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SUMMARY

The sandwich estimator in generalized estimating equations (GEE) approach underestimates the 

true variance in small samples and consequently results in inflated type I error rates in hypothesis 

testing. This fact limits the application of the GEE in cluster-randomized trials (CRTs) with few 

clusters. Under various CRT scenarios with correlated binary outcomes, we evaluate the small 

sample properties of the GEE Wald tests using bias-corrected sandwich estimators. Our results 

suggest that the GEE Wald z test should be avoided in the analyses of CRTs with few clusters 

even when bias-corrected sandwich estimators are used. With t-distribution approximation, the 

Kauermann and Carroll (KC)-correction can keep the test size to nominal levels even when the 

number of clusters is as low as 10, and is robust to the moderate variation of the cluster sizes. 

However, in cases with large variations in cluster sizes, the Fay and Graubard (FG)-correction 

should be used instead. Furthermore, we derive a formula to calculate the power and minimum 

total number of clusters one needs using the t test and KC-correction for the CRTs with binary 

outcomes. The power levels as predicted by the proposed formula agree well with the empirical 

powers from the simulations. The proposed methods are illustrated using real CRT data. We 

conclude that with appropriate control of type I error rates under small sample sizes, we 

recommend the use of GEE approach in CRTs with binary outcomes due to fewer assumptions 

and robustness to the misspecification of the covariance structure.
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1. Introduction

Cluster-randomized trials (CRTs), also called group-randomized trials, are widely used in 

the evaluation of interventions in health services research [1-3]. In CRT design, the 

identifiable clusters, rather than individuals, are randomly assigned to different intervention 

conditions so that the units of observation are the individuals nested within both their 

condition and their cluster. A key property of CRTs is that the inferences are intended to 
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apply at the individual level, even though the randomization is at cluster level. Since the 

clusters are formed not at random but rather through some physical, geographic, or other 

connection among their members, there is an expectation for a positive intraclass correlation 

(ICC, noted by ρ) among observations in the same cluster. Even though for most CRTs the 

ICCs are low (0.001 to 0.05) [4, 5], any statistical tests ignoring the non-independence of 

participants within clusters will underestimate the variances of the intervention effects and 

inflate the type I error rates [5]. The design effect (DE) is the ratio of the variance of an 

outcome measure accounting for cluster correlation over the variance of the outcome 

measure under person-level randomization. For clusters of equal size m, it can be shown that 

DE=1 + (m − 1)* ρ for two-level CRTs [1].

The generalized estimating equations (GEE) method, developed by Liang and Zeger [6] in 

the context of longitudinal studies, has proven to be very popular for the analysis of 

correlated data. Given the number of independent clusters is large, for example greater than 

40 in CRTs, the GEE approach has several desirable properties. The GEE approach does not 

require distributional assumptions because the estimation depends only on correctly 

specifying the relationship between the marginal mean and covariates through a link 

function, not on the entire joint distribution of observed data and random effects [6]. Under 

mild regularity conditions [6], the resulting regression coefficient estimator is consistent and 

asymptotically normal and its variance-covariance can be estimated by the sandwich 

estimator, which is robust to the misspecification of the covariance structure of the response 

[6]. However, the sandwich estimator is biased downward when the number of clusters is 

not large enough, for example below 40 in CRTs [2, 3, 7], and this problem becomes more 

severe as the number of clusters becomes smaller [2, 8]. Unfortunately, most CRTs do not 

include 40 clusters, and there is a median of 21 clusters in a review of a random sample of 

300 published CRTs [9].

Due to the small sample bias of the sandwich estimator, some bias-corrected sandwich 

estimators have been proposed to improve the small sample performance of GEE [8, 10-12]. 

In the following, we briefly review the GEE approach, the sandwich estimator, explain its 

poor performance for small number of clusters and review five bias-corrected sandwich 

estimators which are proposed to decrease the bias of original sandwich estimator given few 

clusters.

Suppose that a dataset from a CRT consists of K clusters and each of the clusters i ( i = 

1,2, ... , K) has mi observations with response Yij and a p-dimensional covariate vector Xij, i 

= 1,2, ... , K and j = 1,2, ... , mi. Denote Yi = (Yi1, ... , Yimi
)′ , Xi = (Xi1, ... , Ximi

)′ . It is 

assumed that Yi and Yi′ are independent for any i ≠ i′. The marginal model specifies a 

relationship between the marginal mean E(Yij|Xij) = µij and the covariate Xij through a 

generalized model, g(µij) = Xijβ , where β is an unknown p-vector of regression coefficients 

to be estimated, and g(. ) is a known link function. The marginal variance is Var (Yij) = 

ν(µij)ϕ, where ν is a known function of µij, and ϕ is an unknown scale parameter which may 

need to be estimated. The within-cluster correlation matrix Corr(Yi) is R0 whose structure is 

in general unknown. An attractive point of the GEE is that a consistent  can be obtained 

without the requirement of specifying R0 correctly [6]. Let Vi = ϕ Ai 
1/2 Rw (α)Ai 

1/2 define 

the working covariance matrix for Yi, where Ai = diag [ν (µi1), . . . , ν (µimi
)] and Rw (α) is a 
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working correlation matrix for Yi. By Liang and Zeger [6], the GEE estimates, , are given 

by the solution to the estimating equations

where . The variance-covariance of  can be consistently estimated by

where  and . This variance-covariance 

estimator is commonly called as robust sandwich estimator [6].

Because the fitted values, , tend to be closer to the observed values, Yi, than the true 

values,  underestimates the Cov(Yi) . Therefore, the robust sandwich 

estimator will underestimate the covariance of , especially when the number of clusters is 

small. Since the Wald test statistics, which asymptotically follow standard normal 

distribution, are commonly used in GEE for the hypothesis testing, the underestimation of 

the covariance of  causes inflated Type I errors. Due to the small sample bias of sandwich 

estimator, some biascorrected sandwich estimators have been proposed to improve the small 

sample performance of GEE.

DF-corrected sandwich estimator

The simplest adjustment makes a degrees-of-freedom (DF) correction [13] that inflates 

variance by multiplying the sandwich estimator by K/(K− p), where K is the number of 

clusters and p is the number of regression parameters. That is

KC-corrected sandwich estimator

Kauermann and Carroll [10] defined

where Ii is the identity matrix with mi × mi dimension and matrix Hi is an expression for the 

leverage of the ith cluster and Hi = DiΩDi ′ Vi
−1 [8, 10, 14]. Because Hi is between 0 and 1, 

 is expected to give larger standard errors than V.
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MD-corrected sandwich estimator

Mancl and DeRouen [8] proposed reducing the bias of the sandwich estimator, by defining

which further inflates .

FG-corrected sandwich estimator

Fay and Graubard [12] attempted to correct the bias by setting a scale factor to the working 

variance in the sandwich estimator, so that

where ci = {1 − min (b,{Q}jj)} −1/2 and . b < 1 is a constant bound defined by 

the user to prevent extreme adjustments when the jjth element of Q is very close to 1. Fay 

and Graubard’s results suggest that the bound of b is rarely reached and can be arbitrarily set 

(0.75 by default) without affecting the results [12].

MBN-corrected sandwich estimator

Morel, Bokossa and Neerchal [11] suggested a bias correction of the sandwich estimator that 

rested on an additive correction of the residual cross-products and a sample size correction.

where ,  is the total observations; 

, 

0 ≤ l ≤ 1. the term δmϕVi is added for the small sample correction, in which ϕ is the estimate 

of design effect [15] and δm is a function, not involving parameter estimates, of order K−1. It 

should be noted that l is the lower bound of the design effect. Morel et al. suggested that r 

was set to be 1, and the upper bound on δm was arbitrarily set to be 0.5 (d = 2) , which rarely 

came into play in practice [11]. The performance of the MBN-correction may depend on the 

choice of d and l. Within this paper, we followed the recommendations of the authors and 

set d = 2 and l =1. For large K, the term δmϕVi vanishes and hence, the  gives an 

approximation of the original sandwich estimator. The sample size correction factor c should 

provide additional reduction to the small sample bias associated with the empirical 

covariance estimate.
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Other bias-corrected sandwich estimators include Jackknife estimator [16], which is very 

close to  in simulations [8]. Pan et al. [17] and Wang et al. [18] also propose bias 

corrected sandwich estimators but their modifications assume a common correlation 

structure across all clusters and this assumption may limit their application in CRTs with the 

heterogeneous clusters.

Although many simulation studies [8, 10-12, 19] suggest that the Wald tests with above 

bias-corrected sandwich estimators show type I errors closer to nominal levels than the Wald 

test with original sandwich estimator, their results are hard to apply directly to the analyses 

of CRTs. This difficulty lies in the fact that: i) the corrections are shown to be applicable 

only in clusters with small size and high ICC, which is typical in longitudinal data but not 

CRT data; ii) furthermore, most of the simulations from the above studies only consider 

equal cluster sizes, while cluster sizes may vary greatly in real practices [20, 21]; iii) finally, 

the situation of an extremely small number of clusters, such as fewer than 10 clusters in each 

intervention condition, is not well explored in above studies. Lu et al. [19] compared the 

performances of  and  under some CRT scenarios, but only under balanced design. 

More importantly, the inferences from the asymptotic z-test in Lu et al. [19] is not optimal 

for small cluster numbers, even when the bias-corrected sandwich estimators are used. The 

t-distribution approximation of the Wald statistics may perform better.

The first objective of this study is to evaluate the small sample performance of GEE 

involving the bias-corrected sandwich estimators including , , ,  and 

under CRT scenarios with few clusters, especially the effects of the unbalanced cluster sizes 

on the small sample performance of GEE. Both the z-distribution and the t-distribution 

approximations of Wald statistics are used for the hypothesis testing. The second objective 

of this study is to derive a formula to calculate the power and minimum total cluster number 

needed in CRTs given that the bias-corrected sandwich estimators are required in the 

analysis. The current GEE-based power and sample size are calculated with the original 

sandwich estimator and are only applicable to the large number of clusters (>40) in CRTs 

[22-24]. It can be expected that a sample size calculation based on the original sandwich 

estimator followed by an analysis with a bias-corrected sandwich estimator will result in the 

loss of precision and hence power if only small number of clusters are available when 

designing a CRT. Once a bias-corrected sandwich estimator is chosen in the GEE analysis of 

CRT to preserve the Type I errors, intuitively and necessarily, we can use it for a better 

power and sample size calculation for the CRTs with few clusters. We restrict our study on 

correlated binary data; however, we expect the similar results on continuous data but 

definitely we need further confirmation in the future study. The type I error rates and 

empirical powers will be calculated based on Monte Carlo simulations and the valid tests 

with type I error rates close to nominal are illustrated using the real data from a trial 

performed to investigate the effect of an intervention on breast screening uptake among 

women in Central and East London [4].
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2. Test Sizes of Small Sample GEE Wald Statistics on Correlated Binary 

Outcomes

2.1 Data simulation

Correlated binary responses are generated using a Beta-binomial method [25]. The Beta-

binomial distribution is derived as a mixture distribution in which the proportion of event in 

a cluster is a random draw from a beta distribution with parameters a and b. The marginal 

proportion of event in a cluster is defined as  and the ICC can be shown to be . 

By selecting a and b, we can simulate the marginal proportion and ICC for each cluster. We 

mimic the CRTs containing 10, 20, or 30 clusters (K) with 10, 20, 50, 100, or 150 

observations in average per cluster ( ). The exact number of observations, mi, for each 

cluster i = 1,..., K , is randomly drawn and rounded from normal distributions with the mean 

equal to  in and variance equal to σ2. The variation of cluster sizes can be measured by the 

coefficient of variation (cv), which is the ratio of standard deviation of the cluster sizes over 

the mean of the cluster sizes. So, we let σ2 =  2(cv)2. In our simulations, cv is at the range 

of 0 to 1. To avoid the impossible situation that the number of observations in a cluster is 

negative or zero, we bounded the smallest cluster size to 1. Considering the potential 

departure of the mean and variance caused by this process, we carefully check the simulated 

datasets and calculate the true mean, variance of the cluster size, as well as the coefficient of 

variation, and find that the departure is minor and will not affect our conclusion. The 

intraclass correlation (ρ) among observations within a cluster is set as 0.001, 0.01 or 0.05, 

which may reflect the actual ICC in realistic practices [5]. In each scenario, 3000 

independent replicates are generated. Due to the small value of K, it can be expected that the 

mean and variance of cluster sizes drawn from a normal distribution may be slightly 

different from the expected values, which are part of the simulation errors. These errors can 

be reduced by the large number of simulation replicates (3000 in our simulation study). For 

simplicity but without the loss of generalizability, we assume two intervention arms 

containing equal clusters and no covariates are included. A logistic regression model is used 

for the marginal mean of yij

where Xi is vector containing cluster-level binary predictor indicating the intervention arms 

(Xi = 0 for control and Xi = 1 for active intervention), i = 1,..., K and j = 1, ..., mi. The 

marginal proportion is set as {μi|Xi = 0} = 0.25. For the type I error estimation, we set β = 0 

and test the null hypothesis H0: β = 0. The simulated data are analyzed using various GEE 

approaches assuming a compound symmetric working correlation matrix. All simulations 

and analyses were conducted using SAS 9.3 (Cary, NC). The SAS code will be provided as 

request.

2.2 Observed type I error rates of GEE Wald tests in simulations

Both the z-distribution and the t-distribution approximations of Wald statistics are used for 

hypothesis testing in this study. It has been shown that using t-distribution can improve the 

performance of the GEE Wald test given small number of clusters [1, 8] and some 
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Satterthwaite-type degrees of freedom approximations have been proposed [12, 26, 27]. The 

simplest degrees of freedom approximation is based on the number of independent clusters 

[5, 8, 23]. In the case of two intervention arms, the degrees of freedom can be approximated 

as K − 2, where K is the independent cluster number. In our simulations, K − 2 degrees of 

freedom approximation is used. The performance of the sandwich covariance estimator and 

bias-corrected estimators is evaluated by computing the observed fraction of Wald statistics 

rejecting the null hypothesis when null hypothesis is true. At the nominal 0.05 level and 

3000 simulations, we would expect the simulated type I error rate to be between 0.042 and 

0.058 (95% confidence interval) and any procedure with type I error rate in this range will 

be considered as valid and efficient.

2.2.1 Wald z tests vs Wald t test—Most of the simulation studies only consider the 

equal cluster size, which mimic the most efficient CRT design; however, cluster sizes often 

vary in practice [20, 21]. It is intuitively obvious that the cluster size imbalance will affect 

the statistical inference in the way that the estimates from the smaller clusters will be less 

precise and the estimates from the larger clusters more precise. For the bias-corrected 

sandwich estimators,  and  take the cluster size into account in Hi matrix for the bias 

reduction; while  considers the cluster size in the ϕ factor. It is expected that the cluster 

size imbalance will affect the type I error rates of the Wald tests in GEE.

For small cluster size imbalance (cv = 0.1), the observed type I error rates or test size, for the 

Wald z tests or t tests involving different covariance estimators are shown in Table 1. In 

general, the intraclass correlation values and average cluster sizes have very little effects on 

type I error rates for both the Wald z tests and the Wald t tests; however, the Wald t tests 

outperform the Wald z tests with regard to the type I error rates closer to the nominal level. 

The observed type I error rates are greatly inflated when the sandwich estimator is used 

given cluster numbers fewer than 30, and the inflation becomes more severe as the cluster 

numbers decrease. The Wald t test decreases the inflation compared to asymptotic z test, but 

still not to the nominal level.

Compared to the original sandwich estimator, all the five bias-corrected sandwich estimators 

give smaller type I error rates, and the MD-corrected sandwich estimator is the most 

conservative. However, with the Wald z test, only the MD-corrected sandwich estimator has 

the type I error rates to the nominal level as long as the number of clusters greater than 20. 

These findings suggest that the asymptotical GEE Wald z test should be avoided in the 

analyses of CRTs with few clusters even when the bias-corrected sandwich estimators are 

used and the CRT has the almost balanced design.

The results from Table 1 clearly show that when the DF- or KC-corrected sandwich 

estimator is used, almost all of the observed type I error rates from GEE Wald t tests lie in 

the nominal range, regardless of cluster numbers from 10 to 30. However, under the almost 

balanced design, the Wald t test with MD-, FG- or MBN-corrected sandwich estimator may 

cause over control, especially when the cluster number is less than 20. The over control of 

type I error rate will lead the power loss if the null hypothesis is false.

Li and Redden Page 7

Stat Med. Author manuscript; available in PMC 2016 January 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2.2.2 Wald t test in unbalanced CRT designs—As discussed before, cluster sizes 

often vary in practice and such imbalance may affect the statistical inference. Our 

simulations show that the GEE Wald t tests with the bias-corrected sandwich estimators 

maintain the type I error rate for the nearly balanced design; however, their performance 

needs to be evaluated in more general situations. The performances of the GEE Wald t tests 

with different bias-corrected sandwich estimators under different variation of cluster sizes 

are shown in Figure 1-5. The results suggest that the increased imbalance of cluster sizes 

inflates the type I error rate of the GEE Wald t tests; and the inflation differs when different 

bias-corrected sandwich estimators are used.

The Wald t test with the DF-corrected sandwich estimator only maintains the type I error 

rate for the small variation of cluster sizes (cv < 0.2) (Figure 1). The imbalance of the cluster 

sizes inflates the type I error rate quickly since the DF-corrected sandwich estimator does 

not consider the cluster size in its bias reduction and inflates the estimates of variance-

covariance from different clusters with the same scale, . Since the KC-corrected 

sandwich estimator places more weight on the larger clusters for the bias reduction, the 

Wald t test with the KC-corrected sandwich estimator is more robust to the variation of 

cluster sizes and can maintain the type I error rate for small to moderate variation of cluster 

sizes (cv < 0.6) (Figure 2). The Wald t test with the MD-corrected sandwich estimator is the 

most robust test to the variation of cluster sizes (Figure 3). However, it is too conservative, 

especially when the cluster number becomes very small. The Wald t test with the FG-

corrected sandwich estimator tends to be conservative when the variation of cluster sizes is 

not large (cv < 0.6), especially for small cluster number (Figure 4). Interestingly, it 

maintains the type I error rate to nominal level for larger variation of cluster sizes (cv > 0.6), 

even when the cluster number is as low as 10. The Wald t test with the MBN-corrected 

sandwich estimator tends to be conservative when the variation of cluster sizes is small (cv < 

0.4) and to be liberal when the variation of cluster sizes is large (cv > 0.8) (Figure 5).

2.3 Summary of small sample GEE Wald tests

Our simulations suggest that among the bias-corrected sandwich estimators, the GEE Wald t 

tests outperform the Wald z tests with regard to maintaining the type I error rates to nominal 

level; however, no single bias-corrected sandwich estimator is universally superior to the 

others when the Wald t test is used for the analyses of CRTs with few clusters and 

considerable variation of cluster sizes. Teerenstra et al. [23] recommended the Wald t test 

with KC-corrected sandwich estimator for the analyses of CRTs with few clusters, but it is 

only valid for the small to moderate variation of cluster sizes. In practice, when cluster 

number is small and cluster sizes vary, we suggest a rule of thumb that choosing the Wald t 

test with KC-corrected sandwich estimator when the coefficient of variation of cluster size is 

less than 0.6 and choosing the Wald t test with FG-corrected sandwich estimator, otherwise.

3. Statistical Power of Small Sample GEE for Correlated Binary Data

In a GEE model without covariates, the hypothesis of interest is to test H0: β = 0 vs Ha: β ≠ 

0. The power estimation for a given β = b > 0 is given by
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(1)

where vR is the (2,2)-element of KV, where K is the number of clusters and V is the assumed 

true covariance matrix of parameter coefficients [22, 24].

Assuming a two-armed CRT with K clusters, qK clusters are assigned to arm 1 and (1 − q)K 

clusters are assigned to arm 2. For the binary outcome, let π1 and π2 represent the true 

population proportion for each arm, respectively. Although in the real data, the number of 

participants in different clusters varies, in the design stage we may assume mi = m, such that 

there are same number of participants for all the clusters. Whether the cluster size can be 

assumed as a constant at the design stage depends on the knowledge of the investigators. In 

many trials, only a fixed number of individuals in each cluster are planned to be in the trial, 

then the cluster can be assumed as a constant or nearly consistent [28]. The high variability 

of cluster size could happen and is not considered in this study. In addition, the structure of 

within-cluster variance-covariance matrix Cov(Yi) is in general unknown and different from 

the working covariance structure; however, for the power calculation before we collect the 

data, we have to assign a correlation matrix. The compound symmetry structure is a 

reasonable assignment in the framework of CRT. If we also allow the compound symmetry 

structure as the working covariance structure, based on the sandwich estimator and some 

matrix algebra [24], we have

If equal number of clusters is assigned to the control and intervention arms, we have

When we plug the vR into the above power equation, we can calculate the power and 

consequently the sample size needed given α level and estimated proportions. Apparently, 

this power estimation only works under asymptotic conditions so that the vR derived from 

the sandwich estimator is unbiased and the asymptotic Wald z test is used.

When a bias-corrected sandwich estimator and the Wald t test (K − 2 degrees of freedom) 

are used in the data analyses, we propose a modified power estimation formula as:

(2)

where  is the (2,2)-element of KV*, where V* is the assumed true covariance matrix of 

parameter coefficients. Because we just consider the well-balanced design in the power 

calculation, according to the rule of thumb we proposed in section 3, the  should be 
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derived from the KC-corrected sandwich estimator. Note that the diagonal elements of Hi, 

denoted by hit, corresponds to the amount of leverage of the ith cluster. Intuitively, under the 

well-balanced design with an equal number of clusters in each arm (q = 0.5) and equal 

number of participants in all clusters (mi = m), each cluster would have the same leverage of 

the response on the corresponding fitted value so that we would have hit = p/K, where p = 

rank(X). In our power calculations, p =2. Therefore, under the perfect balanced design, 

, and . The  is the (2,2)-element of , 

and given by

Hence, for the GEE analyses of CRTs with few clusters,

Given the nominal a level, the expected power, the expected cluster size m, and the expected 

proportions, with this formula, the K can be easily calculated with an iteration process until 

the power exceed a specified level. If K is fixed, we can calculate m directly from the 

formula. It should be noted that in practice, there could be different numbers of clusters in 

different intervention arms. For the power and sample size calculation in the design stage, 

the balanced design is a reasonable assumption. In addition, for well-balanced design, the 

KC-corrected sandwich estimator is equivalent to the DF-corrected sandwich estimator.

The empirical power of the GEE Wald t test with the KC-corrected sandwich estimator was 

evaluated by computing the observed fraction of rejections of the null hypothesis when the 

intervention effect is set as odds ratio equal to 1.5 or 2. Even though the power formula 

assumes the common cluster size, we allow some variations (cv = 0.2) in our simulations to 

evaluate its robustness. The empirical power (P0BS) from 1000 simulations and the expected 

power (PNEW) calculated from proposed formula are shown in Table 2. Our results suggest 

that the empirical power from the Wald t test with KC-corrected sandwich estimator agrees 

well with the expected power from calculation. Hence, the proposed power formula can be 

used for power and sample size calculations if GEE Wald t test with the KC-corrected 

sandwich estimator is used. In Table 2 we also include the power estimation (PSHIH) from 

power formula (1), which does not consider the small sample adjustments. Clearly, the 

formula (1) overestimates the power for the CRTs with few clusters.

In CRTs, there are two components of sample size—the number of clusters (K) and the 

number of subjects per cluster (mi) —and increasing both numbers can achieve higher 

power. As the nature of CRTs, it may be very difficult to recruit large numbers of clusters. 

However, the effects of the number of subjects per cluster on power depend on the intraclass 

correlation. For example, assuming the odds ratio of 1.5, K=20 and ρ =0.001, the power 
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increases from about 0.22 at  =10 to 0.99 at  =150; while assuming the odds ratio of 1.5, 

K=20 and ρ =0.05, the power increases from about 0.17 at  =10 to only 0.36 at  =150. 

Hence, the estimation of ICC is very important before the power calculation in CRTs 

because enrolling large number of subjects may not increase the power in a cost effective 

manner if the ICC is relatively high.

Though the proposed power formula assumes the common cluster sizes, the correction 

allowing unequal cluster sizes could be obtained by replacing the  term in the power 

formula with [29]. But as pointed out by Campbell et al. [1], this 

modification may be conservative in GEE analysis. In our simulations allowing some 

considerable variation of cluster sizes (cv = 0.2), the empirical power matches well the 

expected 1 power calculated from the formula assuming common cluster sizes. Therefore, 

our proposed formula can still be used even when the cluster sizes have small to moderate 

variations.

4. Application

An example CRT is the trial in the Newham borough of East London, investigating whether 

intervention in general practices improved subsequent attendance at breast screening among 

women who did not respond to their initial invitation [4, 20]. Among the participating 

practices, 12 were randomized to the intervention group and 14 to the control. The 

intervention entailed training of the reception staff of the general practice to contact non-

attenders for breast screening. Control practices were given no training or advice. A total of 

995 women in the intervention practices and 1069 in the control practices were included in 

the trial. The outcome of interest was the attendance at breast screening among women who 

did not respond to their initial invitation for routine breast screening. In the intervention 

practices overall 9 percent of the women subsequently attended breast screening, as 

compared to 4 percent in the control practices. The intervention practices generally had 

higher rates of attendance in comparison to those in the control practices, although the 

attendance rate varied considerably between practices. It should be noted that a key feature 

of this trial was the small number of clusters (K = 26) with highly variable cluster sizes (cv 

≈ 0.71).

Omar et al. [20] used the generalized linear mixed model (GLMM) for the analyses of the 

trial for women's attendance described above and suggested not using the GEE approach 

because of the small cluster number (K=26). We re-analyse the data with the GEE method 

by the use of Wald t tests with bias-corrected sandwich estimators. Because the Wald z tests 

are not suggested by our study, we only show the results from Wald z test with original 

sandwich estimator for comparison. The intervention results are shown in Table 3. Our 

results are similar to Omar's results using a GLMM assuming the normal distribution of the 

random term. The 95% confidence intervals from the Wald t tests with bias-corrected 

sandwich estimators are clearly more conservative than the Wald z test with the original 

sandwich estimator. Although the difference of the small sample inferences among the Wald 

t tests with different bias-corrected sandwich estimators are small in this data, the Wald t test 

with FG-corrected sandwich estimator is more conservative than the Wald t tests with other 
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bias-corrected sandwich estimators. Since the variation of cluster sizes is large in this trial 

(cv ≈ 0.71), the Wald t test with FG-corrected sandwich estimator should be preferred. We 

may conclude that the women in intervention practices were estimated to be about 3 times 

more likely than those in the control practices to attend for breast screening subsequently. It 

must be noted that the interpretation of the regression parameters differs between GLMMs 

and the GEE approach. In the GEE context, the interpretation parameter describes the 

average change of the responses across the population under different intervention groups; 

in the GLMM context, the interpretation parameter is specific for the given cluster (practice) 

and describes the difference of responses assuming the same cluster (practice) is assigned to 

both control and intervention groups [23, 30].

5. Discussion

We evaluated the small sample properties of GEE with the sandwich estimator and five 

alternative bias-corrected sandwich estimators in analysing binary outcomes under the CRT 

scenarios with low ICC (0.001, 0.01 and 0.05), unequal cluster sizes, and small cluster 

numbers. The GEE sandwich estimator underestimates the variance for small number of 

clusters, and the Wald z or t tests have substantially greater type I error rates than the 

nominal level. Our simulations suggest that no single bias-corrected sandwich estimator is 

universally superior to the others when the Wald t test is used for the analyses of CRTs with 

few clusters and considerable variation of cluster sizes. The variation of cluster sizes must 

be considered in the choice of bias-corrected sandwich estimators. A rule of thumb is that 

choosing the Wald t test with KC-corrected sandwich estimator when the coefficient of 

variation is less than 0.6 and choosing the Wald t test with FG-corrected sandwich estimator, 

otherwise. Even though Lu et al. [19] recommended the Wald z test with MD-corrected 

sandwich estimator in the GEE analyses to deal with the small number of clusters, our 

results suggest that the MD-corrected sandwich estimator should be used with caution 

because the Wald z test maintains the type I error rate only when the number of clusters is 

greater than 20, while the Wald t test is too conservative when the number of clusters is 

smaller than 20. Teerenstra et al. [23] also found that the Wald t test with MD-corrected 

sandwich estimator tends to be conservative and suggested using the Wald t test with KC-

corrected sandwich estimator instead. However, Teerenstra et al. only evaluated the Wald t 

test with KC-corrected sandwich estimator under well-balanced trial design. Our results 

show that Wald t test with KC-corrected sandwich estimator could only maintain the type I 

error rates to nominal level for the CRTs with small to moderate variation of cluster sizes 

(cv < 0.6). For the large variation of cluster sizes, as in the trial discussed above [20], the 

Wald t test with FG-corrected sandwich estimator should be used. Regarding Type I error 

control, the performance of the MBN-correction may depend on the choice of d and l. 

Within this paper, we followed the recommendations of the authors and set d = 2 and l =1. 

However, future research is warranted to determine if other choices of d l might improve 

Type I error control.

A number of previous studies have discussed the sample size and statistical power for CRT s 

with regard to linear mixed models [31-33]. GEE-based sample size and power calculation 

have also been proposed for the correlated data [22, 34, 35]. However, these GEE-based 

methods assume the asymptotic conditions, utilize the original sandwich estimator, and 
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assume the standard normal distribution approximation. Many CRTs may not be able to 

recruit large number of clusters in reality [5, 9], and the sandwich estimator underestimates 

the variances of regression parameters for small samples and consequently inflates type I 

error rates. To improve the small sample performance of GEE, bias-corrected sandwich 

estimators [8, 10-12] and the Wald t test [8, 23, 26, 27] are proposed to replace the sandwich 

estimator and the asymptotical Wald z test when the cluster number is small. Teerenstra et 

al. [23] develop a formula to calculate the sample size and power for GEE analyses of three-

level CRTs and suggest the t distribution approximation in the calculation. Even though 

Teerenstra et al. [23] recommended the Wald t test with KC-corrected sandwich estimator 

for the GEE analyses, they use the original sandwich estimator for the power calculation. It 

can be expected that a power calculation based on the sandwich estimator followed by an 

analysis using the KC-corrected sandwich estimator would result in the loss of precision. 

Considering the Wald t test with the KC-corrected sandwich estimator for both data analysis 

and power calculation, we derive a power formula for CRTs with the expectation of small 

cluster number. The expected powers based on this formula agree well with the empirical 

powers from simulations. Kauermann and Carroll [10] reduce the small sample bias of the 

sandwich estimator by weighting the estimate of Cov(Yi) in each cluster with a function of 

the leverage of the cluster, i.e., placing more weight on the cluster with larger leverage in the 

variance-covariance estimation. For the well-balanced CRT design with equal cluster 

numbers in different arms and equal numbers of participants in all clusters, we can expect 

that each cluster has the same leverage and weights the same in the variance-covariance 

estimation. Our power calculation assumes the well-balanced design, which is reasonable 

and commonly used in power estimations. In practice, however, it is hard to have the same 

number of participants in all clusters, and the cluster with more participants is expected to 

have larger leverage. Theoretically, our power calculation based on the averaged leverage 

may lose some precision when the exact leverages are used in the analyses. However, our 

simulation study suggests that the proposed power calculation is robust to some variation of 

cluster sizes (cv < 0.2). The impact of varying cluster size on the power or sample size 

estimation in CRTs has been investigated [29, 36, 37]. Eldridge et al. [29] show that for c < 

0.23, the impact of the variation of cluster sizes is very small, which is also confirmed by 

our simulations. Given the large variation of cluster sizes, our power estimation could lose 

precision. Eldridge et al. [29] suggest an adjustment by replacing the  term in the 

power or sample size formula with . We expect this adjustment also 

works in our case, but is a subject for future research.

Our power and sample size estimation only considers the compound symmetry correlation 

structure, which is commonly assumed in practice. For those CRTs with a more complicated 

correlation structure, the proposed formulas may not work well. Another limitation is that 

we do not consider covariates other than the treatment, which may be included in the real 

data analyses. The addition of covariates will change the variance estimation and the degrees 

of freedom, so that the impact could be complicated, especially when the covariates are 

correlated with treatment. Further research is warranted when individual/patient level 

covariates affect the log odds of event.
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In conclusion, we have compared and contrasted various approaches to maintaining 

appropriate Type I error control for GEE analyses when the number of clusters is small. Our 

results indicate that when the variation in cluster size is small to moderate (cv <0.6), the 

Wald t-test with the KC-corrected sandwich estimator maintains appropriate Type I error 

control. If the variation of cluster size is large (cv > 0.6), then the Wald t-test with the FG-

corrected sandwich estimator maintains appropriate Type I error control. Because adequate 

Type I error control can be maintained even when a small number of clusters are analysed, 

we recommend the use of GEE method in the analyses of CRTs due to fewer assumptions 

and the robustness to the misspecification of the covariance structure. Finally we have 

provided a convenient power and sample size calculation for the GEE analyses of CRTs 

based upon the appropriate corrected sandwich estimators.
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Figure 1. 
Observed type I error rates of GEE Wald t test with DF-corrected sandwich estimator. The 

type I error rates are calculated from 3000 independent replications.
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Figure 2. 
Observed type I error rates of GEE Wald t test with KC-corrected sandwich estimator. The 

type I error rates are calculated from 3000 independent replications.
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Figure 3. 
Observed type I error rates of GEE Wald t test with MD-corrected sandwich estimator. The 

type I error rates are calculated from 3000 independent replications.
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Figure 4. 
Observed type I error rates of GEE Wald t test with FG-corrected sandwich estimator. The 

type I error rates are calculated from 3000 independent replications.
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Figure 5. 
Observed type I error rates of GEE Wald t test with MBN-corrected sandwich estimator. 

The type I error rates are calculated from 3000 independent replications.
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Table 1

Observed type I error rates of GEE Wald tests. The tests are based on two-sided z-distribution approximation 

or t-distribution approximation with K – 2 degrees of freedom, at a nominal 0.05 significance level. Results 

are calculated from 3000 independent replications.

Covariance estimator K m̄ ρ = 0.001 ρ = 0.01 ρ = 0.05

z t z t z t

V 10 50 0.110 0.071 0.120 0.074 0.118 0.071

100 0.110 0.067 0.120 0.079 0.113 0.068

150 0.118 0.079 0.129 0.067 0.107 0.068

20 50 0.071 0.055 0.084 0.067 0.077 0.062

100 0.079 0.066 0.085 0.067 0.076 0.060

150 0.081 0.063 0.078 0.061 0.086 0.066

30 50 0.070 0.059 0.063 0.054 0.072 0.060

100 0.066 0.056 0.071 0.062 0.073 0.059

150 0.074 0.054 0.077 0.063 0.069 0.056

V
DF
∗ 10 50 0.081 0.045 0.089 0.051 0.085 0.050

100 0.079 0.048 0.086 0.049 0.081 0.046

150 0.089 0.054 0.093 0.053 0.078 0.047

20 50 0.059 0.044 0.071 0.051 0.066 0.049

100 0.068 0.054 0.070 0.051 0.062 0.050

150 0.065 0.050 0.065 0.050 0.071 0.057

30 50 0.060 0.050 0.056 0.046 0.063 0.050

100 0.057 0.048 0.064 0.054 0.061 0.053

150 0.056 0.048 0.065 0.052 0.059 0.048

V
KC
∗ 10 50 0.081 0.045 0.092 0.051 0.084 0.049

100 0.079 0.048 0.086 0.049 0.081 0.046

150 0.088 0.054 0.093 0.053 0.078 0.047

20 50 0.059 0.044 0.071 0.051 0.066 0.049

100 0.068 0.054 0.070 0.051 0.066 0.051

150 0.065 0.050 0.065 0.050 0.071 0.057

30 50 0.060 0.050 0.056 0.045 0.063 0.050

100 0.058 0.048 0.064 0.054 0.061 0.053

150 0.056 0.058 0.065 0.052 0.059 0.048

V
MD
∗ 10 50 0.055 0.030 0.061 0.033 0.058 0.032

100 0.056 0.032 0.060 0.028 0.055 0.031

150 0.064 0.037 0.064 0.034 0.058 0.032

20 50 0.048 0.037 0.056 0.044 0.053 0.042

100 0.058 0.031 0.056 0.042 0.054 0.038

150 0.054 0.038 0.055 0.041 0.059 0.045

30 50 0.053 0.041 0.048 0.040 0.054 0.041
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Covariance estimator K m̄ ρ = 0.001 ρ = 0.01 ρ = 0.05

z t z t z t

100 0.052 0.041 0.056 0.047 0.054 0.044

150 0.049 0.042 0.056 0.046 0.051 0.041

V
FG
∗ 10 50 0.070 0.036 0.076 0.050 0.070 0.040

100 0.068 0.040 0.071 0.042 0.068 0.038

150 0.078 0.044 0.078 0.037 0.067 0.038

20 50 0.053 0.040 0.063 0.041 0.060 0.046

100 0.064 0.047 0.064 0.046 0.060 0.044

150 0.061 0.045 0.061 0.046 0.064 0.049

30 50 0.057 0.044 0.052 0.042 0.058 0.045

100 0.055 0.044 0.060 0.050 0.058 0.048

150 0.052 0.044 0.059 0.049 0.055 0.042

V
MRN
∗ 10 50 0.067 0.035 0.071 0.041 0.068 0.038

100 0.065 0.038 0.070 0.036 0.064 0.037

150 0.075 0.044 0.073 0.040 0.066 0.035

20 50 0.051 0.040 0.063 0.045 0.059 0.045

100 0.064 0.046 0.063 0.045 0.056 0.044

150 0.059 0.044 0.060 0.046 0.063 0.050

30 50 0.057 0.045 0.052 0.042 0.058 0.044

100 0.055 0.044 0.060 0.049 0.058 0.048

150 0.053 0.043 0.059 0.049 0.055 0.043
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Table 3

Intervention effects on women's attendance at breast screening.

Tests Intervention Odds ratio P-value

GLMM[20] 1.04 (0.08, 2.00) 2.83 (1.08, 7.39) 0.030

GEE

    V and z test 1.13 (0.32, 1.95) 3.11 (1.38, 7.01) 0.0062

    V
DF
∗

 and tk-2 test
1.13 (0.24, 2.03) 3.11 (1.28, 7.58) 0.0147

    V
KC
∗

 and tk-2 test
1.13 (0.25, 2.02) 3.11 (1.28, 7.55) 0.0143

    V
MD
∗

 and tk-2 test
1.13 (0.22, 2.05) 3.11 (1.24, 7.80) 0.0176

    V
FG
∗

 and tk-2 test
1.13 (0.20, 2.07) 3.11 (1.22, 7.95) 0.0197

    V
MBN
∗

 and tk-2 test
1.13 (0.21, 2.06) 3.11 (1.24, 7.82) 0.0179
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