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ABSTRACT

Motivation: The receiver operator characteristic (ROC) curves are
commonly used in biomedical applications to judge the performance
of a discriminant across varying decision thresholds. The estimated
ROC curve depends on the true positive rate (TPR) and false positive
rate (FPR), with the key metric being the area under the curve (AUC).
With small samples these rates need to be estimated from the training
data, so a natural question arises: How well do the estimates of the
AUC, TPR and FPR compare with the true metrics?
Results: Through a simulation study using data models and analysis
of real microarray data, we show that (i) for small samples the
root mean square differences of the estimated and true metrics are
considerable; (ii) even for large samples, there is only weak correlation
between the true and estimated metrics; and (iii) generally, there
is weak regression of the true metric on the estimated metric. For
classification rules, we consider linear discriminant analysis, linear
support vector machine (SVM) and radial basis function SVM. For
error estimation, we consider resubstitution, three kinds of cross-
validation and bootstrap. Using resampling, we show the unreliability
of some published ROC results.
Availability: Companion web site at http://compbio.tgen.org/
paper_supp/ROC/roc.html
Contact: edward@mail.ece.tamu.edu
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1 INTRODUCTION
High-throughput technologies, such as those based on microarrays
or ‘Next-Generation’ sequencing, make it possible to generate data
on large numbers of genes, transcripts or proteins simultaneously in
biological samples. Typical variables assessed include mutations,
DNA copy number, DNA methylation, mRNA expression,
microRNA expression, protein expression and post-translational
modifications. A central goal of current biomedical research is to use
those molecular profiles to identify biomarkers or multi-gene bio-
signatures for ‘personalization’ of medicine—that is, to use them
for the full range of medical management choices—in disease risk
assessment, sub-classification of disease, early diagnosis, prognosis,
choice of optimal therapy, evaluation of response to therapy and/or
identification of relapse.

∗To whom correspondence should be addressed.

The profile data are used to develop univariate or multivariate
predictors of biologically or medically interesting outcomes. Often,
the aim is to develop a binary classifier, for example, diseased
versus normal, disease subtype 1 versus disease subtype 2, response
versus non-response to a drug, or 5-year survival versus death.
A large literature has developed on such classifiers, but the recurring
question is, ‘How accurate are their predictions and classifications?’
This question is supposed to be answered by the error rate; however,
recent Monte Carlo simulations have shown large uncertainty in the
error estimates. In the presence of high-dimensional feature spaces
and small samples, a ubiquitous situation with high-throughput
technologies, resampling error estimation methods, for example,
cross-validation (CV), suffer from high-deviation variance, that is,
the variance of the difference between the true and estimated errors
is large (Braga-Neto and Dougherty, 2004) [see Glick (1978) for
an early criticism of CV]. Moreover, there tends to be a lack of
correlation and regression between the true and estimated errors, to
the extent that the regression line of the true error on the estimated
error is nearly horizontal (Hanczar et al., 2007). These Monte Carlo
studies have been supported by analytical studies in the case of
the discrete histogram rule (Braga-Neto and Dougherty, 2005b) and
linear discriminant analysis (LDA; Zollanvari et al., 2009).

For assessment of binary classifiers, in addition to the error rate, a
favorite analytical tool is the receiver operator characteristic (ROC)
representation (Pepe et al., 2004; Spackman, 1989)—for instance,
with regard to gene-expression profiling in cancer, see Table C1 on
the companion web site (http://compbio.tgen.org/paper_supp/ROC/
roc.html). An ROC curve is formulated by plotting the sensitivity
and specificity of the classifier against each other as a function
of some threshold criterion, for example, based on a biomarker
or biosignature. The resulting ROC curve presents graphically the
trade-off between false positives (FP) and false negatives (FN) in
the classification process. The area under the ROC curve provides a
scalar parameter that reflects the overall quality of the classifier. A
natural question is whether parameters associated with ROC curves,
such as the area under the curve (AUC), would suffer the same
degree of uncertainty as discovered in the previous analyses of
classifier error.

Accordingly, we have established the computational machinery
to address this question for both simulated and real datasets, and
have performed a variety of analyses based on different predictive
algorithms and methods of validation. We have analyzed the effect
of sample size and the effect of an unbalance in the number of cases
per class. That type of imbalance is common in biological datasets.
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Although ROC curves are insensitive to changes in class proportion,
we show here that such imbalances have considerable impact on the
estimation of both error rate and AUC. Through the simulations on
both synthetic and real data, we identify how the training set size and
class disproportion affect the performances of the different metrics.
In particular, we show the unreliability of ROC performance metric
estimations in small-sample settings.

2 SYSTEMS AND METHODS

2.1 ROC curves
Consider a two-class problem defined by the feature-label distribution F and
a sample S ={(x1,y1),...,(xN ,yN )} of N examples drawn from F.An example
is a pair (x,y), where x is a d-dimensional vector and y∈{0,1} is the class. A
classification rule � is used to design a discriminant �S : R

d →R from S. The
output of �S is a probability or a score that reflects the degree of uncertainty
with which an example is assigned to a class. A binary classifier �S,T is
derived from �S via a threshold T according to �S,T (x)=0 if �S(x)>T and
�S,T (x)=1 otherwise.

Given an example x, there are four possibilities when comparing the class
predicted by �S,T (x) to its true class y: true positive (TP) y=0 and �S,T (x)=
0; FN y=0 and �S,T (x)=1; FP y=1 and �S,T (x)=0; true negative (TN)
y=1 and �S,T (x)=1. From these four possibilities, we can define three
performance metrics; classifier error, ERR = (FP+FN)/N ; true positive rate,
TPR =TP/(TP+FN); and false positive rate, FPR =FP/(TN+FP).

An ROC graph is a 2D graph in which the x-axis represents the FPR and
y-axis represents the TPR. The point (0,1) represents perfect classification:
no negatives classified as positives and all positives classified as positive.
On the diagonal, the points (0,0) and (1,1) correspond to all examples being
assigned to the negative class and to the positive class, respectively. The
performance of a classifier �S,T for a fixed threshold T is represented by a
single point in ROC space. If the decision threshold T is allowed to vary,
then the performance of the discriminant �S is a variable depending on T
and is represented by a curve in ROC space. A common metric to estimate
the performance of a classifier independently of the decision threshold is the
Area Under the Curve (AUC). AUC∈[0,1], AUC = 1 corresponds to the
perfect classifier, for which the ROC curve goes directly from point (0,0) to
(0,1) and then to (1,1), AUC = 0 corresponds to the classifier assigning all
examples to the wrong class, and the ROC curve that follows the diagonal
line has AUC = 0.5.

A direct method to compute the AUC is to construct the ROC curve and
then measure the AUC. If there are M test examples, then we obtain up to
M +1 points in the ROC space with which to draw the curve. Accordingly,
the AUC can be estimated by applying a rectangle or trapezoid area on each
point. However, an alternative of AUC computation has been proposed in
(Hand and Till, 2001), where it is shown that the AUC corresponds to the
probability that an example from the positive class has a higher classifier
output �S(x) than an example from the negative class. In their procedure,
the examples are sorted in increasing order according to the values �S(x)
and the AUC is computed by the following formula:

AUC= S0 −n0(n0 +1)/2

n0n1
(1)

where n0 and n1 are the numbers of examples of the positive and negative
classes, respectively, in the test set, and S0 is the sum of ranks of examples
in the positive class.

2.2 Models for synthetic data
We have performed a set of experiments on synthetic data generated to
reflect key properties of microarray data: small number of examples, high
dimension and large number of irrelevant features. We construct two types of
features: relevant and irrelevant. Relevant features follow different normal
distributions for each class: N(0,σ0�) for the positive class and N(A,σ1�)

for the negative class, where the elements of A are evenly drawn from
[0.5,1.5] and fixed throughout so as not to confound model variability with
error estimation. An irrelevant feature follows the same normal distribution,
N(0,σ0), for both classes. Inside a class, all relevant features have a common
variance. Two covariance matrix structures � are considered: (i) � is the
identity matrix I in which the features are uncorrelated and the class-
conditional densities are spherical Gaussian. (ii) � is a block-structured
matrix in which the features are equally divided into blocks of size 4: features
from different blocks are uncorrelated and every two features within the
same block have a common correlation coefficient ρ=0.8. In the linear
models, the variances of covariance matrices of the two classes are equal,
σ1 =σ0 =1.8; in the non-linear models, the variances of covariance matrices
are different, with σ0 =σ1/1.5=1.4. With these model characteristics, we
generate training and test sets with N and 10 000 examples, respectively,
containing 20 relevant features and 180 irrelevant features. The large test
set is used to compute the true metrics. The number of training examples
(N) and class prior probabilities (p0 for class 0, and p1 =1−p0 for Class 1)
of the two classes are parameters of the dataset, with N varying from 50 to
1000, and p0 from 0.2 to 0.8.

2.3 Classification rules
We consider three classification rules: LDA, linear support vector machine
(SVM) and radial basis function SVM (RBF-SVM). The output of an LDA
classifier is readily transformed into the posterior probability of the positive
class, so the usual decision threshold is 0.5. The output of an SVM is a score
that represents the distance of the example from the separating hyperplane
and the sign of the score defines the predicted class. The usual decision
threshold of an SVM is 0. The RBF-SVM is in general a non-linear classifier,
although linear SVM can be viewed as a special form of it.

3 IMPLEMENTATION
Our simulation study uses the following protocol:

(i) A training set Str and a test set Sts are generated. For the synthetic data,
examples are sampled from the distribution determined by the model,
N examples for Str and 10 000 examples for Sts. For the microarray
data, the examples are randomly separated into training and test sets
with N =50 examples for the training set and the remaining for the
test set.

(ii) To design a classifier based on a dataset S: first apply t-test to S
and select 10 best features based on the t-test statistics; then build
the classifier �S from the reduced set. For classification, the decision
threshold T is as defined in Section 2.3.

(iii) For true performance:

(a) Based on training data Str , build the classifier �Str .

(b) Apply �Str to test data Sts. For each example x, compute class
prediction �Str ,T (x) and classifier output �Str (x).

(c) Based on class predictions and true labels, compute true error rate,
TPR and FPR.

(d) Sort �Str (x), then compute true AUC according to Equation (1).

(iv) For estimated performance, consider the following estimators:

(a) resubstitution:
(1) Based on training data Str , build the classifier �Str . Apply

�Str back to training data Str . For each example compute class
prediction and classifier output.

(2) Compute estimated error rate, TPR and FPR with class
predictions, and estimated AUC with sorted classifier outputs.

(b) k-fold CV:
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(1) Randomly partition the training data into k folds S(i)
tr , i=

1,...,k. For each fold S(i)
tr , based on the remaining data in

the training set Str \S(i)
tr , build the classifier �

Str\S(i)
tr

. Apply

�
Str\S(i)

tr
to fold S(i)

tr to generate each example’s class prediction

and classifier output.

(2) Collect the class predictions and classifier outputs from all
folds. Compute estimated error rate, TPR, FPR and AUC.

(3) For leave-one-out (LOO), set k to the training sample size; for
10-fold CV (10CV), set k =10; for 10CV with 10 repetitions
(10CV10), repeat Step (1) for 10 times before entering Step
(2).

(c) .632 bootstrap (BOOT):
(1) Form a bootstrap sample S∗ of size N by drawing with

replacement from Str . Using S∗, build the classifier �S∗ . Apply
�S∗ to the examples that are in Str but not in S∗.

(2) Repeat the above step 100 times, collect class predictions and
classifier outputs from all repetitions, compute estimated error
rate, TPR, FPR and AUC, and denote them as ε0, TPR0, FPR0

and AUC0, respectively.

(3) Obtain the resubstitution estimate of error rate, TPR, FPR
and AUC, and denote them as εresub, TPRresub, FPRresub and
AUCresub, respectively.

(4) Compute the .632 bootstrap estimated error rate by

ε.632 = (1−0.632)εresub +0.632ε0.

Replace ε in above equation with TPR, FPR and AUC to
obtain the .632 bootstrap estimation of TPR, FPR and AUC,
respectively.

(v) Repeat the above procedure for 5000 times and collect all results.

4 RESULTS AND DISCUSSION
In this article, we discuss representative results with the full set of
results being given on the companion web site. For the synthetic data,
we restrict ourselves here to the linear SVM and CV error estimation
for the linear model with uncorrelated data, unless specifically
indicated. For real data, again we demonstrate only the results of
linear SVM with CV error estimation, unless specifically indicated.

4.1 Results for synthetic data
Figure 1 presents the deviation distributions (true minus estimated
metric) for classifier error, AUC, TPR and FPR, with N =100 and
p0 =0.5,0.7 and for five error estimators. As expected, leave-one-
out is practically unbiased but has the largest deviation variance.
Generally, for this case, bootstrap and the CV estimators are nearly
unbiased. Bootstrap has the smallest deviation variance except for
resubstitution, which suffers from severe bias. However, one must
be careful about generalizing from the bootstrap bias results, since
.632 bootstrap is known to have substantial bias for certain models
and classifiers.

Figure 2 shows scatter plots comparing the true and estimated
values of the four metrics for N =50,100,200 (500 and 1000 are
on the companion web site) and p0 =0.5,0.7. The estimated and
true values are on the x- and y-axis, respectively, and the small
triangles indicate the mean true and mean estimated values. The
black line shows the linear regression for the true error on the
estimated error. The lack of error regression and wide dispersion
for small N is consistent with what we have previously reported
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Fig. 1. Deviation distribution of various error estimation schemes for four
performance measures: synthetic data, linear uncorrelated model, linear SVM
and sample size N =100.

for error estimation (Hanczar et al., 2007). Of interest here, the
dispersion is worse for the AUC than for the classifier error and
that it is worse for the unbalanced prior (p0 =0.7) than the balanced
prior (p0 =0.5). Note that the TPR variance is particularly bad for
the unbalanced prior, a finding common throughout this study. There
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Error rates

area under curve

true positive rate

false positive rate

Fig. 2. The scatter plots of various performance measures at different sample size Ns and priors: synthetic data, linear uncorrelated model, linear SVM and
10CV. The x-axis is the estimated performance, whereas the y-axis is the true performance.

is also little regression for the true AUC on the estimated AUC.
On the companion web site, it can be seen that AUC regression
generally does not improve for large sample sizes; however, the
variance decreases greatly for N =500,1000. Hence, estimation is
good, even with a lack of regression.

Figure 3 shows the root mean square (RMS) error and
the correlation between the true and estimated metrics as
functions of the class prior probabilities (on the x-axis) for N =
50,100,200,500,1000. RMS of the first row is defined by

RMS=
√

E[|εest −εtru|2]
where εtru and εest are the true and estimated metrics. The second
row in the figure shows the correlation between true and estimated
metrics. The RMS is strongly negatively correlated with the training
set size, RMS decreases as N increases. The prior probability also
impacts the RMS. The classifier error decreases slightly and theAUC
increases slightly with imbalance between the classes. Relative to the
prior probability, RMS for the TPR increases substantially and RMS
for the FPR decreases substantially for increasing prior probability.

In all cases, sensitivity to the prior is substantial for small samples
and decreases with increasing N .

RMS can be decomposed into the bias and deviation variance as

RMS=
√

Vardev[εest]+Bias[εest]2
Figure 2 shows that the bias is small for the CV estimator being
considered, so that both classifier error and AUC imprecision result
from the deviation variance. The deviation variance can be further
decomposed into the variances of the true and estimated metrics,
along with the correlation, ρ, between true and estimated metrics:

Vardev[εest]=σ2
est +σ2

tru −2ρσestσtru.

According to Figure 3, the correlation is typically not large and
cannot offset the σ2

est +σ2
tru term in the deviation variance for the

classifier error or the AUC. In sum, the AUC is poorly estimated for
small samples, particularly so for N ≤100.

The effect of imprecise estimation is observable in the
ROC curves themselves. Figure 4 shows ROC-related curves
for LDA classification and the non-linear uncorrelated model.
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Fig. 3. The precision of four performance measures, under different sample size Ns and priors: synthetic data, linear uncorrelated model, linear SVM and
10CV. The x-axis is the p0 of the distribution and the y-axis is the precision based on either RMS (top row) or correlation (bottom row).

The left- and right-hand columns show results for p0 =0.5 and
p0 =0.7, respectively, and N =50,100 and 200. The cross- and
circle-marked curves correspond to using LOO error estimation
and the true error, respectively. The solid lines are the mean ROC
curves and the upper and lower dashed lines are the 95% confidence
interval. The circle-marked dashed lines represent the variation
associated with computing ROC curves from samples, that is,
constructing the curves from sample-based TPRs and FPRs. The
extra variance represented by the cross-marked dashed lines results
from using the estimated TPR and estimated FPR instead of the true
TPR and true FPR. For N ≤100, this extra variance is substantial.

4.2 Analytic representation of estimated AUC variance
We have observed that the variance of the estimated AUC often
exceeds the variance of the estimated error in the simulations.
Although we cannot prove a general theorem to that effect, we can
give an analytic proof for a special case. For simplicity, we consider
the one-split training–testing scheme, but the conclusion can easily
be extended to many other schemes.

For the feature vector X and binary label variable Y , let the
two class-conditional distributions be identical, the corresponding
cumulative distribution functions (CDFs) be continuous over
R, and the prior class probabilities be given by P{Y =0}=p
and P{Y =1}=1−p. The Bayes error is min(p,1−p). For AUC
estimation, the classification rule adopted will yield a discriminant
�S :R→[0,1] from the training data. Let the CDFs of �S(X|Y =
0) and �S(X|Y =1) be continuous over [0,1]. Assume there are
altogether n testing sample points x1,...,xn, with n0 =pn points from

class 0 and n1 = (1−p)n points from Class 1. The AUC is computed
according to Equation (1). Owing to the continuity assumption,
P[�S(xi)=�S(xj)]=0. Hence, the ranking order is unique with
probability 1.

Since the class-conditional distributions are identical,
�S(X|Y =0) and �S(X|Y =1). Thus, the rank-sum S0 follows the
same distribution of the null-hypothesis in the Mann–Whitney test
(Mann and Whitney, 1947), whose variance has been shown to be
n0n1(n0 +n1 +1)/12. Hence, the variance of the estimated AUC is

σ2
est-AUC = n0 +n1 +1

12n0n1
= n+1

12p(1−p)n2
≥ n+1

3n2
>

1

3n
,

where we use p(1−p)≤1/4. It is well known that the variance of
the estimated error in this testing scenario is bounded according to
σ2

est-ERR ≤ 1
4n (Devroye et al., 1996), which is smaller than 1

3n .
The same argument applies to k-fold CV and many other

resampling-based error estimation schemes, as long as the data
partitioning is stratified so that the testing sample points are
represented in the same proportion as the training data for every
fold/resampling. For non-trivial distributions, where �S(X|Y =0) �=
�S(X|Y =1), the distribution of the rank-sum is generally unknown.
Moreover, the variance of the true AUC and true error rate, which
are functions of sample size and classification rule, are rarely known.
Hence, we depend on simulation.

4.3 Results for microarray data
We present two sets of experiments based on real microarray
datasets. In the first experiment, we apply a hold-out-based
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Fig. 4. Comparison of ROC plots: non-linear uncorrelated model, LDA
classifier, LOO. The x-axis is the FPR and the y-axis is the TPR. The curves
with cross marks and curves with circle mark correspond to using LOO error
estimation and the true error, respectively. The solid lines are the mean ROC
curves and the upper and lower dashed lines are the 95% confidence interval.

scheme on two existing cancer datasets to compare the true and
estimated metrics and confirm the conclusions drawn from artificial
data simulations. In the second experiment, we reproduce the
experiments in two publications to verify the imprecise estimation
observable in ROC plots.

In the first set of experiments, we use microarray data from two
published sources: breast cancer (van de Vijver et al., 2002) and
lung cancer (Bhattacharjee et al., 2001) studies. The breast cancer
dataset includes 295 patients, 115 belonging to the good-prognosis
class and 180 belonging to the poor-prognosis class, with prior
probabilities 0.39 and 0.61, respectively. The lung cancer dataset
contains 203 tumor samples, 139 being adenocarcinoma and 64
being of some other type of tumor, the prior probabilities being
0.68 and 0.32, respectively. We have reduced the two datasets to a
selection of the 2000 genes with highest variance. For each iteration
of our procedure, the datasets are divided into a training set and a
test set. The training set is formed by 50 examples drawn without
replacement from the dataset. The examples not drawn are used as

the test set. Note that the training sets are not fully independent.
Since they are all drawn from the same dataset, there is an overlap
between the training sets; however, for a training set size of 50 out of
a pool of 295 or 203, the amount of overlap between the training sets
is small. The average size of the overlap is about 8 examples for the
breast cancer dataset and 12 examples for the lung cancer dataset.
The dependence among the samples is, therefore, not expected to
have a large impact on the results (see Braga-Neto and Dougherty,
2004, for a discussion of this issue). We apply on these data the same
protocol used for artificial data and detailed in Section 3. The results
allow us to compare the true values of the metrics to the estimated
metrics. Figure 5 shows the scatter plots for the breast and lung
cancer microarray dataset with the linear SVM. As for the synthetic
data, there is very little regression, wide dispersion, and the AUC
dispersion is comparable or even greater than that for the classifier
error. The RMS of the lung cancer dataset is smaller and there is less
variance because the classification is easier (e.g. the error is low and
the AUC is high). Table 1 gives the RMS values and the correlation
coefficients, where the latter are very small.

In the second set of experiments, we demonstrate the large
variance observable in ROC plots in real data cases. We use data
in two published studies and repeat the same classification scheme
multiple times with the only variance being the randomness in data
partitioning.

The first dataset is from a study on the prediction of Parkinson’s
disease based on gene expression from blood samples (Scherzer
et al., 2007). The authors have identified a set of biomarkers,
constructed a classifier and validated their results with an ROC
analysis of the classifier. The dataset contains 105 subjects, 50
at early stages of Parkinson’s disease, 22 healthy and 33 having
another brain disease. The classification task is to detect only
the Parkinson’s disease, so the prior of the problem is 0.52. The
authors use an algorithm that selects the best genes based on the
Pearson’s correlation between their expression level and the class
label. Then a template of each class is formed from the mean
expression of the selected genes. The classification outcome is
determined by the risk score, which is defined as its correlation
with the Parkinson’s disease template minus its correlation with the
non-Parkinson disease template. To evaluate the performance of this
classifier, the original dataset is randomly divided into a training
set (66 examples) and a test set (39 examples). The training set
is used for gene selection and classifier construction, and the test
set for evaluation. The authors support the validity of the identified
biomakers using the classifier ROC curves. These ROC curves are
computed using both the test set and an LOO procedure.

In our experiment, we apply the same scheme of gene selection,
classification and evaluation as in the original study; however, we
run this procedure 100 times to estimate the variance of the results.
Figure 6 shows the average curve for the 100 ROC curves computed
by LOO (solid line with cross marks) and the test set (solid line
with circle marks). The dashed lines represent the 95% confidence
intervals. These represent a kind of internal confidence bounds
relative to the sample. We see that the results of our experiments
are more pessimistic than the ones in the original paper. The AUC
for LOO is 0.561 with confidence interval [0.354;0.766]. The AUC
for the test set is 0.536 with confidence interval [0.345;0.727]. Our
ROC curves are much more closer to the axis y=x. The confidence
intervals are wide and include the axis y=x. In these conditions it is
not possible to validate the genes, identified by the methodology, as
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Breast cancer dataset

Lung cancer dataset

Error AUC TPR FPR

Fig. 5. The scatter plots of performance measures for breast and lung cancer dataset: linear SVM, 10CV. The x-axis is the estimated performance, whereas
the y-axis is the true performance.

Table 1. The RMS and correlation of performance measures of breast and
lung cancer datasets: linear SVM and 10CV

Error AUC TPR FPR

Breast cancer
RMS 0.089 0.124 0.149 0.102
Correlation 0.070 0.114 0.421 0.369

Lung cancer
RMS 0.065 0.064 0.063 0.153
Correlation 0.161 0.197 0.136 0.226

predictors of Parkinson’s disease. The situation is even worse than
what is depicted here because the confidence intervals are internal
to the sample. This only accounts for resampling variation, not the
variance across samples, which would have to be included to obtain
the full variance (Braga-Neto and Dougherty, 2004, 2005a).

The second dataset is from a study of the loss of phosphatase and
tensin homolog (PTEN) associated with the presence of solid tumor.
The authors develop and validate a microarray gene expression
signature for immunohistochemistry (IHC) detectable PTEN loss
in breast cancer (Saal et al., 2007). The data contain 105 examples,
70 being IHC negative and 35 being IHC positive. The genes set
is reduced to genes containing <20% of missing values, thereby
resulting in 16 039 genes. The best discriminant genes are selected
by a Mann–Whitney test and the classifier is constructed from a
linear SVM. The performance of the classifier is estimated by 3-fold
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R

Fig. 6. ROC curves for the Parkinson’s disease dataset. Lines with cross
marks are the ROC curves by LOO and lines with circle marks are by the
test set. The solid lines represent the average ROC, whereas the dashed lines
the 95% confidence intervals.

CV with 10 repetitions. The AUC of the final classifier is estimated
to be 0.758.

We use the same procedure as described in the original study,
except the feature size in classifier design, which was not clearly
described in the original publication. In our experiment, the final
feature size is fixed as 100. We compute the ROC curve and AUC
of the obtained classifier. We also estimate the internal variance of
the ROC curve and AUC via repetitions of the procedure. Figure 7
gives the average ROC curve (solid line) with its 95% confidence
interval (dashed lines). This figure illustrates the large variance of
the ROC curve, with the 95% confidence interval including the
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Fig. 7. ROC curve for the PTEN dataset. The solid line is the ROC curve
by 3-fold CV with 10 repetitions and the dashed lines represent the 95%
confidence intervals.

axis y=x. This means that, even if the ROC curve is above the
axis y=x, we cannot reject the hypothesis that the classifier is
meaningless. The AUC of the classifier is estimated to 0.642 and
its 95% confidence interval is [0.483; 0.810]. Note that the AUC
of the original published classifier (AUC = 0.758) is included in
our confidence interval, as is a random guess (AUC = 0.5). As with
the Parkinson’s data, the situation is worse because the confidence
internal only reflects internal variance from resampling within the
sample, not the full variance. These experiments demonstrate that
there are insufficient examples in the microarray datasets to draw
ROC-based conclusions with acceptable precision.

4.4 Concluding remarks
This article and several preceding it have shown that even for
synthetic data of a simple type, two Gaussian distributions, it is
difficult to find good feature sets (Sima and Dougherty, 2006) and
difficult to identify the error rate of a classifier composed of the
features that one does find with a small sample. The essential
reason is that one cannot make sufficiently good estimates of
predictive error at any of the steps required to select features or
to characterize the error of the classifier finally developed (Braga-
Neto and Dougherty, 2004; Hanczar et al., 2007). Here, we have
demonstrated that small sample size leads to large inaccuracies in
the estimated validation parameters associated with ROC analysis,
even from well-behaved distributions.

A previous study (Saal et al., 2007) applied permutation P tests
to the AUC and obtained good P-values. There is no contradiction
here because permutation P tests, when applied to classification,
are essentially unrelated to classifier performance. Specifically, the
P-values have virtually no regression with the error estimates (Hsing
et al., 2003).

A procedure for error estimation cannot provide more information
than that exists in the distribution of samples with which it is
presented: if that distribution is a poor estimate of the actual
distribution, then the error estimate will be poor as well. In the case of
actual biological samples, it can be seen that the differences between
true and estimated error are even larger—considerably larger—than
for a similarly small sample of well-distributed synthetic data.

ROC curves must be used with extreme caution unless one has
a very large sample. In other cases, it would be nice to have some
simple rule of thumb to determine if a sample is sufficiently large
for the problem at hand; however, since in practice there is only a

single sample available, no simple solution is possible. Nonetheless,
an experimenter can take some precautions. First, one could use
the kind of model-based analysis done in the present article. This
would not reflect the actual population but it would allow the kind
of confidence analysis demonstrated in Figure 4. This could be
performed using a model developed for the specific technology
being used or, lacking the availability of such a model, a Gaussian
model like the one employed herein. It can be expected that the true
biological population is less well behaved than the model so that the
resulting confidence bounds could be taken as a performance floor
for determining a sufficient sample size. A second approach would
be to use the internal variance of the AUC if a resampling procedure
has been employed, as in the PTEN example (see Appendix A for
a description of the internal variance). Again, this would provide a
floor because it only provides an estimate of the internal variance,
not the full variance of the AUC. Neither method is perfect, but
certainly if the 95% confidence interval contains the line y=x in
either case, then the sample size is insufficient. If forced to choose
between the two approaches, we would choose the model-based
approach because often the internal variance is much less than the
full variance, so the resampling approach may be more optimistic.
If these approaches are used, prudence would dictate utilizing both
and making no conclusion unless the lower 95% confidence bound
for the AUC exceeds 0.5 for both.
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APPENDIX A
The internal variance of a randomized error estimator, such as k-fold
CV, is the variance of the estimator given the sample, namely, the
variance due only to its internal random factors (Braga-Neto and
Dougherty, 2004, 2005a). It is expressed as Varint =Var(ε̂|S), where
ε̂ is a randomized error estimator and S is the sample. This variance is

zero for non-randomized error estimators. The full variance, Var(ε̂),
of the error estimator is the one we are really concerned about,
since it takes into account the uncertainty introduced by randomly
sampling the data from the population. Using the well-known
conditional-variance formula,

Var(X)=E[Var(X|Y )]+Var(E[X|Y ]),
we can break down Var(ε̂) in the following way:

Var(ε̂)=E[Varint]+Var(E[ε̂|S]).
The second term on the right-hand side is the one that includes

the variability due to random sampling.
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