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Abstract 

All positive examples are alike; each negative example 
is negative in its own way. 

During interactive multimedia information retrieval, 
the number of training samples fed-back by the user is 
usually small; furthermore, they are not representative for 
the true distributions�especially the negative examples. 
Adding to the difficulties is the nonlinearity in real-world 
distributions. Existing solutions fail to address these pro-
blems in a principled way. This paper proposes biased 
discriminant analysis and transforms specifically designed 
to address the asymmetry between the positive and 
negative examples, and to trade off generalization for 
robustness under a small training sample. The kernel 
version, namely �BiasMap�, is derived to facilitate non-
linear biased discrimination. Extensive experiments are 
carried out for performance evaluation as compared to 
the state-of-the-art methods.  

1. Introduction  

To design a content-based multimedia information 
retrieval system, one needs to address at least two issues: 
the first is how to find effective and compact 
representations for the data; the second is how to select 
distance metrics for data ranking in accordance with the 
human perception of the contents. The latter shall be dealt 
with in real-time with user in the loop because the metric 
dynamically depends upon the user and the context. This 
is the focus of this paper, i.e., real-time learning of 
distance metric, or feature space transformations based on 
the user interactions. For this purpose we will assume the 
selected feature representations are effective to the 
necessary extent. 

The need for on-line learning stems from the fact that 
different semantic concept lies in different subspace, and 
the selection of such subspaces cannot be done off-line in 
general, since different users at different times often have 
different interpretations or requests regarding the same 
piece of information. And it will be a burden for a regular 
user to tune the internal parameters for the machine to 
adapt to changes of subspace. Such difficulties have led to 
research efforts relating to on-line learning of user prefer-
ences, interpretations, or retrieval requirements. These are 

referred to as relevance feedback algorithms [14].  
A typical scenario for relevance feedback in content-

based image retrieval is as follows: 
• Machine provides initial retrieval results, through 

query-by-keyword, sketch, or example, etc.; 
Then, iteratively: 
• User provides judgment on the current results as to 

whether, and to what degree, they are relevant or 
irrelevant to her/his request; 

• The machine learns and tries again. 
It is worth noting that there are variants of relevance 

feedback algorithms that have used different assumptions 
from those adopted in this paper. For an extensive review 
and comparison the reader is referred to [14]. 

Initiated in document retrieval field, much of the 
relevance feedback research has been recently conducted 
in the field of content-based image retrieval (CBIR). But 
they can be suitable for retrieval of other media types as 
well. In this paper, we assume each image or each unit of 
information is represented by a vector. In the abstraction 
of the feature space, each unit becomes a point. Relevance 
feedback with both positive and negative training 
examples becomes a supervised classification problem, or 
an on-line learning problem in a batch mode, but with 
some unique characteristics [14].  

Most of the state-of-the-art techniques use ad hoc 
heuristics to deal with positive and negative feedbacks, 
imposing arbitrary feature independence assumptions 
[14]. Some techniques offer optimal solutions but only on 
positive examples [2], or only in a linear/Euclidean sense 
[6][8]. This paper proposes a novel scheme called 
BiasMap that can deal with positive and negative 
examples with non-linear densities asymmetrically in a 
principled way (Section 3). Extensive experiments and 
evaluations are reported in Section 4. 

2. Traditional discriminant analysis  

From the pattern analysis point of view, when only 
positive examples are to be considered and with Gaussian 
assumption, the whitening transformation is the optimal 
choice, which is equivalent to the use of Mahalanobis 
distance metric [3](cf. [6][8]). When both positive and 
negative examples are considered, instead of various 
seemingly plausible heuristics for feature-weighting [14], 



two optimal linear transformations based on the traditional 
discriminant analysis are worth discussing:  

2.1 Two-class or multi-class 

One is the two-class (or more specifically, �two-mode�) 
fisher discriminant analysis (FDA). The objective is to 
find a subspace in which the ratio of between-class scatter 
over within-class scatter is maximized. (See [3] or [5] for 
details.) However, it is part of the objective that negative 
examples shall cluster in the discriminating subspace. This 
is an unnecessary and potentially damaging requirement 
since very likely the negative examples belong to multiple 
classes/modes; furthermore the limited number of nega-
tive examples cannot represent the true distribution well. 
(One alternative is to take random samples and assume all 
of them to be negative examples, which is not true but 
may hold with high probability [11].)  

Another choice is to use multiple discriminant analysis 
(MDA), where we treat each negative example as from a 
different class/mode. It becomes a (Ny + 1)-class discrimi-
nant analysis problem, where Ny is the number of negative 
examples. In this setting, it is part of the objective that all 
negative examples shall scatter in the subspace. This is 
again an unnecessary and potentially misleading require-
ment since several negative examples can come from the 
same class. The effort to split them up will yield poor 
results, and the damage is most severe when we have 
more negative than positive examples.   

2.2 More alternatives 

Some may argue that unsupervised clustering techni-
ques�EM using minimum description length criteria, or 
mean shift�can be applied to find out the number of 
clusters automatically. But meaningful clustering depends 
on the subspace selection�an image of a �red table� is 
not necessarily closer to a �white table� than a �red horse� 
unless a proper discriminating subspace can be specified 
in the first place�which is exactly what the system is try-
ing to learn; and even if the clusters can be obtained, any 
constraint put on the negative examples other than �stay 
away from the positive� is unnecessary and misleading. 
Finally iterative clustering can be too time consuming. 

Nonparametric discriminant analysis [5] can be a choice 
in the right direction for modeling certain non-linearity in 
class distributions and achieving higher effective dimen-
sions. But its solution is limited to be either linear or 
quadratic; and it still adopts the two-class assumption and 
treats them equally, which is the same as FDA. 

3. Biased discriminant analysis and BiasMap 

Instead of confining ourselves to the traditional settings 
of the discriminant analysis, a better way is to use a new 
form of the discriminant analysis to suit our objective, for 
which we believe that the relevance feedback problem is 
better cast as a �biased learning problem�:  

3.1 (1+x)-class Assumption 

(1+ x)-class learning or biased learning can be defined 
as the learning problem in which there are an unknown 
number of classes but the user is only interested in one 
class, i.e., the user is biased toward one class. And the 
training samples are labeled by the user as only �positive� 
or �negative� as to whether they belong to the target class 
or not. Thus the negative examples can come from an 
uncertain number of classes. Past research has addressed 
this problem simply as a two-class classification problem 
with symmetric treatment on positive and negative exam-
ples, which makes sense only when sufficient negative 
examples are available. However the situation for 
relevance feedback during information retrieval is that the 
negative examples are too few to be of representative 
power for the true distribution. While the positive exam-
ples may have a better chance since in reality the class-of-
interest usually has compact support�the intuition is that 
�all positive examples are alike, each negative example is 
negative in its own way� (cf. First sentence of Leo 
Tolstoy's Anna Karenina). When the negative examples 
are too few to be representative of their true distribution, 
the (1+x)-class assumption becomes critical.  

3.2 Objective function formulation 

With asymmetric treatment biased toward the positive 
examples, we can write the objective function as: 
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{xi, i  = 1, �, Nx} denote the positive examples, and {yi, 
i = 1, �, Ny} are the negative examples. Each element of 
these sets is a vector of length n, with n being the number 
of feature components. mx, my, and m are the mean vectors 
of the sets {xi}, {yi}, and {xi}∪{yi}, respectively.  

The aim is to find an optimal transform that clusters 
only positive examples while keeping negatives away.  

The Gaussian assumption is imposed on positive exam-
ples in this case (See section 3.6 for nonlinear case). 

The difference from existing formulae [5] is subtle, but 
critical. Two points are worth noting: one is the asym-
metry; the other is the increased effective dimensions: due 
to the ranks of Sy and Sx, BDA has effective dimension of 
min{Nx, Ny}, while for FDA, it is only 1 [5].  This gives 
BDA significantly higher capacity for informative density 
modeling, for which FDA has virtually none. This 
difference is partially responsible for BDA�s robust 
performance under small sample size as compared to 
FDA, even in the kernel form (See section 4.2.2). 



3.3 Regularization and Discounting Factors 

It is well known that the sample-based plug-in estimates 
of the scatter matrices based on Equations (2) and (3) will 
be severely biased for small number of training samples, 
in which case regularization is necessary to avoid 
singularity in the matrices. This is done by adding small 
quantities to the diagonal of the scatter matrices [4]. The 
regularized version of Sx, with n being the dimension of 
the original feature space and I the identity matrix, is:  
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The parameter µ control shrinkage toward a multiple of 
the identity matrix. tr[.] is the trace operation. Friedman 
[4] proposed this as a principled way of dealing with 
singularity issue. 

The influence of the negative examples can be tuned 
down by a discounting factor γ, and the discounted Sy is:  
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With different combinations of the (µ, γ) values, regula-
rized and/or discounted BDA provides a rich set of 
alternatives: (µ = 0, γ = 1) gives a subspace that is mainly 
defined by minimizing the scatters among the positive 
examples, resembling whitening transform; (µ = 1, γ = 0) 
gives a subspace that mainly separates the negative from 
the positive centroid, with minimal effort on clustering the 
positive examples; (µ = 0, γ = 0) is the full BDA and (µ = 
1, γ = 1) represents the extreme of discounting all 
configurations of the training examples and doing nothing 
(with W = I) or anything (with arbitrary W). 

3.4 Biased Discriminating Transform (BDT) 

The solution for Equation (1) is the solution to a gene-
ralized eigenanalysis problem with the eigenvector matrix 
V associated with the (non-zero) eigenvalue matrix Λ 
satisfying the following equation:  

SyV = SxVΛ (6)
However, instead of using the eigenvector correspond-

ing to the largest eigenvalue as in FDA (which has only 
one non-zero eigenvalue), more eigenvectors (up to the 
number of effective dimensions) can be retained with pro-
per weighting to form the discriminating transform matrix  

A = VΛ1/2 (7)
The weighting of different eigenvectors by the square 

roots of their corresponding eigenvalues has nice pro-
perties as discussed in the next section, which makes BDT 
�a generalization of whitening transform with considera-
tion of negative examples�, or, a �discriminative whiten-
ing transform�.  

3.5 Properties of Discriminating Transform 

Lemma 1 (Scatter Ratio Invariance) Under any 
invertible square transformation W, the scatter ratio of 
Equation (1) does not change. (cf. [5] p. 446) 

This is because the determinants of W�s canceled out for 
the square-shaped matrices. 

Lemma 2 (Eigenvalue Invariance) Under any 
invertible square transformation W on the data points, the 
generalized eigenvalues of the scatter matrix pair (Sy, Sx) 
will not change. 

The proof follows after expressing the scatter matrices 
in the transformed space as (WTSyW, WTSxW), and noticing 
that their eigenvalue matrix Λnew satisfies  

Sy(W Vnew) = Sx(W Vnew)Λnew (8)

which indicates that Λnew is the eigenvalue matrix of (Sy, 
Sx), and the eigenvectors are in the columns of (W Vnew). 
 

Theorem 1 (Fixed point in solution space up to a 
scale change) After the first discriminating transform in 
the feature space, performing a second discriminating 
transform in this new space will yield a diagonal eigen-
vector matrix, i.e., identity matrix after normalization. The 
eigenvalues will remain the same. 

From Lemma 2 we know that Λnew = Λ. Equation (8) 
also indicates that with proper scaling of the columns of 
Vnew, we have W Vnew = V, where V is the normalized 
eigenvector matrix of the first discriminnant transform. 
With W = VΛ1/2, the un-normalized eigenvector matrix 
Vnew = Λ-1/2. After eigenvector normalization (so that each 
column has norm 1) it becomes the identity matrix. 

This indicates that the first discriminating transform is 
the most critical one, which selects the projection direc-
tions in the descending order of discriminating power and 
weights them accordingly; and all subsequent transforms, 
if were to be performed, would only have the effect of 
further axis weighting in the new space. This leads to the 
following properties of the proposed transform: 

Property 1 Step-by-step realization of dimension 
reduction If performed iteratively, discriminating trans-
form assigns relatively higher energy to more discrimi-
native projection directions after each step.   

Figure 1(a) is a layout of positive and negative exam-
ples. (b) through (e) are the iterative biased discriminating 
transform (BDT) results, with (e) close to a direct �biased 
dimension reduction� onto the most discriminative direc-
tion, which is, in this case, the vertical axis of (e).  

With non-representative negative examples, the learning 
machine shall not generalize too far into unlabeled area 
like a direct dimension reduction will do. A discriminating 
transform provides a way to moderate this process and to 
trade off generalization for robustness�although with a 
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Figure 1 Illustration of Biased discriminating transform. 

Circles: positive class; crosses: negative class. 



higher VC dimension [12] than a hyperplane, the quadra-
tic boundary induced by the compactness constraint on 
positive examples insures robust performance each round.  

Property 2 Whitening transform is a special case of 
BDT  

Using the square roots of the eigenvalues to weight the 
corresponding eigenvectors is not arbitrary (even though it 
does not affect the value of the criterion by Lemma 1): 
BDT reduces to the whitening transform on positive 
examples when the contribution from negative examples 
is negligible or when the discounting factor γ is intention-
ally set to 1 (Equation (5) and (6)). 

BDT selects not only the discriminative subspace, but 
also an optimal transform in this subspace to facilitate 
subsequent nearest neighbor retrieval that will maximize 
positive returns while minimizing the chance of confusing 
negative samples as positive ones.  

3.6 Biased discriminant analysis using kernel 
(KBDA, or BiasMap) 

Above analysis assumes Gaussian distribution on 
positive examples. To eliminate this assumption and to 
perform non-linear discrimination for non-linear data 
distributions, we adopt a kernel-based approach.  

3.6.1 The kernel approach 
The original linear BDA algorithm is applied in a 

�feature space� 1, FFFF, which is related to the original space 
by a non-linear mapping  

φ : CCCC → F F F F  
          x →φ (x) 

(9)

where C C C C is    a compact subset of RRRRn, such that originally 
linearly non-separable configurations becomes linearly 
separable in FFFF. However this mapping can be formidably 
expensive due to the arbitrarily large or even infinite 
dimension of FFFF,    thus will not be carried out explicitly but 
through the evaluation of a kernel matrix K with 
components k(xi, xj) = φ T(xi) φ(xj). (cf. [12][1][7].)  

3.6.2 BDA in kernel form—KBDA, or BiasMap  
Using superscript φ to denote quantities in the new 

feature space1, we rewrite the objective function as:  
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1 A term used in kernel machine literatures to denote the new 
space after the nonlinear transform—this is not to be confused 
with the feature space concept previously used to denote the 
space for descriptors or features extracted from the media data. 

Here φ
xm  is the positive centroid in the feature space1 FFFF.    

Since the solution w, column(s) of W, is the eigen-
vector(s) corresponding to the non-zero eigenvalues of the 
scatter matrices formed by the input vectors φ (xi) and φ 
(yj) in FFFF, the optimal w is in the subspace spanned by the 
input vectors. Thus w can be expressed as a linear 
combination of φ (xi) and φ(yj); and the problem of finding 
the optimal w becomes finding the optimal α with:                                     
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The numerator of (10), after expressed as the negative 
scatter with respect to positive centroid in FFFF, can be 
rewritten as:  
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Note that both of these are vectors of dimension 
(Nx+Ny)×1, and are in the dot-product forms suitable for 
the kernel evaluation. The summation term in the middle 
of Equation (15) can be further rewritten into  
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I is an Nx×Ny matrix of all elements being 
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Similarly, we can rewrite the denominator of (10),  
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here I is the identity matrix and x
N x

I is an Nx×Nx matrix of 

all elements being 
xN

1 .   

3.6.3 The non-linear solution 
To this point, by substituting Equations (15), (17), and 

(19) into (10) through (12), we arrive at a new generalized 
Rayleigh quotient, and it is again a generalized eigen-
analysis problem, where the optimal ��s are the 
generalized eigenvectors associated with the largest 
eigenvalues λ�s, i.e.,  
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 With optimal �, the projection of a new pattern z onto 
w, ignoring weighting by square rooted eigenvalue, is 
directly given by:  
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This projection is highly non-linear, i.e., points that are 
far apart (in Euclidean distance) in the original space can 
be arbitrarily close in the projected space [1][7]. 

3.6.4 The BiasMap algorithm 
When applied in a retrieval system to facilitate 

relevance feedback, the algorithm is as follows: 
Initially, the system retrieves initial results through 

whichever means available�query by keywords, sketch, 
or example, etc. In the subsequent round(s) with a set of 
positive and negative examples feedback by the user, and 
a chosen kernel k: 

 

1. Compute Kx and Ky as defined in Equation (18). 
Degree of relevance or irrelevance can be incor-
porated much the same way as that in [8]; 

2. Solve for ��s and λ�s as in Equation (20); 
3. With ��s ordered according to the descending order 

of their eigenvalues, select the subset: { �i| λi > τλ1}, 
where τ is a small positive number, e.g., 0.01; 

4. �i = �i iλ , for selected �i in the previous step; 

5. Compute the projection of each point z onto the new 
space as in Equation (21).  

6. In the new space, return the points corresponding to 
the Euclidean nearest neighbors from the positive 
centroid. Wait for user feedback then go to step 1. 

Computation is light because it is non-iterative and the 
number of training samples is usually small. 

4. Experiments and evaluations 

In this section we evaluate step-by-step the merit of the 
proposed scheme with the possible alternatives and state-
of-the-art techniques, on both synthetic data and real 
world image databases.   

4.1 Linear/Quadratic Case 

For the linear versions of FDA, MDA, and BDA, all the 
transform matrices are linear, and the decision boundaries 
are either linear or quadratic. 

4.1.1 Toy Problems 
Toy problems are constructed to illustrate the first 

projection direction given by FDA, MDA, and BDA 
(Figure 2). Original data are in 2-D feature space, and 
positive examples are �o�s and negative examples are 
�x�s.  FDA, MDA, and BDA are applied to find the best 
projection direction by their own criteria for each case, 
and the resulting eigenvector corresponding to the 
maximum eigenvalue is drawn in solid, dotted, and thicker 
dashed lines, respectively.  
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        (a)         (b) 

Figure 2. Comparing FDA (solid), MDA (dotted), and BDA 
(thicker dashed) for dimensionality reduction from 2-D to 1-
D. (a) FDA and BDA yield projections for better class 
separation, MDA (vertical) fails due to its effort to 
discriminate among negative examples; (b) MDA and BDA 
yield projection for class separation, FDA (vertical) fails 
completely due to its effort to cluster the two modes of 
negative examples. 

In both cases, BDA yields good separation of negative 
examples from positive ones, as well as clustering of 
positive examples (it strikes a balance between these two 
goals, without any effort of modeling the density of 
negative examples). FDA and MDA are inadequate in 
biased classification or biased dimensionality reduction 
problem because of their forceful assumption on the 
number of modes for negative examples.  

4.1.2 Image Database Testing 
A COREL image set of 17695 images is tested. The 

feature space of 37 dimensions consists of 9 color 
moments [10], 10 wavelet moments [9], and 18 edge-
based structure features [13]. Up to 20 rounds (or until 
convergence) of feedback are performed for each query 
under each of the four relevance feedback schemes: two-
level optimal whitening transform (with partial independ-
ence assumption) on positive examples [8]�TWT, FDA, 
MDA, and BDA. Altogether over 1000 rounds of subject 
guided retrieval/relevance feedback are performed over 20 
classes of images. The negative examples are selected by 
a subject during the retrieval. The numbers of hits in top 
20 are recorded for different schemes. Their means and 
variances are listed in Table 1. 

It is apparent that BDA not only yields the highest 
average score, but also has the minimum variation, which 
indicates the most robust performance. FDA and MDA 
have larger performance variation because they are 
affected by the clustering patterns in negative examples, 
which are generally unstable. MDA in this case is close to 
BDA in performance because the subject for this test tends 
to give small number (average around 3) of negative 
examples that are usually not from the same class. TWT 

Table 1  Comparing relevance feedback results: the first 
row is the averaged number of hits in top 20, and the 
second row shows their variances. 

No feedback TWT FDA MDA BDA 
8.2 13.0 13.9 16.2 17.0 

8.43 17.3 16.50 10.26 8.86 



has low average score and large performance variation 
mainly because it is prone to be trapped at local minimum, 
which is frequently observed in our experiments. Using 
BDT the system can climb out of local minimum with the 
�push� from negative examples, and arrive at a better 
discriminating subspace. For example, when learning the 
concept of �elephant� by positive examples alone, we see 
grayish skin and long noses; but seeing rhinos or hippos as 
the negative examples, we learn that skin color is much 
less important than nose length.  

4.2 Non-linear Case 

For the non-linear case, we first test whether the 
introduction of kernel helps or not; we then compare 
KBDA, or BiasMap, with kernel fisher discriminant 
analysis (KDA) [7] and SVM, over the same RBF kernel 
with varying spread parameters. 

4.2.1 Does Kernel Help? 
To test the ability of the KBDA in dealing with non-

linear data configurations, synthetic experiments in two-
dimensional space are used. In Figure 3 three schemes are 
compared: FDA, BDA, and KBDA. A significant boost in 

hit rates is observed when using 
KBDA.  

Next we try automated testing 
of these algorithms on a fully 
labeled set of 500 images from 
COREL, with the aforemen-
tioned features. It consists of 
five classes, each with 100 
images. Each round 10 positive 
and 10 negative images are 
randomly drawn as training 
samples. For each round the hit rate in the top 100 returns 
is recorded as the performance measures. 500 rounds of 
testing are performed on the 5 classes and the averaged hit 
rates are shown in Figure 4. KBDA or BiasMap 
outperforms others on average by a significant margin. 

4.2.2 KBDA, KDA and SVM 
It is certainly desirable to see how the different kernel 

methods compare under different conditions.  
The “Spillover” effect of KDA and SVM. First we use 

synthetic data to compare the three kernel machines, 
namely KBDA, KDA [7], and SVM, using the same RBF 
kernel and the same parameter set. The purpose is to see 
how they perform under different values of the spread 
parameter σ. Figure 5 shows the decision map for the 
given examples. It indicates that KBDA confines the 
positive region around the positive examples even with 
increasing σ of the RBF kernel, while KDA and SVM will 
“spillover” freely into part of the unlabeled areas of the 
feature space. For KDA, this is partly due to its effective 
transform dimension of only 1 (see Section 3.2); For 
SVM, this is in part due to the false assumption that the 
training examples are representative of the true 
distributions, which does not hold especially for negative 
examples (see argument in Section 3.1). 

The spillover is dangerous since in the information 
retrieval application, given the small number of examples 
the unlabeled areas in the feature space are more likely to 
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Figure 3 Test results on synthetic non-linear data
configurations, which is constructed by a mixture of
Gaussian modes—the ellipses roughly depict positive
densities. The circles are positive examples and the
crosses negative. A simulated query process is used for
training sample selection, i.e., the 20 nearest neighbors of
a randomly selected positive point are used as training
samples. The bar diagram shows the averaged hit rate in
top 20 returns for the four cases and a grand average. 
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Figure 5 The decision surfaces of KBDA, KDA, and SVM 
for highly non-linear configurations. The open circles are 
positive examples and crosses negative. The gray level 
indicates the closeness to the positive centroid in the non-
linearly transformed space: the brighter, the closer.   
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be negative. The spillover effect is most severe for SVM. 
When used for learning during information retrieval, the 
result of this effect is that after the user�s feedback, the 
machine returns a totally different set of points, with most 
of them likely to be negative. This effect is further 
observed in the following experiment. 

Small sample face and non-face classification: Finally 
KBDA, KDA, and SVM are compared in the context of 
face and non-face classification under a small number of 
training examples. A total of 1000 faces and 1000 non-
face images are used. All the images are 16-by-16 in size 
and the original pixel values are used as the features, 
resulting in a 256-dimensional space. We use different 
numbers of positive and negative examples to train 
KBDA, KDA, and SVM learners. For SVM, two retrieval 
schemes are tested: larger margin first and smallest 
positive margin first. The percentage of face images in the 
top 1000 retrieved by SVM is used to compare with the 
precision of KBDA and KDA in their top 1000 returns.  

In Figure 6 each point on the curve represents the 
averaged precision of 100 trials, i.e., 100 runs of the 
algorithm over independently drawn random samples. In 
Figure 6(a), the spread parameter of the RBF kernel σ is 
set to be 1, which apparently is too small and the learning 
machines over-fit, i.e., even with more negative examples, 
the performance does not change significantly; and all 
three learning machines are similar in performance. This 
is the case illustrated by the top row in Figure 5. 

In Figure 6(b) and (c), σ is set to be 50 and 100, 
respectively. When only one negative example is selected, 
KBDA reduces to KDA. When the number of negative 
examples is more than 1 but less than 100, we see that 
KBDA is more robust than KDA and SVM for changing 
values of σ; and that KBDA outperforms KDA and SVM. 
More experiments under other settings have led to the 
same conclusion, omitted here due to space limitations. 

5. Summary  

In this paper, we have taken a close look at the small 
sample learning problem during interactive multimedia 
retrieval. The key observation is the non-representative 
nature of the few training examples and the need for 
asymmetric treatment of the positive and the negative. 

BiasMap is the nonlinear, kernel-based version of a 
novel variant of discriminant analysis, namely, biased 
discriminant analysis. It strikes a critical balance between 
informative and discriminative learning based on a limited 
number of training samples: compactness constrain (in-
formative density modeling) is applied only on positive 
examples, while only discriminative constraint is imposed 
on negative examples. Considering the lack of inform-
ation from limited training, such one-sided compactness 
assumption can be the best trade-off between robustness 
and generalization capability. Rigorous analysis along this 
direction is among our future research efforts. 
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Figure 6 Precision in top 1000 returns. Number of positive
examples = 100, and the horizontal axis shows the
changing number of negative examples from 1 up to 300.
(a): σ = 1; (b) and (d): σ = 50;  (c): σ = 100;   

In (a)~(c) SVM returns the points with larger margins first;
for (d) SVM returns the points with the smallest but positive
margins first. 


