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Abstract. This paper presents a comprehensive review of dispersive Alfvén waves in space and
laboratory plasmas. We start with linear properties of Alfvén waves and show how the inclusion of ion
gyroradius, parallel electron inertia, and finite frequency effects modify the Alfvén wave properties.
Detailed discussions of inertial and kinetic Alfvén waves and their polarizations as well as their
relations to drift Alfvén waves are presented. Up to date observations of waves and field parameters
deduced from the measurements by Freja, Fast, and other spacecraft are summarized. We also present
laboratory measurements of dispersive Alfvén waves, that are of most interest to auroral physics.
Electron acceleration by Alfvén waves and possible connections of dispersive Alfvén waves with
ionospheric-magnetospheric resonator and global field-line resonances are also reviewed. Theoretical
efforts are directed on studies of Alfvén resonance cones, generation of dispersive Alfvén waves, as
well their nonlinear interactions with the background plasma and self-interaction. Such topics as the
dispersive Alfvén wave ponderomotive force, density cavitation, wave modulation/filamentation, and
Alfvén wave self-focusing are reviewed. The nonlinear dispersive Alfvén wave studies also include
the formation of vortices and their dynamics as well as chaos in Alfvén wave turbulence. Finally, we
present a rigorous evaluation of theoretical and experimental investigations and point out applications
and future perspectives of auroral Alfvén wave physics.
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1. Introduction

1.1. ALFVÉN WAVES

Alfvén waves are low-frequency, electromagnetic waves in a conducting fluid with
a background magnetic field. In the Alfvén wave the background magnetic field
tension provides the restoring force, whereas the ion mass provides the inertia. The
existence of such waves was theoretically predicted by Alfvén (1942). Before the
discovery of these waves only sound or acoustic waves were known to exist due
to the compressibility of a fluid. This theoretical prediction was of great impor-
tance because it opened new possibilities to transport energy in a medium. The
experimental confirmation of this extremely fruitful idea appeared several years
later, when experiments in the (now) Alfvén laboratory in Stockholm proved the
existence of these waves in mercury and in liquid sodium. The first experimental
evidence for the existence of Alfvén waves in a plasma appeared 10 years after
Alfvén predicted their existence. A standing wave of the appropriate frequency was
observed first by Bostick and Levine (1952) in a pulsed toroidal device. Wilcox
et al. (1960) in a laboratory plasma experiment verified the Alfvén speed and
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reflections of the wave from a conducting and insulating end-plates. The wave
represents a perturbation of the perpendicular electric and magnetic field, traveling
along the applied magnetic field. Upon reflection from the conducting end, the
wave reversed sign of the electric signal and retained the sign of the magnetic
perturbation. A reflection from a non-conductive end resulted in preserving the
sign of the electric field and reversing the magnetic perturbation.

Let us recall briefly the major results of magnetohydrodynamic theory (see
e.g. Alfvén and Fälthammar, 1963). Assume that the background magnetic field
is oriented along the z-axis and consider plane waves propagating obliquely at an
angle θ to the applied field. For waves at frequency below the ion gyrofrequency,
ωci = qiB0/mi , the linear analysis of MHD equations leads to three wave modes.
The first one is the Alfvén wave which has the frequency

ω = kzvA , (1)

where

vA = B0

(µ0ρ)1/2
, (2)

vA is the Alfvén velocity, kz = k cos θ , and ρ = nimi is the mass density. The other
two modes are fast and slow magnetosonic modes.

The dispersion relation for the Alfvén wave does not depend on the elastic prop-
erties of the fluid. In a wave of this type there are no fluctuations of the density and
the pressure, i.e., δn = 0 and δp = 0. The perturbation vector b is perpendicular
to the planes of the vectors B0 and k; the electric field E is perpendicular to B0 and
lies in the B0, k plane. The fluid velocity u is connected with the perturbation of
the magnetic field b by u = ∓b/(µ0ρ)

1/2, where the upper (lower) sign refers to
the case k · B0 > 0 (k · B0 < 0).

1.2. DISPERSIVE WAVES AND THEIR RELATION TO AURORA

Ideal MHD, by definition, has no field-aligned electric field and thus the waves
derived above cannot provide parallel energization of particles which are a known
feature of the coupling between the ionosphere and magnetosphere. After Stefant
(1970) pointed out that inclusion of kinetic effects related to finite ion gyrora-
dius produces Alfvén wave dispersion and magnetic field-aligned electric field, the
dispersive waves became increasingly important in the study of magnetosphere-
ionosphere interactions. The parallel electric field is produced by low-frequency
(ω < ωci) dispersive Alfvén waves when the wavelength perpendicular to the
background magnetic field becomes comparable either to the ion gyroradius at
electron temperature, ρs = (Te/mi)

1/2/ωci , the ion thermal gyroradius, ρi =
(Ti/mi)

1/2/ωci (Hasegawa, 1976), or to the collisionless electron skin depth λe =
c/ωpe (Goertz and Boswell, 1979).
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Figure 1. Discrete optical auroral forms with thickness of 0.1–1 km. (Courtesy of T. S. Trondsen,
University of Calgary.)

The most natural way of launching Alfvén waves, which is usually realized
in space plasmas is through a sheared plasma flow across the background mag-
netic field. A typical example of such a process is the plasma expansion to the
inner regions of the Earth’s magnetosphere during magnetic storms or forcing of
the magnetopause boundary by the solar wind. Also, any impulsive reconfigura-
tion of the magnetic field (e.g., reconnection) would launch a spectrum of Alfvén
waves. As the waves created by these processes propagate towards the ionosphere,
they generate filamentary structures extending along the magnetic field lines that
connect spatial gradients in the magnetosphere and the ionosphere providing an
efficient magnetosphere-ionosphere coupling. It is believed that auroral forms and
vortex structures with a thickness of 0.1–10 km are related to the nonlinear Alfvén
wave phenomena. A characteristic thickness of ∼ 100 m corresponds to a typical
electron inertial length in the topside ionosphere. High resolution optical observa-
tions of the thickness of auroral forms (Maggs and Davis, 1968) have shown that
the most probable value for the thickness of optical arcs is about 100 m. These
results have been recently corroborated by Trondsen et al. (1997) and Trondsen
and Cogger (1998) who find a similar mean value. Figure 1 shows examples of
thin auroral forms (0.1–1 km) which are most likely related to nonlinear inertial
Alfvén wave structures.

We shall adopt the following convention in this paper. Inertial Alfvén Waves
(IAW) are ω < ωci Alfvén waves in a medium where the electron thermal velocity,
vte = (2Te/me)1/2, is less than vA. As will be elaborated later, in such a case, the
parallel electric field is supported by the electron inertia. Kinetic Alfvén Waves
(KAW) are waves in a medium where vte > vA. In this case, the parallel electric
force is balanced by the parallel electron pressure gradient. The term Dispersive
Alfvén Waves (DAW) would cover these two cases. Clearly, the IAW arises in a
low-beta plasma with β = 2µ0nT /B

2
0 < me/mi , whereas the KAW appear in an
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intermediate beta plasma with me/mi < β < 1. Here, T = (Te + Ti)/2 is the
plasma temperature. The dispersive properties of the waves become increasingly
important when the perpendicular wavelength, or characteristic scale of spatial
inhomogeneities become comparable with ρs, ρi , or λe.

Alfvén waves, and particularly DAW, play important role in space electrody-
namics for several reasons. They are responsible, or related to:

(1) Energy transport in the form of the Poynting flux S = µ−1
0 E × B over large

distances in space.
(2) Global oscillations and resonances.
(3) Mutual magnetosphere–ionosphere coupling.
(4) Turbulence, energy cascading over wide range of spatial scales.
(5) Structuring, filamentation of plasma, creation of vortices and solitons; chaos

and self-organization.
(6) Ponderomotive effects.
(7) Transverse ion energization and bulk heating.
(8) Parallel electric field, the electron acceleration, and the formation of discrete

aurora.

1.3. PLASMA PARAMETERS ON AURORAL FIELD LINES

In the study of Alfvén waves in the auroral zone, the background plasma parame-
ters play a critical role in setting the Alfvén speed vA as well as the wave dispersion
characteristics through the electron skin depth, the electron thermal speed, and ion
gyro-radius. Neither the plasma density nor the temperature on the auroral field
lines has been extensively reported in the literature, but we briefly summarize the
reported observations here.

In situ measurements of the plasma density have been determined primarily
either through the analysis of wave modes with a density dependent dispersion
relation or through swept or fixed-bias Langmuir probes. Topside sounding of the
plasma frequency at high latitude from ISIS 1 found density cavities associated
with auroral kilometric radiation (AKR). The cavities had densities of the order of
a factor of 10 less than the background density in narrow latitudinal bands (Benson
and Calvert, 1979; Benson et al., 1980).

At higher altitudes most measurements have used the wave techniques. Among
the earliest in the auroral zone are those from the S3-3 satellite which showed
one of the few published altitudinal distributions of density in the auroral zone at
altitudes between 1000 and 8000 km determined from measurements of the lower
hybrid frequency (Mozer et al., 1979). The dependence of density on altitude was
fit to an inverse power law form (Lysak and Hudson, 1979). The altitudinal extent
of the density profile at high latitudes was greatly extended by a study of DE 1
wave data in which a large number of measurements of the upper cutoff of whistler
mode radiation at the electron plasma frequency was used to determine density at
radial distances of 2–5 RE (Persoon et al., 1983).
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Figure 2. Model profile of electron density compared with data from several spacecraft. (Taken from
Kletzing and Torbert, 1994.)

More recently, results from the Viking satellite provided additional information
on the density at high latitudes and altitudes up 13 000 km. Hilgers (1992), using a
swept Langmuir probe, found a density profile that agreed well with the composite
profile from DE 1, Allouette II and ISIS 1 data. The same Viking measurements
also found very low densities in the AKR-producing regions which could be as low
as 1 cm−3 (Hilgers, 1992; Hilgers et al., 1992). These low plasma densities were
also reported in a study of Viking wave data by Perraut et al. (1990). Kletzing and
Torbert (1994) summarized these density measurements, adding low altitude data
from rocket measurements to find a model profile given by

n(r) = nae
−(r−r0)/h + nb(r − 1)−1.5 , (3)

where n, na, nb are given in cm−3 and r (measured from the center of the earth),
r0, and h in RE . Typical parameters are r0 = 1.05, h = 0.06, na = 6 × 104, nb ≈
17. A comparison of this profile with data from several satellites is displayed in
Figure 2.

Published profiles of the plasma temperature above 2000 km at high latitude are
exceedingly rare. At low latitudes a temperature profile appropriate for the plasma-
sphere was determined by Kasha (1969). Reports of the temperature determination
anywhere at high latitude are difficult to find. Kintner et al. (1978) determined
plasma temperature from the electrostatic hydrogen cyclotron wave spectrum in the
auroral zone and found a characteristic temperature near 3 eV. Mozer et al. (1979)
found an electron temperature of 0.4 eV at an altitude of 6400 km. They also state
that temperatures in the auroral zone are typically of the order of 1–5 eV. More
recently, Perraut et al. (1990) found that Viking measurements, combining wave
spectra with active relaxation sounding and a mutual impedance probe, showed
that the plasma on the auroral field lines is cold with temperatures of the order of
1 eV. They also found that this plasma was dominated by ionospheric plasma with
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Figure 3. Profiles of the dispersive scales (λe, ρi ), the Alfvén velocity vA and a scaling factor for the
parallel electric field E‖ ∝ λ2

eB, as functions of geocentric distance.

ratios of cold to hot plasma of 100–1000. Most recently, Kletzing et al. (1998)
presented a statistical study of Langmuir sweep data which showed that for the
auroral zone and polar cap, the background plasma outside acceleration regions
is quite cold. The bulk of the measurements showed electron temperatures less
than 5 eV up to 8000 km altitude, the highest altitude measured. This suggested
that up to this altitude, the background, unperturbed plasma is dominated by cold,
ionospheric plasma.

The above does not apply to active regions with Alfvén wave turbulence. As
will be elaborated further, Freja results show (Section 3.3) that in regions with
broadband turbulence, a bulk ion heating is observed, and the ion temperature can
be a factor of 10 larger than the electron temperature. Also, recent measurements
on FAST show that in localized regions related to Alfvén waves at altitudes as low
as 1000 km, the cold electrons below ∼ 10 eV can be completely evacuated or
heated to higher energies (see Section 3.4).

At higher altitudes, it is known that the auroral zone connects to the plasma
sheet which has characteristic electron temperatures of 100–3000 eV. Typical
plasma sheet densities vary from 0.05–1.0 cm−3. Thus as the cold ionospheric
plasma falls off exponentially, the power-law component begins to dominate and
temperature rises to plasma sheet values.

One implication of these variations in the temperature and the density is that
two different forms of the dispersive Alfvén wave exist depending on altitude. At
low altitude, up to 3–4 RE in geocentric distance, the Alfvén speed is greater than
the electron thermal speed (Lysak and Carlson, 1981) and the inertial Alfvén wave
is the appropriate wave mode. However at higher altitude, the electrons become
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sufficiently hot and their thermal velocity exceeds the Alfvén speed, and the kinetic
Alfvén wave is the appropriate limit.

Thus, in the auroral acceleration region the electron inertial effects are the most
important. The inertial length, given by c/ωpe = 5.3 km/

√
n, where the number

density n is given in cm−3, is plotted in Figure 3 for the density profile given in
(3). Also plotted in this figure are an average ion gyroradius, the Alfvén velocity
vA, and a normalized value of λ2

eB. To compute these distributions we assumed
that the average ion energy varies from 0.5 eV in the ionosphere to 1 keV in
the magnetosphere with a weighting function corresponding to the two terms in
Equation (3). In a similar manner the average ion mass was assumed to vary from
16 a.m.u. in the ionosphere to 1 a.m.u. in the magnetosphere. The scaling factor
λ2
eB is proportional to the magnitude of the parallel electric field carried by an

Alfvén wave as implied from Equation (61), under assumption J‖/B = const. It
can be seen that the scaled parallel electric field peaks at an altitude just under 2RE
geocentric distance. This altitude corresponds to the typical altitude of the auroral
acceleration region, suggesting that the parallel electric field of Alfvén waves plays
a role in the auroral acceleration process.

2. Two-Fluid Theory of Dispersive Alfvén Waves

Solutions for dispersive Alfvén waves can be obtained from the two-fluid momen-
tum equations for the particle species j = {e, i}

∂uj
∂t

+ uj · ∇uj = qj

mj

(

E + uj × B
)

− 1
mjn

∇Pj , (4)

combined with the continuity equation

∂n

∂t
+ ∇ · (nuj ) = 0 , (5)

and Maxwell’s equations

∇ × E = −∂B
∂t

(6)

and

∇ × B = µ0J + 1
c2

∂E
∂t

. (7)

Here, the standard notation is used with uj denoting the flow velocity of species
j , n = ne = ni the number density, qj the particle charge, Pj the pressure, and
J = ne(ui − ue) the electric current density, e = |qe|, and c is speed of light. The
displacement current, ǫ0∂E/∂t , in (7) is usually neglected for the low-frequency
waves, ω ≪ ωpe, kc. However, the auroral zone density is sometimes low enough
so that the displacement current may become important. In such cases, vA must be
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replaced by vA(1+v2
A/c

2)−1/2, which ensures that the wave group velocity remains
less than the speed of light.

For ω ≪ ωci both electron and ion perpendicular motion are well approximated
by drift theory. To zeroth order in ω/ωcj , both the electrons and ions have the
perpendicular drift uE = E×B/B2, and to first order inω/ωcj have the polarization
drift upj = (mj/qjB

2)dE⊥/dt, where dt = ∂t + uE · ∇. Since the uE drifts are
identical for the electrons and ions the uE drifts do not result in any net current.
However, being proportional to mass the ion polarization drift provides the main
contribution to the perpendicular current, which is

J⊥ = nqiupi = nmi

B2
0

dE⊥
dt

= 1

µ0v
2
A

dE⊥
dt

. (8)

It is convenient in the discussion of dispersive Alfvén waves to introduce the scalar
potential φ and a vector potential A = Azẑ, so that the wave electric field can be
written as

E = −∇φ − ∂Az

∂t
ẑ . (9)

In view of the low-beta approximation (β ≪ 1), we have neglected the perpendicu-
lar component of the vector potential. Thus, the wave magnetic field perturbation is
b = ∇ × (Azẑ) = ∇Az × ẑ. It follows from (9) that the parallel and perpendicular
components of the wave electric field are, respectively,

E‖ = −∂φ
∂z

− ∂Az

∂t
(10)

and

E⊥ = −∇⊥φ. (11)

The dependence of the electric field on both an electrostatic and a vector potential
means that the inertial wave cannot be neatly categorized as an electrostatic wave
(i.e., function of φ only) or as an electromagnetic wave (i.e., function of vector
potential only). This intertwining of both φ and Az means that the conventional
simplifying intuitive descriptions of electric fields are inappropriate since these
intuitive descriptions typically assume that the electric field is either completely
electrostatic or completely inductive. For example, in the electrostatic approxima-
tion it is assumed that the electric field is conservative so that the difference in
potential between two points is just 1φ = −

∫ b

a
E · dl and independent of the path

between points a and b. However, when there is a vector potential, the integral is
path-dependent since

∮

E · dl 6= 0. In fact, Faraday’s law shows that
∮

E · dl equals
the rate of change of the magnetic flux linked by the path of integration. These
considerations show that when Alfvén wave propagation is important, integration
of the electric field, i.e.,

∫

E · dl will not produce a system of closed electrostatic
equipotentials.

The total wave current is given by
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µ0J = ∇ × ∇ × (Azẑ) = ∇∇·(Azẑ)− ∇2Azẑ , (12)

so that the parallel and perpendicular components of the current densities are,
respectively,

µ0J‖ = −∇2
⊥Az (13)

and

µ0J⊥ = ∇⊥
∂Az

∂z
. (14)

2.1. PARALLEL ELECTRON INERTIAL EFFECTS

We first discuss the inertial Alfvén waves (IAW). These waves appear in low β

plasma when β < me/mi, i.e., vA > vte, vt i . When β ≪ me/mi the dominant
mechanism for driving the magnetic field-aligned electric field is associated with
the parallel electron inertia. The parallel motion is simply a quiver in response to
the parallel electric field and since this quivering motion is inversely proportional
to the particle mass, the electron parallel motion dominates. Because for IAW
ω/kz ≫ vte, the parallel electron pressure gradient is discarded from the electron
parallel equation of motion (4), which becomes simply

me ∂ue‖/∂t = qeE‖ . (15)

Substituting E‖ from (10) and J‖(= nqeue‖) from (13) into (15) we obtain

(1 − λ2
e∇2

⊥)
∂Az

∂t
= −∂φ

∂z
, (16)

where λe = c/ωpe is the collisionless electron skin depth. On the other hand,
combination of (8), (11), and (14) gives

∇⊥
∂Az

∂z
= − 1

v2
A

∇⊥
∂φ

∂t
, (17)

which gives

∂Az

∂z
= − 1

v2
A

∂φ

∂t
. (18)

Differentiation of (16) with respect to time and then inserting (18) leads to the
inertial Alfvén wave equation

(1 − λ2
e∇2

⊥)
∂2Az

∂t2
= v2

A
∂2Az

∂z2
. (19)

Fourier transform of (19) yields the inertial Alfvén wave dispersion relation (Drell
et al., 1965; Goertz and Boswell, 1979)
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ω2 =
k2
‖v

2
A

1 + k2
⊥λ

2
e

. (20)

In the limit k2
⊥λ

2
e ≪ 1 this reduces to the MHD Alfvén wave dispersion relation.

On the other hand, for k2
⊥λ

2
e ≫ 1 the IAW looses its electromagnetic character,

and (20) reduces to the modified convective cells (Okuda and Dawson, 1973), ω =
(k‖/k⊥)ωgm, where ωgm = (ωceωci)

1/2 is the geometric mean of the electron and
ion gyro-frequencies.

Propagation characteristics of inertial Alfvén waves differ significantly from
the predictions of MHD models. The inclusion of nonzero values of k⊥ results in
two important consequences, a spreading of the wave energy across magnetic field
lines and a nonzero parallel electric field. The energy (ray path) propagates along
the group velocity, given by

∂ω

∂k
= ẑ

vA

(1 + k2
⊥λ

2
e)

1/2
− x̂ωλe

k⊥λe

1 + k2
⊥λ

2
e

. (21)

The electron inertia leads to a decrease of the field-aligned group velocity of the
inertial Alfvén wave, i.e., the wavepackets are always sub-Alfvénic. The perpen-
dicular group velocity for these waves is in the negative k⊥ direction and goes to
zero at k⊥λe = 0. That is, the wave is a backward wave for propagation across
the magnetic field. As can be seen from (20) inertial Alfvén waves must have
ω2 ≤ k2

‖v
2
A, so that they propagate inside a conical region with apex angle satisfying

tan θr = ω

ωci

(

me

mi

)1/2

, (22)

as implied from (21). Waves with k⊥λe ≫ 1 have a group velocity very close to
the angle θr . In this regime the group and phase velocities are nearly orthogonal.

2.2. KINETIC EFFECTS

In the other limiting case when the plasma electron βe is larger than the mass ratio,
and the Alfvén wave speed is much slower than the electron thermal speed the
electron inertia is small and the parallel electric field is balanced by the parallel
electron pressure gradient. When Te ≫ Ti the corresponding wave equation can be
obtained by using considerations similar to those used for inertial waves. From the
parallel component of the electron motion (4) we have, assuming the temperature
does not vary along the field,

E‖ = − Te

en0

∂ne1

∂z
= −eµ0ρ

2
s v

2
A
∂ne1

∂z
, (23)

where ne1 is a small perturbation in the equilibrium density n0, ρs = cs/ωci , and
cs = (Te/mi)

1/2 is the sound speed. From (10) and (23) we obtain



434 K. STASIEWICZ ET AL.

eµ0ρ
2
s v

2
A
∂ne1

∂z
= ∂Az

∂t
+ ∂φ

∂z
. (24)

The variation of the electron density is coupled to the field aligned current density
according to the electron continuity Equation (5), which combined with (13) gives

∂ne1

∂t
+ 1

eµ0

∂

∂z
∇2

⊥Az = 0 . (25)

Combining Equations (18), (24), and (25) we have

∂2Az

∂t2
− ∂

∂z
v2

A
∂Az

∂z
+ v2

Aρ
2
s∇2

⊥
∂2Az

∂z2
= 0 , (26)

which describes the propagation of the kinetic Alfvén wave. Fourier transforming
(26) we obtain the frequency of the KAW

ω = k‖vA
(

1 + k2
⊥ρ

2
s

)1/2
. (27)

The frequency of the nondispersive Alfvén wave is recovered from (27) in the limit
k⊥ρs ≪ 1. The perpendicular group velocity for the kinetic Alfvén wave is in the
positive k⊥ direction as can be seen from the relation

∂ω

∂k
= ẑvA

[

1 + k2
⊥ρ

2
s

]1/2 + x̂ωρs
k⊥ρs

1 + k2
⊥ρ

2
s

. (28)

Thus, the kinetic Alfvén wave is forward wave across the magnetic field in contrast
to the inertial Alfvén wave. The propagation angle is given by

tan θ =
(

ωρs

vA

)

k⊥ρs

[1 + k2
⊥ρ

2
s ]3/2

≤ ω

ωci

(2βe)1/2

33/2
. (29)

The maximum angle of propagation is for k⊥ρs = 2−1/2 and is larger than the
corresponding value for inertial waves (22) because kinetic waves exist for βe >
me/mi .

2.3. FINITE LARMOR RADIUS AND FINITE FREQUENCY EFFECTS

The equation describing the behavior of a plane wave in a uniform plasma has the
general form

n × (n × E)+ ε̄ · E = 0 , (30)

where n = ck/ω and ε̄ is the dielectric tensor. In a cold plasma (30) takes the form




ε⊥ − n2
z εxy nxnz

−εxy ε⊥ − n2 0
nxnz 0 ε‖ − n2

x









Ex
Ey
Ez



 = 0 , (31)

where n = nx x̂ + nzẑ and the dielectric tensor elements are
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ε‖ = 1 −
∑

j

ω2
pj

ω2
, ε⊥ = 1 −

∑

j

ω2
pj

ω2 − ω2
cj

,

εxy = −i
∑

j

ωcj

ω

ω2
pj

ω2 − ω2
cj

. (32)

The off-diagonal element εxy arises from currents carried by the uE drifts. In the
ω ≪ ωci limit no current results from uE drifts in which case εxy → 0. In this limit
(31) reduces to two decoupled systems, namely

[

ε⊥ − n2
z nxnz

nxnz ε‖ − n2
x

] [

Ex
Ez

]

= 0 , (33)

and
(

ε⊥ − n2
)

Ey = 0 . (34)

Equation (34) describe the fast mode (compressional Alfvén wave). Setting the
determinant of (33) equal to zero gives the shear Alfvén wave dispersion relation
(Bellan, 1994)

(

n2
z − ε⊥

)

ε‖ + n2
xε⊥ = 0 , (35)

which in the cold plasma, ω ≪ ωci limit reduces to
(

c2

v2
A

−
c2k2

z

ω2

)

ω2
pe

ω2
+ c2k2

x

ω2

c2

v2
A

= 0 , (36)

which is just a rearrangment of (20).
The warm plasma generalizations of the parallel and perpendicular dielectric

tensor elements are (Gekelman et al., 1997b; Lysak and Lotko, 1996)

ε‖ = −
ω2
pe

ω2
ξ 2Z′(ξ), ε⊥ =

ω2
pi

ω2
ci − ω2

[1 − e−µI0(µ)]µ−1 . (37)

Here ξ = ω/k‖vte, and µ = k2
⊥ρ

2
i , where ρi is the ion gyroradius. Z′ is the

derivative of the usual plasma dispersion function Z(ξ) = π−1/2
∫

e−z
2
(z−ξ)−1dz

and I0 is the modified Bessel function. For small µ, the factor containing the Bessel
function is approximated as [1 − e−µI0(µ)]/µ ≈ 1 − 3µ/4 by Hasegawa (1976).
However, a Padé approximation [1 − e−µI0(µ)]/µ ≈ 1/(1 + µ) is applicable for
the whole range of µ, with error about 6% (Johnson and Cheng, 1997; Streltsov et
al., 1998). Using the Padé approximation, which is valid for arbitrary µ, Equations
(35)–(37) can be written as

Z′(ξ)

[

(1 − ω2

ω2
ci

)(1 + k2
⊥ρ

2
i )
v2

A

v2
te

− ξ 2

]

= k2
⊥λ

2
e . (38)
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The above equation represents the full dispersion relation for linear dispersive
Alfvén waves (DAW) with arbitrary electron velocity, large ion gyroradius and
finite frequency effects. The factor before v2

A/v
2
te = (me/mi)(1/βe) represents

effects of large ion gyroradius and finite frequency. For the plasma with cold elec-
trons, βe is less than the electron to ion mass ratio, we can use a large argument
approximation, Z′(ξ) → ξ−2, and (38) then becomes

k2
‖v

2
A = ω2(1 + k2

⊥λ
2
e)

(1 − ω2/ω2
ci)(1 + k2

⊥ρ
2
i )
, (39)

which in the limit of low frequency reduces to the familiar equation

ω = k‖vA

√

1 + k2
⊥ρ

2
i

1 + k2
⊥λ

2
e

. (40)

Note, that retaining finite frequency terms in (39) leads to Equation (40) with the
denominator replaced by 1 + k2

‖λ
2
i + k2

⊥λ
2
e , where λi = c/ωpi .

In the opposite limit, for higher beta the argument ξ is small (ω/k‖ ≪ vte)

and Z′ ≈ −2. The dispersion relation (38) for the kinetic Alfvén waves with finite
frequency is then

ω = k‖vA

√

1 + k2
⊥(ρ

2
s + ρ2

i )− ω2

ω2
ci

(1 + k2
⊥ρ

2
i ) . (41)

The above equation coincides with the original derivation (Hasegawa, 1976) in
the limit ω ≪ ωci , except for the term ρ2

i in the brackets instead of 3
4ρ

2
i because

of the Padé approximation used in (37). We should emphasize here, that in the
inertial limit, ξ ≫ 1, and in the kinetic limit, ξ ≪ 1, so that formally, λe and ρs
should not appear in the same dispersion equation. However, a hybrid dispersion
with ρ2 = ρ2

s + ρ2
i in the numerator and 1 + k2

⊥λ
2
e in the denominator of (40)

is consistent with numerical solutions of the full dispersion equation (Lysak and
Lotko, 1996).

The parametric dependence of the solutions to Equation (38) for the case Ti/Te =
1 is illustrated in Figure 4. Contours of the phase velocity, ω/k‖vte, are shown as a
function of k⊥λe and v2

te/v
2
A. Small vte values correspond to the inertial limit given

by Equation (39), and large vte values correspond to the kinetic limit of Equation
(41).

2.4. WAVE POLARIZATION

The wave polarization in the general case can be obtained from the first row of
(33), and using (37)

E‖
E⊥

=
n2

‖ − ε⊥

n‖n⊥
= k‖
k⊥

(

1 − ω2

k2
‖v

2
A(1 + k2

⊥ρ
2
i )

)

. (42)
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Figure 4. Contours of phase velocity for Alfvén waves obtained by numerical solution of Equation
(38). (After Lysak and Lotko, 1996.)

For cold electrons we use dispersion (40) in Equation (42) to obtain

E‖
E⊥

= k‖k⊥λ
2
e

1 + k2
⊥λ

2
e

. (43)

Note that when k⊥λe ≫ 1, we find E‖ = (k‖/k⊥)E⊥ and the wave becomes
electrostatic.

For the kinetic Alfvén wave, using low frequency limit of (41) we get

E‖
E⊥

= − k‖k⊥ρ
2
s

1 + k2
⊥ρ

2
i

. (44)

Note that the parallel electric field in this case is opposite in sign to that in the
inertial case, as noted by Goertz and Boswell (1979).

Another important quantity is the ratio E⊥/b⊥ which can be derived from Equa-
tion (6) under assumption of a plane wave ∂/∂x → ik⊥, ∂/∂z → ik‖, ∂/∂t →
−iω. We find easily that

k⊥E‖ − k‖E⊥ = ωb⊥ , (45)

and using again the polarization Equation (33), and (37) we obtain generally, for
DAW type

∣

∣

∣

∣

E⊥
b⊥

∣

∣

∣

∣

= v2
A

∣

∣

∣

∣

k‖
ω

∣

∣

∣

∣

(1 + k2
⊥ρ

2
i ) . (46)

In the cold electron limit of the DAW we use dispersion (40) to obtain
∣

∣

∣

∣

E⊥
b⊥

∣

∣

∣

∣

= vA

√

(1 + k2
⊥λ

2
e)(1 + k2

⊥ρ
2
i ) . (47)
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Thus, the electric to the magnetic field ratio for inertial waves with short perpen-
dicular wavelengths can be much larger than the local Alfvén speed.

For the kinetic wave we substitute the low-frequency limit of (41) into (46) to
obtain

∣

∣

∣

∣

E⊥
b⊥

∣

∣

∣

∣

= vA(1 + k2
⊥ρ

2
i )[1 + k2

⊥(ρ
2
s + ρ2

i )]−1/2 . (48)

2.5. DRIFT ALFVÉN WAVES

In the presence of the density gradient, ∂n0/∂x, both the electrons and ions acquire
an equilibrium diamagnetic drift vDj = ŷ(Tj/qjB0n0) ∂n0/∂x. Here, we have
the possibility of coupling DAW with the drift waves. In order to derive the local
dispersion relation (Shukla et al., 1984) for coupled dispersive Alfvén – drift waves
with |∂/∂t| ≪ ωci , we use the electron continuity equation

∂ne1

∂t
− 1

B0

∂n0

∂x

∂φ

∂y
+ 1

µ0e

∂

∂z
∇2

⊥Az = 0 , (49)

the ion vorticity equation
(

∂

∂t
+ ui∗

∂

∂y

)

∇2
⊥φ + v2

A
∂

∂z
∇2

⊥Az = 0 , (50)

and the parallel component of the electron momentum equation
(

∂

∂t
+ ui∗

∂

∂y

)

Az − λ2
e

∂

∂t
∇2

⊥Az + ∂

∂z

(

φ − Te

en0
n1

)

= 0 , (51)

where ui∗ = (Ti/eB0n0)∂n0/∂x and ue∗ = −(Te/eB0n0)∂n0/∂x are the unper-
turbed ion and electron diamagnetic drifts, respectively. Equations (49)–(51) are
the generalizations of Equations (16), (17), and (25).

Supposing that n1, φ and Az are proportional to exp(ikyy + ikzz− iωt), where
k = ky ŷ + kzẑ is the wave vector and ω the frequency, we obtain from (49), (50),
and (51)

ωn1 + ∂n0

∂x

ky

B0
φ + 1

µ0e
kzk

2
yAz = 0 , (52)

(ω − ωi∗) φ − kzv
2
AAz = 0 , (53)

and
[

ωe∗ − (1 + k2
yλ

2
e)ω

]

Az + kz

(

φ − Te

en0
n1

)

= 0 , (54)

where ωj∗ = kyuj∗. In deriving the above equations, we have assumed that the
wavelength is much smaller than the density gradient.

Combining (52) to (54) we obtain the linear dispersion relation for coupled drift
Alfvén waves
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(

ω2 − ωωm − ω2
IAk

2
yρ

2
s

)

(ω − ωi∗) = ω2
IA(ω − ωe∗) , (55)

where ωm = ωe∗/(1+k2
yλ

2
e) is the magnetic drift wave frequency, ωIA = kzvA/(1+

k2
yλ

2
e)

1/2 the frequency of the inertial Alfvén waves, ρs = cs/ωci the ion Larmor
radius at the electron temperature.

Several comments are in order. First, in a homogeneous plasma, (55) correctly
reproduces the spectra of the dispersive Alfvén waves, namely, ω = ωIA(1 +
k2
yρ

2
s )

1/2. Second, for kyλe ≪ 1, we observe that the dispersive Alfvén waves
are linearly coupled with the drift mode ω = ωe∗. Third, when the perpendicular
wavelength is much shorter than λe, we have ωIA = (kz/ky)ωgm ≡ ωDO and
ωm = ωe∗/(kyλe)

2 ≡ ωc∗. Hence, (55) is replaced by
(

ω2 − ωωc∗ − ω2
DOk

2
yρ

2
s

)

(ω − ωi∗) = ω2
DO (ω − ωe∗) , (56)

which for a homogeneous plasma becomes

ω = kz

ky
ωgm(1 + k2

yρ
2
s )

1/2 . (57)

Equation (57) is the frequency of short wavelength (with respect to λe) modified
convective cells (Okuda and Dawson, 1973).

3. Observations and Measurements

We now turn to in situ observations of phenomena associated with Alfvén waves in
the auroral zone. First the basis for identifying Alfvén waves is established along
with some of the earlier observations of these waves. We then turn to more recent,
detailed spacecraft measurements to show the rich variety of phenomena associated
with these waves.

3.1. IDENTIFICATION OF ALFVÉN WAVES

When examining in situ measurements of a purely propagating Alfvén wave, we
expect to find correlated perturbations in both the electric and magnetic fields. We
would also expect correlated electric and magnetic fields for a quasi-static structure
which drives a parallel current that closes in the ionosphere. To distinguish between
these two cases, we examine the ratio of the electric field to the magnetic field. For
inertial Alfvén waves the ratio is given by (47) and it is larger than the local Alfvén
speed. In contrast, for quasi-static, auroral arc-like structures, the magnetic field is
related to the field-aligned current, which for a sheet current gives

1
µ0

∂b⊥
∂s

= J⊥ = σPE⊥ , (58)

where σP is the Pedersen conductivity in the ionosphere. Integration over height in
the ionosphere where σP is non-negligible yields
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E⊥
b⊥

= 1
µ06P

, (59)

where 6P =
∫

σP ds. For the Earth’s magnetic field, there is a small correction
factor of order unity due to the fact that flux tubes are generally anisotropic, so
that latitudinal and longitudinal fields map differently. For typically encountered
ionospheric conditions 6P ∼ 5–-40 S (Sugiura, 1984; Weimer et al., 1985) Equa-
tion (59) gives E/b ≈ 18–140 km s−1. The value of 6P for the background
ionosphere is sufficiently large so that E/b is a small fraction of that expected
for an Alfvén wave. Thus this ratio provides a useful experimental test of in situ
measurements to determine the presence of Alfvén waves. However, a interference
of incident and the reflected waves from the ionosphere or presence of short λ⊥
Alfvén waves can modify the local E/b ratio and make difficult identification of
the Alfvén mode. The wave reflections from the ionosphere will be discussed in
Section 4.1.

3.2. EARLY MEASUREMENTS

Early measurements of magnetic fields in space have revealed the existence of per-
turbations b⊥ perpendicular to the main geomagnetic field. The large-scale features
in the data have been interpreted as signatures of field-aligned (Birkeland) currents
by Iijima and Potemra (1978). The smaller scales, or higher frequency components
in the measured field have been regarded as ELF turbulence or magnetic noise
of lesser importance than dc structures. However, the measurements on DE-2,
ICB-1300, and Arcad-3 satellites revealed a high degree of correlation between
the electric and magnetic field components (Maynard et al., 1982; Gurnett et al.,
1984; Sugiura, 1984; Dubinin et al., 1985; Berthelier et al., 1991; Ishii et al., 1992)
which indicated presence of small scale currents or Alfvén waves.

Measurements on ICB-1300 at an altitude of 850 km provided convincing ev-
idence of rich phenomena related to Alfvén wave structure (Dubinin et al., 1985,
1988; Chmyrev et al., 1988). One of the main results was identification of spatial
vortex structures possibly associated with auroral curls. Figure 5 shows example of
the vortex street observed in the electric field data. The magnetic perturbations had
amplitude of 200 nT and the E/b ratio was about the Alfvén speed. The spectral
maximum was observed at the frequency 0.5 Hz. Additional analysis of oscillation
hodograms revealed not only the vortex chains in the auroral plasma but dipole
and monopole Alfvén vortices as well. The transverse dimension of a single vortex
was of the order of a few kilometers. The measured waveforms of the orthogonal
magnetic and electric field components most often did not show visual similarity.
Dubinin et al. (1990) have shown that in many cases there is a clear correspondence
between Bx(t) and H [Ey(t)], where operator H is a reversed Hilbert transform
which corresponds to π/2 phase shift of all Fourier harmonics in the signal Ey(t).

To explain these observations, comprehensive theories have been developed
for Alfvén vortex structures (Shukla et al., 1985, 1986a; Chmyrev et al., 1988),
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Figure 5. Variations of the horizontal component of the electric field in the frequency range 0.1–
1 Hz observed on ICB-1300 which show vortex structures. (After Chmyrev et al., 1988.)

and turbulence (Volokitin and Dubinin, 1989). Discussions of various theories will
appear in Section 5.

Rocket measurements by Boehm et al. (1990) also showed a very clear example
of the E/b relationship which made identification of the Alfvén wave unambigu-
ous. Figure 6 shows an example from that paper. The eastward component of the
magnetic field (middle panel) and the northward component of the electric field
(second panel from bottom) for the interval 296–298 s show similar signal (the
electric field is inverted) and the ratio was calculated to be that expected for the
Alfvén speed. Kletzing (1994) suggested that the two bursts of 0.6 keV electrons
which occur just before the waves arrive are signatures of direct acceleration by the
Alfvén wave. Clear signatures of the Alfvén waves can only be observed if they are
narrow enough that convection can separate the initial wave and its reflection from
the ionosphere so as to prevent them from interfering with one another (making the
determination of admittance difficult).

The E/b ratio often attains values intermediate between the Alfvén speed and
the value expected from the Pedersen conductivity. Knudsen et al. (1990) per-
formed a spectral analysis of the E/b ratio as a function of frequency for measure-
ments from the HILAT satellite and found that for the lowest frequencies, the ratio
was that expected for a quasi-static electric field structure. As frequency increases,
the E/b ratio clearly increases to values above those expected for ionospheric
conductivity. Further analysis was conducted using a model of ionospheric con-
ductivity which properly handled reflection of the waves from the ionosphere. It
was found that destructive interference of upgoing and downgoing waves causes
the intermediate value of the Alfvén ratio.
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Figure 6. Figure from Boehm (1990) which shows a clear signature of an Alfvén wave between 296
–298 s in the northward component of the electric field and eastward component of the magnetic
field.
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3.3. FREJA OBSERVATIONS

The Freja satellite was especially designed for fine-structure plasma measurements
with a high temporal/spatial resolution of the auroral processes in the topside
ionosphere, 600–1750 km (Lundin et al., 1994). Unfortunately, due to a malfunc-
tion of the south pole downlink receiver, the altitude coverage of the high bit-rate
data became limited to above about 1200 km in the North polar region. Launched
in October 1992 and operated until 1995, Freja carried out measurements during
declining solar activity conditions, and with an inclination of 63◦ the spacecraft
traversed the auroral oval almost tangentially in the East-West direction.

The Freja experiments allowed 3D measurements of both the dc (128 Hz sam-
pling rate) and the ac (32 kHz sampling rate) magnetic fields with a set of fluxgate
and search coil magnetometers (Zanetti et al., 1994; Holback et al., 1994). Simi-
larly, 2D electric dc (768 Hz sampling rate) and ac (32 kHz sampling rate) electric
fields are measured by a set of probe pairs mounted on wire-booms 7.6–21 m
apart from each other (Marklund et al., 1994). These measurements provided, to-
gether with the sampling of 32–64 ms resolution electron distribution functions
(Boehm et al., 1994) and the full 3D ion distributions every 3 s (Eliasson et al.,
1994; Whalen et al., 1994) excellent means of observing the micro-physics within
small-scale Alfvénic features.

3.3.1. The Alfvén Waves Turbulence

The easiest way to identify Alfvénic activity in the Freja data is through a filtered
f ≥ 1 Hz component of the magnetic field, where electromagnetic fluctuations
with amplitudes of a few to several tens of nT show widespread magnetic turbu-
lence (Gary et al., 1998; Stasiewicz and Potemra, 1998). The fluctuating fields can
be identified as Alfvén wave turbulence (AWT) in the frequency range ∼ 1–7 Hz
because the observed ratio δE/δB is about the local Alfvén velocity vA (Aikio
et al., 1996; Stasiewicz et al., 1998). The cusp and dayside cleft are found to be
regions of almost permanent Alfvénic activity, while its appearance in the nightside
auroral oval is closely related to periods of auroral activity.

Figure 7 shows an example of a large region of Alfvén turbulence observed in
the cleft region. One can notice a general correlation between large scale density
depressions and Alfvén wave intensity. Similar behavior is seen in virtually the
whole Freja data set, which indicates that Alfvén waves play a major role in heating
and evacuating the plasma along the magnetic field lines.

The Alfvén wave turbulence is most often associated with broadband ELF emis-
sions from ∼10 Hz reaching sometimes few kHz, up to the lower hybrid fre-
quency. Other associated phenomena include suprathermal electron bursts with
energies reaching a few hundred eV, and transverse ion acceleration to similar
energies. These phenomena are often situated in larger scale cavity regions depleted
in plasma. An example of such a large scale region filled with Alfvénic activity and
plasma energization is displayed in Figure 8.
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Figure 7. A large region of Alfvén turbulence in the post-afternoon region (a) perpendicular compo-
nents of the magnetic field, (b) plasma density derived from the Langmuir probe, (c) AC component
of the magnetic field. (Stasiewicz and Potemra, 1998.)
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Figure 8. Overview of the plasma wave measurements during an auroral event. The magnetic fluctua-
tions (e), which are typical for Alfvénic activity, are situated in the larger scale density cavity (d). The
predominantly electrostatic broadband ELF emission (b) up to the lower hybrid cutoff is detected
simultaneously with the transversely accelerated ions and electron precipitation. (From Wahlund
et al., 1998.)
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It can be pointed out that the exact wave modes and the wave frequency in the
broadband turbulence are difficult to identify with measurements on board a single
spacecraft traversing the plasma with ∼ 7 km s−1. The Alfvén mode should have
frequency much lower than the ion cyclotron frequency (fcO+ ∼ 25 Hz in Freja

environment). There are indications that Fourier spectrum of electromagnetic sig-
nals around 1 Hz corresponds to Alfvén wave frequencies. The lower limit for the
Alfvén wave frequency is ∼10 mHz which can be associated with a fundamental
mode of global field line oscillations.

As we shall discuss later in this section, the presence of short-length dispersive
Alfvén waves in the regions of AWT produces a spectrum equivalent to broadband
ELF waves. For example, low frequency Alfvén waves, ω < ωci , with perpendic-
ular wavelengths ∼ 10 m up to ∼ 7 km would be Doppler shifted (f = Vs/λ)
in the spacecraft reference frame and observed as waves in the frequency range
∼ 1–700 Hz. For this reason, one should be aware that the frequency vs time
spectrograms as that shown in Figure 8 apply to the satellite reference frame,
and generally do not correspond to the wave frequency spectrum in the plasma
reference frame.

3.3.2. Solitary Kinetic Alfvén Waves

Within the extended regions of AWT there frequently exist singular, localized
waveforms with large magnetic perturbations (several tens of nT), large perpen-
dicular electric fields (up to 500 mV m−1), and complex density perturbations
(several tens of %). The origin of these structures is a subject of current research
and considerable debate in the literature as well as among the authors of this review.
When these strong pulse-like electromagnetic signals were first detected in the
Freja data (Louarn et al., 1994; Wahlund et al., 1994a) they were dubbed Solitary
Kinetic Alfvén Waves (SKAW) since the waveforms contained features with scales
of the order of the ion acoustic gyroradius and therefore kinetic (thermal) effects
were expected to play a role. The authors made it clear though, that inertial Alfvén
waves were also considered, with scales of a few electron inertial lengths (∼10 Hz
in the spacecraft frame of reference). In this review we shall replace SKAW with
a more precise term dispersive Alfvén wave (DAW) structure which may include
both inertial and kinetic effects. Many of these structures at the inertial scale of
a few λe are so strong, that term IAW singularities seems to be the most appro-
priate description (see Figure 11). The importance of these structures for auroral
processes was properly recognized and the compatibility of the spatial scales with
the thickness of discrete auroral arcs noted. An example of a dispersive Alfvén
wave structure is shown in Figure 9.

3.3.3. Polarization Patterns

The polarization studies concerned the behavior of the perpendicular perturbation
vector b⊥ = (bx, by) which is also used to infer field-aligned currents. In a study
by Volwerk (1996), the DAW have been found to have mainly a rotational mag-
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Figure 9. A clear example of a small scale Alfvénic structure filled with broadband electrostatic
turbulence. (Wahlund et al., 1994a.)

netic field together with a small compressional component of less then 5%. The
polarization results on the existence of tubular current structures were similar to
the earlier results from ICB-1300 data on auroral vortex structure (e.g., Chmyrev
et al., 1988).

A multiresolution wavelet analysis applied to the magnetic field records within
IAW regions (Stasiewicz et al., 1998; Stasiewicz and Potemra, 1998) showed that
polarization patterns are strongly scale dependent. Larger scales (∼10 km) exhibit
more linear polarization while the smaller scales (≤ 1 km) show frequently circu-
lar/elliptical polarization, consistent with vortex structure. Many IAW singularities
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Figure 10. Electron spectrogram and ac magnetic activity along the spacecraft velocity vector from a
pre-midnight Freja passage. A clear correlation between supratermal electron bursts and the Alfvén
wave signatures is observed. (From Gary et al., 1998.)

show, however, linear polarization, consistent with current sheets (Stasiewicz et al.,
1998).

3.3.4. Poynting Flux and Suprathermal Electron Bursts

Suprathermal electron bursts are intense short-lived bursts of precipitating fluxes of
electrons with energies usually below 1 keV and with pitch-angles often very close
to the geomagnetic field direction. Numerous observations of these electron bursts
have been carried out with rocket and satellite instrumentation within the auroral
region. The bursts are most often found at the edges of inverted-V arc precipitation
or may occur alone. The upper energy limit of the bursts are less than the inverted-
V arc energy, and it is therefore often thought that these bursts are an integral part
of the inverted-V acceleration mechanism.

Based on Freja data several authors have reported the simultaneous occurrence
of electromagnetic waveforms characterized as Alfvén waves and suprathermal
electron bursts (Boehm et al., 1995; Stasiewicz et al., 1997, 1998; Gary et al.,
1998; Knudsen et al., 1998; Wahlund et al., 1998). A striking example of such an
event is displayed in Figure 10.

The parallel component of the Poynting flux is usually suggested to be re-
sponsible for the acceleration of these electrons. It can be determined from the
electromagnetic data with

S‖λ = µ−1
0 δE⊥λ × δB⊥λ , (60)
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where subscript λ = vs/f refers to the largest scale, or the smallest frequency f
used for filtering of the data. Because different authors used different cutoff fre-
quency, and studied cases at different geophysical conditions, the reported values
for Poynting flux differ a lot (Seyler et al., 1995; Volwerk et al., 1996; Stasiewicz
et al., 1997). Typically, the observed Poynting flux for structures less than 1 km
is ∼1–20 mW m−2 in the downward direction, and it is generally larger than the
associated electron energy fluxes. The parallel Poynting flux can therefore provide
the necessary free energy to produce the suprathermal electron bursts (see theory
section). Because the dispersive Alfvén waves are very dissipative, much of their
energy is transferred into the surrounding plasma before the Alfvén wave reaches
the ionosphere below. However, in most cases there is smaller upward directed
Poynting flux which indicates reflection of the downgoing electromagnetic energy,
or the ionospheric sources.

3.3.5. Field-Aligned Currents and Density Cavities

The estimation of field-aligned current densities from the measurements of mag-
netic field gradients onboard a single spacecraft will depend critically on the as-
sumption of how the magnetic perturbations originate. A different result will be
obtained if the magnetic perturbation is viewed as a solitary wave passing Freja

with a large phase velocity along B0, or if the magnetic perturbations are an effect
of a spatially localized filamentary current structure with a possible low frequency
temporal evolution, ω ≪ ωci , characteristic for Alfvén waves. Multipoint mea-
surements on Freja with double density probes show, however, that the density
structures are mainly spatial for a large range of scales from ∼kilometers down
to ∼ 30 m (∼ 200 Hz in satellite frame) (Wahlund et al., 1998; Stasiewicz et al.,
2000a). Also, multiprobe electric field sensors on Fast (see next section) provide di-
rect evidence that the IAW structures are spatial, with a perpendicular drift smaller
than the satellite speed. Thus, the usual derivation of field-aligned currents from the
observed gradient of the perpendicular perturbation field µ0Jz = ∂By/∂x provides
good approximation to J‖ ≡ Jz.

The reported values for J‖ range from few tens µA m−2 (Louarn et al., 1994;
Lühr et al., 1994; Seyler et al., 1995) to few hundred µA m−2 (Stasiewicz et al.,
1997, 1998; Stasiewicz and Potemra, 1998). An example of very intense current
structure presented in Figure 11, shows a striking correlation between the current
and the density cavity. Because in the IAW parallel current is proportional to the
parallel electric field (Equation (15)) viz.

Ẽ‖ = iωλ2
eµ0J̃‖ , (61)

the measurements suggest that the mechanism leading to the formation of the cavity
could be related to the ponderomotive force (Bellan and Stasiewicz, 1998; Shukla
et al., 1999) or, alternatively, to the Joule heating in the current channel (Shukla
and Stenflo, 1999b). Detailed discussion of these processes shall appear in Sec-
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Figure 11. A singular Alfvénic structure observed in the magnetometer data. It is associated with a
deep density cavity and strong field-aligned current of 300 µA m−2. (From Stasiewicz et al., 1998.)
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tion 5.7. An altitude profile of a normalized parallel electric field (61) computed
under assumption of the parallel current continuity is shown in Figure 3.

In a laboratory experiment (discussed in Section 3.5, and also by Maggs and
Morales (1997)) cavities of similar width as that in Figure 11 were observed to
generate spontaneously drift Alfvén waves at the edges of the cavity. The generated
waves had frequency of ∼ 0.1ωci , which could be scaled to ∼ 2 Hz in the Freja

case. In the Freja data there are indeed indications that such fluctuations occur,
see, e.g., Figure 12 and Figure 8 in Stasiewicz et al. (1998). However, the expected
drift waves with a scaled period of 500 ms cannot be resolved within a 600 m cavity
which is traversed by Freja satellite during 70 ms. Thus, the waves appear to exist,
but we are unable to resolve their properties from the fast moving spacecraft.

3.3.6. Parallel Electric Fields and Resonance Cones

Sometimes, when the geomagnetic field is positioned within the plane of the elec-
tric field antennae (spin plane), information can be gained regarding the parallel
electric field component of the small scale Alfvén wave structures. It was noted
already by Louarn et al. (1994) and Wahlund et al. (1994a) that strong parallel
fields seemed to exist. Two published reports (Stasiewicz et al., 1997; Chust et al.,
1998) indicate occasional presence of the parallel electric field up to few tens of
mV m−1. Such fields are measured in association with deep density cavities, strong
field-aligned currents and accelerated electrons, and similar phenomena are also
seen on the FAST (Chaston, unpublished). No obvious instrumental effects have
been found in the reported cases, but neither is a theoretical support for such large
values of E‖ at lower frequencies.

As discussed in Section 2.1, the IAW propagates obliquely to the magnetic
field, and small λ⊥ waves would concentrate on a surface inclined at θr given by
Equation (22). If the source is localized, the locus of short λ⊥ waves would form
a conical surface. This behavior is well known from laboratory measurements (see
Section 3.5) and it is also rigorously discussed in Section 5.4. If the cone is excited
by a small size source, then there may be a parallel electric field singularity on
the surface of the cone. Stasiewicz et al. (1997) suggested that the IAW singular-
ities observed in satellite data could correspond to such a condensation of waves
propagating at the resonance cone (compare also Figure 11).

3.3.7. Association of DAW with Langmuir and Whistler Waves

As discussed earlier, there is clear correlation between suprathermal electron fluxes
and Alfvén wave intensity both in the average, statistical sense, as well as for
individual events. If the electrons are accelerated locally, one would expect to
see Langmuir waves generated by electron beams. Acceleration at higher altitudes
above the spacecraft should be associated with whistler waves, which can propa-
gate along the field lines. At Freja altitudes we observe indeed direct correlation
between Alfvénic activity and Langmuir and/or whistler waves. Langmuir wave
is an electrostatic emission excited by a non-thermal feature (bump-on-tail) in the
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electron distribution function. The observed correlation of these, widely spaced in
frequency wave modes, is an indirect evidence on the local acceleration of electrons
by Alfvén waves (Stasiewicz et al., 1996, 1997). The electrons are locally acceler-
ated, form a beam which is then thermalized by emissions of Langmuir waves. An
example of such situation occurring within a strong Alfvénic structure is shown in
Figure 12. A pair of oppositely directed field-aligned currents are colocated with
pair of oppositely directed Poynting fluxes of ∼ 30 mW m−2 (δE ≈ 0.5 V m−1 and
δB ≈ 100 nT). Strong suprathermal electron beams in both directions are colo-
cated with electromagnetic structures. The upgoing electron beam excites strong
Langmuir waves which saturate the wave instrument at 1.2 V m−1 of parallel field
at 270 kHz.

Narrowband Langmuir waves on Freja are generally excited by weak electron
beams nb ≪ n0 with a wide velocity spread 1Vb ≈ Vb. They are less frequent in
the dayside cusp where instead, a strong whistler wave turbulence is observed in
association with the dispersive Alfvén waves.

3.3.8. Transverse Ion Acceleration and Bulk Heating

Numerous studies have been carried out regarding transverse ion heating in con-
nection with broadband ELF emissions in the auroral regions based on the Freja

data set (Norqvist et al., 1996; Andre et al., 1998; Knudsen et al., 1998; Wahlund
et al., 1998). Cyclotron heating of the ions (predominantly O+) was argued to be
the most important acceleration mechanism.

A most prominent feature regarding transverse ion heating events observed with
Freja is that the whole ion population is heated to 5–30 eV during auroral-Alfvénic
active periods (Knudsen and Wahlund, 1998; Wahlund et al., 1998). The ion tem-
peratures were estimated from three independent measurement methods; the cold
plasma analyzer (CPA), the hot ion detector (TICS) and indirectly from the wave
measurements by using the emission characteristics of broadband ELF waves. The
ion distributions had Ti⊥/Ti‖ ≈ 2–3, while during quiet time the ion distributions
were generally isotropic and cold (below 0.5 eV, Norqvist et al. (1998)). The elec-
tron temperatures were found to vary between 1–2 eV within active periods, which
indicate that Te ≪ Ti at Freja altitudes during periods of extensive broadband
ELF emissions. The electron temperatures were estimated from Langmuir probe
sweeps.

Knudsen and Wahlund (1998) found increased core ion fluxes (H+ and O+) in
association with the small-scale Alfvénic waveforms by using the CPA covering
energies below 20 eV. The fluxes had amplitudes in excess of 1013 m−2 s−1, and
could be explained by either a localized heating to several eV within the Alfvén
structures or by bulk ion drifts of the order of 1–2 km s−1. Since the estimated
electric field of 70 mV m−1 would cause an E × B drift in excess of 2 km s−1, the
results could not be used to distinguish the two possibilities.

Recent results show that the gyroresonant ion heating may not be the dominant
mechanism at Freja altitudes (Stasiewicz et al., 2000b). It has been demonstrated
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Figure 12. An example of the Alfvén wave structure which has signatures of a waveguide mode with
a pair of oppositely directed currents, electron distributions, and Langmuir waves measured during
this event. (Stasiewicz et al., 1997.)
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Figure 13. δE/δB ratio for a DAW event related to strong ion heating. The marker line shows
theoretical dispersion for DAW given by Equation (47). It shows that structures 40–10,000 m could
be interpreted as spatial, broad 1k⊥ spectrum. (From Stasiewicz et al., 2000a.)

that the Freja observations are more likely consistent with stochastic ion heating
by short perpendicular wavelength electrostatic waves and structures produced by
a decay of DAW discussed in this paper.

3.3.9. Turbulence of Dispersive Alfvén Waves (BB-ELF)

As mentioned earlier in this section, the presence of short-length dispersive Alfvén
waves broadens the spectrum and make it appear as broadband waves in the space-
craft reference frame. Recently, Stasiewicz et al. (2000a) have shown that the
BB-ELF spectrum observed on the satellite in the frequency range ∼ 1–500 Hz can
be attributed to short-length DAW. The identification was made on two grounds.
One was based on direct multipoint measurements of the density structures, and
the other on the measured δE/δB spectrum during turbulent events. It can be
seen in Figure 13 that the ratio δE/δB follow the theoretical curve (47) for DAW,
shown here with asterisks. One can see an essentially single mode connecting large
scale structures with small ones, down to λ ≈ 40 m. The saturation of the δE/δB
spectrum at λ ≈ 50 m was attributed to the characteristic scale

ρd = Ex

ωciB0
(62)

for stochastic damping of DAW due to the chaotization of ion orbits (Stasiewicz
et al., 2000b). It has been also noted that the spectrum below 20 m is not reliable



DISPERSIVE ALFVÉN WAVES 455

because large ion gyroradius effects are convoluted with antenna attenuation of the
electric signal at short wavelengths.

Earlier, Wahlund et al. (1998) made a comprehensive analysis of similar struc-
tures based on the linear relation between the potential δφ and δn. The analysis was
based on a generalized linear response relation between the potential and the den-
sity fluctuations derived by Seyler and Wahlund (1996) for short-scale phenomena
near the ion acoustic gyroradius (ρs = cs/ωci) and extending down to the Debye
scale (λD = cs/ωpi). It has been noted that most analysis of ion-acoustic waves
start out with the usual presumption of an electron Boltzmann response or equation
which is valid for oblique waves that are not too close to perpendicular, but fails
for propagation angles close to or smaller than the

√
me/mi from perpendicularity

(≈ 0.3◦ for O+ and ≈ 1.3◦ for H+), where parallel electron inertia is important.
Generally, the relation is

eδφ = θ2Te − Ti − (Te + Ti)(k
2
⊥ρ

2
s )

−1

1 + θ2

δn

n
, (63)

where θ = (k‖/k⊥)
√
mi/me. For the limit θ ≫ 1, the density response is electron

Boltzmann for all k⊥, i.e., δn/n ≈ eδφ/Te. For θ ≪ 1 the density response is
ion Boltzmann when k⊥ρs ≫ 1, so that δn/n ≈ −eδφ/Ti . When θ ≪ 1 and
k⊥ρs ≪ 1 the response relation becomes δn/n ≈ −(B0�i)

−1k2
⊥δφ which is the

ion polarization response characteristic of Alfvén waves. There are four distinct
classes of low frequency waves that can exist on the Alfvén-ion cyclotron disper-
sion branch: For long perpendicular wavelengths there are ion cyclotron waves
which have (k⊥ρs < 1) and inertial Alfvén waves having (θ < 1), and for short
wavelengths (k⊥ρs > 1) there are ion acoustic waves (θ > 1, fast ion acoustic) and
(θ < 1, slow ion acoustic (SIA or electron acoustic).

On the basis of the δE(δn/n)−1 analysis of the experimental data Wahlund
et al. (1998) conclude that waves in the frequency range 30–400 Hz exhibit an
ion Boltzmann relation, which is consistent with SIA waves in a plasma where
Ti ≫ Te. Note that this frequency range in the spacecraft frame would corre-
spond to structures 20–350 m in Figure 13. The perpendicular phase velocity of
SIA/electron acoustic waves is significantly lower than the acoustic speed, on the
order of 1 km s−1, and therefore is significantly smaller than the spacecraft velocity.
Thus it is likely that SIA waves are spatial with respect to the satellite frame since
the Doppler frequency is probably considerably larger than the wave frequency
(for sounding rockets the Doppler and wave frequencies are comparable). The
transition from inertial Alfvén wave behavior having an ion polarization response
to SIA wave behavior having an ion Boltzmann response affects the E/b ratio
in a manner than can be measured. We see from (47) that the presence of SIA
waves according to fluid theory should correspond to an enhancement in E/b for
wavelengths below the ion gyroradius. However, parallel electron Landau damping
can inhibit excitation of SIA waves if the ion temperature is not sufficiently large
(Lysak and Lotko, 1996; Seyler et al., 1998). So that detection of waves having
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an ion Boltzmann response is a strong indication of an elevated Ti/Te ratio unless
there exists a mechanism that can excite SIA waves under conditions of strong
parallel electron Landau damping.

Further confirmation of the ion acoustic/ion cyclotron nature of the higher fre-
quency part have been obtained by the SCIFER, 1400 km (Kintner et al., 1996)
and the AMICIST, 450 km (Bonnell et al., 1996) rocket flights within the cleft
and pre-midnight aurora respectively. Especially the later work demonstrated that
electrostatic H+ cyclotron mode with 0< |k‖/k⊥| <0.22 could explain some of the
broadband wave features.

3.3.10. Conclusions from the Freja Observations

The Freja spacecraft has confirmed the existence of widespread electromagnetic
turbulence associated with auroral electron precipitation. In the frequency range 1
–7 Hz (spacecraft reference) the turbulent spectrum has δE/δB ≈ vA characteristic
for the Alfvén wave turbulence (AWT). At higher frequencies, the ratio δE/δB in-
creases. It has been found that the measured spectrum obeys the theoretical relation
(47) valid for dispersive Alfvén waves and therefore broadband ELF waves 10–
500 Hz can be attributed to DAW turbulence at spatial scales 20–700 m. Within the
broadband turbulence Freja often encounters distinct, intermittent electromagnetic
pulses which have the following characteristics:

– δE ≈ 10–500 mV m−1,
– δE/δB ≥ vA; indicative of IAW,
– δB⊥ ≫ δB‖,
– non-sinusoidal waveforms; often with monopolar and bipolar electric field

signatures,
– deep density cavities on the inertial scale,
– associated broadband ELF emissions, consistent with short wavelength DAW.
Occurrence: During auroral activity at the boundaries of large-scale field-aligned

current systems. Almost permanent presence in the dayside cusp/cleft region.
Large scale density cavities: Alfvén activity is often situated in large scale

plasma cavity depletions, possible evacuation processes: parallel electric fields
acting on electrons and/or transverse ion acceleration and outflow.

Energy flow: Parallel Poynting flux 1–20 mW m−2, but occasionally values as
large as ∼ 50 mW m−2 can be observed. Direction is predominantly downward,
some upward reflections.

Field-aligned currents: Between tens of µA m−2 to hundreds of µA m−2.
Energy cascade: There are indications that the DAW drive a turbulent cascade

toward short-scale waves down to ∼ 30 m.
Electron energization: Association with suprathermal electron bursts with ener-

gies from thermal to several hundred eV up to the inverted-V electron energies (if
present)
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Ion energization: Transversely accelerated ions up to energies of a few hundred
eV related to either the more localized Alfvénic waveforms or the more distributed
DAW (broadband ELF wave activity).

3.4. FAST OBSERVATIONS

The FAST spacecraft is well instrumented for studying the microphysics of fine
scale Alfvénic disturbances observed in the auroral oval. The FAST fields ex-
periment provides 3-D electromagnetic field measurements and multiple baseline
electric field measurements thereby allowing some of the temporal/spatial ambigu-
ity inherent in single point measurements to be removed. These features coupled
with 80 ms electron and ion distribution functions allows a picture of the essential
microphysics to be established. In this section we present the characteristics of
impulsive plasma skin depth scale Alfvénic field fluctuations observed by the FAST
spacecraft.

Skin depth size Alfvén waves are observed by the FAST satellite from perigee at
350 km up to apogee at 4180 km. The observed properties of these waves confirm
the observations made by Freja discussed in the previous section of this review.
However, FAST’s high inclination orbit provides a different perspective with a gen-
erally north-south cut (rather than east-west) through the fluxtubes on which these
waves exist. Furthermore the eccentricity of the orbit allows an altitude profile for
these waves to be established extending from just above the ionosphere to the base
of the primary auroral electron acceleration potential.

The waves are observed most commonly in and around the cusp and are often
imbedded in regions of magnetosheath ion precipitation. Nightside observations
are however not unusual. There appears to be no bias in occurrence with the back-
ground region I and II current systems and interestingly these waves are not seen
in regions where an electrostatic potential exists below the spacecraft (i.e., where
up-going ion beams are observed) and rarely in regions of inverted-V electrons.

Perhaps one of the most outstanding features of these waves in the aurora is their
association with suprathermal fluxes of downgoing field-aligned electrons which
have been identified from the Freja observations in the previous section as STEB.
These accelerated electrons have energies from 10 eV up to 1 keV and sometimes
higher on the nightside and may provide precipitating energy fluxes in excess of
10 mW m−2. Examining high-resolution data shows that these fluxes consist of
a series of bursts well correlated with the impulsive Alfvén wave field. In the
following discussion we firstly present an example of a FAST dayside oval crossing
typical of those when Alfvén waves are observed and then discuss in general the
observed properties of these waves obtained from several orbits.
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Figure 14. A FAST cusp crossing. (1) electric field N–S component, (2) magnetic field, E–W, (3)
electron density from the Langmuir probe (black trace) and the ESA experiment (blue trace), (4)
field-aligned wave Poynting flux (black trace, positive downwards) and integrated electron energy
flux (green, multiplied by 5). Panel (5) is the spectrum of electric field fluctuations. The remaining
panels show the electron and ion energy spectra and pitch angle.
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3.4.1. An Overview of an Auroral Oval Crossing

Figure 14 presents a summary of fields and particles data recorded on the FAST
spacecraft while traversing the dayside oval at an altitude of 1000 km and through
a region of strong ‘ELF turbulence’. The first two panels show the transverse to
B0 electric and magnetic fields with fluctuations amplitudes of up to 500 mV m−1

and 100 nT, respectively, indicating E/b ratios of 5000 km s−1. Close inspection
of the time series data reveals that this turbulence consists of a series of impulsive
1–2 cycle fluctuations in both E and b with periods in the spacecraft frame in
the range 50–200 ms. The third panel shows that the larger of these fluctuations
are accompanied by strong density depletions. Similar cavities have been reported
by Boehm et al.(1990) from rocket observations, and by Makela et al. (1998),
Stasiewicz et al. (1998), and Wahlund et al. (1998) using Freja measurements as
reported above. These density results have been obtained from the Langmuir probe
which has been calibrated for this event by using the lower hybrid cutoff with
the necessary composition data obtained from the plasmaspheric hiss cutoff below
ωci (Chaston et al., 1999). The blue trace in this panel is the hot electron density
as measured by the electrostatic analyzer (ESA). Of particular interest here is the
enhancements seen by the ESA and the coincident depletions seen by the Langmuir
probe. Since the low energy limit of the ESA is ∼ 5 eV the close agreement of the
two different instruments indicates a depletion, or total absence in some cases, of
the cold electron population within the Alfvén wave cavity. From the density and
composition results we find the Alfvén speed of ∼ 10 000 km s−1 inside the cavities
and ∼ 2000 km s−1 outside.

The fourth panel shows the field-aligned Poynting flux with positive values
indicating downward propagating waves. The green trace is the integrated electron
energy flux multiplied by a factor of five for the sake of comparison. It should
be noted that these integrated results correspond to a precipitating flux of up to
10 mW m−2 at the ionosphere which is well above the 1 mW m−2 (= 1 erg
cm −2 s−1) threshold for creating visible aurora (Stenbaek-Nielsen et al., 1998).
However, it should also be noted that for the majority of such structures inte-
grated electron fluxes projected to the ionosphere are more typically just above
the visibility threshold. At times the correlation/anti-correlation between enhanced
energy flux and wave Poynting flux is clear. All integrated electron flux is directed
downwards for this case while in general the Poynting flux is mostly downwards
but some clear cases of upwards flux are apparent.

The fifth panel presents the wave electric field spectrum 0.1–10 kHz. Through-
out the interval the spectrum below the proton gyro frequency (black line) is filled
with broadband emissions coinciding with the Alfvénic activity seen in the upper
panels. At times the turbulence may extend to frequencies exceeding the local
lower hybrid frequency. This is similar to features reported previously by Wahlund
et al. (1994) and more recently by Knudsen and Wahlund (1998) from Freja obser-
vations and from the SCIFER sounding rocket (Kintner et al., 1996; Bonnell et al.,
1996).
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The electron spectra is typical of STEBs which invariably accompany intervals
of Alfvénic turbulence observed on FAST. Peak energies are up to a few hundred
eV and each burst is well correlated with intervals of upwards current inferred from
the magnetometer deflection. The peak in the ion energy spectra at a few hundred
eV is a clear signature of magnetosheath ions. These ions are isotropic apart from
the clear loss cone centered at a pitch angle of 180 deg. The occurrence of Alfvénic
fluctuations in the data and the presence of these ions is closely associated since
the Alfvénic activity disappears in their absence. This suggests that FAST remains
in the cusp throughout the time when the Alfvénic fluctuations are seen. The broad
red line across the ion energy spectra below 50 eV is due to the combined effects
of ion heating (TAI) and ram. These ions have been removed from the ion angle
plot in the last panel by setting a low energy threshold of 100 eV.

3.4.2. Cavities, Currents, Wavelengths

Figure 15 presents a magnified view of the density cavity and electron distribution
captured within the cavity coincident with single impulsive Alfvén wave event at
22:11:55 UT in Figure 14. The cavity has δn/n ∼1. The blue line in (a) is the
density obtained from the ESA experiment and agrees well with the Langmuir
probe result within the cavity. This indicates a ∼ 100% depletion of the cold
electron population within the cavity since all the electron density is recorded
by the ESA above the low energy limit of ∼ 4 eV. More typically however the
energetic population accounts for less than 50% of the total electron density. The
second panel, which shows the current measured by the ESA in this case, represents
the total current carried by the Alfvén wave and has periodic structure within the
cavity. Each of the three peaks are separated by one wavelength (or wave period)
as represented in the deflection of the east–west magnetometer measurement. The
electron distribution shown in (d) is that captured at the time of peak current in
the centre of the cavity and is dominated by a strongly field-aligned component
at 0 deg which contains most of the electron density at this time and all of the
current. The angular width of the beam lies within the source cone so that most of
this component precipitates into the ionosphere where it may give rise to visible
aurora.

Some information about the geometry of the current system associated with
the Alfvén wave can be gleaned from the form of the magnetometer time series.
Figure 16 shows two examples of magnetic measurements where the first one is
consistent with FAST passing through a series of current sheets and the second
is consistent with the spacecraft passing across a magnetic vortex-like structure.
The dashed lines are simulated magnetic fields calculated by assuming a Gaussian
current profile for the geometries suggested in the schematics. For the sheet-like
case, each sheet has a width of ∼ 800 m with alternating directions and current
densities as high as 200 µA m−2. For the other case the time series is consistent
with a coaxial system having a core upward current of radius ∼ 300 m and a
current density of 150 µA m−2 with a coaxial return sheath. A simple test on the



DISPERSIVE ALFVÉN WAVES 461

Figure 15. (a)The east–west magnetic field deflection of an individual Alfvénic disturbance from
Figure (14). (b) Electron density measured within the structure by the Langmuir probe (black) and
the ESA (blue). (c) The electron current as measured by the ESA. (d) The electron distribution
measured within the density cavity.

sheet-like nature of the current structure is the ellipticity of the hodogram of the
transverse b field. This is essentially the ratio of the minor to major axis of the
polarization ellipse. A purely sheet-like current will have an ellipticity ∼ 0 while
structures containing rotation in b will have ellipticities greater than this value. The
actual magnitude of the ellipticity (except for the sheet-like case) is determined by
the trajectory of the spacecraft through the structure. In the two cases presented
in Figure 16 the sheet-like case has an ellipticity of 0.06 while for the cylindrical
case 0.4. Figure 17 presents the ellipticity in the transverse magnetic field for a
number of events. While sheet-like currents do exist, the ellipticity in general is
significantly larger than 0 with a median value of 0.3.
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Figure 16. Two examples of an Alfvén magnetic wave field which may be interpreted in terms of
static current structures through which FAST travels. The time series shows the wave field measured
along and perpendicular to the spacecraft velocity vector, Vsp. The dashed lines correspond to the
magnetic signals from model currents (see text).

The wave speed perpendicular to B0 and along the spacecraft trajectory can be
determined from the time delay between two measurements of an identical wave-
form separated by distance d ≤ 50 m. This distance represents the projection of the
dipole separation along the spacecraft track and perpendicular to B0. Preliminary
results of this analysis are shown in Figure 18 and indicate that the structures have
perpendicular velocities of ±1 km s−1 parallel and anti-parallel to the spacecraft
trajectory or roughly the north-south direction. The dip at 0 km s−1 shows that in
general these waves are not at rest in the plasma frame. Minimum variance analysis
shown in Figure 17 suggests that k⊥ also lies along the north-south direction. This
indicates that the perpendicular speeds provide an estimate of the perpendicular
wave phase speed. Given that the wave frequency (of the lowest frequency com-
ponent) in the spacecraft frame is known to be ∼ 5 Hz, we can show that the
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Figure 17. Histograms showing (a) the ellipticity of the hodogram of the Alfvén wave magnetic field
and (b) the minimum variance direction of the magnetic field as an angle from north–south.

Figure 18. (a) Histograms showing the perpendicular velocities and (b) width of the Alfvén structures
along the spacecraft trajectory.

wave frequency in the plasma frame is ∼ 1 Hz. Such a wave frequency implies a
perpendicular wavelength of 1 km. This result can be independently checked since
at this frequency the waveform can be expected to vary less π/2 radians in the time
it takes FAST to traverse one wavelength. Relating the distance traveled by FAST
to observe one full oscillation for a number of events yields the distribution shown
in Figure 18 indicating a width, or perpendicular wavelength, (7 ± 3)λe ≈ 600 m.
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Figure 19. Transverse ion energization in an Alfvénic structure. (a) Electric field, magnetic field and
ion pitch angle distribution, (b) spectrum of the electric field, and (c) ion velocity space distribution
function.

3.4.3. Ion Heating

There is clear association between small scale Alfvénic structures and ion heating
in the FAST data set. The first panel of Figure 19 shows the north-south directed
electric field indicating several large amplitude Alfvénic structures which are also
represented in the east–west dc magnetometer measurements presented in the
second panel. Superimposed on these larger scale features are higher frequency
fluctuations characteristic of the regions where transverse ion heating is observed.
The spectrum of these field fluctuations in the spacecraft frame is displayed in
panel (b). The last panel of (a) shows that coincident with these field variations
are enhanced ion fluxes at a pitch angle of 90◦. Ideally the pitch angle distribu-
tion should be symmetric about 0◦, however the effects of spacecraft ram tends
to enhance fluxes in the direction of the spacecraft velocity vector resulting an
asymmetric pitch angle distribution. Figure 19 shows the classical phase space
plot of the perpendicularly heated distribution. The slightly folded arms of the
’conic’ show that the heating began at altitudes somewhat below the spacecraft.
Inspection of the ion mass spectrometer measurements at this time show that the
heated distribution is primarily oxygen.

While there is a clear association between the observation of heated ions and
Alfvénic fluctuations there is often an offset between the most intense wave activity
and the most strongly heated ions. For instance in the present example the most
intensely heated ions occur at 13:55:19.2 UT where the amplitude of the wave is
small while at 13:55:20.4 there is drop out of heated ions when the amplitudes
are large. A simple explanation is that the majority of heating in the first case has
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occurred at lower altitudes and the combined effect of oblique wave propagation
and the uE drift provides the offset. In fact, observations over the FAST altitude
range from 400–4000 km suggest that ions may be continuous heated as they
stream up the field line.

3.4.4. Conclusions from FAST

The basic characteristics of the Alfvénic structures are:
– Amplitude: E⊥ < 1 V m−1, b ≤ 100 nT.
– Wave frequency in plasma frame: ∼ 1 Hz.
– Perpendicular wavelength: ∼ 1 km or 7λe.
– Perpendicular phase velocity: ∼ 1 km s−1 north–south.
– Polarization: elliptical in plane perpendicular to B0 with major axis east–

west.
– Poynting flux: mainly downwards, ∼ 10 mW m−2.
– Currents: up to a few 100 µA m−2, usually distributed as a number of fila-

ments.
– Density cavities: up to order of magnitude variation in density across the

impulsive wave field (δn/n ≤ 1), due to depletion of cold plasma within the cavity.
– Electron distribution: Down going field aligned beam with energy up to 1 keV.
– Ion distribution: Transversely accelerated ions or conics with energy up to a

few 10’s of eV.

3.5. LABORATORY EXPERIMENTS BY J. MAGGS

3.5.1. Alfvén Wave Propagation

Early laboratory experiments on Alfvén waves focused on proving their existence
and verifying their predicted dispersive properties. These early efforts are described
in the recent review by Gekelman (1999) and we will not cover them here. Rather,
our attention will be on the properties of the dispersive Alfvén wave that are of most
interest to auroral physics, namely, the propagation of energy across field lines and
the effects of radiation from small sources with sizes on the order of the electron
skin depth. Waves with small perpendicular wavelengths are important because
they have magnetic field aligned electric fields and, therefore, interact with field
aligned electron fluxes.

The first experiment to investigate the dispersive properties of the shear Alfvén
waves was conducted in the limit k⊥λe ≫ 1 by Ono (1979). In this experiment,
the Alfvén wave speed was larger than the electron thermal speed so that the wave
was in the inertial regime. From (22) it is evident that, in the short wavelength
limit the ratio between the parallel and perpendicular wave numbers becomes a
constant (when the plasma ions are cold). That is, the wave propagates at a fixed
angle relative to the magnetic field for all values of wave numbers. This behavior
results in a resonance cone propagation pattern which was clearly verified by Ono.
Figure 20 shows the setup Ono used to launch the waves, the detected electric
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Figure 20. The experimental setup and observation of the cone-like radiation pattern for the shear
Alfvén wave in the large k⊥λe limit. The electric field pattern is observed to spread from the source
along a narrow conical structure at a fixed angle to the magnetic field. The observed behavior is
compared to theory in panels (c) and (d). Two mixtures of gas were used in the experiments: pure
helium and a neon-helium mixture. (From Ono, 1979.)

field pattern and the measured wave dispersion. The wave was launched using
four, separately phased, external rings concentric to the plasma. This arrangement
sets the parallel wavelength, and for each frequency used the perpendicular wave
length is given by the dispersion relation. Figure 20(b–d) shows a validation of the
propagation of the wave at the predicted resonant cone angle,

tan θ = ω̂(me/mi)
1/2(1 − ω̂2)−1/2 , (64)



DISPERSIVE ALFVÉN WAVES 467

which is a finite frequency generalization of Equation (22) and ω̂ = ω/ωci. The
expression in (64) is compared to measurements (the dashed curve) in Figure 20(d)
for both a pure helium plasma and a two ion species helium-neon plasma.

The experiment by Ono clearly established the perpendicular dispersive prop-
erties of the shear Alfvén wave in the k⊥λe ≫ 1 limit but it had shortcomings.
Under the experimental parameters of density 1010 cm−3 and 4.2 kG magnetic
field in a helium plasma, the Alfvén wavelength, λA = f/vA , is larger than 50 m
at ω̂ = 0.5 while the experimental device was only 2.3 m in length. Thus the wave
fields measured in this experiment are indicative of the near field behavior of shear
Alfvén wave radiation.

The behavior of the wave at distances larger than one Alfvén wavelength from
the source was investigated in an experiment by Borg et al. (1985) in a tokomak de-
vice. In this experiment the Alfvén speed was again larger than the electron thermal
speed so that the wave investigated was in the inertial regime but the perpendicular
wavelengths were longer and k⊥λe ≈ 1. Waves were launched into a hydrogen
plasma at frequencies less than one tenth of the ion gyrofrequency using small
(∼ 3λe) rectangular cross section solenoids oriented perpendicular to the toroidal
magnetic field of the tokomak. A radiation pattern that shows the cone like propa-
gation of the shear Alfvén wave was obtained by using a very elongated solenoid
(20 cm × 3 mm) in an orientation with one small leg of the solenoid aligned along
the toroidal field and the return leg located outside the device. In this orientation
only one leg induced plasma current so that only a single current filament was
excited. The measured radial profile (dashed line) is compared to the theoretical
predictions (solid lines) in Figure 21. The theory with a single transit of the waves
(N = 1) along the circumference of the tokamak and a pattern with 5 transits
(N = 5) are shown for comparison. The theory assumes a cylindrical symmetry
and the effects of the toroidal magnetic geometry of the tokomak are not included
so that the agreement between theory and experiment is only approximate. While
these experiments verify the spreading of Alfvén wave energy across the magnetic
field due to perpendicular dispersive effects the tokomak magnetic geometry make
it difficult to formulate a theory and obfuscate the interpretation of the data.

Studies of cross field dispersive effects on both the kinetic and inertial Alfvén
waves have also been carried out in the Large Plasma Device (LAPD) at UCLA
(Gekelman et al., 1994, 1997a, b; Leneman et al., 1999; Vincena and Gekelman,
1999). This machine is ideally suited for basic studies of shear Alfvén wave propa-
gation because of its linear geometry, large plasma column (40 cm diameter, 9.6 m
length), high plasma density (2–5 ×1012 cm−3) and high magnetic field (1–2 kG).
The magnetic field patterns of shear Alfvén waves radiated from disk shaped an-
tennas with radii on the order of the electron skin depth was studied for various
ratios of vA/vte in uniform plasmas. Such disk antennas, aligned with their normal
pointing along the magnetic field, have an inherent cylindrical symmetry and ra-
diate shear Alfvén waves with purely azimuthal magnetic fields. These antennas
couple to the plasma by drawing magnetic field-aligned electron currents out of
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Figure 21. The field pattern of a single current channel compared to theory for one and five transits
(as marked) of the wave along the circumference of the tokomak (from Borg et al., 1985).

the plasma. An example of the radial pattern of the magnitude of the azimuthal
magnetic field is shown in Figure 22 for a plasma with the Alfvén velocity slightly
larger than the electron thermal velocity (vA = 1.2vte) (Gekelman et al., 1994).
The disk antenna used had a radius 1.51λe. Three radial profiles are shown; one
at a distance along the field line 0.5λ‖ from the disk antenna (dz = 157 cm),
one at 0.8λ‖(dz = 252 cm), and one at 1.1λ‖(dz = 346 cm). The profiles rise
steeply from a value near zero, reach a peak and then decay as r−1 for large r. This
behavior arises because the azimuthal magnetic field is due to field-aligned electron
channels which are confined inside a cone shaped region which makes an angle to
the magnetic field given by (22). It is clear that the current channels broaden as the
wave propagates down the field because the peak in the amplitude occurs at larger
radial values as the distance from the source increases. The observed profiles are
compared to the theoretically expected profiles (Morales et al., 1994), as shown by
the dotted curves. In the application of the theoretical analysis Gekelman et al. in-
cluded the effects of Landau damping and electron neutral collisions but neglected
Coulomb collisions (which actually are important in their experiment). The fits
shown are excellent but were obtained by assuming an axially varying electron
temperature which was not measured.

The radial profiles of wave magnetic field amplitude do not illustrate the per-
pendicular propagation of these waves. A snapshot of a shear wave magnetic field
at a particular time (Gekelman et al., 1997a) is shown in Figure 23 which illustrates
the changes in wave magnetic field vector as a function of radius. The wave shown
has a phase velocity slightly smaller than the electron thermal speed (vA = 0.75vte)
so that the wave is in the kinetic regime The very evident circular minimum, across
which the magnetic field reverses direction, is a radial phase front which moves
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Figure 22. The observed radial profiles of the magnetic field launched by a disk antenna exciter in the
LAPD are compared to theoretical predictions for an inertial Alfvén wave. (From Gekelman et al.,
1994.)

outwards (towards larger r) as time proceeds because as (28) indicates the kinetic
Alfvén wave is a forward wave (i.e., the phase velocity is in the same direction
as the group velocity) for perpendicular propagation (Morales and Maggs, 1997).
As shown in Figure 24(a–c), the kinetic Alfvén wave exhibits a radial pattern
(Leneman et al., 1999) somewhat similar to the inertial Alfvén wave except for a
secondary peak at a radial location smaller than the main peak. The radial profiles
are shown for a case in which vte = 2.6vA at an axial distance 0.38λ‖ (94 cm),
1.75λ‖ (440 cm), and 2.5λ‖ (629 cm). The behavior of the wave phase as a function
of radius is shown in Figure 24(d) for this kinetic wave and for an inertial wave
with vA = 2.1vte. The negative slope of the phase in the inertial case indicates the
backward nature of the wave while the positive slope of the kinetic wave indicates
it is a forward wave.

The spatial distribution of the currents associated with the kinetic wave are
illustrated in Figure 25. The wave field is symmetric about the magnetic field so
that only the radial and axial distribution if shown. Several techniques are used
to make the current pattern easier to discern. First the axial direction has been
shrunk down by a factor of 40, and the axial decay of the measured wave field
has been eliminated by normalizing the maximum observed amplitude in each
measurement plane to unity. Also, the product of radius times current, rJ (r, t)
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Figure 23. A time snapshot of the magnetic field vectors associated with a kinetic Alfvén wave in a
plane 1.02 wavelengths from the source clearly showing a perpendicular phase front. A model of the
disk antenna is also shown. (From Gekelman et al., 1997.)

is shown to enhance the currents at large radial values. This figure clearly shows
the parallel wave length of the wave, the spreading of the wave currents across the
field, and the closure of the wave currents. The full three dimensional pattern of
the inertial Alfvén wave propagating in the plasma column of the LAPD device
is shown in Figure 26 (Vincena and Gekelman, 1999). The wave shown is in the
kinetic limit (vA = 0.5vte). The measurements are taken in three planes (45 cm ×
18 cm) across the magnetic field and one plane (91 cm × 25 cm) containing the
magnetic field. The wave frequency is nine-tenths of the ion gyrofrequency and
the parallel wave length is 90 cm. Several phase fronts associated with propagation
across the field are visible as well the structure along the field.

3.5.2. Alfvén Waves in a Density Striation

Laboratory observations that have a direct bearing on the observation by spacecraft
of density depletions with cross field scale sizes on the order of the electron skin
depth and associated electric and magnetic fluctuations were made on the LAPD
plasma device (Maggs and Morales, 1996, 1997; Maggs et al., 1997). A magnetic
field-aligned density depletion (a so called striation) was produced in a 40 cm diam-
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Figure 24. (a)–(c) Radial profiles of a kinetic Alfvén wave are shown at three different distances
from the disk antenna source (the Alfvén wave length for this case is 2.5 m) . The spreading of wave
energy across the field and the development of a secondary peak inside the main peak is evident. (d)
The phase of the wave as a function of radius shows that the kinetic wave is forward and the inertial
wave is backward. (From Leneman et al., 1999.)
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Figure 25. The current patterns (actually rJ (r, z)) associated with the kinetic wave shown in Fig-
ure 24. The scale along the magnetic field is reduced by a factor of forty and the wave amplitudes are
normalized for ease of viewing. (From Leneman et al., 1999.)
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Figure 26. A three dimensional view of an inertial Alfvén wave propagating near the ion cyclotron
frequency. The striking diference between the parallel and perpendicular wave structure is evident.
(From Vincena and Gekelman, 1999.)

Figure 27. The pattern of the magnetic field and fluctuating magnetic field-aligned current associated
with a drift Alfvén wave spontaneously generated by a magnetic field-aligned density striation. (From
Maggs and Morales, 1997.)
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eter, ten meter long helium plasma column by using a selective masking technique
which blocks the plasma producing primary electrons emitted by the cathode. The
striations produced run the length of the device, have density depletions ranging
from 40 to 80%, and diameters of several electron skin depths. It was observed
that as the discharge plasma is formed the striation spontaneously produces a large
amplitude fluctuation in both density and magnetic field in the pressure gradient
region (or wall) of the striation. These fluctuations are driven by the pressure gra-
dient associated with the striation. Figure 27 shows the profile across the magnetic
field of the fluctuating magnetic field, and the rms value of the field aligned cur-
rents, as well as the density profile of the plasma. The fluctuation profiles shown
correspond to the frequency with the highest amplitude magnetic field fluctuation.
This frequency is about one tenth the ion cyclotron frequency (i.e., f ≈ 0.1fci ).
The observed fluctuations are eigenmodes of the striation which is evident from
the frequency spectrum shown in Figure 28. Each narrow peak corresponds to an
eigenmode with different parallel wavelength, radial, and azimuthal mode number.
The mode with the highest amplitude is the fundamental mode with half a parallel
wavelength along the magnetic field, a radial mode number of one and an azimuthal
mode number of one. The observed profiles and frequency structure agree well
with theoretical predictions (Penano et al., 1997). As indicated in Figure 28(a)
for the case when the plasma electron beta is above the mass ratio (i.e., the ki-
netic Alfvén wave regime) the magnetic fluctuations are associated with density
fluctuations. This behavior arises because the dispersive Alfvén wave couples to
the electrostatic drift wave under these conditions producing a mode know as the
drift-Alfvén wave. As the plasma beta is decreased to below the mass ratio (in
the experiment the magnetic field is increased) the nature of the spontaneously
generated wave changes. Figure 28(b) shows the frequency spectrum for a case
when the plasma electron beta is below the mass ratio (i.e., the regime of the
inertial Alfvén wave). The spectrum still has peaks but they are much broader and
the magnetic fluctuations are no longer associated with density fluctuations except
at very low frequency (f ≈ 0.03fci). Thus the driven waves at higher frequencies,
in this case, are pure shear Alfvén waves. The broader spectral peaks indicates that
the wave fields are becoming turbulent. Indeed as the plasma beta is lowered further
the spectrum broadens to such an extent the eigenmode peaks become difficult to
discern (Morales et al., 1999). These observations show that density striations can
give rise to trapped Alfvén eigenmodes which arise due to the pressure gradient
in the wall of the striation. Therefore it should be expected that if a striation is
formed by a process not initially involving Alfvén waves, then Alfvén waves may
subsequently be generated by the striation. The association of narrow field aligned
striations with Alfvén waves is to be expected.
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Figure 28. The frequency spectrum of the drift Alfvén waves generated by the density striation. a)
The spectrum for electron plasma beta larger than the mass ratio (the kinetic Alfvén wave regime)
is very coherent and shows a clear eigenmode structure. b) The spectrum for beta less than the mass
ratio (the inertial Alfvén wave regime) is broader, indicative of turbulence in the plasma. (From
Maggs and Morales, 1997.)

4. Alfvén Waves in Nonuniform Media

4.1. INTERACTIONS WITH THE IONOSPHERE

An important aspect of Alfvén wave propagation in the magnetosphere is the inter-
action of these waves with the ends of the field lines in the ionosphere. Auroral
field lines may be considered to be a transmission line for shear mode Alfvén
waves and, as with any transmission line, reflections will occur if the transmission
line is not terminated properly. Since the ionospheric impedance is in general not
matched to that of the Alfvén transmission line, reflections will occur in general. To
analyze this reflection, we will follow the development of ionospheric conductivity
as discussed, for example, by Kelley (1989, Chapter 6) and developed further by
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Lysak (1990). We adopt the potential formalism described in Section 2.1 and,
for simplicity, neglect the non-ideal MHD effects. Note that Fourier analysis of
Equations (16) and (18) give a relationship between the vector and scalar potentials

φ± = ω

k||
A± = ±vAA

± , (65)

where the +, (−) signs are for propagation parallel (antiparallel) to the back-
ground magnetic field. In the ionosphere, the perpendicular currents are given by
the anisotropic Ohm’s law, integrated over the height of the ionosphere

I⊥ = 6̄ · E = 6PE⊥ − 6HE⊥ × ẑ , (66)

where 6P and 6H are the height-integrated Pedersen and Hall conductivities,
respectively and ẑ is the unit vector along B. Considering the current continuity
equation, the field-aligned current may be given by

J‖ sin i = ±∇⊥ · I⊥ . (67)

In this expression, i is the inclination angle of the magnetic field, which is close to
90◦ in the auroral zone so that sin i ≈ 1 . Hence, for simplicity, we will neglect
this factor in the following. The upper and lower signs in Equation (67) correspond
to the northern and summer hemispheres, respectively. The sign difference arises
from the fact that positive (negative) field-aligned current corresponds to current
flowing parallel (antiparallel) to the magnetic field; thus, positive field-aligned cur-
rent flows into the ionosphere in the northern hemisphere and out of the ionosphere
in the southern hemisphere. Writing the electric field in (66) in terms of the scalar
potential and using the Ampère’s law (13), the current continuity Equation (67) can
be written as

∇2
⊥Az = ±µ0∇⊥

[

6P∇⊥φ −6H∇⊥φ × ẑ
]

. (68)

This equation can be further simplified if we assume that the conductivities are
uniform. Under this assumption, the Hall term becomes zero, since it reduces to
the curl of a gradient. Then Equation (68) can be written as

∇2
⊥ (Az ∓ µ06Pφ) = 0 . (69)

If we assume a localized disturbance, so that Az and φ go to zero at infinity, then
the quantity in the parentheses must go to zero. A similar conclusion holds if we
assume periodic boundary conditions. In this case, the fields at the ionosphere must
satisfy the condition

Az = ±µ06Pφ . (70)

Let us now consider northern hemisphere conditions, in which case the φ+ and A+
z

correspond to the incident wave, and write the total wave field as
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φ = φ+ + φ− . (71)

Using (65), the vector potential can be written as

Az = 1
vA

(

φ+ − φ−) , (72)

and the reflection coefficient for the electric field

R ≡ φ−

φ+ = 1 − µ0vA6P

1 + µ0vA6P
= 6A −6P

6A +6P
, (73)

where in the last step, we have introduced the Alfvén conductivity, 6A ≡ 1/µ0vA

(Scholer, 1970; Maltsev et al., 1974; Mallinckrodt and Carlson, 1978). Note that
this should properly be called an Alfvén admittance, but the conductivity termi-
nology has taken root in the literature. It should be noted that Equation (73) also is
valid in the southern hemisphere, with the + and − superscripts reversed. This sim-
ple model has a number of interesting properties. First of all, the Alfvén conductiv-
ity, which has a value of 0.8 mho/vA, where vA is given in units of 1000 km s−1, is
generally much smaller than the Pedersen conductivity. Thus, the reflected Alfvén
wave has an electric field that is opposite to the incident wave, and so the total
electric field is smaller than the electric field of the incident wave. This means that
the ratio of the electric to magnetic fields is generally smaller than that usual Alfvén
ratio, |E⊥/b⊥| = vA. The interference between the incident and reflected waves
will also give rise to a phase shift between the electric and magnetic components.
The opposite conclusion follows if the Pedersen conductivity is lower than the
Alfvén conductivity. This reflection model can also be modified to include electron
inertial effects or the effects of large-scale parallel electric fields. As noted above
in Equation (47), the electric to magnetic field ratio is increased in the presence of
the electron inertia. This modification reduces the Alfvén conductivity to become

6A =
(

µ0vA

√

1 + k2
⊥λ

2
e

)−1

. (74)

Another modification comes in the presence of large-scale parallel electric fields.
Vogt and Haerendel (1998) have noted that the presence of such a field modifies
the reflection coefficient since the electric field in the magnetosphere is not the
same as that in the ionosphere. This modification can be included by introducing
the approximate current-voltage relation first given by Knight (1973), which states
that the field aligned current density can be related to the potential drop by the
relation J‖ = Kφ‖. This relationship defines a magnetosphere-ionosphere cou-
pling length given by LMI =

√
6P /K , which is the order of 100 km for typical

parameters. Under these conditions, the Pedersen conductivity in Equation (73)
should be replaced by

6P,eff = 6P

1 + k2
⊥L

2
MI

. (75)
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It should be noted that the model discussed in this section holds strictly only for
a constant Alfvén speed above the ionosphere. This assumption is violated above
the ionosphere since the rapidly decreasing density above the ionosphere leads to a
rapid increase in the Alfvén speed. This leads to the formation of a resonant cavity
above the ionosphere, as will be discussed in the next section.

4.2. THE IONOSPHERIC ALFVÉN RESONATOR

4.2.1. Elementary Considerations

Our previous analyses of the reflection of Alfvén waves from the ionosphere as-
sumed that the Alfvén speed, and equivalently the Alfvén conductivity, was con-
stant along the field line. Except for the special case where the density scales as
the square of the magnetic field, this is not in general true, and there are Alfvén
speed gradients. If these gradients are weak enough, WKB theory may be used to
follow the propagation of the Alfvén waves. This situation may apply in the outer
magnetosphere, but in the inner magnetosphere, the Alfvén speed gradient may
become steep enough so the WKB theory is not valid. In such a circumstance, the
Alfvén wave may be reflected by the gradient in the Alfvén speed. To illustrate this
reflection, consider the extreme case of a discontinuity in the Alfvén speed. If the
wave is incident from the side with Alfvén speed VA1, and is transmitted to the side
with speed VA2, then an argument analogous to that for the ionospheric reflection
yields:

R = Eref

Einc
= 6A1 −6A2

6A1 +6A2
. (76)

Thus, propagation into increasing Alfvén speed (decreasing Alfvén conduc-
tivity) leads to an enhancement of the wave electric field and a decrease in the
magnetic field, and vice versa. This model has been used to calculate the prop-
agation of Alfvén waves in inhomogeneous media by Mallinckrodt and Carlson
(1978). In general, as noted above, a strong inhomogeneity in the Alfvén speed
implies that we cannot use the WKB approximation and that we need to solve the
complete wave equation for the wave fields. In the topside ionosphere, there is such
a strong inhomogeneity due to the sharp exponential decrease in the plasma density
with increasing altitude above a few hundred kilometers. This decrease takes place
with a typical scale height of less than 1000 km. Since the magnetic field varies
only weakly on such spatial scales, the Alfvén speed increases exponentially with
a comparable scale height above the ionosphere. Above about 6000 km altitude,
the density decrease becomes more gradual, and the decrease in the magnetic field
leads to a slow decrease in the Alfvén speed.

4.2.2. Alfvén Resonator Eigenmodes

In order to analyze the eigenmodes of this system, it is useful to use a formulation
of the Alfvén wave equations using scalar and vector potentials as described above:
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E⊥ = −∇⊥8− ∂

∂t
∇⊥ ×9 ẑ , (77)

δB⊥ = ∇⊥ × Azẑ + ∇⊥∂z9 , (78)

and

δBz = −∇2
⊥9 , (79)

where ẑ is the unit vector along the background magnetic field.
In an ideal MHD plasma, these potentials satisfy the equations

∂tAz = −∂z8 , (80)

∂2
t 8− v2

A∂
2
z8 = 0 , (81)

and

∂2
t 9 − v2

A∇29 = 0 . (82)

The first of these equations represents the fact that the parallel electric field is
zero, while the second and third describe the propagation of the shear Alfvén and
fast modes, respectively. The inhomogeneity of the flux tube enters through the
Alfvén speed in (81) and (82). In order to simplify the problem to the point where
we can find analytic solutions, we shall adopt the simple profile (Greifinger and
Greifinger, 1968; Trakhtengertz and Feldstein, 1984)

v2
A (z) = v2

A0

ε2 + e−z/h
, (83)

where vA0 is the Alfvén speed at the ionospheric altitude, h is the ionospheric scale
height, and ε is a small parameter. Here it should be recognized that the coordinate
z increases in the upward direction, in contrast with our previous discussion in
which z was in the direction of the magnetic field. Note that at high altitudes,
z ≫ h, the Alfvén speed simply becomes vA = vA0/ε. Thus the smallness of the
parameter ε represents the fact that the Alfvén speed in the magnetosphere is much
larger than that in the ionosphere. Note that while the density profile given by (83)
does not take into account the decrease of the Alfvén speed at high altitudes, it
does give a reasonable representation of the Alfvén speed profiles in the region
above the ionosphere. The system given by (81) with the Alfvén speed profile (83)
can be analyzed for its eigenmodes by Fourier transforming in time and in the
perpendicular dimensions, leading to the wave equation:

∂28

∂z2
+ ω2

v2
A0

(

ε2 + e−z/h
)

8 = 0 . (84)

This equation can be transformed by switching to the independent variable x =
x0e

−z/2h, where x0 = 2hω/vA0. This transformation leads to the equation:
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x2 d28

dx2
+ x

d8

dx
+
(

x2 + x2
0ε

2
)

8 = 0 . (85)

This equation can be recognized as being Bessel’s equation; however, in this case,
the Bessel function solutions have an imaginary order, and the solutions to the wave
equation take on the form:

8 = A+Jix0ε (x)+ A−J−ix0ε (x) . (86)

It can be shown (Lysak, 1991) that these two solutions correspond to the downgo-
ing and upgoing waves, respectively. Similarly, the solution to (82) with the Alfvén
speed profile (83) yields

9 (x) = 90J2k⊥h (x) , (87)

where we have assumed 2k⊥h ≫ x0ε and we have taken only the solution that
decreases to zero for increasing altitude, i.e., x → 0. Determination of the eigen-
frequencies for these waves requires the application of the boundary condition at
the ionosphere. Noting that the field-aligned current can be written as:

jz = 1
µ0
(∇ × B)z = − 1

µ0
∇2

⊥Az . (88)

If we now insert this into the current continuity equation and neglect for the mo-
ment the coupling between the shear and fast waves due to the Hall conductivity,
the ionospheric boundary condition becomes:

∇2
⊥ (Az + µ06P8) = 0 . (89)

The Fourier transform in time of Equation (80) implies that:

Az = − i

ω

∂8

∂z
= i

vA0

x

x0
8′ , (90)

where 8′ = d8/dx. Evaluating the condition (89) at the ionosphere, which cor-
responds to x = x0, we can write:

i8′ + αP8 = 0 , (91)

where αP = 6P /6AI measures the Pedersen conductivity in units of the Alfvén
conductivity at the ionosphere. The boundary condition (91) can be considered
to be an eigenvalue equation for the parameter x0, which is essentially the mode
frequency scaled by the fundamental frequency in the problem, which is VAI/2h.
The upper boundary condition can be taken to be a radiation boundary condition,
which picks out the Jix0ε solution for inward propagating waves and the J−ix0ε

solution for outward propagating waves. It can be easily seen that the solutions are
parameterized by ε, which is always much smaller than one, and αP , which may be
small or large. Detailed solutions of the eigenvalue Equation (91) have been pre-
sented in Lysak (1991). For these solutions, the outgoing wave is always damped,
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and has its maximum damping at αP ∼ 1, which is the point where the Pedersen
conductance is best matched to the impedance of the Alfvén wave. The incoming
wave can have a positive growth rate, but this solution is somewhat spurious due
to the fact that this wave assumes an energy source for the incoming wave. The
eigenmodes of this equation have the property that the normalized wave frequency
x0 has a value given by the zeroes of the Bessel function J1 at low conductivity,
and by the zeroes of the Bessel function J0 at high conductivity. A number of im-
provements have been made to the simple model presented here. Lysak (1993) has
presented numerical solutions for a more general Alfvén speed profile, and shown
that the basic structure of the waves remains the same. More recently, Pokhotelov
et al. (1999) have included the Hall coupling to the compressional mode. This
modification changes the dispersion relation (91) to read

i8′ +
(

αP − i
x0α

2
H

4k⊥h

)

8 = 0 . (92)

However, due to the large value of k⊥ for typical parameters, this inclusion does
not change the basic conclusions presented above.

4.2.3. Ionospheric Feedback Instability

Up until now, we have assumed that the ionospheric conductivity was held fixed
in time and was independent of the field-aligned current. On the dayside of the
ionosphere, where the conductivity is primarily produced by the impact of solar
ultraviolet radiation, this may be a reasonable assumption; on the other hand, the
nightside conductivity is closely connected to the precipitation energy flux. Thus,
especially at night, the conductivity may be closely connected to the precipitation
and thus to the field-aligned currents. If these currents are inhomogeneous, the
precipitation can give rise to conductivity gradients, which, by current continuity,
may then require closure by field-aligned currents. Thus the possibility of feed-
back between the currents and the conductivity gradients may arise. The feedback
instability can be analyzed by noting that the Pedersen and Hall conductivities are
simply proportional to the ionospheric plasma density (see, e.g., Kelley, 1989, for
a detailed discussion of the ionospheric conductivity). The plasma density itself
must evolve according to the continuity equation:

(

∂

∂t
+ v · ∇

)

n = S − R
(

n2 − n2
0

)

, (93)

where n0 represents the equilibrium density due to the solar radiation, R is the
recombination coefficient, which is the order of 2 × 10−7 cm3 s−1 (e.g., Brown,
1966), and S is the source term due to the precipitation. Note that the recom-
bination goes as the square of the density since an electron and ion must meet
to recombine. The source term S depends, again to lowest order, on the energy
flux of the precipitating electrons (Rees, 1963) and corresponds roughly to a value
S = F/ (H × 35 eV), where F is the energy flux and H is the effective height of
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the ionosphere. This dependence of the conductivity on the precipitating electrons
can give rise to an instability by the following scenario. Consider a perturbation in
the ionospheric conductivity, for example, a localized enhancement, in the presence
of a background electric field. In this case, the electric field must either be reduced
or the current increased as a result of the larger conductivity. If the current is
increased, this enhanced current must close by means of a field–aligned current.
Depending on the response of the magnetosphere to this field-aligned current,
which is associated with an upward propagating Alfvén wave, this interaction can
go unstable, causing the conductivity perturbation to grow. We can analyze this
instability by considering the source for the ionospheric density to be proportional
to the field–aligned current, which can in turn be expressed in terms of the vector
potential. When we add the conductivity gradients as in equation to the ionospheric
boundary condition as expressed in terms of the potentials by (89), we find:

∇2
⊥ (µ0Az + 6P08) = 6P0E0 · ∇⊥

δn

n0
+6H0ẑ ·

(

E0 × ∇⊥
δn

n0

)

. (84)

Similarly, we can express the linearized continuity equation for the ionospheric
density as

−i (ω − k⊥ · v0 + 2iRn0) δn = µ0Qk
2
⊥Az . (95)

Eliminating the density perturbation by combining (94) and (95) yields the bound-
ary condition in terms of the potentials:

[

1 − (Q/n0) (6P0k⊥ + 6H0k⊥ ×Oz) · E0

ω − k⊥ · v0 + 2iRn0

]

Az + µ06P08 = 0 . (96)

Note that if the second term in the brackets is set to zero, we recover the orig-
inal boundary condition (89). We may note that Equation (96) still does not say
anything about the resonant cavity; this equation simply expresses the boundary
condition in terms of the potentials. Following the discussion of the preceding
subsection, we can write this condition in the presence of the potentials as

i

(

1 − σ

x0 + iν

)

8′ +
(

αP − i
x0α

2
H

4k⊥h

)

8 = 0 , (97)

where σ is the dimensionless source term:

σ = 2hQ
n0VAI

(

6P0k⊥ + 6H0k⊥ × ẑ
)

· E0 (98)

and ν is the dimensionless recombination damping rate:

ν = 4hRn0

VAI
. (99)

It is interesting to note that the source term σ can be written σ = (2h/VAI ) k⊥ ·veff,
where the effective velocity is veff = Q

(

PE0 +H ẑ × E0
)

. Recalling that Q =
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γ /(eH), it can be seen that for γ = 1, this effective velocity is just the relative
perpendicular drift velocity between the ions and electrons, veff = j⊥ /(n0e). Of
course, in the limit of energetic electron precipitation where γ > 1, this effective
velocity is increased by the factor γ . The numerical solution of (97) has been
analyzed by Lysak (1991) for the case when the Hall coupling term is absent.
These results showed that, as a function of αP , the value of σ for maximum growth
increases roughly linearly for large αP . In addition, it may be seen that for small
values of αP , the most unstable wave occurs for x0 = σ , or ω = k⊥ ·veff, so that the
unstable wave propagates at the phase velocity veff. At higher values of α, however,
the wave frequency becomes nearly constant at a value x0 = 3.2 for ε = 0.1 and
scaled growth rate η ≃ 0.4. These values are weak functions of ε. In this regime,
the phase velocity is reduced since the wavelength decreases while the frequency
remains constant. Thus, for small conductivity, we have a wave with a fast phase
velocity, approaching veff, while for higher conductivity, the instability can have a
smaller wavelength. The more general results have been considered by Pokhotelov
et al. (1999). Just as in the large-scale case, this instability becomes unstable when
the magnetospheric response becomes inductive rather than capacitive. This can be
illustrated by considering the phase shift between 8 and Az. A positive phase shift
corresponds to an inductive response in this case. It has been shown (Lysak, 1991)
that the phase shift at the ionosphere goes through zero when the growth rate of the
instability goes through zero; therefore, the physics of this instability is essentially
the same as for the global field-aligned modes described by Sato (1978). The major
difference is that the growth rate of the instability now scales with VAI/2h, which
is the order of 1 Hz, rather than with the travel time to the conjugate ionosphere,
which is more like periods of a few minutes. Thus the feedback instability based
on the ionospheric resonant cavity is much faster than that based on the whole field
line.

4.3. FIELD LINE RESONANCE BY A. STRELTSOV

The concept of field line resonance (FLR) involves excitation of standing shear
Alfvén waves along geomagnetic field lines between northern and southern iono-
spheres. This resonant excitation occurs on the magnetic L shell where the fre-
quency of some externally or internally driven geomagnetic oscillations matches
one of the field line eigenfrequencies. Here the energy from the ‘driver’ is absorbed
by the standing shear Alfvén wave, and as time proceeds the amplitude of this wave
can reach significant magnitude.

Ultra-low-frequency (1–100 mHz) Alfvén waves standing on auroral field lines
have been investigated for more than 30 years (Radoski, 1967; Cummings et al.,
1969) to explain low-frequency geomagnetic pulsations in Pc5–Pc6 range mea-
sured by ground-based magnetometers and HF radars in the auroral zone (Ruo-
honiemi et al., 1991; Walker et al., 1992; Samson et al., 1996). Recently the inter-
est in FLR’s at high latitudes has increased significantly with new measurements
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providing a good correlation between FLR’s and the occurrence of small-scale,
discrete auroral arcs (Samson et al., 1991, 1996; Xu et al., 1993; Lotko et al.,
1998). Although a theory of auroral structures at transverse spatial scales of the
order of 10–100 km is now fairly well developed (Lysak, 1990; and Lyons, 1990,
and references therein), the understanding of the formation and evolution of small-
scale structures (from 10 km down to 100 m scales), including discrete auroral arcs,
remains incomplete.

Small-scale, discrete auroral arcs are produced by sheet-like fluxes of precipitat-
ing electrons with energies from 100 eV up to tens of keV (McFadden et al., 1986;
Newell et al., 1996). Direct measurements from satellites (Kletzing et al., 1983;
Chmyrev et al., 1988; Karlsson and Marklund, 1996) and rockets (Boehm et al.,
1990) have shown that the discrete fluxes of keV electrons registered at the auroral
zone are often correlated with small-scale, localized electromagnetic disturbances
sometimes interpreted as dispersive/oblique Alfvén waves. This correlation arises
naturally from dispersive Alfvén waves, which have a component of the electric
field parallel to the ambient magnetic field and which can, therefore, accelerate
electrons into the ionosphere (Hasegawa, 1976; Goertz and Boswell, 1979).

To explain discrete auroral arcs and other small-scale electromagnetic auroral
phenomena in terms of dispersive Alfvén waves the question of how shear Alfvén
waves with small transverse scales are generated must be answered. Of related
interest are the conditions that allow Alfvén waves with a period in the range of
10–1000 s to produce extremely narrow and intense electric fields and currents.
Auroral structures are typically on the order of or less than 1 km wide in the north-
south direction and extended up to 1000 km in the east-west direction (referenced
to 100 km height).

There are at least three different ways of generating shear Alfvén waves on
auroral field lines. One is wave-wave or mode coupling interactions in the equato-
rial magnetosphere including coupling between a shear wave and an externally
driven compressional wave (Chen and Hasegawa, 1974; Southwood, 1974), or
coupling between a shear wave and a large-scale MHD surface wave, attached to
an isolated transverse gradient in the background Alfvén speed (Hasegawa, 1976;
Goertz, 1984). Large-scale compressional and incompressional surface waves can
be produced by substorm activity in the central plasma sheet of the magnetotail, or
by the interaction between pressure/density/magnetic field irregularities in the solar
wind and the magnetosphere of the Earth. External oscillations with a broadbanded
spectrum are expected to produce continuous FLRs broadly distributed across ge-
omagnetic L shells (Anderson et al., 1990), whereas narrowband geomagnetic
oscillations will produce discrete, isolated FLRs, localized near one particular L
shell (Greenwald and Walker, 1980).

Another possible mechanism for excitation of Alfvén waves is the onset of
an internal plasma instability such as the drift mirror and drift Alfvén balloon-
ing mirror instabilities (Pokhotelov et al., 1986; Chen and Hasegawa, 1991). This
mechanism is based on the fact that the periods of ULF Alfvén waves are compat-
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ible with the timescale of particle bounce motion along auroral field lines, which
allow the wave to efficiently absorb energy from bouncing particles. An important
distinction between FLRs excited by wave-wave interactions and those excited by
wave-particle interactions is the difference in the azimuthal wave number of the
resonant Alfvén wave. Efficient coupling between shear and compressible or sur-
face modes requires small but finite azimuthal wave number (say m ≤ 10) (Kivel-
son and Southwood, 1986; Hasegawa, 1976; Streltsov and Lotko, 1995). Resonant
energy exchange between Alfvén waves and bouncing magnetospheric protons re-
quires m ≫ 1. Standing Alfvén waves with low m form so-called ‘toroidal’ FLRs;
Alfvén waves with large m form so-called ‘poloidal’ FLRs. The fine structure and
various spatio-temporal properties of poloidal resonances was investigated analyt-
ically in a series of papers by Leonovitch and Mazur (see Leonovitch and Mazur,
1999, for references).

Sato (1978) shows that shear Alfvén waves on the auroral field lines can also
be excited by the ionospheric density enhancements, drifting perpendicular to the
geomagnetic field in the large-scale perpendicular electric field. This so-called
‘ionospheric feedback’ mechanism was investigated numerically in the context
of the auroral arc formation by Watanabe et al. (1993). Lysak (1991) shows that
the same feedback mechanism plays an important role for the excitation of 0.1–
1 Hz resonance oscillations at low altitudes, in the so-called ionospheric Alfvén
resonator (Polyakov and Rapoport, 1981) discussed in the previous section.

To answer the question of how shear Alfvén waves can develop subkilometer
transverse scales, the fine structure of toroidal FLR layers produced by mono-
chromatic drivers on geomagnetic field lines passing through the inner edge of
the nightside plasma sheet, about L = 7–8, was investigated by Streltsov et al.

(1998). Interest in this particular magnetospheric region is motivated by the fact
that: (1) it maps along dipolar magnetic field lines to the ionosphere near 70◦ geo-
magnetic latitude, where large-amplitude, small-scale transverse electric fields are
predominantly measured by low-altitude satellites (Bennett et al., 1983; Chmyrev
et al., 1988; Karlsson and Marklund, 1996); (2) small-scale, discrete auroral arcs
are optically observed from the ground (Xu et al., 1993; Trondsen et al., 1997); (3)
a statistical survey of magnetospheric ULF waves by Zhu and Kivelson (1991) has
shown that dominantly toroidal magnetic oscillations with characteristics indica-
tive of fundamental or odd harmonic FLRs are most intense near the inner edge of
the premidnight plasma sheet; (4) FLRs should result in conjugate aurora which
have been observed in this region of the plasma sheet (Belon et al., 1969).

The analysis by Streltsov et al. (1998) is based on the linear, reduced, two-fluid
MHD model, derived in the dipole magnetic field geometry, under the assumptions
that: (1) the wave frequency, ω, is much smaller than the ion cyclotron frequency
ωci; (2) the wavelength of the resonant oscillations along the field line is much
larger then the wavelength across the field; and (3) the plasma is relatively cool:
i.e., the plasma β ≪ 1. This model can be considered as the simplest in a family
of nonlinear, fluid-kinetic models developed to describe dispersive ULF waves in
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space plasma (Shukla and Stenflo, 1995; Cheng and Johnson, 1999) as well as in
the laboratory plasma (Hazeltine et al., 1987). In the two-dimensional form the
model includes: the electron parallel momentum equation (linearized parallel com-
ponent of Equation (4)), the density continuity equation (linearized Equation (5)),
and the current continuity equation combined with the ion momentum equation:

(1 − ρ2
i ∇2

⊥)∇ · J‖b̂ + ǫ0∇ ·
[

c2

v2
A

+ 1 − ρ2
i ∇2

⊥

]

∂E⊥
∂t

= 0 , (100)

here b̂ = B0/B0 and J‖ = −(1/µ0)∇2
⊥Az is the parallel current.

Equation (100) includes the displacement current, important when the Alfvén
speed approaches the speed of light, and full ion Larmor radius correction making
the model applicable even for waves with ρ2

i k
2
⊥ ≥ 1. This correction comes from

the kinetic treatment of the perpendicular ion motion and is not included in the
classical one- or two-fluid MHD models. Formally Equation (100) contains the
finite Larmor radius correction to the displacement current (term −ρ2

i ∇2
⊥ in the

square brackets), however, analysis of the magnetospheric parameters along auroral
field lines demonstrates that this term is not significant for the problem considered
here since c2/v2

A ≫ ρ2
i ∇2

⊥ everywhere in the auroral flux tube. So usually in the
magnetospheric applications this term is ignored (Streltsov et al., 1998; Streltsov
and Lotko, 1999). Dispersion relations based on this model in different parts of the
auroral flux tube are identical to those given in Sections 2.1 and 2.3.

Due to the intrinsic inhomogeneity of the magnetospheric parameters transverse
to the geomagnetic field lines, a monochromatic driver should excite standing
Alfvén waves on a single L shell. In the ideal one-fluid MHD, the one-fluid res-
onant solution has a singularity at the resonance point (Southwood, 1974; Chen
and Hasegawa, 1974a). This singularity can be resolved when various nonlinear or
dispersive effects arise. Some possibilities include ionospheric dissipation (Newton
et al., 1978; Walker, 1980), the onset of an anomalous resistivity at the location
where the Alfvén wave current becomes supercritical (Streltsov and Lotko, 1999),
various nonlinear effects, e.g., density redistribution along the resonant field line
due to the wave ponderomotive force (Rankin et al., 1995; Voronkov et al., 1997)
and dispersive effects.

In the absence of significant nonlinearity and dissipation, the effective trans-
verse scale size of a monochromatically driven resonant oscillation decreases as
time proceeds until wave dispersion becomes important. As noted in Section 2
the dispersion modifies the properties of an ideal Alfvén wave in two ways: (a) it
causes a parallel electric field in the small-scale Alfvén wave which can accelerate
electrons into the ionosphere, leading in some cases to auroral arcs, and (b) it also
enables a perpendicular component of the wave group velocity, allowing energy
carried by dispersive Alfvén waves to propagate across the field lines away from the
resonance layer. This radiative mechanism can saturate the growth in amplitude of
the resonant oscillation and limit the contraction of its transverse size. The impor-
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tance of the transverse propagation of dispersive Alfvén waves from the resonance
surface for the FLR dynamics was emphasized by Bellan (1994, 1996a).

The dispersion of small-scale Alfvén waves is defined by the finite electron
mass (inertial dispersion) at low-altitude magnetosphere (vA > vT e) and finite
plasma temperature (kinetic dispersion) at the equatorial magnetosphere (vA <

vT e). Formally, the location of the dispersion transition point between the inertial
and kinetic limits of the Alfvén wave occurs where λ2

e = ρ2
s + ρ2

i (Streltsov et al.,
1998). An important difference between these two types of dispersion is that the
transverse group velocity of a kinetic Alfvén wave is opposite to that of an iner-
tial Alfvén wave. Thus an oblique wave propagating toward higher L shells near
the equator, for example, will begin moving toward lower L shells after passing
through the transition region.

Because the inertial dispersion dominates over a larger portion of the field line
on the lower magnetic L shells and kinetic dispersion dominates over larger portion
of the field line on higher magnetic L shells, it is reasonable to assume that there
exists an L shell where the transverse propagation of the oblique wave in the low-
altitude inertial region is exactly compensated by the opposite propagation in the
high-altitude kinetic region. On a suchL shell the ray pattern of the dispersive wave
forms a closed loop in its transit between the ionospheres (Figure 29), and hence
the wave remains confined to the resonance layer. When this occurs, the dispersive
FLR is termed ‘nonradiative’, and it can reach significantly larger amplitude and
contract to much smaller transverse scale than FLRs radiating dispersive Alfvén
waves. The basic concept of the nonradiative dispersive FLRs was formulated for
the first time by Streltsov and Lotko (1995), and the fine structure of such reso-
nances was investigated numerically in the series of papers by the same authors
(see Streltsov et al. 1998 for references).

Their analysis shows that in the absence of dissipation, nonradiative FLR can
produce dispersive Alfvén waves with transverse scales less than 1 km at 100 km
altitude (Streltsov et al., 1998). The parallel electric field of the small-scale Alfvén
wave can produce a 1 kV potential drop along the resonance field line between the
ionosphere and ≈ 3–4RE altitude, if the maximum amplitude of the corresponding
perpendicular electric field is set equal to 200 mV m−1, which is a typical amplitude
of small-scale electric fields registered in the low-altitude auroral magnetosphere
(Weimer and Gurnett, 1993). As an example, the snapshots of the toroidal elec-
tric field, EL, poloidal magnetic field, Bϕ , parallel electric field, Eµ, and parallel
current density, Jµ, of the fundamental FLR are shown in Figure 30.

The same physical model of the Alfvénic toroidal FLR including the effect of
plasma micro-turbulence (anomalous resistivity) in the form suggested by Lysak
and Dum (1983), was used to model the data measured by the FAST satellite in
the nightside auroral magnetosphere (Streltsov and Lotko, 1999). Results from
this numerical experiment are shown in Figure 31 with thick curves. The east-
west magnetic field, north-south electric field, particle energy fluxes, and parallel
current, measured by FAST crossing a discrete auroral arc in the nightside mag-
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Figure 29. Schematic plot of the ray trajectories for the dispersive Alfvén wave between the
ionospheres.
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Figure 30. Snapshots of fields and currents in the fundamental, nonradiative FLR on L = 7.5
magnetic shell. (After Streltsov et al., 1998.)
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Figure 31. Comparison between FAST data (thin curves) and simulated data (thick curves) from a
virtual satellite crossing numerical FLR modeled in the plasma with anomalous resistivity.

netosphere are shown in Figure 31 with thin curves. Parameters of the numerical
(virtual) satellite trajectory, speed, and altitude are set to match exactly the real
ones. The whole assembly of different observations by all-sky camera, magnetome-
ters, radars, and meridional scanning photometers, performed at the same time on
the ground, confirms the main features of the toroidal FLR associated with this
particular FAST event (Lotko et al., 1998).

Summarizing the results presented in this section we can say that the theory
of small-scale toroidal Alfvénic FLRs can provides a fairly comprehensive, self-
consistent explanation for a large set of electromagnetic phenomena occurring in
the auroral region. These phenomena include: small-scale electric fields and cur-
rents, measured by polar orbiting satellites in the lower magnetosphere; bright,
discrete auroral arcs, optically observed from the ground at the bottom of the
auroral ionosphere; and magnetic pulsations in Pc3–Pc5 ranges, measured by mag-
netometers on the ground.
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5. Advanced Models and Simulations

5.1. NONLINEAR PLANE WAVES

5.1.1. Steady State Nonlinear Waves

In this section we will derive nonlinear one-dimensional plane wave solutions of
the Alfvén wave equations. Starting from the basic two fluid equations (4)–(7),
we invoke several simplifying assumptions. First assume the existence of a strong
constant applied magnetic field oriented along the z-axis and consider plane wave
propagation nearly perpendicular to the applied field. The angle of propagation
is taken to be of the order ǫ = √

me/mi . The waves we consider have frequen-
cies much less than the lower hybrid frequency. The electrons are assumed to
predominantly carry the parallel current and the parallel ion flow is neglected.

The equations for the shear Alfvén wave in which the y coordinate is ignorable
are found from (4)–(7) to be the following:

∂n

∂t
+ ∂

∂z
(nuez) = 0 , (101)

∂uez

∂t
+ uez

∂uez

∂z
= − e

me
Ez − Te

men

∂n

∂z
, (102)

∂By

∂t
= ∂Ez

∂x
− ∂Ex

∂z
, (103)

∂By

∂x
= −eµ0nuez , (104)

∂uiy

∂t
+ uix

∂uiy

∂x
= −�iuix , (105)

e

mi

(

Ex + uiyB0
)

− Ti

min

∂n

∂x
= 0 , (106)

∂

∂x
(nuix)− ∂

∂z
(nuez) = 0 . (107)

Equation (106) is the low frequency drift approximation for uiy . This model was
investigated by Seyler et al. (1995).

We now restrict consideration to one-dimensional oblique propagation in which
∂z = ϑ∂x to eliminate the z derivatives in terms of the x derivatives and then use
the quasineutrality condition (107). It can be verified that the low-frequency linear
dispersion relation of (101)–(107) is given by (40) for Te = 0.

From (101)–(107) a one-dimensional equation for nonlinear steady state waves
is found to be
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d
dx

{[

1
N3

− θ2c2
s

v2N

]

dN
dx

}

+
(

θ2�2
i

v2
− 1
λ2
e

)

(N − 1) = 0 , (108)

where N = n/n0, θ = √
mi/meϑ , c2

s = (Te + Ti)/mi , and v is the x velocity of
the wave. A first integral to Equation (108) is obtained as

(

dN
dx

)2

=
(

1
λ2
e

− θ2�2
i

v2

)

×

× N4

(1 − αN2)2

[

(N − 1)2 − 2αN2(N − 1)+ 2αN2 ln N
]

,

(109)

where α ≡ θ2c2
s /v

2. Equation (109) was derived in Seyler et al. (1995) as Equation
(42) which was expressed in terms the x velocity. Related equations have been
discussed by Temerin et al. (1979), Lee (1981) and Chang (1982) in the context of
electrostatic ion cyclotron waves. It was shown in Seyler et al. (1995) that (109)
does not possess any non-singular solitary wave solutions. In addition, it can be
shown that if one ignores the uix∂xuiy term in (105) as has been done in previous
calculations, one does find solitary wave solutions having a density cavity. Thus
reports of solitary wave solutions that have appeared in the literature would appear
to be in question since the model of Seyler et al. (1995) retains more physics than
previous calculations. There is an open issue on whether or not the nonlinear ion
polarization drift retained by Seyler et al. (1995) is of higher order than the linear
polarization drift and thus it should not be included. This issue will have to be
settled elsewhere.

5.1.2. Time-Dependent Nonlinear Oblique Waves

Alfvén waves that are bounded in one or both of the transverse dimensions have
a parallel current. If the wave exhibits some degree of symmetry in one of these
dimensions then it forms either a static or a dynamic current sheet. A static current
sheet is an equilibrium in which the electric and magnetic fields are constant in time
whereas a dynamic current sheet, often referred to as an Alfvén wing, has oblique
symmetry and a transverse group velocity. The static current sheet is simply the
vg⊥ = 0 limit of the Alfvén wing. These structures can be formed by an electric or
magnetic perturbation created at some altitude which drifts relative to the magnetic
field. The resulting Alfvénic disturbance propagates to a higher or lower altitude
as an Alfvén wing.

The Alfvén wing differs from an Alfvénic auroral arcs such as those considered
by Lysak and Dum (1983), Lysak (1985), Seyler (1988,1990), in that ionospheric
and magnetospheric boundary conditions play an essential role in the formation
of Alfvénic arcs, whereas Alfvén wings propagate as unbounded waves. This sit-
uation occurs when the transverse group velocity of the oblique Alfvén wave is
sufficiently fast so that the reflection of the wave from the ionospheric and mag-
netospheric boundaries does not interfere with the propagating Alfvén wave. An
Alfvénic cavity in which density gradients trap an Alfvén wave is an example
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of multiple internal reflections of an Alfvén wave. Models based upon Alfvénic
cavities have been proposed by Mishin and Förster (1995), Lysak (1991), Bellan
and Stasiewicz (1998). An Alfvén wing incident upon a density cavity may form
an Alfvénic cavity but it should be clear that an Alfvén wing is a distinctly different
structure.

The Alfvén wing is the basic Alfvénic structure considered in the dynamical
models of Seyler et al. (1995); Seyler and Wahlund (1996); Seyler et al. (1998);
Clark and Seyler (1999). In these models it was presumed that an oblique iner-
tial Alfvén wave propagates in a homogeneous plasma and that all the structural
morphology and particle acceleration associated with observed Alfvénic structures
arises from nonlinear processes, most prominently nonlinear steepening. The basic
theoretical results of the Alfvén wing models will be reviewed and a discussion of
the comparison to observations will be deferred to the original references.

The essential result of Seyler et al. (1995) was that large amplitude initial
conditions of a linear oblique Alfvén wave eigenmode nonlinearly steepens and
generates a negative voltage spike very similar in amplitude and spatial scale to
those observed in SKAW detected by Freja. The origin of the spike was determined
to be the ion thermal response of the plasma to density steepening.

Seyler and Wahlund (1996) investigated the ion response in more detail by
considering the electrostatic limit of the Alfvén wave. They found that there ex-
isted a class of acoustic-like waves whose importance had been largely overlooked
since their discovery by Stringer (1963). These waves were called slow ion acoustic
(SIA) waves by the authors due to their relatively slow transverse phase velocity. A
more appropriate terminology for these waves is electron acoustic since it expresses
the fact that the transverse phase speed is related to the effective transverse mass of
the electrons at the ion temperature. The dispersion relation for electron acoustic
waves is found from (38) in the limit of small electron temperature and k2

⊥ρ
2
i ∼ 1.

Electron acoustic waves exist for propagation angles for which k‖/k⊥ <√
me/mi which is the same range for Alfvén waves. Nonlinear two-fluid simu-

lations revealed that the SIA waves are emitted from sufficiently large amplitude
initial conditions for inertial electrostatic Alfvén waves. The waves were found to
be emitted at the Debye scale.

The transition from an ion polarization to an ion Boltzmann density response
which occurs at k⊥ρi = 1 is the main characteristic of electron acoustic waves.
Electron acoustic/SIA waves can be identified by their ion-Boltzmann response
in experimental data. They were in fact identified in the data for which it was
determined that the ions were much hotter than the electrons. Seyler and Wahlund
(1996) stated that this was to be expected since the waves would be strongly
damped by parallel electron Landau damping unless their parallel phase speed
significantly exceeded the electron thermal speed. This requires a temperature ra-
tio Ti/Te ≫ 1. It was pointed out somewhat later and independently by Lysak
and Lotko (1996) that increasing ion temperature reduced the damping of inertial
Alfvén waves which exist along the same dispersion branch as the SIA waves at
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higher wavenumbers such that k⊥ρi > 1. These results are easily verified from
(38).

Seyler et al. (1998) introduced a model in which ion kinetic effects could be
included in a linear context. They argued that the dominant nonlinear effects were
due to electrons, so that a linear Vlasov ion model was justified. The essential
results from their fluid-kinetic simulations are that SIA waves are emitted at a
scale that is not the Debye length as reported by Seyler and Wahlund (1996) but
rather the scale given by k⊥ρi = 1/θ where θ is the reduced angle of propagation
θ =

√
mi/me k‖/k⊥. The SIA wave emission introduced intricate structure into

the nonlinearly steepened and evolving inertial Alfvén wave. The authors argued
that this structure gave much better qualitative and quantitative agreement with
observed SKAW morphology.

Seyler et al. (1998) also elaborated on the kinetic theory of the waves of interest.
They showed how the ion Boltzmann response emerged from a kinetic treatment
and how parallel electron Landau damping of electron acoustic waves is mitigated
by a large Ti/Te ratio. They also offered an explanation of the origin of the broad-
band ELF waves that are always associated with Alfvénic structures as the result
of wave emission due to nonlinear steepening. This is an important and unresolved
issue since it has been established that ion heating and the bulk of ion outflow are
associated with BB-ELF waves.

The manner in which electron acoustic/SIA waves are excited is open to debate.
Emission by nonlinear steepening is only one of several possible mechanisms and
not necessarily the most likely. Other possible excitation mechanisms include mod-
ulational instability (Shukla et al., 1999), shear induced instability (Gavrishchaka
et al., 1996), magnetic tearing (Seyler, 1990) or some form of turbulent decay of
DAW (Stasiewicz et al., 2000a).

5.2. ELECTRON ACCELERATION BY ALFVÉN WAVES

Various proposed electron acceleration mechanisms include turbulence and anom-
alous resistivity related phenomena associated Alfvén waves, (Lysak and Carlson,
1981; Lysak and Dum, 1983; Stasiewicz, 1985a, b); by electromagnetic ion cy-
clotron waves (Temerin and Lysak, 1984); by linear Alfvén waves (Goertz and
Boswell, 1979; Haerendel, 1983; Kletzing, 1994); by nonlinear Alfvén wave evolu-
tion (Seyler, 1990; Hui and Seyler, 1992; Nakamura and Tamao, 1989); and Alfvén
wave resonances (Stasiewicz et al., 1997; Streltsov and Lotko, 1995). However,
these models, as is clear from much of this review, have usually concentrated on
finding electric and magnetic field solutions. We review here those models which
have explicitly shown the form of electron acceleration which results from Alfvén
waves.
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Figure 32. Time series showing the evolution of the distribution function as the ‘wavefront’ of the
shear Alfvén wave propagates past the observation point. The panels are equidistant in time, with the
first corresponding to just before the wave reaches the observation point and the last corresponding
to just after the wave has passed the observation point.

5.2.1. Linear Resonant Acceleration

Kletzing (1994) has shown how Alfvén waves can modify the electron distribution
function by resonantly accelerating a small portion of the background electrons
to velocities of the order of twice the Alfvén speed. For high latitude regions this
is usually a modest acceleration to energies of 0.6–1.0 keV – an often observed
energy range for electrons associated with boundary processes.

Figure 32 shows a series of six panels which are snapshots of the distribution
function at a single observation point as a function of time. The panels show how
the distribution changes as an Alfvén wave pulse propagates past the observation
point. The first panel shows the distribution just before the pulse arrives at the
observation point, and the last panel shows the distribution just after the wave has
passed. The middle four panels show the distribution as the wave field is passing
the observation point. The plasma and wave parameters, given at the top of the
figure, have been selected to represent an altitude of 7000 km in the auroral zone.

There are two features to notice. The first is the relatively small acceleration
of the background distribution to an energy of about 10 eV and the subsequent
deceleration of the background back to 0 eV. This is just the bulk plasma response
to the bipolar parallel electric field of the Alfvén pulse; the acceleration is first
in one direction and then the other. This bulk motion is just the required parallel
current which, as is assumed in the derivation of the wave properties, is carried by
the electrons.

Once the wave has passed, the distribution has essentially no net acceleration.
The entire acceleration and deceleration process takes place in less than 50 ms.

The more interesting phenomenon involves the small bunch of electrons at
about 600 eV, that can be seen in the very first panel – before the pulse has arrived.
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These are resonantly accelerated electrons. These electrons have been overtaken by
the wave, but have a large enough component of velocity in the wave propagation
direction that they are accelerated up to the wave velocity before they fall out of
the accelerating electric field in the wave front. Then, as they travel with the wave,
they continue to be accelerated and gain energy and eventually emerge from the
front of the wave, moving at a velocity greater than the wave. That is why they
appear before the wave front passes the observation point.

The relation between initial velocity and final velocity of the resonant electrons
is given by:

vf = 2vA − vi , (110)

where vi is the initial velocity, vA is the Alfvén speed, and vf is the final velocity.
This relation can be readily seen in Figure 32. Those electrons which have initial
velocities sufficiently close to the wave velocity are snipped off of the distribution
and reflected about the Alfvén velocity (∼ 10 000 km s−1), and are seen before the
wave arrives. The final distribution, in the last panel, is now missing these electrons
as can be seen in the piece of distribution that is missing. If one mentally reflects
these electrons in the first panel about the Alfvén velocity, it can be seen that they
exactly fill in the missing electrons in the final distribution.

The perpendicular scale length is quite narrow, 0.38 km. For larger scale lengths,
the kinetic effects do not slow the wave as much, and it does not have a significant
resonant interaction. In fact, an increase in the perpendicular length scale of only
50% is sufficient to raise the propagation speed of the Alfvén wave to the point
where it moves too quickly to be resonant with the electrons.

5.2.2. Oblique Waves and Electron Acceleration

Hui and Seyler (1992) investigated the acceleration of electrons by short-scale iner-
tial Alfvén wave breaking using an electromagnetic hybrid particle code, with fluid
ions and parallel kinetic electrons. They found both that finite electron inertia was
responsible for the wave breaking, and, similar to Kletzing (1994) described above,
that cold electrons could be accelerated up to twice the Alfvén velocity when the
waves broke.

Clark and Seyler (1999) continued work on small-scale nearly perpendicular
nonlinear inertial Alfvén waves in the electrostatic limit with one dimensional
oblique particle-in-cell simulations. These results exhibit a mechanism for electron
beam generation that is operative in the limit of hot ions. Electrostatic inertial
Alfvén waves (ESIAW) propagate with only weak electron Landau damping for
Ti/Te ≫ 1. Nonlinear amplitude initial conditions convectively steepen and evolve
higher wavenumber structures similar in morphology and magnitude to previous
results from the fluid-kinetic model of Seyler et al. (1998). Shorter wavelength
acoustic waves emergent during steepened ESIAW wave evolution are instrumental
in exciting cold electron beams possessing kinetic energies a few hundred times
that of the thermal electron population. This mechanism is one possible explanation
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for suprathermal electron bursts observed in and near auroral inverted-V events as
discussed earlier in this review.

The results of the oblique kinetic particle-in-cell (PIC) model of Clark and
Seyler (1999) reinforces the electrostatic fluid simulation results of Seyler and
Wahlund (1996) in the Ti/Te ≫ 1 regime, in that an initial large-amplitude in-
ertial Alfvén wave (SIC-slow ion cyclotron wave in the terminology of Seyler and
Wahlund (1996)) advectively steepens and eventually emits nearly perpendicular
ion-acoustic (SIA-slow ion acoustic) waves of shorter transverse scale length. The
agreement is better, however, with the fluid-kinetic model of Seyler et al. (1998)
and simultaneously with the Freja data itself, with kinetic effects inducing wave
emergence at the length scale ρiθ rather than the Debye scale (as is the case with
the 2-fluid model). Associated with each SIA ‘soliton’ is a field-aligned thermal
electron current corresponding well in magnitude with the typically observed ≈
100 µA m−2 field-aligned current (FAC) densities, assuming Freja-corresponding
simulation parameters. This, too, is confirmed through the kinetic model. The
conjunction of steepened inertial Alfvén and emergent oblique acoustic waves
resulting from the oblique kinetic simulation create distinctive SKAW-like signa-
tures that correspond both in magnitude and scale-lengths with many observed
Freja SKAW waveforms. This suggests that the basic physics of the model is
appropriate to these waves. A primary consequence of low-frequency (ω ≪ ωci)
extremely perpendicular (k‖/k⊥ <

√
me/mi) waves is that they have a distinctive

ion-Boltzmann character in the sense that the ion density adjusts dynamically to
the potential, whereas the electrons are inhibited from doing so due to their large
transverse inertia, which lends increasing inability to stream along the field lines
as perpendicularity increases.

The most significant result of Clark and Seyler (1999), which is not predicted
by the n-fluid theory, or fluid-kinetic model, is the generation of an electron beam,
by a nonlinear electron trapping mechanism. The beam energy is appropriate for a
suprathermal electron burst (STEB) (sub-keV) having a low current density (≈ 0.1
of the thermal electron current) and transverse length on the order of the acoustic
gyroradius. The beam arises from the localized ion-Boltzmann response to steep-
ened density gradients which produce an electric field spike resulting in a nona-
diabatic perturbation in the electron Hamiltonian, thereby allowing electrons from
the thermal population to transit across the separatrix in energy from the untrapped
to the trapped region. This mechanism is termed SITE self induced trapping of
electrons by Clark and Seyler (1999). This SITE acceleration mechanism has not
been previously postulated for the occurrence of STEB. Nonlinear wave breaking
in the cold electron limit was found to produce beams up to twice the Alfvén speed
by Hui and Seyler (1991). In this case the acceleration mechanism is independent
of the ion and electron temperatures.

We briefly summarize the results of Clark and Seyler (1999). There are three
main stages in the acceleration process of the SITE mechanism, the wave steepen-
ing stage, the wave breaking stage and the wave relaxation stage.
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An initial large amplitude sinusoidal wave begins to steepen after a few tens
of cyclotron periods. The wave steepening can be interpreted as follows: parallel
advection of the electron momentum projected into the perpendicular direction
creates a region of enhanced electron density; since the wave is quasineutral for
kxρi < 1, the ion density ‘follows’, the ions being effectively lighter than the
electrons for nearly perpendicular motion. This behavior is dependent upon the
‘transverse electron mass’ exceeding the ion mass, which only occurs for the slow
waves (ϑ < ǫ or θ < 1). Finally, associated with the steepened ion density profile
is an electrostatic potential trough, as a natural consequence of the ion-Boltzmann
nature of the electron acoustic wave. The 2-fluid nearly perpendicular model of
Seyler and Wahlund (1996) exhibits similar steepening behavior.

At some point in time a certain population of thermal electrons will have moved
across potential energy contours toward lower energies (in the wave frame) and
become trapped in the wave potential well. Figure 33 shows the simulation phase
space after 50ω−1

ci ≈ 8ti . Here, the steepened wave is in the process of exciting
an electron beam which leaves the thermal electron population at the location of
the deep negative electric field ‘spike’ shown in Figure 33. The occurrence of a
unipolar electric field spike is very commonly found in observations (Wahlund
et al., 1994; Seyler et al., 1995).

The steep negative ion density gradient is colocated with the ion-Boltzmann
negative spike in E⊥. The extreme obliqueness of the wave prevents the electrons
from responding in a quasineutral fashion on either side of the ion density gradient;
hence, the electron density overestimates the ion density along the negative gradi-
ent in E⊥. Very similar behavior results from the fluid-kinetic model Seyler et al.

(1998), which lends credibility to both models.
Figure 33 shows that a certain population of electrons in the vicinity of the

separatrix X-point, colocated with the negative spike in Es , are forming an ener-
getic beam. The majority of the thermal electron population remains untrapped, as
before. We interpret this behavior to be a consequence of the negative electric field
spike: in the wave frame, electrons in the vicinity of the negative spike decelerate
and lose energy relative to the wave. At this point in time, the negative spike,
generated by the convective steepening process and colocated with the positive
density gradient (ion Boltzmann character), has grown sufficiently in magnitude to
perturb a small population (approximately 0.25% of the total electron population)
of electrons across the separatrix from an untrapped state to one in which they
are trapped in the potential of the wave. As the beam electrons leave the spike-
dominated region, they begin to approximately follow contours of constant energy
and circulate in the wave potential.

The transition of an electron across a separatrix, from untrapped to trapped
must be a consequence of the time-varying electric field. Thus the wave steepening
through an ion Boltzmann response produces the negative electric field spike which
non-adiabatically induces electron trapping. Hence the terminology self-induced
trapping of electrons.
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Figure 33. Electron (red) and ion (blue) phase space from an oblique particle-in-cell simulation of an
electrostatic inertial Alfvén wave showing wave steepening and resultant perturbation of the electrons
across the energy separatrix.
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For large Ti/Te, the density of beam electrons is not great enough to cause
any noticeable density perturbations in the wave. However, associated with the
wave steepening is the development of higher wavenumber (1 < kx < θ−1) wave
activity. However, the peak in electron density is associated with a field-aligned
electron current of a few hundred µA m−2 created by the (locally) drifting thermal
population.

Higher wavenumber structures with kx > θ−1 existing on the lowest disper-
sion branch experience ion cyclotron damping for ω ≈ 1, and dissipate quickly
compared to the timescale of SIC wave evolution. However, in a hot-ion (Ti ≫
Te) environment, we would expect electron acoustic structures with wavelengths
longer than the dispersive scale length kx ≈ θ−1 to propagate relatively undamped.
Furthermore, we should expect nonlinear steepening to create structures having the
dispersive scale length as the minimal scale of the phenomenon of interest.

The electron beam is fully developed when the negative ion Boltzmann spike
has relaxed. The bulk of the thermal population remains untrapped, and is asso-
ciated with at least two prominent density ‘humps,’ one the original steepened
density peak and the other a smaller peak emerging, with lower group velocity,
from the former. Each peak is associated with a field-aligned current density of
approximately a few hundreds ofµA m−2 carried by the untrapped thermal electron
distribution. Also, each is associated with an ion Boltzmann gradient in Ex , giving
the electric field in the vicinity of the density enhancement a distinctively bipolar
appearance. A number of solitary Alfvénic events have been found with bipolar
electric field signatures Wahlund et al. (1994) and Chaston et al. (1999).

5.3. GENERATION OF ALFVÉN WAVES BY ELECTRON BEAMS

The dispersive Alfvén waves can by excited by linear as well as nonlinear processes.
The linear process involves magnetic field-aligned electron beams (Shukla and
Stenflo, 1999a) or sheared magnetic fields. On the other hand, the nonlinear pro-
cesses usually require the presence of large amplitude high-frequency electromag-
netic or electrostatic drivers in the plasma.

Let us consider Alfvén wave excitation in the presence of an equilibrium elec-
tron current J0 = −n0eu0 in a Maxwellian plasma. Here, the parallel component
of the perturbed electron current density in the wave electric field is

Jez = i
ǫ0ωEz

2k2
zλ

2
De

Z′(ξe) , (111)

where Ez is the parallel component of the wave electric field, Z′ the derivative of
the standard plasma dispersion function with its argument ξe = (ω − kzu0)/kzvte,
and λDe = (ǫ0Te/n0e

2)1/2 the electron Debye radius. For ξe ≪ 1, (111) becomes

Jez = −i ǫ0ωEz

k2
zλ

2
De

[

1 + i

√

π

2
(ω − kzu0)

kzvte

]

. (112)
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The perpendicular component of the plasma current density is

J⊥ ≈ −i n0e

B0

ωωci

ω2
ci − ω2

E⊥ . (113)

From ∇ · J = 0, we then obtain

kzc
2
s

ω2
ci − ω2

k⊥ · E⊥ = −
[

1 + i

√

π

2
(ω − kzu0)

kzvte

]

Ez . (114)

On the other hand, from the Maxwell equations we have
(

k2
zc

2 −
ω2
piω

2

ω2
ci

)

k⊥ · E⊥ = k2
⊥kzc

2Ez . (115)

Combining (114) and (115) we obtain the dispersion relation

ω2 ≈ ω2
H

[

1 − i

√

π

2

(ω − kzu0)

kzvte

]

, (116)

where

ω2
H = k2

zv
2
A[1 + k2

⊥(ρ
2
s + ρ2

i )] . (117)

Letting ω = ωH + iγb in (116), we obtain for γb < ωH the growth rate (Shukla
and Stenflo, 1999a)

γb =
√

π

8
ωH

|kzu0 − ωH |
kzvte

, (118)

if

|J0| >
n0evA(1 + k2

⊥ρ
2
s )

1/2

(1 + k2
zλ

2
i )

1/2
. (119)

The physical mechanism of the above instability is similar to the Cerenkov process
in which the beam electrons resonantly interact with the dispersive Alfvén waves
to drive the latter at non-thermal levels.

5.4. ALFVÉN RESONANCE CONES BY P. M. BELLAN

5.4.1. Mathematical Framework for Resonance Cones

Before discussing the specifics of IAW resonance cones it is worth developing
some general properties of the relevant partial differential equation. To develop
this pde we first consider a Helmholtz equation with a delta function source, i.e.,

∇2ψ ± α2ψ = δ(x)δ(y)δ(z) . (120)

If the minus sign is chosen, then the solution to (120) is
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ψ(r) = −e
−αr

4πr
, (121)

where r =
√

x2 + y2 + z2; this is the Yukawa potential, describes Debye shielding
and if α = 0, becomes the potential of an isolated charge in vacuum. If the plus
sign is chosen in (120), then the solution is

ψ(r) = −e
±iαr

4πr
. (122)

A slightly more complicated situation occurs when the system is anisotropic
and the equation has the form

∂2ψ

∂z2
−
(

∂2ψ

∂x2
+ ∂2ψ

∂y2

)

+ α2ψ = δ(x)δ(y)δ(z) ; (123)

this is called the Klein–Gordon equation and the LHS has a dispersion relation
formally corresponding to the IAW. Making the transformation x → ix′, y →
iy′, z → z′, Equation (123) becomes

∂2ψ

∂z′2
+ ∂2ψ

∂x′2 + ∂2ψ

∂y′2 + α2ψ = −δ(x′)δ(y′)δ(z′) (124)

and so has the solution given by (122) with an extra minus sign (because of the
reversal of the sign of the delta functions). Since x′2 + y′2 + z′2 = z2 − (x2 + y2)

the solution to (123) is therefore

ψ(x, y, z) =
exp

(

±iα
√

z2 − (x2 + y2)
)

4π
√

z2 − (x2 + y2)
, (125)

which has the peculiarity that ψ(x, y, z) diverges not only at the origin, but also
on the conical surface z = ±

√

x2 + y2. Because (123) is a hyperbolic differential
equation, its solutions involve propagation of information along characteristics. In
particular, the information that the potential is divergent at the origin propagates
along the characteristic z = ±

√

x2 + y2. Equation (125) is relevant to IAW waves
excited by a localized source and forms the basis of Alfvén resonance cones.

5.4.2. Generation of Alfvén Resonance Cones by Localized Sources

We now construct and solve the IAW partial differential equation for a localized
source. The IAW plasma current is

µ0J̃
p = − iω

c2

(

−
ω2
pe

ω2
Ẽzẑ + c2

v2
A

Ẽ⊥

)

(126)

and, in addition, it is assumed there also exists some other current which is lo-
calized and associated with some kind of discontinuity (e.g., localized magnetic
reconnection). This additional current will be called J̃

a
and acts as an antenna

radiating IAW waves. Thus, Ampère’s law can be written as
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∇ × B̃ = µ0J̃
p + µ0J̃

a
. (127)

For simplicity we assume that the antenna current is in the z direction so that the
parallel component of (127) becomes

∇ ·
(

B̃ × ẑ
)

= i

c2

ω2
pe

ω
Ẽz + µ0hĨ

aδ(x)δ(y)δ(z) , (128)

where Ĩ a is the axial current flowing in the antenna and h is the antenna length.
The perpendicular component of (127) is

ikz

(

ẑ × B̃
)

= − iω

v2
A

Ẽ⊥ (129)

and crossing Faraday’s law with ẑ gives

ikzẼ⊥ − ∇⊥Ẽz = −iω
(

ẑ × B̃
)

. (130)

Equations (129) and (130) can be solved to give
(

ẑ × B̃
)

(ω2 − k2
zv

2
A) = −iω∇⊥Ẽz . (131)

If this is un-Fourier analyzed in the z direction, we see that
(

ω2 + v2
A
∂2

∂z2

)

(

B̃ × ẑ
)

= iω∇⊥Ẽz . (132)

Applying the operator ω2 + v2
A∂

2/∂z2 to (128) and invoking (132) yields

ω2
gm

ω2

∂2Ẽz

∂z2
− ∇2

⊥Ẽz +
ω2
pe

c2
Ẽz = iµ0

ω
hĨ a

(

ω2 + v2
A

∂2

∂z2

)

δ(x)δ(y)δ(z) , (133)

where ωgm = ωpevA/c =
√

|ωceωci |. Equation (133) is formally like (123) and so
using (125) has the resonance cone solution

Ẽz(x, y, z) = iµ0hĨ
a

4πω
c

ωpe

(

ω2 + v2
A
∂2

∂z2

) exp
(

±i ω
vA
9

)

9
, (134)

where r =
√

x2 + y2 is the cylindrical radius, 9 =
√

z2 − r2ω2
gm/ω

2 prescribes
the cone, and the plus/minus sign is chosen to give axial propagation away from
the source. Comparison of (134) and (132) shows that

B̃(x, y, z) = −µ0hĨ
a

4π
c

ωpe

∂

∂r









exp
(

±i ω
vA
9

)

9









θ̂ , (135)
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where θ is the azimuthal angle about the z axis. Experimental observations (Ono,
1979; Borg et al., 1985; Gekelman et al., 1994) verifying the existence of these
Alfvén resonance cones are discussed in Section 3.5. From Equations (129) and
(130) it is seen that the perpendicular electric field is

Ẽ⊥ = −v
2
A

iω

∂

∂z

(

ẑ × B̃
)

= µ0v
2
AhĨ

a

4πiω
c

ωpe

∂2

∂r∂z









exp
(

±i ω
vA
9

)

9









r̂ . (136)

Equations (134), (135) and (136) show:
(1) Ẽz, Ẽr , and B̃θ diverge when 9 = 0, i.e., on the conical surface r =

zω/ωgm.
(2) Ẽz is finite on the z axis, whereas Ẽr , B̃θ vanish on the z axis.
(3) Ẽz, Ẽr , and B̃θ are all in phase giving both a net radial and a net axial

Poynting flux.
(4) The drift velocity uE is in the θ direction and so gives a fluid vortex motion.
(5) The field polarizations and fluid motions are consistent with the auroral arc

described by (Goertz and Boswell, 1979).
(6) Since ω ≪ ωgm, the fields and vortex-like motion have an extremely long

filamentary shape which will locally appear to be almost two dimensional (i.e.,
appear to have almost no z dependence).

The singularity on the resonance cone in (134), (135) and (136) is an artifact of
the delta function source assumption: for a more realistic extended source, these
solutions can be used as Green’s functions and will be large, but finite on the
conical surface r = zω/ωgm.

From a Fourier mode point of view, a localized source generates a kz spectrum
the superposition of which gives the field in the plasma. The delta function source
assumed here excites all kz equally; however, for the IAW, only kz smaller than
ω/vT e propagate. For kz ∼ ω/vT e, Singh (1999) has shown that kinetic corrections
cause a fine structure modulation of the cones similar to that of lower hybrid cones
(Fisher and Gould, 1971) and prevent divergence of the fields excited by a delta
function source.

If the observer is close enough to the source so that ωz/vA ≪ 1 the plasma fields
will have negligible phase variation and are just functions of (z2 − r2ω2

gm/ω
2)−1/2;

this near-field, quasi-electrostatic limit has been experimentally measured by Ono
(1979) and kinetic effects (Landau damping) were observed (see Section 3.5).

5.4.3. Pulsed Localized Source

So far it has been assumed that the localized source has an exp(−iωt) time de-
pendence, but in reality, it is more likely that a localized source will be a temporal
pulse, i.e., will be like δ(t) rather than like exp(−iωt). Since a single-frequency
source generates
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Ẽz ∼
exp

(

i
ω

vA

√

z2 − r2ω2
gm/ω

2 − iωt

)

√

z2 − r2ω2
gm/ω

2
(137)

a pulse δ(t) ∼
∫

dω exp(−iωt) will generate a field of the form

Ẽz ∼
∫

dω
exp

(

i
ω

vA

√

z2 − r2ω2
gm/ω

2 − iωt

)

√

z2 − r2ω2
gm/ω

2
. (138)

Bellan (1996b) has considered excitation of IAW by a pulsed localized source and,
using a temporal Laplace transform method, effectively performed the ω integra-
tion in (138). The solution was more conveniently expressed in terms of the radial
electric field which was found to have the form

Ẽr ∼ ∂2ψ̃

∂r∂z
, (139)

where

ψ̃(r, z, t) = z−1J0

(

ωgmr

z

√

t2 − z2/v2
A

)

, (140)

for t > z/vA and zero otherwise. Equation (140) has (i) phase fronts forming a
narrow band of rays emanating from the source vicinity and continuously collaps-
ing towards the axis and (ii) a signal envelope traveling axially from the source
at the Alfvén velocity; numerical solutions confirm this picture. Fields analogous
to (140) have been observed experimentally by Simonutti (1976) and by Bellan
(1977) in the lower hybrid wave regime.

5.5. MAGNETIC TEARING

5.5.1. Reconnection via IAW

So far we have assumed that the background magnetic field is uniform. Magnetic
tearing changes the field line topology and these changes typically occur in a very
localized boundary layer. The dynamics of magnetic tearing involves field-aligned
currents. Because realistic tearing is localized in three dimensions (patchy), the
field-aligned currents are also localized in three dimensions. Since transient local-
ized field-aligned currents radiate inertial Alfvén waves, localized tearing should
involve radiation of inertial Alfvén waves. The radiated waves will have a cone
pattern and since the source is typically a single transient, the radiated waves will
be a superposition of Alfvén cones. Bellan (1998) noted that the radiation of Alfvén
waves constitutes a power sink for the radiator and this can be construed as a
radiation resistance. For highly collisionless plasmas the resistivity associated with
this radiation resistance can exceed other known energy loss mechanisms (e.g.,
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Figure 34. (a) Two adjacent, nearly parallel flux tubes before reconnection in low β plasma; (b)
flux tubes after reconnection showing development of localized half-twists which correspond to
axially localized field-aligned currents which act as antennas radiating dispersive Alfvén waves;
(c) before and after configuration of perpendicular magnetic field in plane of square. (Figure from
Bellan, 1998.)

collisions, direct acceleration of electrons) and Bellan (1998) has postulated that
the IAW radiation resistivity could mediate the magnetic tearing, i.e., provide the
energy sink required for tearing, a relaxation process, to proceed (see Figure 34).
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5.5.2. Tearing Modes Associated with Alfvén Waves

The importance of the electron inertial dispersion as a means of releasing the
free energy contained in the transverse magnetic field of an Alfvén wave cannot
be ignored. It was pointed out by Seyler (1988, 1990) that the electron inertia
can have important consequences in the small scale structuring of auroral arcs.
A model which incorporates electron inertia into 3-D low-beta MHD dynamics is
the reduced MHD equations which are

(∂t + ẑ × ∇φ · ∇)∇2
⊥φ = − 1

µ0mn0
(B0∂z + ẑ × ∇Az · ∇)∇2

⊥Az , (141)

and

(∂t + ẑ × ∇φ · ∇)(Az − λ2
e∇2

⊥Az) = −B0∂zφ , (142)

where φ is the stream function for the flow given by ui = ẑ × ∇φ and Az is the
parallel vector potential from which the magnetic field is given by b⊥ = −ẑ×∇A.

Equations (141) and (142) exhibit magnetic tearing or spontaneous reconnec-
tion as the result of finite parallel electron inertia. Even though the system is
nondissipative, the effect of dispersion can allow for slippage of the flow through
the perpendicular magnetic field. Thus the classical Alfvén flux invariant does not
hold and instead we have the following generalization.

8 =
∫

S

(B − λ2
e∇2

⊥B) dS , (143)

where 8 is the generalized Alfvén flux and S is an open surface. The generalized
magnetic flux is locally conserved along the flow. Magnetic tearing instability as-
sociated with the electron inertia was investigated by Seyler (1988, 1990). It was
found that Alfvén waves with a transverse scale comparable to λe are unstable to
electron inertial tearing modes with a growth rate given by Seyler (1990)

γ = kλ3
e

(

1′

I

)2

τ−1
A , (144)

where1′ is the logarithmic derivative of the outer solution of the perturbed parallel
vector potential Az, I is the dimensionless integral with a value near unity, and τA is
the Alfvén transit time with respect to the transverse equilibrium sheared magnetic
field (by).

The ultimate importance of the magnetic tearing with respect to Alfvénic struc-
tures is not entirely clear at this time. It is possible that the origin of small scale
Alfvén waves could be due to tearing modes or that the two-dimensional perpen-
dicular structure often found to be associated with Alfvénic structures is the result
of magnetic tearing. Alfvén waves have comparable magnitudes of energy in their
transverse flow and magnetic fields.
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5.6. MODE CONVERSION

Section (2.3) showed that the behavior of a plane wave in a uniform plasma is
characterized by a 3×3 matrix, Equation (31), which involves the dielectric tensor
elements ε‖and ε⊥ and the refractive index n = nx x̂ + nzẑ = ck/ω. Because the
plasma is uniform this matrix reduces to two decoupled systems, (33) and (34),
which describe the shear Alfvén wave and the fast wave respectively.

If the Alfvén velocity is non-uniform in the direction perpendicular to B then
the fast wave and the Alfvén wave can become coupled at the location where
ω2 = k2

zv
2
A(x); at this location kx → 0 for both the fast and Alfvén wave, WKB ap-

proximations fail, and a differential equation must be used to describe the coupling.
Mode conversion of fast waves into KAW was originally discussed by Hasegawa
and Chen (1975); more recently Bellan (1994, 1996a) has examined mode conver-
sion of fast waves into IAW.

The coupling requires the existence of a finite ky , i.e., the mode must be of
the form f (x) exp(ikyy + ikzz − iωt) with ky finite and vA = vA(x). This is in
contrast to a uniform plasma where the x and y directions are degenerate so that
the coordinate system can always be defined to give k⊥ = kx x̂.

Using (126) to describe the plasma currents in the cold, low frequency limit
and the complete Maxwell equations, Bellan (1994, 1996a) derived the equations
describing coupling between a fast mode and an IAW in a cold plasma having a
density gradient in the x direction. Denoting P = 1/(ε⊥ − n2

z), these coupled
equations are

d
dx

(

ε⊥P
dẼz
dx

)

− k2
yε⊥P Ẽz + ω2

c2
ε‖Ẽz = −ikycnzB̃z

dP
dx

(145)

and

d
dx

(

P
dB̃z
dx

)

− k2
yP B̃z + ω2

c2
Ẽz = iky

nz

c
Ẽz

dP
dx

(146)

and all transverse fields are functions of Ẽz and B̃z. If the plasma is uniform or
if ky = 0, the right-hand sides of (145) and (146) vanish while the left hand sides
reduce to the uniform plasma Alfvén and fast waves respectively, i.e., to the disper-
sion relations given by (35) and (34). However, if ky 6= 0 and ε⊥ = c2/v2

A depends
on x, there is a coupling between the Alfvén and fast modes. This coupling is highly
localized to the vicinity of ε⊥(x) − n2

z = 0, i.e., to the vicinity of ω2 = k2
zv

2
A(x).

Bellan (1996a) has shown that this coupling conserves the x−directed Poynting
flux so that any energy incident on the critical layer by a fast wave will be either
reflected or mode-converted into an Alfvén wave. This conservation of Poynting
flux differs radically from the predictions of ideal MHD. According to ideal MHD
the energy carried by a fast wave accumulates at the vicinity of ω2 = k2

zv
2
A(x)

leading to a field line resonance. In contrast, by taking Alfvén wave dispersion into



508 K. STASIEWICZ ET AL.

account, (145) and (146) show that there is in fact no energy accumulation at the
ω2 = k2

zv
2
A(x) layer.

5.7. NONLINEAR EFFECTS INVOLVING DAW

5.7.1. Ponderomotive Force and Density Perturbations

Mikhailovskii et al. (1976) pointed out possible existence of kinetic Alfvén wave
(KAW) envelope solitons due to the amplitude modulation of a coherent KAW by
quasi-stationary density and magnetic field perturbations in a plasma in which the
electron and ion temperatures are equal. According to them, the magnetic pres-
sure of the KAW produces the quasistationary density and magnetic field (δBz)
perturbations, which are given by

δn

n0
= δBz

B0
= − |b⊥|2

2(1 + 2β)B2
0

, (147)

where b⊥ is the perpendicular component of the KAW magnetic field. We note that
the right-hand side of (147) comes from the J⊥ × b⊥ force, which is equivalent to
the ponderomotive force.

Recently, Bellan and Stasiewicz (1998) renewed interest in ponderomotive ef-
fects by applying them to IAW density cavities observed on Freja (see Section 3.3).
They have derived the ponderomotive force of the IAW wave from a general ex-
pression based on the guiding center approximation. Using the ponderomotive
force and also taking ambipolar effects into account Bellan and Stasiewicz found
that the nonlinear dependence of density on wave amplitude is given by

ns ≈ n0 exp

[

e2

4meT

(

|Ẽ⊥|2
ω2
gm

− |Ẽz|2
ω2

)]

≡ n0 exp(9P ) , (148)

where T = Te + Ti . Equation (148) shows that the electron ponderomotive force is
negative and so tends to dig density cavities whereas the ion ponderomotive force
is positive and so tends to create a density hump. It is important to recall that for
IAW Ẽ⊥ is proportional to ∇⊥Ẽz (or equivalently to ∇⊥J̃z since Ẽz is proportional
to J̃z). Thus, if J̃z is spatially localized (as observed in the Freja data), J̃z will have
a local maximum and at this maximum, Ẽz will also have a maximum while Ẽ⊥
will vanish. Thus, the electron ponderomotive force is the only non-vanishing pon-
deromotive force at the location of the current maximum and this ponderomotive
force produces a density depletion. If the IAW is excited by a localized source,
Ẽz is finite on the field line passing through the source, whereas Ẽ⊥ vanishes on
this field line. Hence, one expects a density depletion on the field line through the
source and this density depletion will be bounded by density increases (ridges)
due to the perpendicular electric field which becomes finite as one moves away
from the field line through the source. In cylindrical geometry it is found that the
maximum of |Ẽ⊥|2/ω2

gm is about an order of magnitude smaller than the maximum
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Figure 35. (a) Ponderomotive force term e2|Ẽz|2/4meT ω2 in (148) calculated from Freja motion
across magnetic field gradients; (b) density cavities measured by Freja. Dotted lines show correlation
between observed density cavities and calculated ponderomotive force. (Figure from Bellan and
Stasiewicz (1998).)

of |Ẽz|2/ω2 and so the density depletion is larger than the density ridges. By de-
ducing value of Ez from the observed intensity of Jz with Equation (61) Bellan
and Stasiewicz (1998) showed that (148) provides a reasonable description for the
density depletions observed by the Freja spacecraft (see Figure 35).

Shukla et al. (1999) have shown that the result (148) can be obtained from
two-fluid equations. The parallel component of the driving force of the dispersive
IAWs can be calculated by averaging the parallel component of the convective
mjvj · ∇vjz and Lorentz force qj

(

vj⊥ × b⊥
)

z
terms over the IAW period 2π/ω,

where qi = e and qe = −e. The ponderomotive force of the IAW produces a
space charge ambipolar potential ϕ and density perturbations δnjs = njs − n0.
The magnetic field-aligned force balance equation for nonresonant electrostatic
disturbances in the presence of the driving force of the IAW is (Shukla et al., 1999)

mj
∂vjs

∂t
+mj

〈

v∗
j⊥ · ∇vjz + v∗

jz∂zvjz
〉

− qj
〈

ẑ ·
(

v∗
j⊥ × b⊥

)〉

=

= −qj
∂ϕ

∂z
− Tj

njs

∂njs

∂z
, (149)

where vjs is the magnetic field-aligned particle velocity involved in the nonreso-
nant electrostatic disturbances, and the angular bracket denotes averaging over the
IAW period. The bracket terms in the left-hand side represents the ponderomotive
force, and the asterisk the complex conjugate.

For low parallel phase velocity (in comparison with the electron thermal ve-
locity) electrostatic waves, we can neglect the parallel electron inertial force in
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(149). Adding the inertialess electron and inertial ion versions of (149) under the
quasi-neutrality approximation nes = nis ≡ ns , we obtain

mi
∂vis

∂t
+ i

n0ω

〈

J∗
⊥ · ∇Ez

〉

− 1
n0

〈

ẑ ·
(

J∗
⊥ × b⊥

)〉

+

+ e2

4meω2

∂

∂z

〈

|Ez|2
〉

= −T ∂

∂z
ln ns ,

(150)

where the perpendicular component of the plasma current density is given by

J⊥ = −i(n0eω/B0ωci)E⊥ . (151)

In deriving (151) we have made use of the perpendicular and parallel components
of the electron and ion fluid velocities in the IAW fields, namely,

ve⊥ ≈ B−1
0 E⊥ × ẑ , (152)

vi⊥ ≈ B−1
0 E⊥ × ẑ + (B0ωci)

−1∂tE⊥ , (153)

and

∂tvez = −eEz/me, ∂tviz = eEz/mi . (154)

Equation (148) is recovered for the quasi-stationary (vis = 0) density by inserting
the expression for J⊥ into the left-hand side of (150) (Shukla et al., 1999).

Shukla and Stenflo (1999b) have pointed out that the Joule heating of the elec-
trons in the IAW can be responsible for the fine-scale density cavitations that are
observed by Freja and FAST. When the electron thermal nonlinearity involving the
Joule heating and the ponderomotive force are included, one obtains (Shukla and
Stenflo, 1999c)

n = n0 exp

{

9P −
σω2

pi

ω2
ci

ǫ0
〈

|E2
⊥|
〉

3n0T

}

, (155)

where σ is a factor of order unity. We recall that for an IAW (with ω ≪ ωci and
kzλi ≪ 1) we have E⊥ = (kzωceωci/ω

2k2
⊥)Ezk⊥, and |b⊥| = ω|E⊥|/kzv2

A, which
inserted in (155) yields

n = n0 exp[−(1 + 8k2
⊥λ

2
e)|b⊥|2/12µ0n0T ] . (156)

Equation (156) exhibits that the thermal nonlinearity associated with the inertial
Alfvén waves can create magnetic field-aligned quasi-stationary density dips. On
the other hand, when the σω2

pi/ω
2
ci-term in (155) is absent, which is ascribed to the

Joule heating, and the relationship between E⊥ and E‖, applicable for a plane wave
is inserted to (155), one obtains a density hump.
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5.7.2. Parametric Instabilities of IAW

In this section, we present an investigation of the nonlinear effects produced by
finite amplitude IAW waves interacting with the plasma slow motions in a uniform
magnetoplasma. Specifically, here we focus on the ponderomotive force of the IAW
waves that can create magnetic field aligned ion-acoustic density fluctuations, as
seen in Freja data (Wahlund et al., 1998).

We consider the nonlinear propagation (in the x−z plane) of low-frequency (in
comparison with the ion gyrofrequency), long parallel wavelength (in comparison
with the collisionless ion-skin depth) finite amplitude IAW waves in a magneto-
plasma. In the IAW fields, the perpendicular (denoted by the subscript ⊥) and
the parallel (denoted by the subscript z) components of the electron and ion fluid
velocities are given earlier by (153)–(154). The y component of the IAW magnetic
field By and the IAW electric fields are related by Faraday’s law

∂By

∂t
= ∂Ez

∂x
− ∂Ex

∂z
. (157)

We now derive the relevant dynamical equation for the IAW waves, taking into
account the nonresonant electrostatic density perturbations δns that are created by
the ponderomotive force of the IAW waves. For this purpose, we combine the
parallel component of the Ampère law with (154) to obtain

∂2By

∂t∂x
=
ω2
pe

c2

(

1 + δns

n0

)

Ez . (158)

On the other hand, by inserting (152) and (153) into the conservation of the
current density equation (viz., ∇ · J = 0) and eliminating the parallel component
of the plasma current density from the Ampère law, we have

∂Ex

∂t
= −v2

A

(

1 − δns

n0

)

∂By

∂z
, (159)

where δns/n0 ≪ 1. For large density perturbations, i. e. δns/n0 > 0.2, one could
extend the validity of (159) by replacing 1 − δns/n0 by (1 + δns/n0)

−1.
Eliminating Ex from (157) and (159) we find (Shukla et al., 1999)

∂2By

∂t2
− ∂2Ez

∂t ∂x
= v2

A

(

1 − δns

n0

)

∂2By

∂z2
. (160)

Combining (158) and (160) we finally obtain the IAW equation
(

1 − δns

n0

)(

v2
A

∂2

∂z2
+ λ2

e

∂2

∂x2

∂2

∂t2

)

By = ∂2By

∂t2
, (161)

where the last term in the left-hand side of (161) arises from the nonlinear coupling
between the IAWs and the slow density perturbations that are produced by the IAW
driving force. We note that (161) accounts for small amplitude density changes that
are created by the ponderomotive force of the IAWs.

On the other hand, in the presence of the ponderomotive force of IAW’s, the
dynamics of magnetic field-aligned ion-sound waves is governed by
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(

∂2

∂t2
− c2

s

∂2

∂z2

)

δns = − c2
s

4µ0T

∂2

∂z2

〈

|By|2
〉

, (162)

where the perpendicular wavelength of the driven ion-acoustic waves is assumed
to be much larger than the ion gyroradius at the electron temperature. Equation
(162) in addition can depict supersonic density cavities produced by the IAW
Ponderomotive force. Equations (161) and (162) are our desired set for studying
the nonlinear propagation of IAWs in the presence of nonstationary electrostatic
density perturbations.

In the following, we consider the parametric instabilities of IAWs. For this
purpose, we decompose the IAW field as By = By0 exp(ik0 · r − iω0t) + compl.
conj. + By± exp(ik± · r − iω±t), where By0(By±) is the magnetic field of the IAW
pump (sidebands), ω0 = kz0vA/(1 + k2

x0λ
2
e)

1/2 the pump frequency, ω± = �± ω0,
k± = K ± k0, and �(K) the frequency (wavevector) of the low-frequency electro-
static oscillations. Thus, (161) and (162) can be Fourier transformed and combined
to yield the nonlinear dispersion relation

�2 −K2
z c

2
s = K2

z c
2
sω

2
0

|By0|2
4µ0n0T

∑

+,−

1

DA±
, (163)

whereDA± = ω2
±(1+k2

x±λ
2
e)−k2

z±v
2
A. It can be shown that forKx ≪ kx0, the latter

takes the form ±2ω0(1+k2
x0λ

2
e)(�−Kzvg0 ∓δ), where vg0 = kz0v

2
A/ω0(1+k2

x0λ
2
e)

is the group velocity of the pump and δ = K2
z v

2
A/2ω0(1+k2

x0λ
2
e) a small frequency

shift arising from the nonlinear interaction.
Equation (163) can be analyzed for three-wave decay and modulational inter-

actions. For the three-wave decay interaction, we can assume DA− to be resonant
and ignore the upper sideband DA+, which is off-resonant. Letting � = Kzcs + iγi
and Kzvg0 − δ ≈ Kzcs , we obtain the growth rate γi from (163)

γi = (Kzcsω0)
1/2|By0|/4[(1 + k2

x0λ
2
e)µ0n0T ]1/2 . (164)

On the other hand, for the modulational interaction, both the upper and lower
sidebands are resonant (viz., DA± = 0, whereas the low-frequency perturbations
are non-resonant. Here, (163) takes the form

(�2 −K2
z c

2
s )[(�−Kzvg0)

2 − δ2] = K4
z c

2
s v

2
A|By0|2/8µ0n0T (1 + k2

x0λ
2
e)

2 .

(165)

Equation (165) can be analyzed in two limiting cases. First, for � ≪ Kzcs , we
have

� = Kzvg0 ±
[

δ2 −
K2
z v

2
A|By0|2

8µ0n0T (1 + k2
x0λ

2
e)

2

]1/2

, (166)

which predicts an oscillatory instability when

|By0|2 > 2µ0n0TK
2
z (1 + k2

x0λ
2
e)/k

2
0z .
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The maximum growth rate of that instability is

Kz0vA|By0|/
√

8µ0n0T (1 + k2
x0λ

2
e) .

Second, for �2 ≫ K2
z c

2
s and � ≫ Kzvg0, (165) reduces to

�2 = (δ2/2)±
[

(δ4/4)+K4
z v

2
Ac

2
s |By0|2/8µ0n0T (1 + k2

x0λ
2
e)

2
]1/2

. (167)

Equation (167) also admits an oscillatory instability.
Furthermore, in order to study the long term spatio-temporal evolution of (161)

and (162), we must invoke the slowly varying envelope approximation on (161) and
solve the pair by means of a numerical scheme. It is likely that the coupled equa-
tions admit stationary solutions in the form of supersonic density cavities which
may trap spatially localized IAW magnetic fields. Finally, it of interest to mention
that the modulation of IAWs by quasi-stationary electromagnetic perturbation has
been considered by Shukla (1983). It was found that finite amplitude long (short)
wavelength IAW is modulationally stable (unstable). Investigations by Shukla and
Stenflo (1985) and Shukla et al. (1986c) on the modulation of electromagnetic
cyclotron Alfvén waves by ion-sound perturbations along the magnetic field lines
are also of interest in this context.

5.8. AMPLITUDE MODULATION OF KAWS

In this section, we consider the nonlinear interaction of a finite amplitude KAW
with quasi-stationary density and compressional magnetic field perturbations gives
rise to an envelope of waves. Employing the eikonal operator representation, which
implies letting ω = ω0 + i∂t and k = k0 − i∇ in Equation (27), where ω0(k0)

is the pump frequency (wavevector), and applying the WKB approximation, viz.,
∂tB⊥ ≪ ω0B⊥, we find that the envelope evolves according to (Shukla et al.,
1998a)

i

(

∂

∂t
+ vg · ∇

)

b⊥ + �2
A0αρ

2
s

2ω0
∇2

⊥b⊥ − �2
A0

2ω0

δBz

B0
b⊥ = 0 ; (168)

here vg = ∂ω0/∂k0 is the group velocity, ω2
0 = �2

A0(1 + αk2
⊥0ρ

2
s ), �A0 = k0zvA,

α = 1+3Ti/4Te, and B⊥ the perpendicular (to ẑ) component of the KAW magnetic
field. In Equation (168) we have used the frozen-in-field concept and have thus set
ni/B = constant. We have also let ni = n0 + δn and B = B0 + δBz, where
δBz(≪ B0) is the quasi-stationary compressional magnetic field triggered by the
KAW magnetic field pressure. Furthermore, we have also employed the relation
δn/n0 ≈ δBz/B0.

Combining Equations (147) and (168) we obtain

i

(

∂

∂t
+ vg · ∇

)

b̂⊥ + P

2
∇2

⊥b̂⊥ +Q|b̂⊥|2b̂⊥ = 0 , (169)
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where b̂⊥ = B⊥/B0, P = �2
A0αρ

2
s /ω0, and Q = �2

A0/4ω0(1 + 2β).
Equation (169) is the standard cubic nonlinear Schrödinger equation, which

predicts modulation/filamentation instability of a constant amplitude KAW pump,
as well as self-focusing of the KAW.

The nonlinear dispersion relation for the modulational/filamentation instability
of a constant amplitude (B⊥0) KAW pump is derived from Equation (169) by
decomposing b⊥ as the sum of the pump and the two sidebands. The standard
procedure gives

(�− K · vg)2 = PK2
⊥(

1
4PK

2
⊥ −Q|b0|2) , (170)

where �(K) is the frequency (wave number) of the quasi-stationary modulation,
K = ẑKz + K⊥, and b0 = B⊥0/B0. Letting � = K · vg + iγ in Equation (170),
we observe that the growth rate γ of the modulational instability is positive for
Q|b0|2 > PK2

⊥/4.
On the other hand, stationary filamentation instability can be investigated on the

basis of the nonlinear dispersion relation

K2
z = PK2

⊥
4v2

Aα
(PK2

⊥ − 4Q|b0|2) , (171)

where vgz is the z component of the group velocity of the KAW. Equation (171)
follows from Equation (170) if we set � = 0 and assume that Kzvgz ≫ K⊥ ·
vg⊥. Setting Kz = −iKm(Km > 0) in Equation (171), we see that convective
amplification occurs for |b0|2 > PK2

⊥/4Q. The mode number of the most unstable
wave is Km = (2Qb0/P )

1/2 and the corresponding spatial amplification rate is
Ki = Q|b0|2/vgz. The minimum scalelength over which the KAW filamentation
occurs is 2π/Ki .

We now consider the time-independent stationary propagation of KAW along
the z axis. Thus, we seek the solution of Equation (169) in the form b̂⊥ = b̂⊥(r)
exp(iλz) and assume the steady state (∂tb⊥ = 0), where λ is a constant. Thus, for
cylindrically-symmetric KAW beams, we have

1

r

d

dr

(

r
db̂⊥
dr

)

− 2

P
(vgzλ−Qb̂2

⊥)b̂⊥ = 0 . (172)

For λ > 0, Equation (172) admits cylindrical soliton solutions.
Furthermore, in the steady state Equation (169) can be cast in the form

i∂ξ b̂⊥ + 1
2ρ

∂

∂ρ

(

ρ
∂b̂⊥
∂ρ

)

+D|b̂⊥|2b̂⊥ = 0 , (173)

where ξ = z�2
A0α/vgzω0, ρ = r/ρs and D = 1/2(1 + 2β)α. Equation (173)

has been investigated in detail in the context of self-focusing of laser beams. For
a Gaussian beam |b̂⊥|2 = b̂2

⊥0 exp(−ρ2/a2), the threshold for the self-focusing is
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Da2b̂2
⊥0 > 2, where a is the normalized (by ρs) beam width. The filamentation and

collapse of KAW beams can constitute a novel mechanism for the plasma heating
in an intermediate β-plasma.

5.9. SELF-INTERACTION BETWEEN DAWS

Here, we consider self-interaction between finite amplitude DAWs a nonuniform
multicomponent plasma whose constituents are electrons and singly charged ions
in an external magnetic field B0ẑ. The plasma density is assumed to be inhomo-
geneous along the x-axis. In the electromagnetic fields, the electron and ion fluid
velocities are given by (Shukla et al, 1984)

ve ≈ 1

B0
E⊥ × ẑ − Te

eB0ne
ẑ × ∇ne + vez

(

ẑ + b⊥
B0

)

(174)

and

vi ≈ 1
B0

E⊥ × ẑ + Ti

eB0ni
ẑ × ∇ni +

1
B0ωci

(∂t + vi · ∇)E⊥ , (175)

where E⊥ = −∇⊥φ is the perpendicular component of the wave electric field,
b⊥ = ∇Az × ẑ the perturbed magnetic field, φ the scalar potential, and Az the
parallel (to B0ẑ) component of the vector potential. The parallel component of the
electron fluid velocity is given by

vez ≈ 1
µ0nee

∇2
⊥Az , (176)

where we have ignored the ion motion parallel to ẑ, as well as neglected the
compressional magnetic field perturbation. Thus, ion- acoustic and magnetosonic
waves are decoupled in our low-β (β ≪ 1) system.

Substituting (174) into the electron continuity equation, letting nj = n0(x)+n1,
where n1(≪ n0) is the particle number density perturbation, and using (176) we
obtain

dtn1 − 1
B0

ẑ × ∇n0 · ∇φ + 1
µ0e

dz∇2
⊥Az = 0 , (177)

where dt = ∂t +B−1
0 ẑ × ∇φ · ∇ and dz = ∂z +B−1

0 ∇Az × ẑ · ∇. We have assumed
that (ω2

pe/ωce)|ẑ × ∇φ · ∇| ≫ c2∂z∇2
⊥Az.

On the other hand, substitution of the ion fluid velocity (175) into the ion
continuity equation (assuming quasineutrality) yields

dtn1 − 1

B0
ẑ × ∇n0 · ∇φ − n0

B0ωci
(dt + ui∗ · ∇)∇2

⊥φ−

− Ti

eB2
0ωci

∇⊥ ·
[

(ẑ × ∇n1) · ∇∇⊥φ
]

= 0 . (178)
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Subtracting (178) from (177) we obtain the modified ion vorticity equation
(

dt + ui∗∂y
)

∇2
⊥φ + v2

Adz∇2
⊥Az+

+ Ti

eB0n0
∇⊥ ·

[

(ẑ × ∇n1) · ∇∇⊥φ
]

= 0 . (179)

By using (174) and (176), the parallel component of the electron momentum equa-
tion can be written as

(

∂t + ue∗∂y
)

Az − λ2
edt∇2

⊥Az + dz

(

φ − Te

en0
n1

)

= 0 . (180)

Equations (177), (179) and (180) are the desired nonlinear equations for the
coupled drift-Alfvén modes in nonuniform magnetoplasmas. In a uniform cold
plasma, they reduce to those derived earlier (Shukla and Stenflo, 1985) viz.

dt∇2
⊥φ + v2

Adz∇2
⊥Az = 0 , (181)

and

dtAz − λ2
edt∇2

⊥Az + ∂zφ = 0 , (182)

which govern the nonlinear interactions between finite amplitude inertial Alfvén
waves.

5.10. QUASI-STATIONARY VORTICES

Let us now consider stationary solutions of the nonlinear Equations (177), (179)
and (180) , assuming that all the field variables depend on x and η = y + αz− ut ,
where u is the translation speed of the vortex along the y -axis, and α the angle
between the wave front normal and the (x, y) plane. Two cases are considered.
First, in the stationary η-frame, (180) for λ2

e|∇2
⊥| ≪ 1 can be written as (Shukla

et al., 1986b)

D̂A

(

φ − Te

en0
n1 − u− ue∗

α
Az

)

= 0 , (183)

where D̂A = ∂η + (1/αB0)[(∂ηAz)∂x − (∂xAz)∂η]. A solution of (183) is

n1 = n0e

Te
φ − n0e(u− ue∗)

αTe
Az . (184)

Writing (177) in the stationary frame, and making use of (184) it can be put in the
form

D̂A

(

λ2
De∇2

⊥Az + u(u− ue∗)

α2c2
Az − u− ue∗

αc2
φ

)

= 0 , (185)

where λDe = vte/ωpe is the electron Debye radius. A solution of (185) is
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λ2
De∇2

⊥Az + u(u− ue∗)

α2c2
Az − u− ue∗

αc2
φ = 0 . (186)

The modified ion vorticity Equation (179) for cold ions can be expressed as

D̂φ∇2
⊥φ = 0 , (187)

where D̂φ = ∂η − (uB0)
−1[(∂xφ)∂η − (∂ηφ)∂x].

Combining (186) and (187) we obtain

D̂φ

(

∇2
⊥φ + p

ρ2
s

φ + u− ue∗
αρ2

s

Az

)

= 0 , (188)

where p = (ue∗ − u)/u. A typical solution of (188) is

∇2
⊥φ + p

ρ2
s

φ + u− ue∗
αρ2

s

Az = C1 (φ − uB0x) , (189)

where C1 is an integration constant.
Eliminating Az from (186) and (189), we obtain a fourth order inhomogeneous

differential equation

∇4
⊥φ + F1∇2

⊥φ + F2φ + C1
u2(u− ue∗)B0

α2c2λ2
De

x = 0 , (190)

where F1 = (p/ρ2
s )− C1 + u(u− ue∗)/α

2c2λ2
De,

and

F2 = (u− ue∗)
2 /α2c2λ2

Deρ
2
s + (p − C1ρ

2
s )u(u− ue∗)/α

2c2λ2
Deρ

2
s .

We note that the outer solution, where C1 = 0 and F2 = 0, of (190) has a long tail
for (u − ue∗)(α

2v2
A − u2) > 0. In the outer region (r > R), where R is the vortex

radius, we set C1 = 0 and write the solution of (190) as (Liu and Horton, 1994;
Shukla et al., 1986c; Mikhailovskii et al., 1987)

φ = [Q1K1(s1r)+Q2/r]cosθ , (191)

where Q1 and Q2 are constants, and s2
1,2 = −[−α1 ± (α2

1 − 4α2)
1/2/2 for α1 < 0

and α2
1 > 4α2 > 0. Here, α1 = (p/ρ2

s ) + u(u − ue∗)/α
2c2λ2

De and α2 = [(u −
ue∗)

2 + u(u− ue∗)p]/α2c2λ2
Deρ

2
s . In the inner region (r < R), the solution reads

φ =
[

Q3J1(s3r)+Q4I1(s4r)− C1

λ2
De

u2(u− ue∗)B0

α2c2F2
r

]

cosθ , (192)

where Q3 and Q4 are constants. We have defined s3,4 = [(F 2
1 − 4F2)

1/2 ± F1]/2
for F2 < 0.

Second, we present the double vortex solution of (181) and (182). Thus, we
write them in the stationary frame as
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D̂φ∇2
⊥φ − v2

Aα

u
D̂A∇2

⊥Az = 0 , (193)

and

D̂φ

[

(

1 − λ2
e∇2

⊥
)

Az − α

u
φ
]

= 0 . (194)

It is easy to verify that (194) is satisfied by
(

1 − λ2
e∇2

⊥
)

Az − α

u
φ = 0 . (195)

By using (193) one can eliminate ∇2
⊥Az from (195), yielding

D̂φ

[

∇2
⊥φ + α2v2

A

u2λ2
e

φ − αv2
A

uλ2
e

Az

]

= 0 . (196)

A typical solution of (196) is

∇2
⊥φ + β1φ − β2Az = C2 (φ − uB0x) , (197)

where β1 =
(

α2v2
A/u

2λ2
e

)

, β2 = αv2
A/ucλ

2
e , and C2 is an integration constant.

Eliminating Az from (193) and (197) we obtain

∇4
⊥φ + F1∇2

⊥φ + F2φ − C2uB0

λ2
e

x = 0 , (198)

where F1 = λ−2
e

(

α2v2
A/u

2 − 1
)

− C2, and

F2 = C2/λ
2
e .

Equation (198) is similar to (189) and its bounded solutions (similar to (191) and
(192)) exist provided that u2 > α2v2

A.

5.11. DYNAMICS OF VORTICES

Here we suggest that the observed ray-like forms of the aurora can be understood
in terms of the nonlinear IAW in cold plasmas. Assuming that the auroral struc-
tures have a very long extension along the magnetic field-lines, we can model
nonlinearly interacting parallel electron current sheets by means of the equations

d
dt

∇2
⊥φ + v2

A

B0
∇Az × ẑ · ∇∇2

⊥Az = 0 , (199)

and
d
dt

(

Az − λ2
e∇2

⊥Az
)

= 0 , (200)

which are derived from (181) and (182) by assuming that ∂∇2
⊥Az/∂z = 0 and

∂φ/∂z = 0. Equations (199) and (200) are numerically analysed by Chmyrev et al.,
(1992), by taking
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Figure 36. Numerical simulation results of the development and dynamics of folds, spirals and
vortices. (After Chmyrev et al., 1992.)

∇2
⊥Az = A0k

2 ln cosh(ky) (201)

and

φ = φ1 tanh(ky)+ φ2 exp(−γ x2) (202)

as initial conditions, with A0 = 0.1, k = 1.18, φ1 = 1, φ2 = 5, and γ = 0.15.
Here, Az, A0, φ1, φ2 are in units of Te/e and the space variables (k) are normalized
by ρs (ρ−1

s ).
Figure 36(a) displays temporal evolution of the parallel electron current sheet.

We see the formation of a fold within 2 s for the auroral plasma parameters. Fig-
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ure 36(b) exhibits temporal evolution of the parallel current sheet for the same
current density as in Figure 36(a), but assuming that φ = 5 tanh(ky). Here we see
the formation of a fold and the disintegration of a fold into the vortex chain.

Figure 36(c) shows the formation of a spiral (S structure) in the current sheet for
the same parameters as in Figure 36(a) but with an axi-symmetric electric field with
φ = exp(−0.2x2). The formation of spiral and the generation of a vortex chain in
the spiral are depicted in Figure 36(d). Here, the profile of the parallel electron
current density and the other parameters are the same as in Figure 36(a), whereas
the scalar potential has the same form as in Figure 36(b). The numerical simu-
lations thus demonstrate that within the framework of the nonlinear IAW model,
one can describe all the observational stages of the development of folds, spirals,
as well as the disintegration of folds and spirals into the vortex chain. Physically,
the nonlinear mode coupling of the inertial Alfvén fluctuations self-organize into
larger-scale structures, which eventually break into smaller-size coherent vortex
structures. The energy transfer from large vortical motion into small vortical mo-
tion is thus evident in the low-beta magnetoplasma containing inertial Alfvén wave
turbulence. The results have relevance to the structures that are observed in the
aurora.

5.12. CHAOS IN ALFVÉNIC TURBULENCE

Finally, in this section, we show that the nonlinear equations governing the dynam-
ics of low-frequency, flute-like Alfvénic disturbances in a nonuniform collisional
plasma can be written as a set of three coupled nonlinear equations. The latter are
a generalization of the Lorenz–Stenflo equations (Lorenz, 1963; Stenflo, 1996),
which admit chaotic fluid behavior of electromagnetic turbulence in a nonuniform
magnetoplasma.

The nonlinear dynamics of low-frequency, long wavelength (in comparison with
the ion gyroradius) electromagnetic fields in a nonuniform magnetized plasma
containing sheared plasma flows is governed by the ion vorticity equation

(Dt − µ∇2
⊥)∇2

⊥φ − ωciJ
′
0

n0e
∂yAz − v2

A

B0
(ẑ × ∇Az) · ∇∇2

⊥Az = 0 , (203)

and the parallel (to ẑ) component of the electron momentum equation

[

(1 − λ2
e∇2

⊥)Dt − η∇2
⊥
]

Az + v′
0

ωce
∂yφ = 0 , (204)

whereDt = ∂t+B−1
0 ẑ×∇φ ·∇, ∇2

⊥ = ∂2
x +∂2

y , v′
0 = ∂ve0/∂x, J ′

0 = ∂J0/∂x, and
J0 = n0e(vi0 − ve0) is the equilibrium plasma current. Furthermore, η = νeλ

2
e is

the plasma resistivity, and µ = (3/10)νiρ2
i is the coefficient of ion gyroviscosity.

The electron and ion collision frequencies are denoted by νe and νi , respectively,
and ρi is the ion Larmor radius. We have assumed that the phase velocities of the
disturbances are much larger than the electron and ion diamagnetic drift velocities.
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Equations (203) and (204) are the nonlinear equations governing the dynamics
of finite amplitude Alfvén-like disturbances in a nonuniform magnetoplasma con-
taining equilibrium magnetic field-aligned sheared plasma flows. In the absence of
the nonlinear interactions, we readily obtain from (203) and (204) the dispersion
relation (Shukla, 1987)

ω2 + iωŴ −�2 + γ 2
0 = 0 , (205)

where Ŵ = [µ + η/(1 + K2λ2
e)]K2, �2 = µηK4/(1 + K2λ2

e), K = x̂Kx + ŷKy
is the wave vector, and γ 2

0 = −meJ ′
0v

′
e0K

2
y/min0e(1 + K2λ2

e)K
2. In the absence

of the equilibrium current and velocity gradients, (205) gives convective cells and
magnetostatic modes, which are decoupled. However, when the current and ve-
locity gradients are opposite to each other, we obtain an instability provided that
γ 2

0 > �
2 − Ŵ2/4. The maximum growth rate of that instability is |γ0|.

In the following, we follow Lorenz and Stenflo and derive a set of equations
which are appropriate for studying the temporal behavior of chaotic motion in-
volving low-frequency electromagnetic waves in a dissipative magnetoplasma with
sources. Accordingly, we introduce the Ansatz

φ = φ1(t) sin(kxx) sin(kyy) , (206)

and

Az = A1(t) sin(kxx) cos(kyy)− A2(t) sin(2kxx) , (207)

where kx and ky are constant parameters, and φ1, A1 and A2 are amplitudes which
are only functions of time. By substituting (206) and obtain (Mirza and Shukla,
1997) (207) into (203) and (204), we readily

k2dtφ1 = −µk4φ1 + α1kyA1 − α2(k
2 − 4k2

x)kxkyA1A2 , (208)

(

1 + k2λ2
e

)

dtA1 = −ηk2A1 − α3kyφ1 + c

B0

[

1 + k2λ2
e − 6k2

xλ
2
e

]

kxkyA2φ1 (209)

and

(1 + 4k2
xλ

2
e)dtA2 = − c

2B0
(1 + 4k2

xλ
2
e)kxkyφ1A1 − 4ηk2

xA2 , (210)

where α1 = ωciJ
′
0/n0e, α2 = v2

A/B0 and α3 = v′
e0/ωce. We note that the terms

proportional to sin(3kxx) have been dropped in the derivation of (208) to (210).
This approximation is often employed by many authors for deriving the relevant
Lorenz-like equations in many branches of physics.

Equations (208) to (210) can be appropriately normalized so that they can be
put in a form which is similar to that of Lorenz and Stenflo. We have (Mirza and
Shukla, 1997; Shukla et al., 1998b)

dτX = −σX + σY + δYZ , (211)
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dτY = −XZ + γX − Y (212)

and

dτZ = XY − βZ , (213)

which describe the nonlinear coupling between various amplitudes. Here, σ = µ
(

1 + k2λ2
e

)

/η, γ = −α1α3k
2
y/(ηµk

6), β = 4k2
x

(

1 + k2λ2
e

)

/(1+4k2
xλ

2
e)k

2, and the
new parameter δ = α2(k

2
y − 3k2

x)
(

1 + k2λ2
e

)

µ2k6B0/[α2
1k

2
y(1 + k2λ2

e − 6k2
xλ

2
e)],

with k2 = k2
x + k2

y and τ = t/t0, where t0 = ηk2/
(

1 + k2λ2
e

)

.
A comment is in order. If we set δ = 0, which happens for k2

y = 3k2
x , then (211)

to (213) reduce to the Lorenz type equations. However, the normalizations used
here (Mirza and Shukla, 1997) are

φ1 =
{ √

2ηk2B0

kxky
[(

1 + k2λ2
e

) (

1 + k2λ2
e − 6k2

xλ
2
e

)]1/2

}

X , (214)

A1 =
{ √

2ηµk6B0

α1kxk2
y

[(

1 + k2λ2
e

) (

1 + k2λ2
e − 6k2

xλ
2
e

)]1/2

}

Y , (215)

and

A2 = −
[

ηµk6B0

α1kxk2
y

(

1 + k2λ2
e − 6k2

xλ
2
e

)

]

Z . (216)

Let us now discuss the chaotic fluid behavior of electromagnetic turbulence
that is governed by (211) to (213). We observe that the equilibrium points of the
dynamical equations are (Mirza and Shukla, 1997)

X0 = ±{β(γ − 2 + δγ 2/σ )+ 1
2 [(γ − 2 + δγ 2/σ )2 + 4(γ − 1)]1/2}1/2 ,

(217)

Y0 = γβX0

(β +X2
0)

(218)

and

Z0 = X0Y0

β
. (219)

In the absence of the δ-term, we note that for |γ | > 1, the equilibrium fixed points
[X0 = Y0 = ±

√
β(|γ | − 1)1/2] and Z0 = |γ | − 1) are unstable, resulting in

convective cell motions. Thus, the linear instability should saturate by attracting to
one of these new fixed states. Furthermore, it is worth mentioning that a detailed
behavior of chaotic motion for ky 6=

√
3kx can studied numerically (Sparrow, 1982)

by solving (211) to (213).
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6. Present Understanding and Outlook

This review is concerned with an eclectic set of observations and theory that have
the single underlying theme of being simultaneously related to the small-scale au-
rora and Alfvén waves. Up to this point we have presented mostly observational
facts and theoretical ideas vaguely related to the observational facts. We have yet
to integrate our pool of experimental understanding and theoretical knowledge into
a revealing picture of the phenomena in question. To do so requires a bit of sub-
jectivity and thus the picture is shaded by the authors’ perspective. Nevertheless,
a presentation of facts without an attempt to draw conclusions goes counter to the
main goal of a review paper which is to assess our understanding of the subject,
formulate a picture and point out the gaps in our present understanding. We briefly
summarize the observational facts, then summarize the theories which have been
motivated by observations and then finally form a picture that seems to be a best fit
between observation and theory.

Freja and FAST satellite observations have shown the existence of oblique
Alfvén waves which is consistent with a first order structure in the form of a current
sheet and which is usually associated with transverse structure resembling vortices
or co-axial current channels. Alfvénic structures are often situated within larger
scale density cavities and associated with short-scale electrostatic waves, possibly
strong parallel electric fields, electron acceleration, and ion heating. The structures
are consistent with the optical signature as shown in Figure 1 which is usually
referred to as a thin auroral arc. As yet simultaneous measurements of optical
signatures and Alfvén features are very rare so that we cannot state with certainty
that Alfvénic structures are auroral arcs. However, the optical characteristics are
compatible with in-situ electric and magnetic field data which show either a sheet-
like structure or a vortex-like structure. The non-uniqueness of one-point in situ

measurements does not allow one to make definitive statements in this regard.
This picture of Alfvénic structure has been formed from the prodigious volume

of data collected by Freja and FAST, and summarized in Sections 3.3 and 3.4. The
main feature in the observations is the widespread presence of dispersive Alfvén
waves with intermittent occurrence of electromagnetic singularities, possibly re-
lated to auroral arcs.

The experimental facts have motivated theorists to formulate models to explain
specific properties of Alfvénic structures. There are many aspects of dispersive
Alfvén waves that we understand well and these we have discussed in Section 2.
We now summarize our understanding.

It has been noted that dispersive Alfvén waves have a finite electric field parallel
to the external magnetic field, and that this electric field is caused by the charge
separation arising from the finite ion gyroradius and ion polarization effects. The
parallel electric force can be balanced by the parallel electron pressure gradient
or the parallel electron inertial acceleration, giving rise to dispersive effects across
the magnetic field lines. On the other hand, consideration of the Alfvén wave fre-
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quencies close to the ion gyrofrequency provides the possibility of Alfvén wave
dispersion (with parallel scale size of the order of collisionless ion skin depth
c/ωpi) along the external magnetic field lines.

The two types of dispersive Alfvén waves which can have either a parallel phase
velocity either larger or smaller than the electron thermal velocity, are the inertial
and kinetic Alfvén waves, These appear in a magnetoplasma with β ≪ me/mi and
β ≫ me/mi , respectively. Both of these waves have the requisite properties to play
a very important role with regard to the particle acceleration, particle heating, and
they can also initiate a number of nonlinear effects. Dispersive Alfvén waves can be
generated by electron beams, cross field pressure gradients, shear flow instability,
magnetic reconnection, moving potential and current sources as well as yet to be
discovered processes.

The fundamental properties of the dispersive Alfvén wave: the cross field
spreading of energy in a conical pattern; the parallel and perpendicular phase ve-
locities; the backward nature of the inertial wave and the forward nature of the
kinetic wave have all been firmly established by laboratory studies. Moreover, deep
magnetic field-aligned density striations, with cross field scale size on the order
of the electron skin depth, have been observed in low beta laboratory plasmas to
spontaneously generate Alfvén wave due to the cross field pressure gradient in the
wall of the cavity. Thus it is not unexpected that short scale density cavities and
Alfvén waves are frequently observed together by spacecraft.

Large amplitude dispersive Alfvén waves can either interact among themselves
or with the background plasma, giving rise to such interesting effects as the bare
and envelope solitons, density cavities, as well as vortices of various scales. The-
oretical studies, which were based on the ion drift approximation, have predicted
the existence of planar dispersive Alfvén solitons. The inclusion of higher order
ion polarization drift in the nonlinear ion advection term, however, puts a question
mark to the planar dispersive Alfvén solitons. The final answer to the existence
of planar Alfvén solitons will depend on the inclusion of the full transverse wave
magnetic fields and the full ion perpendicular velocities in any realistic theoretical
and simulation studies. Most importantly, Alfvénic structures are not observed to
be entirely planar and most certainly have important three-dimensional character.

Clearly the observed inhomogeniety of the density, electric and magnetic field
provides multiple sources of free energy for the generation of structure through
linear instability. Self-organization in the form of folds, curls, and a vortex street in
auroral arcs can be described in terms of the three-dimensional nonlinear inertial
Alfvén wave models. The dynamical evolution leading to the various auroral forms
can be the result of nonlinear shear flow instability or magnetic tearing. Station-
ary vortex solutions of the nonlinear equations may represent an idealized steady
state. Mode coupling equations for nonlinear dispersive Alfvén waves have been
developed, which have been use for studying energy cascading and the properties
of Alfvén vortices. An energy cascading scenario may explain the generation of
short wavelength (≪ λe) electrostatic disturbances due to the parametric processes
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involving dispersive inertial Alfvén waves. Auroral plasma density cavity forma-
tion may be the result of the combined effects of the ponderomotive force and the
electron Joule heating in the IAW fields. Finally, consideration of sources and sinks
provides the possibility of chaos in dispersive Alfvén wave turbulence.

A critical evaluation of the literature reveals that while the linear Alfvén wave
physics seems to be mostly understood for homogeneous plasma, there is still a
good deal to understand about the nonuniform physics of dispersive Alfvén waves
and our comprehension of the nonlinear physics is still in its infancy. We believe
that further data analysis should be carried out to obtain the complete information
on the plasma parameters and on the fields of Alfvénic structures such as the scale
sizes along and across the geomagnetic field lines, speed, electric and magnetic
field strengths. Theoretical and simulation studies should focus on solving truly
three-dimensional problems without resorting to many approximations which may
not be relevant to observations. Finally, laboratory experiments should be designed
to produce some of the nonlinear effects (viz., parametric instabilities, density cav-
itation, density bumps, solitons, vortices, shocks, etc.) involving dispersive Alfvén
waves.
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