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Abstract: Hyperspectral images can capture subtle differences in reflectance of features in hundreds
of narrow bands, and its pixel-wise classification is the cornerstone of many applications requiring
fine-grained classification results. Although three-dimensional convolutional neural networks (3D-
CNN) have been extensively investigated in hyperspectral image classification tasks and have
made significant breakthroughs, hyperspectral classification under small sample conditions is still
challenging. In order to facilitate small sample hyperspectral classification, a novel mixed spatial-
spectral features cascade fusion network (MSSFN) is proposed. First, the covariance structure of
hyperspectral data is modeled and dimensionality reduction is conducted using factor analysis.
Then, two 3D spatial-spectral residual modules and one 2D separable spatial residual module are
used to extract mixed spatial-spectral features. A cascade fusion pattern consisting of intra-block
feature fusion and inter-block feature fusion is constructed to enhance the feature extraction capability.
Finally, the second-order statistical information of the fused features is mined using second-order
pooling and the classification is achieved by the fully connected layer after L2 normalization. On the
three public available hyperspectral datasets, Indian Pines, Houston, and University of Pavia, only
5%, 3%, and 1% of the labeled samples were used for training, the accuracy of MSSFN in this paper is
98.52%, 96.31% and 98.83%, respectively, which is far better than the contrast models and verifies the
effectiveness of MSSFN in small sample hyperspectral classification tasks.

Keywords: remote sensing; hyperspectral image classification; factor analysis; mixed convolutional
neural network; second-order pooling

1. Introduction

Hyperspectral images can capture subtle differences in reflectance of features in hun-
dreds of narrow spectral bands, offering the possibility of accurate identification of features
with comparable color and texture [1]. Therefore, hyperspectral image classification is
the cornerstone of many applications requiring high classification granularity, such as
agricultural yield estimation [2], tree species identification [3], natural resource survey [4],
and disaster monitoring [5], and have long been a research hotspot in the field of remote
sensing. Nowadays, deep learning methods represented by 3D-CNN are capable of auto-
matically extracting joint spatial-spectral features, and have been extensively investigated
and applied in hyperspectral remote sensing applications in recent years [6–8]. However,
the raw hyperspectral data have a high redundancy, and it is difficult to obtain sufficient
manually labeled samples [9]. The available training samples in real-world hyperspectral
classification tasks are often scarce and contain considerable noise. Therefore, effective di-
mension reduction for hyperspectral images without losing crucial spatial-spectral features

Remote Sens. 2022, 14, 505. https://doi.org/10.3390/rs14030505 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14030505
https://doi.org/10.3390/rs14030505
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1344-3727
https://orcid.org/0000-0003-0848-8453
https://doi.org/10.3390/rs14030505
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14030505?type=check_update&version=3


Remote Sens. 2022, 14, 505 2 of 23

and achieving satisfactory classification accuracy with as few samples as possible is still
very challenging [10,11].

Feature extraction and representation are key steps in hyperspectral image classi-
fication tasks [12,13]. Prior to the widespread applications of deep learning methods,
hyperspectral classification relied on hand-crafted features. The shallow features extracted
by such methods could not effectively handle complex situations with inter-class nuance
and large intra-class variation, and the generalization ability to various datasets with
variable spatial resolution and spectral signatures was insufficient [14,15]. Recently, deep
learning methods have been extensively investigated in hyperspectral classification due to
their capability of extracting deep hierarchical features from raw images in an end-to-end
learning manner and the classification accuracy has been greatly boosted compared with
traditional methods [16,17]. 2D-CNN and 3D-CNN are two commonly used methods for
extracting spatial features and spatial-spectral features from pixels to be classified and
their fixed neighborhood, respectively [18–21]. Although CNN models are currently the
mainstream methods for hyperspectral classification, their black-box nature leads to a lack
of clear connection between classification results and spectral physical significance. To
this end, Makantasis et al. proposed a novel tensor-based learning method for hyperspec-
tral data analysis, which significantly reduces the model parameter number and clearly
interprets model coefficients on the classification results [22,23].

In order to improve the robustness of features learned by CNN models and accelerate
network training, the residual learning method inspired by ResNet [24] is widely utilized
for hyperspectral classification model construction. Lee et al. proposed Contextual CNN,
which first learns contextual features through parallel 1× 1, 3× 3 and 5× 5 convolutional
kernels, and then introduces residual learning in subsequent 1× 1 convolution sequences to
improve classification accuracy [25]. Liu et al. introduced residual learning in a continuous
3D convolutional sequence and constructed a deep Res-3D-CNN to learn hierarchical
spatial-spectral features, which improves classification accuracy compared to shallow 3D-
CNN [26]. Song et al. proposed DFFN and deep residual learning was adopted to achieve
intra-block feature fusion. The low-level, middle-level, and high-level features learned by
different network parts were further fused to achieve inter-block feature fusion [27]. Dense
connections, which was proposed by Huang et al., can be viewed as an extreme version of
a residual connection that the output features of all the previous layers are concatenated
and sent to the next layer for feature re-using [28]. Dense feature fusion patterns were
then adopted to hyperspectral classification tasks and achieved success [29–31]. Residual
learning and dense connectivity, which are served as the core approaches of feature fusion,
have profoundly influenced the designed patterns of hyperspectral classification networks.
However, the literature [32] indicated that frequent feature map concatenations based on
existing deep learning frameworks could cause excessive memory consumption. Therefore,
an effective and efficient feature learning pattern needs further investigation. Recently,
attention-based spatial-spectral feature learning models for hyperspectral classification
have gained enormous popularity and might be a solution to the above-mentioned feature
learning problem [33–35].

Hyperspectral images are characterized by high dimensionality, and it is difficult to
effectively filter redundancy when features are extracted with 3D-CNN under small sample
conditions. In addition, to learn features from raw hyperspectral data, nested pooling
layers are often required in 3D-CNN to reduce the feature map dimension and control the
network parameter scale. However, the pre-defined pooling size may be detrimental to
feature extraction. To address this problem, 3D-CNN and 2D-CNN are fused to extract
spatial-spectral features from the down-scaled hyperspectral images. Roy et al. proposed
HybridSN, which is a mixed 3D-2D-CNN model. The principal component analysis (PCA)
was firstly adopted for down-scaling, and then the pipelined stacking 3D convolutional
layers and 2D convolutional layers were used to extract spatial-spectral features, effec-
tively improving the classification accuracy compared to networks with a single type of
convolution [36]. Feng et al. proposed R-HybridSN based on residual learning and depth
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separable convolution, which effectively improved the obtained classification accuracy of
hyperspectral images under small sample conditions [37]. Based on R-HybridSN, Feng et al.
proposed M-HybridSN of which the core feature extraction module is a combination of
three densely connected 3× 3× 3 convolutional layers and one 7× 7× 7 convolutional layer
for global information enhancement; Zhang et al. proposed AD-HybridSN based on dense
connectivity and two attention modules with the aim of spatial-spectral feature refinement.
The above two models can be viewed as improved versions of R-HybridSN, and they both
improved the network’s ability to learn robust spatial-spectral features [38,39]. How to
make better use of the features extracted by CNN is another key issue. Aiming at the
limitations of existing CNN models using global average pooling or fully connected layers,
Zheng et al. proposed a method of classifying the features extracted from convolutional net-
works by mining covariance information and designed a covariance pooling-based mixed
CNN model (MCNN-CP) [40]. The combination of mixed CNN models and dimensional-
ity reduction algorithms will attract continuous attention due to their high classification
accuracy and low computational cost.

The above residual learning and mixed CNN models are served as network optimiza-
tion methods and are aimed to facilitate small sample hyperspectral classification at the
network level. The training process can benefit from a large number of unlabeled samples
with the help of semi-supervised learning methods, which is focused on the intra-dataset
level [41–43]. Wu et al. proposed a semi-supervised deep learning framework based on
pseudo labels [44]. A clustering method called a constrained Dirichlet process mixture
model (C-DPMM) was adopted to generate pseudo labels. A classic pre-training and
fine-tuning scheme was utilized to further improve the classification performance of the
two convolutional recurrent neural networks (CRNN). Liu et al. proposed a deep active
learning method using a densely connected CNN model [45]. Several branches of this
network formed a loss prediction model, and those samples with large predicted losses
were manually labeled and re-involved in the training process. Liu et al. proposed a deep
few-shot learning method (DFSL) and built a connection between an HSI domain (called
target domain) with very few labeled data and another HSI domain (called source domain)
with enough labeled data. The DFSL was focused on the inter-dataset level, and a deep
residual 3D-CNN was adopted to learn a metric space [46]. The well-trained network can
be viewed as an embedding tool and the classification of unlabeled data can be achieved by
another simple distance-based classifier. Recently, inspired by the success of DFSL, several
novel few-shot learning methods have been proposed for small sample hyperspectral clas-
sification, such as deep relation network-based few-shot learning methods [47] and deep
cross domain few-shot learning methods [48]. Few-shot learning methods have changed
the paradigm of classification using features extracted by convolutional layers and opened
up a promising research field for small sample hyperspectral classification. In addition,
network-level optimization is of non-negligible significance. On the one hand, supervised
learning methods are easy to be implemented and applied in real-world remote sensing
applications, since only network-related hyperparameters need to be fine-tuned. On the
other hand, advanced CNN models with a discriminative feature learning ability can be
combined with the above novel learning patterns and obtain a better classification accuracy.

Based on the above observations, we proposed a mixed spatial-spectral features
cascade fusion network (MSSFN) to facilitate small sample hyperspectral classification.
Factor analysis is combined with our model and it can analyze the covariance structure of
hyperspectral data and realize effective dimensionality reduction to improve inter-class
separability. The MSSFN adopts two 3D multiple spatial-spectral residual blocks and one
2D separable multiple residual block to extract mixed spatial-spectral features. A cascade
feature pattern composed of intra-block feature fusion and inter-block feature fusion was
proposed to make the learned features more robust to different kinds of hyperspectral
datasets. The second-order pooling is designed to further mine the higher-order statistical
information of the cascade fusion features. Extensive experiments were conducted on three
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real-world hyperspectral datasets, and the classification accuracy of MSSFN was far better
than that of the contrast models.

2. Methods
2.1. Factor Analysis

Factor analysis (FA) is a multivariate statistical analysis method that can examine
the underlying structure of high-dimensional data. FA can extract the few factors that
characterize the data and serve as a dimensionality reduction method. It is similar to PCA
in terms of the calculation process. The difference between them is that PCA focuses on the
total variance of the variables, while FA focuses on the covariance [49,50]. Hyperspectral
data are high-dimensional and highly nonlinear, so using FA as a dimensionality reduction
method is helpful to improve inter-class separability.

Suppose the hyperspectral image data is represented as X = (x1, x2, . . . , xn)
T . In order

to express the hyperspectral data mathematically, a latent variable model can be introduced
as Equation (1),

X = WH + µ + ε, (1)

where H = (h1, h2, . . . , hn)
T is the unobservable random viriables and it is called the factors

of X; µ = (µ1, µ2, . . . µn)
T is a offset vector which satisfies E(xi) = µi; ε = (ε1, ε2, . . . , εn)

T

is the noise item, which is usually assumed to obey the normal distribution. Suppose the

variance is expressed as D(X) = diag
(
σ2

1 , σ2
2 , . . . , σ2

n
) de f→ ψ. The W represents the coefficient

matrix to be estimated, and was known as the factor loading matrix. If the variance of each
component of X is equal, i.e., ψ = σ2 I (I is the unit matrix), then the hypothesis will lead to
the PCA model; if the variance of each component is not equal, the hypothesis will lead to
the FA model. Factor analysis focuses on finding the factor loading matrix, which can be
proven to be the correlation coefficient between each factor and the original variables [51].

Suppose the eigenvalues of covariance matrix of X satisfies λ1 > λ2 > λ3 . . . > λn ≥ 0,
and the corresponding eigenvectors are l1, l2, l3, . . . , ln. Then the covariance matrix Cov can
be decomposed as Equation (2),

Cov =
n

∑
k=1

λklklT
k (2)

When the latter (n−m) eigenvalues are small, the corresponding eigenvectors will
be discarded and only the former m eigenvectors will be retained. Thus, the Cov can be
approximately decomposed, as shown in Equation (3),

Cov =
m

∑
k=1

λklklT
k +

 σ2
1 · · · 0
...

. . .
...

0 · · · σ2
n

 (3)

The dimensionality reduction of hyperspectral data can be achieved by (3), and the
detailed solution process of FA can be found in the literature [49].

In practical usage, to improve the interpretability, the factor loading matrix of FA can
be further rotated to maximize the variance or the quartic variance. By rotation, the values
of the factor loading matrix will be sparser, which can improve the interpretability of the
extracted factors.

2.2. Cascade Fusion of Mixed Spatial-Spectral Features

In order to better learn spatial-spectral features, this paper proposes a mixed spatial-
spectral feature cascade fusion pattern and constructs the MSSFN network accordingly.
MSSFN is an improved mixed CNN model, and the basic unit includes the 3D convolutional
layer and the 2D convolutional layer. There is a big difference between the two types of
convolutions in extracting image features. Two-dimensional convolution convolves the
input data in two directions at a time, and the result of a single convolutional kernel is a
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two-dimensional tensor. The value of the (x, y) position on the jth feature map of the ith
layer is calculated by Equation (4),

sx,y
i,j = act

(
∑
m

Hi−1

∑
h=0

Wi−1

∑
w=0

kh,w
i,j,ms(x+h),(y+w)

(i−1),m + bi,j

)
(4)

where kh,w
i,j,m represents the value of the jth convolutional kernel at the (h, w) position of

the ith layer and the convolutional kernel convolves the mth feature map extracted by
the previous layer; Hi and Wi represents the height and the width of the kernel, respec-
tively; s(x+h),(y+w)

(i−1),m denotes the value of the mth feature map at (x + h), (y + w) position

in the previous layer; sx,y
i,j denotes the result value of the feature map at (x, y) position;

bi,j represents the bias and act() represents the activation function. Three-dimensional
convolution extends to the band dimension, and a single convolution kernel results in a
three-dimensional tensor. The value of the position (x, y, z) of the jth feature cube in the ith
convolutional layer can be calculated in Equation (5),

Vx,y,z
i,j = act(∑

m

Hi−1

∑
h=0

Wi−1

∑
w=0

Ci−1

∑
c=0

kh,w,c
i,j,m V(x+h),(y+w),(z+c)

(i−1),m + bi,j) (5)

The proposed MSSFN is based on a modular design, and it can be seen as a duplication
of the basic feature extraction module and its variants. Based on the two-dimensional
MultiResBlock proposed in the literature [52], three improved multiple residual learning
modules are proposed in this paper, which can be divided into two categories. One type is
the 3D spatial-spectral multiple residual modules, which are used to extract joint spatial-
spectral features; the other type is the 2D separable multiple residual module, which is used
for spatial feature enhancement based on depth-separable convolutional layers. The general
schematic diagram of the multiple residual modules is shown in Figure 1 and contains two
branches. Branch A contains three convolutional layers for extracting multi-scale features,
where the multi-scale characteristics are reflected in the concatenation of three consecutive
convolutional layers. Branch B uses global residual connections for inter-block feature
fusion.
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In this paper, two types of multi-residual modules are designed to extract mixed
spatial-spectral features using 3D convolution and 2D convolution, respectively, and the
basic information of the modules is shown in Table 1. The convolutional kernel sizes of
the two branches for the two 3D multi-residual modules are set to 1× 1× 3, 1× 1× 7
and 3× 3× 1, 7× 7× 1, respectively. The two 3D multi-residual modules are combined
to extract spatial-spectral features, and it is much more memory-efficient than the kernel
size combination of 3× 3× 3 and 7× 7× 7 adopted in M-HybridSN. The convolutional
kernel size in branch B is larger than that in branch A to learn global spatial-spectral
features [38]. The 2D multi-residual module uses depth-separable convolution with large
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convolution kernels (5× 5) for spatial feature reinforcement and global residual connections
with 1× 1 convolution for information transfer enhancement. Depth separable convolution
divides the ordinary two-dimensional convolution into two steps: depth convolution
and point-wise convolution, which can effectively reduce the number of parameters and
operations [37–39]. In this paper, the three multi-residual module feature learning processes
can be uniformly expressed in Equation (6),

MultiRes(x) = [k3(k2(k1(x))), k2(k1(x)), k1(x)]
⊕

kglobal(x) (6)

where ki(x) denotes the non-linear transformation by the ith convolutional layer; kglobal()
represents the non-linear transformation by the global residual connection; [] represents the
feature map concatenation and

⊕
denotes pixel-wise addition. The literature [53] stated

that if successive convolutional layers are used, there is a square relationship between
the number of convolutional kernels in the first layer and the memory consumption.
Therefore, in order to reduce the memory consumption, the number of kernels in the three
convolutional layers is no longer equal, but the ratio is set to 1:2:3 with reference to [52].

Table 1. Basic information of the three MultiResBlock.

Name Convolution Type Kernel Size in
Branch A

Kernel Size in
Branch B

3D Spectral
MultiResBlock 3D 1 × 1 × 3 1 × 1 × 7

3D Spatial MultiResBlock 3D 3 × 3 × 1 7 × 7 × 1
2D Separable

MultiResBlock Separable 2D 5 × 5 1 × 1

The above three multiple residual modules are the basic building blocks of the MSSFN,
and pipelined stacking in the network learns features with increasing levels of abstraction.
In order to further utilize the intermediate results and construct diverse feature learning
paths, a cross-layer feature fusion model is designed, as shown in Figure 2. Suppose
the output dimension of the features extracted by the two 3D multi-residual blocks be
h3d ×w3d × b3d ×C, and the dimension of the features will be adjusted to h3d ×w3d × 1×C
using the global 3D convolutional layer with the kernel size of 1 × 1 × b3d. To meet
the requirements of the subsequent 2D convolutional layer, the adjusted features will be
reshaped to a 3D tensor of h3d × w3d × C. This design avoids the problem of the excessive
number of channels after direct reshaping, which is one of the most significant drawbacks of
mixed CNN models. The multi-residual module implements an intra-block feature fusion,
and the structure shown in Figure 2 implements inter-block cross-layer feature fusion.
The two feature fusion methods constitute a cascade feature fusion pattern. Compared
with the idea of fusing features extracted by different types of convolutional layers with
max-pooling proposed by R-HybridSN, the cascade feature fusion pattern in this paper is
more thorough. In addition, the three modules have obvious differences in the extracted
features due to different kernel sizes and convolution types. The cascade feature fusion
pattern can make full use of the large feature variability to improve the applicability to
different types of hyperspectral images.

2.3. Second-Order Pooling

Before classification, several fully connected layers are commonly used to further
integrate the features extracted from the convolutional layers. This approach leads to a
high parameter number and cannot effectively eliminate the negative impact of redundant
features on the classification. Max-pooling and average pooling layers are usually adopted
to filter the noise in the features; however, this approach utilizes only first-order statistical
features and the relationship between different channels are not considered. Second-order
pooling (SOP) was proposed by Carreira et al. and can mine second-order statistical
information of image features [54]. In order to make full use of the features extracted



Remote Sens. 2022, 14, 505 7 of 23

from the convolutional layers, SOP is inserted in MSSFN to further process the mixed
spatial-spectral features extracted from the three modules in Section 2.2.
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Suppose the fused features extracted by the three multi-residual blocks be denoted
as Ff used, and its dimension is H ×W × C. Ff used can be divided into three groups, corre-
sponding to three multi-residual blocks. The three groups of features have large variability
and direct pooling will not take into account such variability and the relationship among
channels. Therefore, the fused features are further processed using second-order pooling.
Firstly, the spatial dimension of Ff used is reshaped, and the reshaped features are denoted
as Fresh with dimension of HW × C. The second-order pooling is calculated as shown in
Equation (7),

Fsop = FT
reshFresh (7)

where Fsop represents the second-order pooling features and its dimension is C× C; FT
resh

denotes the transpose matrix of Fresh and its dimension is C× HW. The value in column
j of row i, fij, is the result of multiplying the ith channel and the jth channel, which can
indicate the correlation between these two channels, and the larger the value, the stronger
the correlation. The C elements on the diagonal of Fsop can be regarded as the result of the
weighted average of the C channels, which can express the characteristics of the channel
itself. Therefore, the Fsop contains not only the features of the original C channels, but also
the correlation between different channels.

The schematic diagram of SOP processing for the fused features is shown in Figure 3.
In order to further improve the feature robustness, L2 normalization was utilized along the
channel dimension and the calculation process is shown in Equation (8),

f L2
i =

fi√
∑C

c=1 f 2
c

(8)

where f L2
i represents the L2 normalization result of the feature, fi, of ith channel. The

SOP and the L2 normalization can be inserted to the network and trained in an end-to-
end manner. In fact, SOP is a special case of bilinear pooling which was proposed in the
literature [55].

2.4. Hyperspectral Image Classification Based on MSSFN

The structure of the MSSFN network is shown in Figure 4, where the convolutional
kernel sizes and kernel numbers are marked for each convolutional layer. The MSSFN
takes the hyperspectral image patch after factor analysis processing as input, and the
land-use type is determined by the center pixel. Every hyperspectral patch can be denoted
as PM×M×C, where M is the predefined neighborhood size and C is the band number after
dimension reduction.



Remote Sens. 2022, 14, 505 8 of 23Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 23 
 

 

 
Figure 3. Schematic diagram of SOP. 

2.4. Hyperspectral Image Classification Based On MSSFN 
The structure of the MSSFN network is shown in Figure 4, where the convolutional 

kernel sizes and kernel numbers are marked for each convolutional layer. The MSSFN 
takes the hyperspectral image patch after factor analysis processing as input, and the land-
use type is determined by the center pixel. Every hyperspectral patch can be denoted as 𝑃 × × , where 𝑀 is the predefined neighborhood size and 𝐶 is the band number after 
dimension reduction. 

 
Figure 4. Schematic diagram of MSSFN. 

Hyperspectral image classification based on MSSFN can be divided into four stages, 
namely factor analysis for dimensionality reduction, mixed spatial-spectral feature extrac-
tion and cascade fusion, second-order pooling, and classification. Factor analysis models 
the covariance structure of hyperspectral data while acting as a dimensionality reduction 
method to extract features with high discriminative power and low redundancy. The 
mixed spatial-spectral features are extracted through three multi-residual modules. The 
two 3D multi-residual modules extract spatial-spectral features from two directions, and 
the 2D separable multi-residual module further strengthens the spatial features as a com-
plement to the 3D spatial-spectral features. The features extracted by the 3D modules are 
downscaled by global 3D convolution, and all the features are fused through concatena-
tion. The intra-block feature fusion and the inter-block feature fusion together form a cas-
cade feature fusion pattern. Then second-order pooling and L2 normalization are used to 
further extract second-order statistical information of the fused features and enhance fea-
ture robustness. Finally, the classification is achieved by the output layer. The implemen-
tation details of MSSFN are shown in Table 2. 

Figure 3. Schematic diagram of SOP.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 23 
 

 

 
Figure 3. Schematic diagram of SOP. 

2.4. Hyperspectral Image Classification Based On MSSFN 
The structure of the MSSFN network is shown in Figure 4, where the convolutional 

kernel sizes and kernel numbers are marked for each convolutional layer. The MSSFN 
takes the hyperspectral image patch after factor analysis processing as input, and the land-
use type is determined by the center pixel. Every hyperspectral patch can be denoted as 𝑃 × × , where 𝑀 is the predefined neighborhood size and 𝐶 is the band number after 
dimension reduction. 

 
Figure 4. Schematic diagram of MSSFN. 

Hyperspectral image classification based on MSSFN can be divided into four stages, 
namely factor analysis for dimensionality reduction, mixed spatial-spectral feature extrac-
tion and cascade fusion, second-order pooling, and classification. Factor analysis models 
the covariance structure of hyperspectral data while acting as a dimensionality reduction 
method to extract features with high discriminative power and low redundancy. The 
mixed spatial-spectral features are extracted through three multi-residual modules. The 
two 3D multi-residual modules extract spatial-spectral features from two directions, and 
the 2D separable multi-residual module further strengthens the spatial features as a com-
plement to the 3D spatial-spectral features. The features extracted by the 3D modules are 
downscaled by global 3D convolution, and all the features are fused through concatena-
tion. The intra-block feature fusion and the inter-block feature fusion together form a cas-
cade feature fusion pattern. Then second-order pooling and L2 normalization are used to 
further extract second-order statistical information of the fused features and enhance fea-
ture robustness. Finally, the classification is achieved by the output layer. The implemen-
tation details of MSSFN are shown in Table 2. 

Figure 4. Schematic diagram of MSSFN.

Hyperspectral image classification based on MSSFN can be divided into four stages,
namely factor analysis for dimensionality reduction, mixed spatial-spectral feature extrac-
tion and cascade fusion, second-order pooling, and classification. Factor analysis models
the covariance structure of hyperspectral data while acting as a dimensionality reduction
method to extract features with high discriminative power and low redundancy. The mixed
spatial-spectral features are extracted through three multi-residual modules. The two 3D
multi-residual modules extract spatial-spectral features from two directions, and the 2D
separable multi-residual module further strengthens the spatial features as a complement
to the 3D spatial-spectral features. The features extracted by the 3D modules are down-
scaled by global 3D convolution, and all the features are fused through concatenation. The
intra-block feature fusion and the inter-block feature fusion together form a cascade feature
fusion pattern. Then second-order pooling and L2 normalization are used to further extract
second-order statistical information of the fused features and enhance feature robustness.
Finally, the classification is achieved by the output layer. The implementation details of
MSSFN are shown in Table 2.
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Table 2. The implementation details of MSSFN.

Module Output Shape Kernel Size Filters

Input (15, 15, 16, 1)
Conv first (15, 15, 16, 24) (3, 3, 3) 24

3D Spectral MultiResBlock (15, 15, 16, 24) (1, 1, 3), (1, 1, 3), (1, 1, 3), (1, 1, 7) 4, 8, 12, 24
Global 3D Conv 1 (15, 15, 1, 24) (1, 1, 16) 24

Reshape-1 (15, 15, 24)
3D Spatial MultiResBlock (15, 15, 16, 24) (3, 3, 1), (3, 3, 1), (3, 3, 1), (7, 7, 1) 4, 8, 12, 24

Global 3D Conv 2 (15, 15, 1, 24) (1, 1, 16) 24
Reshape-2 (15, 15, 24)

2D Separable MultiResBlock (15, 15, 24) (5, 5), (5, 5), (5, 5),
(1, 1) 4, 8, 12, 24

Concatenation (15, 15, 72)
Second-order pooling (72, 72)

L2 normalization
Flatten 5184

Output Number of
classes

To accelerate network training and reduce overfitting, a batch normalization (BN)
layer was inserted after each convolutional layer, and the calculation process is shown in
Equation (9),

x̂i =
xi − 1

n ∑n
i=1 xi√

1
n ∑n

i=1 (xi − 1
n ∑n

i=1 xi)
2
+ ε

(9)

where n is the batchsize; xi the ith sample of that batch; ε is a small value to ensure that the
denominator is not zero. Rectified Linear Unit (ReLU) is adopted as non-linear activation
function and the calculation process can be expressed as follows,

f (x) =
{

0, i f x < 0
x, i f x ≥ 0

(10)

Softmax activation function is adopted in the output layer and it can be calculated as
Equation (11),

S(x)j =
exj

∑P
p=1 exp

(11)

where xj represents the value of the jth neuron of the output layer before activation; S(x)j
represents the value of the jth neuron after activation and denotes the probability that the
center pixel of the input patch belongs to the as jth class; P represents the class number.

3. Experimental Results and Analysis
3.1. Experimental Datasets

Three real-world hyperspectral datasets with different spatial and spectral resolutions,
Indian Pines (IP), Houston (HU), and University of Pavia (PU), were used for verifying the
effectiveness of MSSFN. The basic information of the three datasets is shown in Table 3. For
the IP and PU datasets, the number of bands after denoising is given in Table 3. It should
be noted that the HU dataset was originally released during the 2013 Data Fusion Contest
by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and
Remote Sensing Society, so it is also named “2013_IEEE_GRSS_DF_Contest”.
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Table 3. Basic information of IP, HU, PU datasets.

No. IP HU PU

Spectral range (µm) 0.4~2.5 0.38~1.05 0.43~0.86
Number of bands

used for classification 200 144 103

Data size (pixel) 145 × 145 349 × 1905 610 × 340
Spatial resolution (m) 20 2.5 1.3

Number of labeled data 10,249 15,029 42,776
Number of classes 16 15 9

In our experiments, the labeled samples of the three datasets were randomly divided
into the training set, validation set and test set. In order to investigate the performance
of our proposed model under small sample conditions, only 5%, 3%, and 1% of labeled
samples of IP, HU, PU were used to train the model. The validation set, which has the same
proportion of samples as the training set, is not involved in training and is only used to
obtain the well-trained model. For the three datasets of IP, HU, and PU, the number of
training samples of each class of ground object was small at the rate of 5%, 3%, and 1%,
respectively. For example, some classes of the IP dataset only contain one to two training
samples. The detailed distribution of training, validation, and testing samples for IP, HU,
and PU datasets is shown in Tables 4–6.

Table 4. Detailed sample distribution of training, validation and testing in Indian Pines.

No. Category Labeled Samples Training Validation Testing

1 Alfalfa 46 2 3 41
2 Corn-notill 1428 71 72 1285
3 Corn-mintill 830 42 41 747
4 Corn 237 12 12 213
5 Grass-pasture 483 24 24 435
6 Grass-trees 730 36 37 657
7 Grass-pasture-mowed 28 2 1 25
8 Hay-windrowed 478 24 24 430
9 Oats 20 1 1 18
10 Soybean-notill 972 48 49 875
11 Soybean-mintill 2455 123 122 2210
12 Soybean-clean 593 30 29 534
13 Wheat 205 10 10 185
14 Woods 1265 63 63 1139
15 Buildings-Grass-trees-drives 386 19 20 347
16 Stone-steel-towers 93 5 4 84

Total 10,249 512 512 9225

3.2. Contrast Models and Experimental Settings

The experimental hardware environment is R7 5800H CPU; RTX3060 graphics card
with 6G video memory; 32G RAM. The software environment is Tensorflow 2.4, Python
3.7. To verify the effectiveness of MSSFN, Res-3D-CNN [26], M-HybridSN [38], AD-
HybridSN [39], DFFN [27] and MCNN-CP [40] mentioned above are selected as the contrast
models for the experiments. The convolution type, number of parameters, and input data
size of each model are shown in Table 7. The input data size is expressed as the product
of the input data length, width, and number of bands, taking the number of bands in the
IP dataset as an example. The number of parameters and the input data size reflects the
complexity of the model to a certain extent. The number of parameters of the MSSFN
proposed in this paper is much less than the contrast models, and the input data size is
moderate.
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Table 5. Detailed sample distribution of training, validation and testing in Houston.

No. Category Labeled Samples Training Validation Testing

1 Grass Healthy 1251 37 38 1176
2 Grass Stressed 1254 38 37 1179
3 Grass Synthetis 697 21 21 655
4 Tree 1244 38 37 1169
5 Soil 1242 37 37 1168
6 Water 325 9 10 306
7 Residential 1268 38 38 1192
8 Commercial 1244 38 37 1169
9 Road 1252 37 38 1177

10 Highway 1227 37 37 1153
11 Railway 1235 37 37 1161
12 Parking Lot 1 1233 37 37 1159
13 Parking Lot 2 469 14 14 441
14 Tennis Court 428 13 13 402
15 Running Track 660 20 20 620

Total 15,029 451 451 14,127

Table 6. Detailed sample distribution of training, validation and testing in University of Pavia.

No. Category Labeled Samples Training Validation Testing

1 Asphalt 6631 66 66 6499
2 Meadows 18,649 186 186 18,277
3 Gravel 2099 21 21 2057
4 Trees 3064 30 31 3003

5 Painted metal
sheets 1345 14 13 1318

6 Bare Soil 5029 50 50 4929
7 Bitumen 1330 14 13 1303

8 Self-Blocking
Bricks 3682 37 37 3608

9 Shadows 947 9 10 928
Total 42,776 427 427 41,922

Table 7. The convolution type, parameter number and the input data size of MSSFN and the
contrast models.

Models Res-
3D-CNN

M-
HybridSN

AD-
HybridSN DFFN MCNN-CP MSSFN

Convolution type 3D 3D–2D 3D–2D 2D 3D-2D 3D-2D
Parameter number 231,184 659,296 366,662 2,080,912 1,654,368 159,012

Input data size 9 × 9 × 200 15 × 15 × 16 15 × 15 × 16 25 × 25 × 3 11 × 11 × 30 15 × 15 × 16

The various settings of the contrast models in the experiments are kept consistent
with the corresponding papers. The MSSFN proposed in this paper uses Adam as the
optimizer, with the learning rate set to 0.001 and the number of training epochs set to 100.
The classification accuracy of the validation set is monitored during training, and the model
with the highest accuracy in the validation set is saved within the specified number of
training epochs.

3.3. Experimental Results

The following three widely adopted evaluation indices are used to quantitatively
evaluate the performance of MSSFN and the contrast models.
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(1) Overall accuracy (OA). It is an overall evaluation index of the classifier and it is
calculated by the number of correctly classified pixels divided by the total number of
pixels.

(2) Average accuracy (AA). This index refers to the average accuracy of all types of
ground objects and it will be greatly affected by a small number of hard samples.

(3) Kappa coefficient. The Kappa is an index based on the confusion matrix. It is thought
to be a more robust evaluation metric and it can reflect the degree of agreement
between the ground truth map and the predicted map [56].

Tables 8–10 show the classification results of each model for IP, HU, and PU, containing
the classification accuracy of each class and the results of the three overall indicators OA,
AA, and Kappa. Ten consecutive experiments were conducted using each model for each
dataset, and the average accuracy was given in the three tables. For the three overall
indicators, OA, AA, and Kappa, standard deviations were shown after ±. The bold format
in the tables represents the best result.

Table 8. Classification results (%) of different models in the IP dataset.

No. Res-3D-CNN M-HybridSN AD-HybridSN DFFN MCNN-CP MSSFN

1 18.05 61.95 56.83 75.12 64.39 98.54
2 86.08 95.14 94.98 95.05 95.57 97.39
3 73.92 98.26 98.51 98.13 98.10 99.93
4 59.91 93.76 97.00 99.39 98.12 100.00
5 95.45 97.29 97.06 96.55 95.93 97.89
6 96.53 98.40 98.40 96.89 98.26 99.57
7 84.00 98.40 98.80 99.20 95.20 97.20
8 98.86 99.95 99.95 98.51 99.77 100.00
9 65.56 81.11 76.67 75.00 67.22 36.67

10 85.25 95.83 95.77 97.39 95.81 98.35
11 90.21 98.73 98.81 98.45 98.54 99.26
12 68.07 90.11 91.10 93.93 92.53 93.43
13 88.05 97.62 98.43 97.95 98.70 99.35
14 97.09 99.33 98.80 97.59 98.25 99.75
15 81.53 96.14 97.38 94.15 91.99 99.05
16 94.52 94.64 97.26 95.83 96.67 94.76

Kappa 85.24 ± 1.99 96.56 ± 0.34 96.70 ± 0.41 96.54 ± 0.35 96.43 ± 0.52 98.31 ± 0.20
OA 87.10 ± 1.72 96.99 ± 0.30 97.11 ± 0.36 96.96 ± 0.31 96.87 ± 0.46 98.52 ± 0.17
AA 80.19 ± 1.66 93.54 ± 1.51 93.48 ± 1.76 94.32 ± 0.83 92.82 ± 1.22 94.45 ± 1.68

From Tables 8–10, it can be seen that the classification accuracy of Res-3D-CNN is
significantly lower than other methods. The biggest difference is that Res-3D-CNN does not
adopt prior dimensionality reduction. It is speculated that hyperspectral data redundancy
has a greater adverse effect on classification accuracy when the training samples are very
limited, and 2 × 2 × 4 max-pooling layer alone is not enough to remove data redundancy.
The OA of DFFN using only 2D convolution outperformed the Res-3D-CNN by 9.86%,
4.38%, and 7.79% in the three datasets, IP, HU, and PU, respectively. Moreover, in IP and PU
datasets, the OA of DFFN is even higher than the simpler structured mixed convolutional
network, MCNN-CP. The above observations verify the importance of deep feature fusion.

The three improved mixed CNN models, M-HybridSN, AD-HybridSN, and MSSFN
outperform other models, among which MSSFN proposed in this paper achieves the best
OA in all datasets. For example, in the IP dataset, the OA of MSSFN was 11.42%, 1.53%,
1.41%, 1.56%, and 1.65% higher than that of Res-3D-CNN, M-HybridSN, AD-HybridSN,
DFFN, and MCNN-CP, respectively; the OA of MSSFN in the PU dataset is 9.45%, 1.18%,
0.85%, 1.66%, and 1.66 higher than Res-3D-CNN, M-HybridSN, AD-HybridSN, DFFN, and
MCNN-CP, respectively. In the HU datasets, although the proposed MSSFN significantly
outperforms all the contrast models, all models perform poorly in this dataset. This is
presumably due to the large size of the dataset, as well as the small number of available
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samples and the large intra-class variation. Although MSSFN achieved the highest classi-
fication accuracy in all datasets, its classification accuracy of class 9 in the IP dataset was
significantly lower than the other methods. No similar phenomenon was observed in other
classes or other datasets. At present, the reason behind this phenomenon is not clear, and
we will pay continued attention to the issue in the future.

Table 9. Classification results (%) of different models in the HU dataset.

No. Res-3D-CNN M-HybridSN AD-HybridSN DFFN MCNN-CP MSSFN

1 97.71 95.80 93.56 96.79 96.74 94.05
2 97.07 99.44 99.63 97.46 99.64 99.08
3 97.68 99.53 99.83 96.81 99.89 99.47
4 93.33 91.01 92.98 90.97 93.73 92.75
5 98.99 99.97 99.97 99.08 99.99 99.98
6 68.50 80.42 76.76 76.05 86.86 76.70
7 87.71 88.09 92.98 89.73 92.89 96.63
8 86.49 94.45 95.30 91.29 94.22 95.08
9 82.53 82.58 93.21 85.19 90.94 95.40

10 79.50 94.74 92.92 98.68 93.34 93.90
11 78.66 97.91 99.89 96.11 98.32 99.92
12 89.12 98.55 98.25 96.62 97.03 98.63
13 83.06 88.05 91.50 84.60 90.00 91.63
14 96.52 100.00 100.00 99.20 100.00 100.00
15 99.58 99.73 99.56 98.53 99.06 99.18

Kappa 88.71 ± 1.14 93.93 ± 0.40 95.43 ± 0.46 93.44 ± 0.72 95.44 ± 0.34 96.01 ± 0.35
OA 89.56 ± 1.05 94.39 ± 0.37 95.78 ± 0.43 93.94 ± 0.67 95.78 ± 0.31 96.31 ± 0.32
AA 89.10 ± 1.18 94.02 ± 0.35 95.09 ± 0.39 93.14 ± 0.71 95.51 ± 0.35 95.49 ± 0.40

Table 10. Classification results (%) of different models in the PU dataset.

No. Res-3D-CNN M-HybridSN AD-HybridSN DFFN MCNN-CP MSSFN

1 92.62 95.83 95.98 97.15 95.62 98.93
2 95.70 99.89 99.77 99.78 99.83 99.91
3 66.67 92.86 93.58 91.77 88.79 97.47
4 96.40 92.74 92.97 91.46 92.06 93.49
5 99.81 99.19 99.25 96.74 99.34 98.96
6 80.18 99.74 99.86 99.00 96.89 99.81
7 65.18 95.96 94.24 81.60 94.10 99.98
8 74.08 95.27 97.98 97.08 89.78 98.39
9 97.24 91.23 96.01 89.43 90.05 92.09

Kappa 85.89 ± 1.45 96.89 ± 0.30 97.32 ± 0.62 96.24 ± 0.89 95.30 ± 0.61 98.45 ± 0.24
OA 89.38 ± 1.10 97.65 ± 0.23 97.98 ± 0.47 97.17 ± 0.66 96.46 ± 0.46 98.83 ± 0.18
AA 85.32 ± 1.41 95.86 ± 0.61 96.63 ± 1.06 93.78 ± 1.74 94.05 ± 1.19 97.67 ± 0.32

Figures 5–7 show the false-color image, the ground truth, and the predicted map
of each contrast model and MSSFN in IP, HU, and PU. The visual comparison results in
Figures 5–7 and quantitative evaluation results in Tables 7–9 lead to a similar conclusion.
Generally speaking, there is less noise and better homogeneity in the classification result
maps obtained by MSSFN for the three datasets, which are closer to the real-world dis-
tribution maps. The above results validate the effectiveness of MSSFN. The proposed
classification framework composed of factor analysis, mixed spatial-spectral feature cas-
cade fusion, and second-order pooling can learn the spatial-spectral features with stronger
discriminative power.
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MSSFN, respectively.
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and MSSFN, respectively.

4. Discussion
4.1. Comparison with Other Dimension Reduction Methods

In order to further explore the applicability of different dimensionality reduction (DR)
methods combined with MSSFN for hyperspectral classification, PCA, sparse PCA (SPCA),
Gaussian random projection (GRP), and sparse random projection (SRP) were chosen to
compare with FA. The PCA is the widely adopted DR method, and the SPCA is its variant,
which aims to extract the sparse components that best represent the data. GRP and SRP are
two simple and computationally efficient DR methods. The dimensions and distribution
of random projection matrices are controlled to preserve the pairwise distances between
any two samples of the dataset. The GRP relies on a normal distribution to generate the
random matrix, and the SRP relies on a sparse random matrix. Furthermore, the FA with
two rotation methods, which are named FA-varimax and FA-quartimax corresponding
to the maximum of variance and the quartic variance, are also adopted to compare with
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the original FA. The experimental settings were kept consistent with Section 3.3. The
experimental results are shown in Table 11.

Table 11. Comparison of OA (%) using different dimensionality reduction methods for MSSFN (the
bold format represents the best result).

Methods IP HU PU

PCA 98.12 96.00 98.67
SPCA 97.96 94.87 97.87
GRP 97.50 94.23 97.74
SRP 97.36 94.07 97.75

FA-varimax 98.44 96.12 98.78
FA-quartimax 98.41 96.07 98.77

FA 98.52 96.31 98.83

From the experimental results shown in Table 11, it is clear that FA significantly
outperforms other DR methods in the IP dataset, and the OA improves 0.40%, 0.56%, 1.02%,
and 1.16% compared with PCA, SPCA, GRP, and SRP, respectively. In the HU dataset, the
OA obtained by the FA method is 0.31% higher than that of PCA. The above experimental
results verified the effectiveness of covariance information for hyperspectral classification.
The two rotation methods of FA have a negative impact on the classification accuracy, and
it is speculated that the interpretability and the discriminability of the extracted factors for
the hyperspectral images are to some extent contradictory. The accuracy of SPCA is lower
than that of PCA, and it varies widely in different datasets, indicating that its robustness for
feature extraction of different hyperspectral data is insufficient. GRP and SRP, as random
projection methods, also lack robustness for classification hyperspectral using few labeled
samples, and the accuracy varies widely in IP and SA compared with other DR methods.
The above results verify the effectiveness of the combination of FA and MSSFN for small
sample hyperspectral classification.

4.2. Model Ablation Experiments

The MSSFN proposed in this paper is based on cascade fusion of mixed spatial-spectral
features, and the higher-order statistical information of the fused features is extracted
using second-order pooling. To further verify the effectiveness of the above designs,
ablation experiments are conducted in this section. Four ablation models are made for
this experiment, and they are named as model 1, model 2, model 3, and model 4. The
description of each model and the experimental results are shown in Table 12.

Table 12. OA results of model ablation experiments.

Methods IP/% HU/% PU/% Model Description

Model 1 98.12 96.06 98.76 Inter-block feature using pixel-wise addition
Model 2 97.80 95.93 98.79 Without inter-block feature fusion
Model 3 96.09 91.43 96.67 Without inter-block and intra-block feature fusion
Model 4 97.73 95.64 98.81 Without SOP
MSSFN 98.52 96.31 98.83 Proposed method

The experimental results in Table 12 indicated that MSSFN has the best overall clas-
sification accuracy in the three datasets, verifying the effectiveness of cascade fusion and
second-order pooling. The OA of MSSFN has improved by 0.40% and 0.25% over model 1
in the IP and HU datasets, respectively. It is indicated that for mixed spatial-spectral fea-
tures, using pixel-by-pixel addition will cause some information loss, which is unfavorable
for classification. The classification accuracy of model 2 and model 3 is lower than that of
MSSFN, and the accuracy of model 2 is significantly better than that of model 3, indicating
the effectiveness of the cascade feature fusion pattern consisting of inter-block feature
fusion and intra-block feature fusion. The OA of MSSFN is significantly higher than that
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of model 4 in IP and HU datasets. Meanwhile, model 4 and MSSFN have approximately
equal OA in the PU dataset, and it is presumed that the first-order statistical features are
sufficient to distinguish features for the PU dataset. Since the original channel features are
included in the SOP calculation process, the classification accuracy is not degraded, and the
above results verify the effectiveness of SOP for hyperspectral small sample classification.
However, how to better integrate the first-order features and second-order features to
improve the classification accuracy for different types of hyperspectral datasets on the basis
of convolutional extracted features needs further study.

4.3. The Performance of MSSFN under Extreme Small Sample Cases

The work in this paper revolves around the problems in small sample hyperspectral
classification tasks, and the effectiveness of the related designs have been verified in
Sections 4.1 and 4.2, respectively. To further verify the applicability of MSSFN under small
sample conditions, two extreme small sample cases will be considered in this section.

(1) Fixed small training sample ratio case. Since the training sample number of some
ground objects in the IP dataset has been reduced to one at the 5% ratio, the PU and
HU datasets are chosen for the fixed small sample ratio case experiments. The training
sample ratios of PU and HU are further reduced to 0.75%, 0.5%, 0.25%, and 2.25%,
1.5%, 0.75% of the total number of labeled samples, respectively.

(2) Balanced small training sample number case. This means the training sample number
of every class is equal. HU dataset with relatively low classification accuracy in Sec-
tion 3 was selected for the balanced small training sample number case experiments,
and the sample number of each class is set to 10, 20 and 30, respectively.

The other experimental settings remained the same as in Section 3. The experimental
results of the above two cases are shown in Tables 13 and 14, respectively.

Table 13. OA results (%) of MSSFN and the contrast models in PU and HU dataset under fixed small
training sample ratio case.

Models
PU HU

0.25% 0.5% 0.75% 1% 0.75% 1.5% 2.25% 3%

Res-3D-CNN 76.65 83.68 88.28 89.38 73.10 81.26 88.64 89.56
M-HybridSN 89.26 94.10 97.46 97.65 80.52 87.92 92.74 94.39

AD-HybridSN 92.17 95.87 98.35 97.98 84.11 90.46 94.68 95.78
DFFN 84.03 92.37 96.07 97.17 75.99 85.08 90.77 93.94

MCNN 86.35 92.09 95.86 96.46 82.40 89.68 94.51 95.78
MSSFN 94.19 97.81 98.57 98.83 85.88 91.23 95.86 96.31

Table 14. OA and AA results (%) of MSSFN and the contrast models in HU dataset under balanced
small training sample number case.

Models
10 20 30

OA AA OA AA OA AA

Res-3D-CNN 75.10 77.47 86.05 87.78 89.24 90.40
M-HybridSN 83.03 85.39 90.05 91.47 93.53 94.63

AD-HybridSN 86.04 88.05 92.72 93.89 94.84 95.73
DFFN 78.59 81.56 89.18 90.55 92.34 93.40

MCNN 83.04 85.56 92.23 93.49 94.67 95.64
MSSFN 87.85 89.20 93.44 94.50 95.83 96.45

By analyzing the above experimental results, the following conclusions can be drawn.

(1) MSSFN achieved the highest classification accuracy in both extreme small sample
cases. Furthermore, the advantage of MSSFN over other methods enlarges with the
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decreasing sample size. Therefore, the experimental results in this section further
validate the effectiveness of our proposed methods in the extreme small sample cases.

(2) The classification accuracy of all models degrades when the number of training
samples decreases. The relative ranking relationships between the classification
accuracy of each model remain the same. Meanwhile, the accuracy gap gradually
enlarges. In general, the three improved mixed CNN models, namely M-HybridSN,
AD-HybridSN, and MSSFN, have obvious advantages compared with other models
in extreme small sample cases. It can be inferenced that the superiority in terms of
low parameter number and network structure is stable in small sample hyperspectral
classification tasks. The lower the sample size is, the more noticeable this advantage
is compared with other models.

(3) The sample distribution has a significant influence on classification accuracy. In the
balanced small training sample number case, the AA values of all models are larger
than the OA. In the fixed small training sample ratio case, this is the other way round.
In the real-world hyperspectral classification tasks, we believe that the fixed training
sample ratio case is more common, since there exist giant variabilities in the difficulty
of labeling different kinds of ground objects. Since AA is a vital evaluation metric,
the active learning strategy can be adopted to manually label valuable samples. The
sample distribution and active learning need further investigation.

4.4. Computional Time

The computational time of most current 3D-CNN-based spatial-spectral methods
for hyperspectral classification is very long and affects its practicability in real-world
hyperspectral classification tasks. Therefore, computational time has had considerable
attention paid to it in our research from the very beginning. Many factors affect the running
time of the model, such as hardware environment, model parameters, frequency of residual
connections usage, structural complexity, etc. In this section, the lightweight design of
MSSFN will be introduced, and the running time of MSSFN and the contrast models will
be discussed and analyzed.

The parameter scale of MSSFN is much smaller than the contrast models, and due
to this, the convolutional kernels in MSSFN are designed in a spatial-spectral separable
manner. For example, the 7 × 7 × 7 convolutional kernel is divided into two 7 × 7 × 1
and 1 × 1 × 7 kernels for the two 3D multiple residual blocks. The above spatial-spectral
separable manner will significantly reduce the parameter number and computation time.
The depth-separable convolutional layers are adopted in our model, and they are computa-
tionally efficient. Table 15 shows the training time and testing time of MSSFN and each
contrast model in the IP dataset, which has the largest training sample number (512) and
the longest training time. The running time results in the table are the average running
time of ten experiments.

Table 15. The training time (s) and testing time (s) on the IP dataset of MSSFN and the contrast
models.

Models Res-
3D-CNN

M-
HybridSN

AD-
HybridSN DFFN MCNN-

CP MSSFN

Training time (s) 231.0 66.6 67.8 158.8 31.0 92.4
Testing time (s) 5.0 2.6 3.0 3.0 1.0 3.0

Res-3D-CNN focuses on analyzing the raw hyperspectral data and extracting spatial-
spectral features using continuous 3 × 3 × 3 convolutional layers; DFFN improves clas-
sification accuracy by stacking 2D residual blocks, and it has far more layers than other
models. The running time of Res-3D-CNN and DFFN is much longer than the other mod-
els, indicating that excessive usage of the 3D convolutional layer and deep network has a
negative influence on the running time. As for the four mixed CNN models, M-HybridSN,
AD-HybridSN, MCNN-CP, and MSSFN, it seems that the complexity of the network struc-
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ture has a great influence on the running time. MCNN-CP, with the simplest structure, has
the shortest running time, but its classification accuracy is not ideal in our experiments.

M-HybridSN and AD-HybridSN do not adopt a global feature fusion scheme, and
the features learned by the shallow layers of the network cannot directly affect the final
classification. On the contrary, our proposed MSSFN adopts a cascade feature fusion pattern
and improves the hyperspectral classification accuracy under small sample conditions. The
running time of MSSFN is shorter than that of Res-3D-CNN and DFFN. As an improved
mixed convolutional network model, MSSFN has prominent lightweight characteristics
compared with 3D-CNN with a similar layer number and deeper 2D-CNN. However, the
running time of MSSFN is longer than that of M-HybridSN and AD-HybridSN, which can
be seen as the cost of model complexity. Frequent feature fusions result in intermediate
results that must be saved and taken into account when calculating gradients. This case
will increase the training time. We believe that the computational time of MSSFN is
moderate and acceptable, but we will continue to pay attention to this issue, look for a
more lightweight network design scheme, and strive to improve the classification accuracy
without increasing the running time.

4.5. Comparison with Other Methods Which Are Not Focused on CNN Architectures

Some advanced CNN-based models have been compared with MSSFN, and in-depth
analysis of MSSFN has been provided in terms of ablation experiments, running time,
and extreme small sample cases in the above sections. As discussed in the introduction,
many researchers have proposed some novel methods which are not focused on CNN
architectures for small sample hyperspectral classification. Aiming at clearly locating the
meaning and value of MSSFN in the field of hyperspectral classification, some recently
released and advanced methods have been investigated and will be compared with MSSFN
near the end of this paper. The additional contrast methods are Rank-1 FNN [22], SS-
LSTM [57], S-DMM [58], and A-SPN [59]. A brief introduction to the above methods is as
follows, and they are not focused on CNN architectures.

(1) Rank-1 FNN. The Rank-1 FNN is a tensor-based method, and the weight parameters
satisfy the rank-1 canonical decomposition property. The parameters required to train
the classifier have been significantly reduced, and this method can provide a clear
explanation of hyperspectral classification results.

(2) SS-LSTM. The SS-LSTM was based on Long Short-Term Memory (LSTM) networks,
and it has two branches. Spatial-spectral feature learning is reflected in the different
ways of organizing hyperspectral input data in each branch.

(3) S-DMM. This method is based on deep metric learning. A simple 2D-CNN was
adopted as the feature embedding tool, and a distance-based classifier, KNN, was
used for classifying the unseen data.

(4) A-SPN. PCA, Batch Normalization, L2 normalization are adopted to extract first-
order features. The spatial attention and second-order pooling are combined to
extract higher-order features. This pure attention-based method abandons complex
hyperparameters of convolutional layer and has obvious lightweight characteristics.

We have trained the A-SPN model from scratch, during which we used some public
available codes which can be found at https://github.com/ZhaohuiXue/A-SPN-release
(accessed on 13 January 2022). As for the other methods, the experimental results reported
in the literature [10,22] will be used for comparison. The experimental dataset is PU. 10, 50,
and 100 samples for every class will be randomly selected as the training set, respectively.
The comparison results are shown in Table 16.

https://github.com/ZhaohuiXue/A-SPN-release
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Table 16. The OA (%) comparison in the PU dataset between MSSFN and some advanced methods
which are not focused on CNN architectures.

Training Sample
Number for Each

Class

Reported Results in [10,22] Our Trained Models

Rank-1 FNN S-DMM SS-LSTM A-SPN MSSFN

10 84.55 69.59 86.52 88.21
50 89.95 94.04 84.50 97.23 98.59
100 93.50 94.65 87.19 98.88 99.43

By analyzing the above experimental results, the following conclusions can be drawn.

(1) The OA comparison with some advanced methods which are not focused on CNN
architectures further verify the effectiveness and research value of MSSFN.

(2) A-SPN can obtain competitive classification accuracies. Considering that it is a
classification framework only consisting of PCA, normalization technologies, and
attention-based second-order pooling, such a performance is very impressive. The
pure attention-based models will have continued attention paid to them in our future
research.

(3) The S-DMM, which is based on deep metric learning, can obtain a good accuracy
under small sample conditions. However, when the training sample is increased
from 50 to 100, the increase in accuracy is not significant. It is speculated that the
feature learning ability of the feature embedding model is not sufficient. Our proposed
model will be considered to combine with metric learning to further improve the
classification accuracy.

Based on the above observations, we will keep studying how to further optimize the
structure of MSSFN on the one hand, and explore how to break through the limitations
of CNN-based methods and how to effectively integrate CNN with other methods on the
other hand.

5. Conclusions

In order to facilitate the small sample hyperspectral classification, the mixed spatial-
spectral feature fusion network, MSSFN, is proposed based on factor analysis, mixed spatial-
spectral feature cascade fusion, and second-order pooling. First, the covariance structure
of hyperspectral data is modeled by factor analysis, and the raw data is downscaled.
Then, the mixed spatial-spectral features are extracted by two 3D multi-residual modules
and one 2D multi-residual module, and the features extracted by the three modules are
concatenated. Finally, the second-order statistical features of the fused features are extracted
by second-order pooling, and classification is achieved by the fully connected layer. In the
experiments with three real-world hyperspectral datasets with different spatial resolutions
and spectral characteristics, IP, HU, and PU, with very few samples, MSSFN achieves
the best classification accuracy compared with other models. The extensive experimental
results verify the effectiveness of MSSFN in the small sample hyperspectral classification
tasks.

Although MSSFN has an ideal performance in small sample hyperspectral classifica-
tion, the improvement of second-order pooling in some datasets is not so obvious. How
to better integrate the first-order and second-order features to improve the classification
accuracy for different types of hyperspectral datasets needs further study. In our research,
FA is used for dimension reduction, and its effectiveness has been verified through abla-
tion experiments. In our future research, dimensionality reduction methods that can be
effectively paired with a mixed CNN model will receive continued attention. Furthermore,
deep few-shot learning and deep active learning will be paid more attention and our
proposed MSSFN can be used as a baseline model. In addition, MSSFN contains some
modular, highly re-usable designs, and they can be improved or applied in other remote
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sensing image classification tasks. We hope that the above designs will be inspiring to other
researchers and the ideas behind our proposed MSSFN can be further expanded.
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