21-8

(10-4)

-003920
002175
029765
O69231
O88857
078126
O56584
O36968
020052
009373

% err.

21-4
-41
-O8
-O02
08
3-6

-3-8
-181

approx.

O0350
O1080
O2590
O4840
O7042
07979
O7042
O4840
02590
O1080

% err.

5-6
— 11-9
-21-4

21
25-4
35-6
24-2
-5-7

(10-6)

00002
O0105
O1076
O3848
06869
07979
07162
05371
03313
O1507

% err.

-56-1
-46-7
-23-4

21
27-6
50-5
58-9
31-6

Approximation (3-3) is exact in this case (Daniels, 1954, p. 636), and the saddlepoint approximation
without renormalization has constant relative error of +2-1%.

EDO exp, Edgeworth in exponent; norm, approx., normal approximation; large dev., large deviations; %
err., % error.
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9 —

8 -

7 —

6 —

5 —

4 —

3 —

2 —

1 —

0

-0-9099

-0-9995

- 0 - 9 9 9

- 0-9975

- 0 - 9 9 5

- 0 - 9 9

- 0 - 9 7 5

- 0-95

- 0 - 9

- 0 - 8 *

- 0-7 ^ T

-(Hi,

: /
: /

: /

/ • / /

/ . ' / /

/ • / /

/ • / /

/ /

/ / -

A '
/ '

/

sf ^—^^-^ Exact 4 small-sample asymptotic

^F Edgeworth

Jr ~~ ~~ ~~ — Large deviations

^ ^ —•—•—• Normal approximations

1 1 1 1
0-1 0-2 0-3 0-4 0-5

Fig. 1. Comparison of approximations for the cumulative of the mean of four independent
uniformly distributed data, in logistic scale. Compared with the exact cumulative of XA under
£/(—i.i) are Edgeworth (10-4), large deviations (10-6) and normal approximation; the new

approximation (3-3) or (4-3) coincides with the exact cumulative within drawing accuracy.

example of Table 4, but are not pursued here because of lack of space. Some conclusions
are that the precise aims of mediocre simple fits have to be selected first and that
renormalization may be much less suitable here than for the globally good approxi-
mations related to the saddlepoint technique.

An extreme case of asymptotic 'directions' in (102) is first to let n -» oo and then
t —> 0 or the limiting case of nc t = const for c -+ 0. This amounts to keeping only the
leading constant term and the expansion of a(t) and leads precisely to the large
deviations expansion for pa(t). The usual large deviations approximation using A4

becomes (Richter, 1957)

pn(t) ^ (106)

See (10'5) and compare with (103).
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Now it is known from a number of examples that for small n the ft terms are definitely
needed to give a good approximation. Hence it can be expected that even the full infinite
large deviations expansion will give a bad fit except for very large n, but it is still
remarkable that in the two examples computed in this paper, Table 4 and Fig. 1, formula
(106) is even worse than the normal approximation. The large deviation formulae for the
cumulative distribution ofTn, as given, for example, by Feller (1966, p. 520), contain an
additional approximation, namely of the normal tail area, and hence are not likely to fit
any better.

If we go to the other extreme in the choice of asymptotic 'directions' and let first t —• 0
and then n -* oo, we obtain the expansion of QB, albeit only for logj)n(0). This is almost
the same as the saddlepoint series expansion (2-6) of Daniels (1954) for t = 0, there x = 0,
the latter differing again in having the exponential expanded into a sum. However, the
expansion of ft, is still unknown beyond the first two terms.

For completeness, we note the obvious facts that the first terms of (103), (104) and
(106), up to using a'(0), are merely the normal approximation; that the latter, (10-6) and
the saddlepoint approximation, the leading term of the saddlepoint expansion, coincide
for t = 0; and that from (10-1) a'(O) = 1/«T2 is the limit of the derivative of p'H{t)lpH{t)
divided by n at t = 0, namely of the inverse standardized local variance at t = 0.

The authors are very grateful to H. E. Daniels, the first worker in the field, for very
pleasant cooperation, many stimulating discussions and for contributing the com-
putations with the indirect method; to P. J. Huber for his permanent interest, support of
the second author and for supplying his exact computations for Z/^l-4); to the
Forschungsinstitut fur Mathematik, ETH Zurich for their support of the first author; to
A. Marazzi, D. Guest and D. Zwiers for careful computer computations; and to a referee
for very thorough and detailed comments which led to considerable changes and
improvements of the earlier research report.
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