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ABSTRACT
Through analytic techniques veriÐed by numerical calculations, we establish general relations between

the matter and cosmic microwave background (CMB) power spectra and their dependence on param-
eters on small scales. Fluctuations in the CMB, baryons, cold dark matter (CDM), and neutrinos receive
a boost at horizon crossing. Baryon drag on the photons causes alternating acoustic peak heights in the
CMB and is uncovered in its bare form under the photon di†usion scale. Decoupling of the photons at
last scattering and of the baryons at the end of the Compton drag epoch freezes the di†usion-damped
acoustic oscillations into the CMB and matter power spectra at di†erent scales. We determine the
dependence of the respective acoustic amplitudes and damping lengths on fundamental cosmological
parameters. The baryonic oscillations, enhanced by the velocity overshoot e†ect, compete with CDM
Ñuctuations in the present matter power spectrum. We present new exact analytic solutions for the cold
dark matter Ñuctuations in the presence of a growth-inhibiting radiation and baryon background. Com-
bined with the acoustic contributions and baryonic infall into CDM potential wells, this provides a
highly accurate analytic form of the small-scale transfer function in the general case.
Subject headings : cosmic microwave background È cosmology : theory È dark matter È

elementary particles È large-scale structure of universe

1. INTRODUCTION

Small-scale Ñuctuations in the cosmic microwave back-
ground (CMB) and the matter density provide a unique
opportunity to probe structure formation in the universe.
As CMB anisotropy experiments reach toward smaller and
smaller angles, the region of overlap with large-scale struc-
ture measurements will increase dramatically. Since the
CMB and matter power spectra encode information at very
di†erent epochs in the formation of structure, comparison
of the two will provide a powerful consistency test for com-
peting scenarios. Unfortunately, the simple relation
between the two power spectrum at large scales &(Sachs
Wolfe does not hold at small scales. To establish the1967)
general relation, we need to employ a more complete
analysis of how gravitational instability a†ects the matter
and CMB together.

In previous papers (Hu & Sugiyama here-1995a, 1995b,
after we developed a conceptually simple analy-HSa, HSb),
tic description of CMB anisotropy formation. The central
advance over previous analytic works (e.g., Doroshkevich,
Zeldovich, & Sunyaev involved the inÑuence of gravi-1978)
tational potential wells, established by the decoupled
matter, on the acoustic oscillations in the photon-baryon
Ñuid. In this paper, we reÐne the analysis for scales much
smaller than the horizon at last scattering as is relevant for
large-scale structure calculations. Furthermore, we extend it
to encompass the photon-baryon back-reaction on the
evolution of the cold dark matter and gravitational poten-
tial as well as baryonic decoupling and evolution. This
makes it possible to extract the relation between CMB and
matter Ñuctuations established in the early universe.

Analytic solutions in terms of elementary functions can be
constructed in the small-scale limit and serve to illuminate
the physical processes involved in a model-independent
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manner. Despite the simplicity of the Ðnal results, the study
of small-scale Ñuctuations requires a rather technical expo-
sition of perturbation theory. For this reason, we divide this
paper into two components. The main text discusses results
drawn from a series of appendices and illustrates the corre-
sponding principles in the familiar context of adiabatic cold
dark matter (CDM), adiabatic baryonic dark matter
(BDM), and isocurvature BDM scenarios for structure
formation.

We begin in with a discussion of the central approx-° 2
imations employed, i.e., the tight coupling limit for the
photons and baryons and the external potential representa-
tion for metric Ñuctuations. Details of these methods and
the justiÐcation of their use can be found in AsAppendix A.
established in all Ñuctuations are given a boostAppendix B,
at horizon crossing due to the driving e†ects of gravita-
tional infall and dilation. Since the gravitational potential
subsequently decays, the driving e†ects disappear well after
horizon crossing, leaving Ñuctuations to evolve in their
natural source-free modes. For the photon-baryon system,
these are acoustic oscillations whose zero point is displaced
by baryon drag. As described in and these oscil-°° 3 4,
lations are frozen into the photon and baryon spectra at last
scattering and at the end of the Compton drag epoch,
respectively. Since these epochs are not equal, photon di†u-
sion sets a di†erent damping scale in the CMB(Silk 1968)
and the baryons. This process is described by the acoustic
visibility functions introduced in Appendix C.

The baryonic oscillations may be hidden in CDM models
by larger cold dark matter Ñuctuations. These are discussed
in The baryon and radiation background also sup-° 5.
presses CDM growth before the end of the Compton drag
epoch. treats this source-free evolution of theAppendix D
CDM component analytically. After the end of the
Compton drag epoch, the CDM Ñuctuations provide
potential wells into which the baryons fall. From the com-
bined analysis of CMB, baryon, and CDM Ñuctuations, we
obtain accurate analytic expressions for matter and photon
transfer functions in the small-scale limit. This improves
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greatly upon the Ðtting functions for the matter power spec-
trum in the literature et al. 1986, hereafter(Bardeen BBKS;

& Dodds in the case of aPeacock 1994 ; Sugiyama 1995)
signiÐcant baryon fraction. Our form is constructed out of
Ðts from for parameters that depend on theAppendix E
detailed physics of recombination, i.e., the last scattering
epoch, Compton drag epoch, photon damping length, and
Silk damping length.

2. ACOUSTIC APPROXIMATION

Previously we developed an analytic description of
acoustic oscillations in the photons and baryons (HSa;

As discussed in more detail in thisHSb). Appendix A,
approach is based on two simplifying assumptions : that a
perturbative expansion in the Compton scattering time
between photons and electrons can be extended up to
recombination and that the gravitational potential may be
considered as an external Ðeld. Combined, these two simpli-
Ðcations imply that photon pressure resists compression by
infall into potential wells and sets up acoustic oscillations in
the photon-baryon Ñuid which then damp by photon di†u-
sion. However, both these approximations would seem to
be problematic for small-scale Ñuctuations. Here the optical
depth through a wavelength of the Ñuctuation at last scat-
tering is small, implying weak rather than tight coupling
(see, e.g., & White This issue isKaiser 1984 ; Hu 1996).
addressed more fully in (below eq. whereAppendix C [C3]),
it is shown that only acoustic contributions from the tight
coupling regime are visible through the last scattering
surface, i.e., those from a time slightly earlier than last scat-
tering when the optical depth to Compton scattering was
still high.

On the other hand, the second issue poses a computa-
tional problem. Inside the horizon in the radiation-
dominated epoch, the acoustic oscillations in the
photon-baryon density feed back into the evolution of the
gravitational potential through the generalized Poisson
equation. & White take the approach of includ-Hu (1996)
ing the self-gravity e†ects consistently by separating them
from the truly external potentials. For many cases, a simpler
approach suffices. By considering the self-gravity of the Ñuid
as contributing to an external potential, we retain the con-
ceptual simplicity of and Although a consistentHSa HSb.
evolution of the potential would seem to require a full
numerical solution of the coupled equations, it is in practice
not generally necessary. The key point is that the feedback
e†ect on the potentials is not arbitrary. Since photon pres-
sure prevents the growth of photon-baryon Ñuctuations and
collisionless damping eliminates neutrino contributions, the
potential decreases to zero after horizon crossing in the
radiation-dominated epoch. We shall examine how this
a†ects the acoustic oscillations more carefully in ° 3.

Due to Compton drag from the coupling, the baryons
density Ñuctuations follow the photons as d5

b
\ 3

4
d5 c \ 3#0

0or and exhibit acoustic oscillations as well.d
b
\ 3#

0
] S

Here overdots represent derivatives with respect to confor-
mal time, is the isotropic temperature perturbation in#

0Newtonian gauge, and S is the constant photon-baryon
entropy. On the other hand, the cold dark matter, if present,
is decoupled from photons and su†ers only the gravita-
tional e†ects of the oscillating radiation. Again, since the
potential created by the radiation merely oscillates and
damps away after horizon crossing, the CDM density per-
turbations experience a kick at horizon crossing only tod

c

settle into the pure logarithmically growing mode in the
radiation-dominated universe.

3. PHOTON FLUCTUATIONS

3.1. Driving E†ects

Before recombination, the photon-baryon system
behaves as a damped, forced oscillator. As discussed in ° 2,
the self-gravity of the acoustic oscillations contributes to the
gravitational force on the oscillator at horizon crossing if
the photons or baryons contribute signiÐcantly to the
density of the universe at that epoch. Even though the
detailed behavior at horizon crossing in the radiation-
dominated epoch is complicated by feedback e†ects, the end
result is extremely simple : Ñuctuations experience a boost
proportional to the potential at horizon crossing. As the
Ðrst compression of the Ñuid is halted by photon pressure,
the self-gravitational potential decays. This leaves the oscil-
lator in a highly compressed state and enhances the ampli-
tude of the subsequent oscillation. For adiabatic initial
conditions, the amplitude of the potential at horizon cross-
ing is essentially the initial curvature Ñuctuation. For iso-
curvature initial conditions, it is simply related to the initial
entropy perturbations.

We quantify these statements in and calcu-Appendix B
late the exact boost factor (see eqs. It represents[B5]È[B6]).
an enhancement in temperature Ñuctuations of a factor of 3
over its initial value in the adiabatic case or more impor-
tantly a factor of over the gravitational red-5/[1 ] (4/15) fl]shift induced large-scale Ñuctuations in a scale-invariant
model & Wolfe Here the fraction of the radi-(Sachs 1967).
ation energy density contributed by the neutrinos is fl \

for the standard thermal history withol/(ol ] oc) ^ 0.405
three massless species. Its presence accounts for neutrino
anisotropic stress, which provides the relation between the
gravitational potential ( and the curvature Ñuctuation '
(see Note that neutrino temperature Ñuctuationseq. [A5]).
are boosted by a similar factor et al.(Hu 1995).

Three features are worth emphasizing :

1. Potential decay enhances temperature perturbations.
2. Enhancement only occurs for scales that cross the

horizon before equality.
3. It occurs at horizon crossing causing phase-coherent

oscillations in the wavenumber k.

Together the Ðrst two points imply that as a function of k,
the acoustic amplitude will increase through thek

eq
,

horizon crossing wavenumber at equality, forming a poten-
tial envelope. By delaying equality, one moves the transi-
tional regime to larger scales and enhances the lower k
oscillations. This explains the increasing prominence of the
Ðrst few acoustic peaks as the matter content is)

0
h2

lowered or the number of relativistic species raised in adia-
batic models. It is interesting to note that the e†ect of equal-
ity on the CMB and matter power spectrum are
anticorrelated, providing a powerful consistency test for its
redshift As we shall see in though, a complicationz

eq
. ° 3.2,

arises because high-k oscillations are damped by photon
di†usion.

The third point follows because the gravitational driving
term is e†ective at sound horizon crossing thusg D 1/kc

s
,

mimicking a driving frequency of Here g \ / dt/a isu8 D kc
s
.

the conformal time, and we take c \ 1 throughout. Since
the natural frequency of the oscillation is related to the
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sound speed as the two scale in the samec
s

u \ kc
s
,

manner. Thus, the horizon crossing e†ect is timed to
produce a coherent oscillation in k. SpeciÐcally, adiabatic
and isocurvature initial conditions yield cosine and sine
temperature oscillations, respectively.

3.2. Damping E†ects

The photons and baryons are not in fact perfectly
coupled, leading to di†usion damping. The coupling
strength is quantiÐed by the Compton optical depth q. Cor-
respondingly, the mean free path of the photons in the
baryons is given by Explicitly, whereq5 ~1. q5 \ x

e
n
e
p
T

a, x
eis the electron ionization fraction, is the electron numbern

edensity, and is the Thomson cross section. As thep
Tphotons random walk across a wavelength of the pertur-

bation, temperature Ñuctuations damp collisionally. More
speciÐcally, di†usion generates viscosity or anisotropic
stress in the photon-baryon Ñuid and causes heat conduc-
tion across the wavelength p. 568). Both(Weinberg 1972,
these processes damp Ñuctuations. In 1 order of magnitude,
the damping length is the random walk distance It(g/q5 )1@2.
exceeds the wavelength of a Ñuctuation when the optical
depth through a single wavelength If the di†usionq5 /k \ kg.
scale is well under the horizon, kg ? 1, so that is stillq5 /k
high at crossover. The photons and baryons are thus still
strongly coupled, and the damping may be calculated under
the tight coupling approximation.

A quantitative treatment of di†usion damping is given in
Subtle e†ects such as the angular and polariza-Appendix A.

tion dependence of Compton scattering enhance slightly the

generation of viscosity and thus damping in the radiation-
dominated universe The end result of the(Kaiser 1983).
calculation is a wavenumber by which acoustic Ñuc-k

D
(g)

tuations are damped as exp (see[[(k/k
D
)2] eq. [A14]).

Combined with the potential envelope from the horizon
crossing boost of this completes the acoustic envelope° 3.1,
shown in Remaining after di†usion damping is theFigure 1.
acoustic o†set of where#

0
] ( \ [R(, R \ 3o

b
/4oc \

Here K is the scaled31.5)
b
h2#

2.7
~4(z/103)~1. #

2.7
\ T

0
/2.7

present temperature of the CMB, is the fraction of criti-)
bcal density contributed by the baryons, and the Hubble

constant is h km s~1 Mpc~1. We add the Newto-H
0

\ 100
nian potential ( to the temperature perturbation to#

0remove the e†ect of gravitational redshift on the photons
(see Appendix A). The R( term represents the baryon drag
e†ect on the photons and is analogous to the Silk mecha-
nism with the roles of the photons and baryons(Silk 1968),
interchanged. Infalling baryons drag the photons into
potential wells, leading to a displacement of the zero point
of the acoustic oscillation Thus, it is responsible for(HSa).
the alternating peak heights and amplitude enhancement of
intermediate scale acoustic oscillations (see Appendix A,

The zero-point shift remains even after di†usionFigure 8a).
damping has eliminated the oscillations themselves.

3.3. Decoupling

As the total optical depth to the present drops below
unity, last scattering of the CMB photons freezesq(z

*
) \ 1,

the acoustic oscillations into the spectrum. The optical
depth drops rapidly as neutral hydrogen forms so that last

FIG. 1.ÈAcoustic oscillations receive a boost at horizon crossing due to driving from gravitational potential decay. The perturbations then settle into aa
Hpure acoustic mode and are subsequently damped by photon di†usion. Together the potential driving and di†usion damping e†ects form the acoustic

envelope. After di†usion damping has destroyed the acoustic oscillations, the underlying baryon drag e†ect becomes apparent. Since ( is constant here for
o R( o increases with time. This contribution itself is damped at last scattering by cancellation. Well after last scattering isotropica ? a

eq
, a

*
a ? a

*
,

perturbations damp collisionlessly, creating angular Ñuctuations in the CMB. The model here is adiabatic CDM, h \ 0.5,)
0

\ 1, )
b
\ 0.05.



FIG. 2.ÈVisibility functions for the photons and baryons. In the undamped k ] 0 limit, the photon acoustic visibility and the Compton visibility are
equivalent, and the baryon acoustic visibility equals the drag visibility, If peaks at later times than i.e., ForVŒ c \ Vc, VŒ

b
\ V

b
. )

b
h2 [ 0.03, V

b
Vc, g

d
[ g

*
.

small scales, the acoustic visibilities, which weight the acoustic contributions from the tight coupling regime, are suppressed increasingly at later times by
damping, and the width and amplitude of the acoustic visibilities decrease as k increases.



FIG. 3.ÈPhoton transfer function. Plotted is the present rms photon temperature Ñuctuation relative to the initial curvature Ñuctuation '(0, k) for
adiabatic Ñuctuations and the initial entropy Ñuctuation S(0, k) for isocurvature Ñuctuations assuming standard recombination. The intrinsic amplitude is
approximated by the analysis in for scales well inside the horizon at equality The damping is well approximated by the tight couplingAppendix B k ? k

eq
.

expansion for high and is overestimated slightly for low values. Below the damping tail, the baryon drag o†set clearly appears in (b) and (c), where the)
b
h2

gravitational potential is not dominated by acoustic density Ñuctuations. An analytic treatment of this e†ect is given in Appendices andA C.
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FIG. 3.ÈContinued

scattering and recombination coincide approximately in the
absence of subsequent reionization. This epoch is nearly
independent of cosmological parameters such as the matter
and baryon content and &)

0
h2 )

b
h2 (Peebles 1968 ; Jones

Wyse However, variations at the 10% level do occur1985).
across the full range of parameters. In Appendix E (eq.

we present an extremely accurate analytic Ðt to the[E1]),
last scattering epoch.

The phase of the acoustic oscillation is frozen in at the
value where (HSa)kr

s
(g

*
),

r
s
\ 2

J3
3

()
0

H
0
2)~1@2

Sa
eq

R
eq

ln
J1 ] R ] JR ] R

eq
1 ] JR

eq

,

(1)

is the sound horizon with andR
eq

\ R(a
eq

) a
eq

\ 2.35
Its variation with k pro-] 10~5()

0
h2)~1(1 [ fl)~1#

2.7
4 .

duces an oscillatory pattern in the CMB temperature with
extrema at scales (HSb)

kcj r
s
(g

*
) \

Gjn
( j [ 1

2
)n

adiabatic ,
isocurvature .

(2)

The physical scale of the peaks is projected onto ankcjangular scale on the sky and provides a sensitive angular
diameter distance test for curvature in the universe.

To determine the amplitude of the Ñuctuations, this
instantaneous decoupling approximation must be modiÐed
to account for di†usion damping through recombination.
The di†erential visibility function expresses theVc \ q5 e~q
probability that a photon last scattered within dg of g. This

function describes how Ñuctuations at recombination are
frozen into the CMB. Equally useful for our purposes is the
acoustic visibility function exp ByVŒ c \ Vc [[(k/k

D
)2].

including the intrinsic damping behavior of the Ñuctuations,
it describes how acoustic oscillations are frozen into the
CMB (see Due to the growth of the di†usion lengthFig. 2).
through recombination, this function is weighted to slightly
earlier times than At small scales, only the small frac-Vc.tion of photons which last scattered before and hence inz

*
,

the tight coupling regime, retain acoustic Ñuctuations. This
leads to a sharp decrease in acoustic Ñuctuations with k.
More speciÐcally, the damping envelope is given by (HSa)

Dc(k) \
P
0

g0
dgVŒ c(g, k) \

P
0

g0
dg Vc(g)e~*k@kD(g)+2 , (3)

i.e., a near exponential damping in k. Through the Ðrst
decade of the drop, it is well approximated by the form

Dc(k) ^ e~*k@kDc+mc . (4)

The damping angle is given by the same projection conver-
sion as the acoustic peaks Accurate Ðttingl

D
\ k

Dc rh(g*
).

functions for and are given in equationsk
Dc mc Appendix E,

Note that is the wavenumber at which di†u-(E4)È(E7). k
Dcsion suppresses the Ñuctuation by e~1. It is interesting to

note that is related intimately to the width of thek
Dc~1

Compton visibility function. This is because the thickness of
the last scattering surface is by deÐnition the di†usion
length at last scattering. Combining the damping envelope
with the intrinsic amplitude of acoustic oscillations dis-
cussed in and we obtain the transfer func-° 2 Appendix B,
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tion at small scales. This function represents the growth to
the present from the initial curvature or entropy pertur-
bation. In we plot examples for the adiabaticFigure 3,
BDM, isocurvature BDM, and adiabatic CDM models
with standard recombination. Note that in more typical
isocurvature BDM models (Peebles reioniza-1987a, 1987b),
tion may occur soon after recombination. In this limit, the
damping length continues to grow until it reaches the
horizon at the new last scattering surface and destroys all
oscillations in the photons.

The corresponding anisotropy can be obtained by choos-
ing an initial curvature and entropy spectrum '(0, k) and
S(0, k) and employing the free streaming solution (see HSa,
eq. [12]) for the monopole and dipole contributions to the
rms given in Note that for lowAppendix B, equation (B7).

models, the damping length is somewhat overesti-)
b
h2

mated by the tight coupling approximation. This is not
surprising because as the photon mean free path)

b
h2 ] 0,

approaches the horizon. In this case, the di†usion length
passes the wavelength of the Ñuctuation when the optical
depth through a wavelength is near unity and the tight
coupling expansion of breaks down. TheAppendix A
damping length is overestimated because the photons essen-
tially free stream across the wavelength and do not su†er
collisional damping. A phenomenological correction for
this e†ect is given in Appendix E.

In summary, the general features of the CMB Ñuctuation
spectrum are as follows :

1. Acoustic peaks at harmonics of the angle the sound
horizon subtends at last scattering, sensitive to (a) the cur-
vature and (b) the adiabatic or isocurvature nature of the
initial Ñuctuations ;

2. An acoustic envelope for the oscillation amplitude sen-
sitive to (a) The matter-radiation ratio, e.g., the adiabatic
acoustic envelope varies from (1/3)( to (5/3)( as one passes
through the equality scale, (b) The baryon-photon ratio due
to the a modulation of R( from baryon drag, and (c) The
thermal history from the exponential di†usion-damping
tail.

The exact nature of the features will depend on details of the
model.

4. BARYON FLUCTUATIONS

In the tight coupling limit, the baryons participate in the
acoustic oscillations of the photons. Near recombination,
they decouple from the photons, though not exactly at last
scattering. Scattering represents an exchange of momentum
between the two Ñuids and seeks to equalize their bulk
velocities and However, the two momentum densitiesV

b
Vc. and are not(oc ] pc)Vc \ (4/3)oc Vc (o

b
] p

b
)V

b
^ o

b
V
bequal. Thus, momentum conservation requires that the rate

of change of the baryon velocity due to Compton drag is
scaled by a factor of compared with theR~1 \ (4/3)oc/obphoton case ; i.e., The explicit expression for thePq5

d
\ q5 /R.

baryon momentum conservation or Euler equation is given
in and is used in to make theAppendix A Appendix C
qualitative statements here rigorous. The form of the coup-
ling suggests that we can deÐne a drag depth q

d
(g

d
) \

Below drag depth the baryons decouple/gdg0 q5
d
dg. q

d
(g

d
) \ 1,

dynamically from the photons. For the standard recombi-
nation scenario, this occurs near recombination but at a
di†erent value than last scattering. Analytic Ðtting formulae

for are given in Since recom-z
d

Appendix E, equation (E2).
bination occurs around z \ 103 for all models, the end of
the drag epoch precedes last scattering if )

b
h2 Z 0.03.

The acoustic Ñuctuations in the baryons are frozen in at
the drag epoch rather than at last scattering. Furthermore,
unlike for the CMB, it is not the acoustic density Ñuctuation
that forms peaks in the observable spectrum today but
rather the acoustic velocity. This is because the baryon Ñuc-
tuations continue to evolve. In we give theAppendix C,
exact matching conditions at onto the growing andz

ddecaying modes of pressureless perturbation theory. This
yields an accurate description for the subsequent evolution
of the baryonic Ñuctuations in the presence of a background
radiation energy density and cold dark matter. Qualit-
atively, the acoustic velocity at the drag epoch dominates
over the acoustic density for the growing mode of Ñuctua-
tions due to the velocity overshoot e†ect & Zeldo-(Sunyaev
vich & Vishniac The former moves1970 ; Press 1980).
matter and produces clumping in the baryon density. Since
expansion damps peculiar velocities, this lasts for approx-
imately an expansion time Thus, only scales smaller thang

d
.

the horizon experience a boost due to the velocitykg
d
? 1

at release. We show an example in where theFigure 4,
k-mode is chosen to be near a zero point of the acoustic
density oscillation at The rapid regeneration of densityg

d
.

Ñuctuations via velocity overshoot is due to the fact that
zeros of the density oscillation are maxima of the velocity
oscillation. Therefore, the peaks in the matter power spec-
trum due to baryonic acoustic oscillations occur at

k
bj

r
s
(g

d
) \

G( j [ 1
2
)n

jn
adiabatic ,
isocurvature ,

(5)

and they are roughly n/2 out of phase with the correspond-
ing CMB Ñuctuations.

To obtain the amplitude of the acoustic Ñuctuations, we
must consider damping e†ects also. Photon di†usion in the
tight coupling regime damps baryon Ñuctuations as well
due to Compton drag, i.e., via the Silk mechanism (Silk

Analogous to the photon case, we can construct the1968).
drag visibility function out of the drag optical depthV

b
q
d
.

The acoustic visibility function then becomes expVŒ
b
\ V

b(see Similarly, the net damping as a[[(k/k
D
)2] Fig. 2).

function of scale is described by

D
b
(k) \

P
0

g0
dgVŒ

b
(g, k)

\
P
0

g0
dgV

b
(g)e~*k@kD(g)+2 ^ e~(k@kS)mS , (6)

where the approximation is valid through the Ðrst decade of
damping. Analytic Ðtting formulae for and are given ink

S
m

Sequations As is the case with theAppendix E, (E9)È(E10).
photons, the latter accounts for the width of the visibility
function and is almost independent of cosmological param-
eters. Note that the Silk damping length is not the same as
the photon damping length despite the underlying simi-
larity in cause. The small di†erence between last scattering
and the drag epoch can alter it signiÐcantly due to the rapid
change in around recombination (see Fig. 2). Moreover,k

Dthe two scale di†erently with the baryon and matter
content.

Together with the horizon crossing boost from Appendix
this deÐnes the contribution to the matter transfer func-B,
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FIG. 4.ÈBaryon Ñuctuation time evolution. The baryon density Ñuctuation follows the photons before the drag epoch yielding a simple oscillatoryd
b

a
dform for The Silk damping length is given by the di†usion length at the drag epoch. The portion of the baryon Ñuctuations that enter thea

H
> a > a

d
.

growing mode is dominated by the velocity perturbation at the drag epoch due to the velocity overshoot e†ect (see also Since a Ñat " model isa
d

Fig. 11).
chosen here, the growth rate is slowed by the rapid expansion for a Z a" \ ()

0
/)")1@3.

tion of the acoustic oscillations (see Explicit expres-Fig. 5).
sions for the three scenarios shown are given in Appendix

equations and In the isocurvature BDMD, (D22) (D23).
models, the transfer function at small scales is dominated by
the initial entropy Ñuctuation S(0, k). Furthermore, unlike
the photon oscillations, baryon oscillations may survive
early reionization if it occurs more than an expansion time
after the drag epoch. In this case, the baryonic oscillations
are subsequently surrounded by a homogeneous and iso-
tropic distribution of photons. They then represent entropy
perturbations and are not damped by further photon di†u-
sion. Even in the rather unphysical event of near-
instantaneous reionization, baryonic oscillations may
survive if reionization is accompanied by the formation of a
signiÐcant fraction of compact baryonic objects (see, e.g.,

& OstrikerGnedin 1990).
If the model contains cold dark matter, baryons su†er an

additional e†ect. After the drag epoch, they fall into poten-
tial wells established by the CDM. If the CDM to baryon
ratio is high, this e†ect will dominate over the velocity over-
shoot of the acoustic oscillations. To quantify this e†ect, we
need to consider the evolution of CDM Ñuctuations.

5. COLD DARK MATTER FLUCTUATIONS

Let us begin with the evolution of CDM Ñuctuations
before the drag epoch. As shown in and° 2 Appendix B2,
CDM Ñuctuations are given a kick at horizon crossing that
sends them into logarithmically growing mode. As the uni-
verse becomes matter dominated, this stimulates power-law
growing and decaying modes If CDM dominatesd

c
P ap.

the nonrelativistic matter, p \ M1, [(3/2)N. However, if the

baryon fraction is signiÐcant, the power law is modiÐed. To
Ðrst order in )

b
/)

0
,

p \
G

1 [
3
5

)
b

)
0

, [
3
2

A
1 [

2
5

)
b

)
0

BH
. (7)

CDM growth is thus inhibited by the presence of baryons.
We give the exact solution to the evolution equation from
horizon crossing to in Because of the com-z

d
Appendix D.

plexity of these expressions, it is also useful and instructive
to obtain approximate scaling relations. If anda

d
? a

eqthe main e†ect is an amplitude reduction of the)
b
/)

0
> 1,

CDM density perturbation k) by approximatelyd
c
(g

d
,

(see also As(a
d
/a

eq
)~0.6)b@)0 ^ (24)

0
h2)~0.6)b@)0 Fig. 10).

is lowered, the drag epoch recedes into the radiation)
0

h2
domination epoch and the regime in which the growth rate
is a†ected, vanishes.a

eq
\ a \ a

d
,

At the drag epoch, the baryons are released from the
photons and behave dynamically as if they were CDM.
Since baryonic infall into CDM wells subsequently contrib-
utes to the self-gravity of the matter, the growth rates again
become p \ M1, [(3/2)N regardless of the baryon fraction.
Thus, we follow the total nonrelativistic matter pertur-
bation after the drag epoch. The relative contribution ofd

mthe CDM Ñuctuations at the drag epoch to the total non-
relativistic matter Ñuctuations scales as Ad

m
1 [ )

b
/)

0
.

good Ðt to the net suppression is given by the form

d
m

^ a
A

1 [
)

b
)

0

B
lim
)b?0

d
m

, (8)

where for low and higha ^ (46)
0

h2)~0.67)b@)0 )
b
/)

0
[ 0.5

The change in the coefficients from the naive)
0

h2 ? 0.03.



FIG. 5.ÈMatter transfer function. The analytic estimates of the intrinsic acoustic amplitude are good approximations for The Silk damping scalek ? k
eq

.
is approximated adequately although its value is underestimated by D10%. For isocurvature BDM and adiabatic CDM, the acoustic contributions do not
dominate the small-scale Ñuctuations. We have added in the contributions from the initial entropy Ñuctuations and the cold dark matter potentials according
to the analytic treatment of Appendix E.
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FIG. 5.ÈContinued

scaling relation is due to detailed matching of growing and
decaying modes (see eq. A highlyAppendix D, [D18]).
accurate Ðtting formula for a in the general case is given in

For the limit, an exactAppendix E, equation (E12). )
b
] 0

expression in terms of elementary functions is given in
Appendix D that improves the 10% accuracy of the stan-
dard Ðtting formula to better than the 1% level atBBKS
small scales.

In we show the resulting evolution of a scaleFigure 6,
under the Silk damping length for which the baryon Ñuc-
tuations at the drag epoch are negligible. To extend the
scaling of to larger scales for we haveequation (8) Figure 5,
employed a generalization of the Ðtting functionBBKS
given in Notice that both (1) the change in theAppendix D.
growth rate between equality and the drag epoch and (2) the
fractional contribution of to at the drag epoch play ad

c
d
msigniÐcant role in suppressing the Ðnal amplitude of matter

Ñuctuations. Combined with the acoustic contributions
from this completes the matter transfer function in° 4,
CDM models.

We can now address the question of when acoustic oscil-
lations are prominent in the matter transfer function. The
main e†ect is simply due to the density ratio o

b
/o

c
\ )

b
/)

c
.

However, the acoustic and cold dark matter contributions
have a di†erent dependence on scale. Relative to the cold
dark matter, acoustic contributions scale as due to(kg

d
)D

bthe velocity overshoot and di†usion damping factors. Since
incorporates an exponential cuto† at the Silk scaleD

b
k
Sand velocity overshoot weights the spectrum toward small

scales, acoustic contributions will be most visible just above
the Silk scale. The relative contribution to the matter trans-

fer function will therefore scale as Acoustic contribu-k
S
g
d
.

tions increase in prominence if the Silk scale is small
compared with the horizon at the drag epoch, i.e., in the
high case. By including the suppression factor from)

b
h2

and numerical factors from Appendices andequation (8) B
the maximum ratio of the acoustic amplitude to theD,

CDM contribution in the transfer function scales crudely as
(see Appendix D, eq. [D31])

0.4k
S

)
b

)
c

()
0

h2)~1(1 ] 24)
0

h2)~1@2(1 ] 32)
b
h2)~3@4a~1 ,

(9)

where here in units of Mpc~1, and a are given explicitlyk
S
,

in This relation incorporates the following :Appendix E.

1. Baryon acoustic oscillations ;
2. Baryon decoupling ;
3. Silk damping ;
4. Velocity overshoot ;
5. Baryon gravitational instability ;
6. Baryon infall into CDM wells whose depth depends

on (a) Acoustic feedback into the potential and (b) CDM
self-gravity versus the expansion rate.

The relation combines these in a consistent manner.

6. DISCUSSION

We have established a framework for treating small-scale
Ñuctuations in the realistic case of a coupled multiÑuid
system. In the limit in which Ñuctuations crossed the
horizon in the radiation-dominated epoch, closed-form



FIG. 6.ÈCDM and matter Ñuctuation time evolution. The cold dark matter Ñuctuations are constant outside the horizon scale and experience a boost
into a logarithmically growing mode at horizon crossing in the radiation-dominated epoch. Between equality and the drag epoch, the presence of baryons
suppresses the growth rate of CDM Ñuctuations (see By lowering this region of suppression can be reduced for Ðxed After the drageq. [7]). )

0
h2, )

b
/)

0
.

epoch, we plot rather than because the two components thereafter contribute similarly to the total growth. Baryons alsod
m

\ (d
b
o
b
] d

c
o
c
)/(o

b
] o

c
) d

clower the contribution of to at the drag epoch.d
c

d
m
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analytic solutions are available. The fundamental elements
uncovered by this approach are the boost at horizon cross-
ing due to infall and dilation e†ects from potential decay,
the source-free solution of the component evolution equa-
tions, the baryon drag on the photons, and the Compton
drag on the baryons. Together they establish general consis-
tency relations between the matter and the radiation power
spectra as well as expose their sensitivity to changes in the
background model.

Unlike the case of the matter Ñuctuations, decay in the
potential results in an ampliÐcation of acoustic oscillations
in the CMB. These opposing manifestations of the same
physical e†ect provide both a measure and a powerful con-
sistency check on the redshift of equality. Baryon drag dis-
places the zero point of the acoustic oscillations, which
remains as a temperature shift even after the oscillations
have damped by photon di†usion. Last scattering marks
the end of the baryon drag epoch at which the acoustic
oscillations with their characteristic di†usion damping scale
are frozen into the photon spectrum. Correspondingly, at
the end of the Compton drag epoch, the Silk-damped bary-

onic acoustic oscillations are frozen into the matter spec-
trum. We have provided convenient analytic Ðtting
formulae for these quantities as a function of the matter and
baryon content. These may be useful for the extraction of
cosmological information from the CMB and matter power
spectrum once observations become available.

The photon-baryon system also a†ects the growth of
CDM Ñuctuations. First it stimulates growth through the
horizon crossing boost. Subsequently, it a†ects the balance
of the growth inhibiting expansion to the self-gravity of the
CDM. We have obtained an analytic solution for adiabatic
initial conditions and the exact general solution for the two
e†ects, respectively. To simplify these expressions, we have
also provided an accurate Ðtting form for the transfer func-
tion in terms of elementary functions. Growth suppression
due to the presence of baryons has implications for the Ðrst
generation of structure. The expressions derived here
remain valid for linear perturbations to an arbitrarily small
scale at which direct numerical calculations are impractical.

Baryonic acoustic oscillations are of course not promi-
nent in presently popular models in which due to)

b
/)

0
> 1

the extra growth of the CDM Ñuctuations between horizon
crossing and the drag epoch. However, they serve as a useful
complement to their CMB counterpart if either )

0
h2 [

0.05 or big bang nucleosynthesis constraints are too strin-
gent & Ostriker Indeed, there are tentative(Gnedin 1990).
indications from cluster inventories that the baryon fraction
may be as high as 15% et al. The presence or(White 1993).
absence of acoustic oscillations in the observations of the
CMB and large-scale structure will in the future provide a
robust distinction between general classes of scenarios :

1. Oscillations in CMB and matter power spectra : stan-
dard recombination with )

b
Z )

c
;

2. Oscillations in CMB alone : standard recombination
with )

b
> )

c
;

3. Oscillations in matter power spectra alone ; early
reionization with )

b
Z )

c
.

Large-scale structure observations already suggest there are
no dramatic oscillations in the matter power spectrum as
would be the case for classes (1) and (3) if )

b
? )

c
(Peacock

& Dodds However, low-amplitude oscillations, as1994).
might be expected if remain possible. Of course,)

b
D )

c
,

the exact form that these oscillations will take in the obser-
vations depends on issues such as redshift space distortions
and nonlinear corrections.

If oscillations are discovered in neither spectra, the most
natural conclusion is that our universe has and)

b
> )

csu†ered early reionization. However, other possibilities
include the formation of perturbations after recombination,
reionization within an expansion time after the drag epoch,
and equal or random stimulation of adiabatic and iso-
curvature mode acoustic Ñuctuations.3 These scenarios can
be distinguished by measuring the location of the damping
scale. All scenarios obeying standard recombination,
regardless of the presence of actual peaklike structures,
follow the scalings for the damping length discussed here. In
all reionized models, the horizon at last scattering and at
the drag epoch marks the damping scale for the photons
and baryons, respectively.

If acoustic oscillations are discovered in both the CMB
and large-scale structure power spectra, we will possess a
strong consistency test for the dynamics of the expansion,
i.e., a combination of the matter content, curvature, and
cosmological constant, as well as the adiabatic or iso-
curvature nature of the initial Ñuctuations. Furthermore,
the two contain complementary information on several spe-
ciÐc fundamental cosmological parameters. The scale of the
peaks in the matter power spectrum are determined mainly
by the matter content whereas the angular scale of)

0
h2,

the CMB peaks is mostly sensitive to the curvature 1 [ )
0The two damping lengths also probe di†erent com-[ )".

binations of and The ratio of the peak heights)
0

h2 )
b
h2.

to the underlying CDM contribution in the matter power
spectrum probes Furthermore, by comparing similar)

b
/)

0
.

scales, dependence on the initial power spectrum can be
eliminated, providing a clean test of the whole gravitational
instability paradigm.

We would like to acknowledge useful discussions with
J. R. Bond, U. Seljak, J. Silk, and P. Steinhardt. W. H.
would like to thank J. R. Bond for calling to his attention
the enhancement of di†usion damping through polarization
and M. White for pointing out several typos in the draft.
W. H. was supported by grants from the NSF and the
W. M. Keck Foundation.

3 This may be accomplished by balancing the initial conditions or
hypothesizing a gravitational forcing potential that is external to the linear
photon-baryon-neutrino-CDM system, e.g., cosmological defects.
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APPENDIX A

TIGHT COUPLING LIMIT

A1. EVOLUTION EQUATIONS

The Fourier transform of the Newtonian temperature Ñuctuation can be broken up into Legendre moments, related to the
direction cosines of the photon momenta #(g, k, Æ c). The evolution equation for these moments is givenc

i
, c) \ &

l
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by the Boltzmann hierarchy & Efstathiou(Bond 1984 ; HSb) :

#0
0

\ [
k

3
#

1
[ '0 ,

#0
1

\ k
A

#
0

] ( [
2
5

#
2

B
[ q5 (#

1
[ V

b
) ,

#0
2

\ k
A2

3
#

1
[

3
7

#
3

B
[ q5

A 9
10

#
2

[
1
10

#
2
Q [

1
2

#
0
Q
B

,

#0
l
\ k

A l

2l [ 1
#

l~1
[

l ] 1
2l ] 3

#
l`1

B
[ q5 #

l
(l [ 2) , (A1)

if the ratio of the wavelength to the curvature scale is much smaller than the angle considered, i.e., k ? l([K)1@2, where
Recall that overdots are derivatives with respect to conformal time g \ / dt/a. Here is the CMBK \ [H

0
2(1 [ )

0
[ )"). #

l
Q

temperature perturbation in the Stokes parameter Q. It accounts for polarization generated by Compton scattering of
anisotropic radiation. The metric Ñuctuations in the mode are given by and whereg

00
\ [(1 ] 2(Y ) g

ij
\ a2(1 ] 2'Y )c

ij
,

is the three metric on a surface of constant curvature and Y is a plane wave eik Õx in Ñat space or more generally ac
ij

k-eigenfunction of the Laplacian. The presence of the curvature perturbation ' in the monopole equation represents the
dilation e†ect. The form of the metric shows that it has the same origin as the photon redshift with the expansion. The
gravitational potential ( in the dipole or velocity equation accounts for gravitational infall or redshift.

The tight coupling approximation assumes that the Compton scattering rate is sufficiently rapid to equilibrate changes inq5
the photon-baryon Ñuid. It is an expansion in the Compton scattering time or more speciÐcally the inverse of the opticalq5 ~1,
depth through a wavelength and through a period of the oscillation whereq5 /k q5 /u \ q5 /kc

s
[ q5 /k,

c
s
\

1

J3(1 ] R)
, (A2)

is the photon-baryon sound speed with To Ðrst order, only the l \ 0 monopole (with density ÑuctuationR \ 3
4
o
b
/oc.and l \ 1 dipole (with bulk velocity survive and one obtains the forced oscillator equation for acousticdc \ 4#

0
) Vc \ #

1
)

waves in the photon-baryon Ñuid To second order, the acoustic oscillations of the monopole and dipole are damped(HSa).4
due to the imperfect coupling between the photons and baryons. Photon di†usion creates heat conduction through #

1
[ V

band shear viscosity through #
2

(Weinberg 1972 ; Bond 1996).
To close these equations, we need the continuity and Euler equations for the baryons,
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the polarization hierarchy equations for the CMB & Efstathiou(Bond 1984 ; Kosowsky 1996),
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4 In and we employed a hybrid gauge or ““ gauge-invariant ÏÏ representation of density Ñuctuations for computational convenience. Since thereHSa HSb,
are no beneÐts of this choice below the horizon, we work entirely in the Newtonian gauge in this paper. Only the deÐnition of density Ñuctuations is a†ected :
the total matter gauge where X represents any of the particle components.*

X
\ d

X
] 3(a5 /a)(1 ] p

X
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X
)V

T
/k,
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FIG. 7.ÈPhoton di†usion scale. The photon di†usion scale grows rapidly near last scattering due to the increasing mean free path of the photons but
remains well under the horizon scale at last scattering. The small di†erence between and is sufficient to cause a signiÐcant di†erence in thek

*
~1 \ (a5 /a) o

a*
a
*

a
de†ective damping if di†ers substantially from the crossover point 0.03. The inclusion of the angular dependence of Compton scattering enhances)

b
h2

damping by a small factor as does the further inclusion of polarizationf
2

\ 9/10, f
2

\ 3/4.

and the Einstein-Poisson equations for the metric or potential perturbations,
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if k ? ([K)1@2. Here where the subscript T denotes the total matter including all particle species and the totalw
T

\ p
T
/o

T
,

anisotropic stress is related to the radiation quadrupoles as

p
T
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\ 12
5

(pc #
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] pc N
2
) , (A6)

with as the neutrino temperature quadrupole. Notice that the baryon continuity equation can be rewritten asN
2

d5
b
\

because dilation e†ects on the photon temperature and baryon density Ñuctuations are analogous. This[k(V
b
[ #

1
) ] 3#0

0represents adiabatic evolution if V
b
\ #

1
.

A2. ACOUSTIC DISPERSION RELATION

Let us derive the dispersion relation for acoustic oscillations in the tight coupling limit. Consider Ðrst the e†ects of
polarization. Since only the polarization monopole and quadrupole feed back into the temperature Ñuctuations, we#

0
Q #

2
Q

may immediately expand the polarization hierachy in to obtainq5 ~1

#
2
Q \ #

0
Q \ 1

4
#

2
, (A7)

which simpliÐes the temperature quadrupole evolution of toequation (A1)
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where Other approximations commonly used are for unpolarized radiation and forf
2

\ 3
4
. f

2
\ 9/10 (Chibisov 1972) f

2
\ 1

further neglecting the angular dependence of Compton scattering p. 92 ; We keep the(Weinberg 1972 ; Peebles 1980, HSa).
factor implicit so that the separation of e†ects can be read directly o† the Ðnal results. Expanding the quadrupole equationf

2to Ðrst order in we obtain(A8) q5 ~1,

#
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\ q5 ~1f
2
~1 2

3
k#

1
. (A9)

A second-order expansion for the quadrupole is not necessary because its e†ect on the Ñuid equations through is already#0
1of Ðrst order in q5 ~1.
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On the other hand, a second-order expansion of the baryon Euler equation is necessary. Let us try a solution of the form
and ignore variations on the expansion timescale in comparison with those at the oscillation frequency#

1
P exp i / u dg a5 /a

u. The electron velocity, obtained by iteration of the Euler equation, is to second order

V
b
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1
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1
. (A10)

Substituting this into the photon dipole equation and eliminating the zeroth-order term yields(A1)
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This suggests that we try a solution of the form i / u dg. Employing the monopole equation of and#
0

] (1 ] R)( P exp (A1)
assuming again that variations at the oscillation frequency are sufficiently rapid that changes in R, ', and ( can be neglected,
we obtain
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With the Ðrst-order relation u2 \ k2/3(1 ] R), the solution to the resultant quadratic equation is
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Thus, to second order acoustic oscillations are damped as exp with the damping length[[(k/k
D
)2] (Weinberg 1972 ; Kaiser

1983 ; Bond 1996)

k
D
~2 \

1
6

P
dg

1
q5

R2 ] 4f
2
~1(1 ] R)/5

(1 ] R)2
. (A14)

If polarization and the angular dependence of Compton scattering enhances damping through the generation ofR [ 1,
viscosity (see Viscosity is related to photon di†usion because the quadrupole and higher moments are generated asFig. 7).
photons from regions of di†erent temperatures meet.

A3. BARYON DRAG AND THE ADIABATIC INVARIANT

The temperature perturbation oscillates around due to the baryon drag e†ect. This can be understood#
0

] (1 ] R)( \ 0
more easily by examining the Ðrst-order equation from which it originates,
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ignoring slow changes in R, ', and ( from the expansion. Notice that plays the role of the e†ective mass of them
eff

\ (1 ] R)
oscillator and the gravitational potential provides the e†ective acceleration through infall. The photon pressure acts as the
restoring force and is independent of the baryon content R.

has a simple solutionEquation (A15)
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(0, k) sin (ug) [ (1 ] R)( , (A16)

where the frequency in agreement with the Ðrst-order dispersion relation ofu \ k/(3m
eff

)1@2 \ k/[3(1 ] R)]1@2 equation (A13).
This solution describes an oscillator whose zero point has been displaced by due to the gravitational[m

eff
( \ [(1 ] R)(

force (see The photons, although massless, su†er infall e†ects due to gravitational blueshift. Since this is exactlyFig. 8).
cancelled as the photons stream out of the potential wells, we can consider as the e†ective temperature perturbation.#

0
] (

Thus, this part of the zero point shift has no net e†ect. However, the baryons also contribute to the e†ective mass of the Ñuid.
Since the photons and baryons are tightly coupled, baryonic infall drags the photons into potential wells and contributes
[R( to the displacement. Notice that baryon drag also increases the amplitude of the cosine oscillation because the initial
conditions #(0, k) represent a greater displacement from the zero point. Thus, baryon drag accounts for both the alternating
peak heights of the acoustic oscillations and their enhancement with After di†usion damping has eliminated the)

b
h2 (HSa).

oscillations themselves, the zero-point shift [R( remains. Of course, for adiabatic BDM models ( is also reduced to zero by
the di†usion.

In reality, the variation of oscillator parameters, such as the e†ective mass and gravitational force, on the expansion
timescale cannot be ignored over many periods of the oscillation. From equations and the full Ðrst-order equation is(A1) (A3),
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where the addition of the space curvature term comes from the dilation e†ect Notice that the left-hand side is#0
0

\ ['0 .
precisely the equation of an oscillator with a time-varying mass The homogeneous equation can be solved bym

eff
\ (1 ] R).

employing the fact that variations over a single period of the oscillation are small. The adiabatic invariant associated with an
oscillator is given by the energy over the frequency u. Therefore, the amplitude scales asE \ 1

2
m

eff
u2A2



FIG. 8.ÈBaryon drag e†ect in adiabatic CDM models. (a) Baryons cause a drag e†ect on the photons, leading to a temperature enhancement of
[R( \ o R( o inside potential wells, which shifts the zero point of the oscillation (short-dashed lines). (b) This contribution yields alternating peak heights in
the rms and is also retained after di†usion damping. Here numerical results are displayed.
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A P u1@2 P (1 ] R)~1@4. This yields fundamental solutions of the form (1 ] R)~1@4 exp (^i / u dg) & Yu The(Peebles 1970).
phase integral can be performed analytically,

P
u dg \ k

P
c
s
dg \ kr

s
,

where is the sound horizon given inr
s

equation (1).

A4. SUMMARY

Several points are worth emphasizing :

1. The Ðrst-order dispersion relation for acoustic oscillations is u \ kc
s
\ k/[3(1 ] R)]1@2.

2. Slow changes in the baryonic contribution to the e†ective mass cause the temperature oscillation to decay as
(1 ] R)~1@4.

3. The oscillation phase is related to the sound horizon byr
s
\ / c

s
dg / u dg \ kr

s
.

4. Photon di†usion alters the dispersion relation and leads to exponential damping.
5. The damping length increases roughly as or the geometric mean of the conformal time and thej

D
D k

D
~1 D (g/q5 )1@2

Compton mean free path, as one expects of a random walk.
6. If it is well under the horizon, the damping length surpasses the wavelength when or when the optical depthq5 /k \ kg ? 1

through a wavelength is still high.
7. The angular dependence of Compton scattering and polarization increases the damping length when R [ 1.
8. The zero point of oscillations in is [R' due to baryon drag and remains as a temperature shift after di†usion#

0
] (

damping.

APPENDIX B

HORIZON CROSSING

B1. PHOTON-BARYON SYSTEM

The amplitude of the acoustic oscillation is determined by the growth of Ñuctuations before and in particular during the
epoch when the scale crosses the horizon. Since the second-order tight coupling expansion yields just a multiplicative
di†usion damping factor, let us obtain the Ðrst-order solution, which we denote by carets. The full solution can be constructed
through the relations
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where recall S(0, k) is the initial entropy perturbation in the photon-baryon system S(0, k). Near or abovek) \ d
b
(0, k) [ 3

4
dc(0,

the horizon at where the sources from potential growth and decay drive the oscillator, the full formalism of is neededg
*
, HSa

to follow the Ñuctuations accurately. However, we are interested only in small-scale Ñuctuations that enter the horizon well
before last scattering. Since radiation pressure prevents the growth of Ñuctuations in the radiation-dominated epoch, the
gravitational potentials decay away after horizon crossing. On small scales, the acoustic oscillations therefore experience a
boost at horizon crossing and thereafter settle into pure modes cos sin#

0
(g, k) \ (1 ] R)~1@4[C

A
(k) (kr

s
) ] C

I
(k) (kr

s
)].

yields exact solutions for and for the fundamental adiabatic and isocurvature modes of the Ñuctuation ifEquation (A17) C
A

C
Ianisotropic stress is ignored so that ( \ ['. The adiabatic modes arises from an initial curvature perturbation '(0, k),%

Twhereas the isocurvature mode arises from an initial entropy perturbation S(0, k). The solutions are & Sasaki(Kodama 1986 ;
HSb)

lim
%?0

C
A
(k) \

3
2

'(0, k) adiabatic , lim
%?0

C
I
(k) \ [

J6
4

k
eq
k

S(0, k) isocurvature , (B2)

where Mpc~1 is the wavenumber that passes the horizon at equality.k
eq

\ (2)
0

H
0
2/a

eq
)1@2 \ 9.67 ] 10~2)

0
h2(1 [ fl)1@2#

2.7
~2

Recall that The two modes stimulate pure cosine and sine modes because the gravitational forcing functionfl \ ol/(oc ] ol).yields near-resonant driving with the phase Ðxed by '(0, k) \ constant and '(0, k) \ 0, respectively & White(HSb; Hu 1996).
The amplitude of the Ñuctuations is easy to understand qualitatively. For the adiabatic case, k). If photon#

0
(0, k) \ 1

2
'(0,

streaming is ignored, the dilation e†ect would raise the amplitude to k) [ '(g, k) ] '(0, k) \#0 \ ['0 , #
0
(g, k) \ 1

2
'(0,

k). Note that a decaying potential boosts the acoustic amplitude due to the gravitational forcing e†ect. A similar analysis3
2
'(0,

for the isocurvature mode accounting for potential growth outside the horizon explains the isocurvature amplitude (HSb).
The e†ect of anisotropic stress can be considered as a perturbation The dominant term comes from the neutrino(HSa).

quadrupole because photon anisotropies are damped exponentially with optical depth before last scattering. The order or
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magnitude can be simply read o† the initial conditions for the growing mode of the perturbation,

#
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2
((0, k) \ 1
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(1 ] 2

5
fl)~1'(0, k) adiabatic , (B3)

or k) \ ((0, k) \ '(0, k) \ 0 and#
0
(0,
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16

k
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1 ]
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15

fl
B
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S(0, k) isocurvature ,
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16

k
eq
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15

fl
B

S(0, k) . (B4)

Indeed, we Ðnd that the adiabatic amplitude is well approximated by

C
A
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3
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A
1 ]

2
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'(0, k) adiabatic , (B5)

and likewise

C
I
(k) \ [
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4

k
eq
k

A
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4
15

fl
B

S(0, k) isocurvature , (B6)

for the isocurvature mode. Explicitly, the Ðrst-order acoustic solution is

#Œ
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] ( ^ #Œ
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\ (1 ] R)~1@4[C
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s
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I
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I
cos (kr

s
)] . (B7)

In we display an adiabatic example. In this case, it is also useful to compare the acoustic amplitude to theFigure 1,
Sachs-Wolfe e†ect & Wolfe k). With the relation (see eq. [A18]),(Sachs 1967) o # ] ( o

rms
(g

0
, k) \ 1

3
((g

0
, HSa,

((g
0
, k) \ [ 9

10
(1 ] 4

15
fl)~1(1 ] 2

5
fl)~1'(0, k) , (B8)

valid at large scales the relative amplitude becomesk > k
eq

,

o 3C
A
(k)/((g

0
, k) o \ 5(1 ] 4

15
fl)~1 , (B9)

and it represents a signiÐcant boost.

B2. CDM COMPONENT

The evolution of the cold dark matter Ñuctuations in the presence of acoustic oscillations is also interesting and relevant for
determining the small-scale behavior of the matter transfer function (see The cold dark matter evolutionAppendix D).
equations are of the same form as the baryon continuity and Euler equations save for the absence of coupling to the photons,

d�
c
]

a5
a

d5
c
\ [k2( [ 3'� . (B10)

In the radiation-dominated epoch, the metric terms on the right-handside are dominated by perturbations in the radiation
and may be considered as external driving forces. The homogeneous equation has two fundamental solutions 1N.d

c
P Mln a,

The particular solution is constructed via GreenÏs method,

d
c
\ C

1
ln a ] C

2
]
P
0

g
[ln a@ [ ln a]

a@
a5 @

(k2( ] 3'� )dg@ . (B11)

Adiabatic initial conditions require and k). Thus, remains constant outside the horizon and then gets aC
1

\ 0 C
2

\ 3#
0
(0, d

ckick from infall and dilation that generates a logarithmic growing mode. Since the behavior of the potentials is self-similar in
k, i.e., they are constant outside the horizon and decay to zero as a~2 inside of it, their e†ect on is the same for all k. Onced

cthe potentials have decayed to zero, settles into the logarithmic growing mode asd
c

d
c
^ I

1
'(0, k) ln

A
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, (B12)

where horizon crossing occurs at
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By numerical calculation of the integrals in we obtainequation (B11),

I
1

\ 9.11(1 ] 0.128fl ] 0.029fl2) ,

I
2

\ 0.594(1 [ 0.631fl ] 0.284fl2) , (B14)

valid at the 1% or better level for the full range 0 ¹ f ¹ 1. As we shall see in Appendix D, this solution can be joined onto the
growing mode in the matter-dominated epoch to describe the full time evolution of the CDM Ñuctuations.

APPENDIX C

DECOUPLING

C1. PHOTON DECOUPLING

The tight coupling approximation is strictly valid only well before decoupling. However, the acoustic modes may be simply
joined onto the free-streaming solutions once di†usion damping near decoupling has been taken into account. The full
Boltzmann hierarchy has the formal solution (see eq. [11])HSa,

(# ] ()(g
0
, k, k) \

P
0

g0
dg[(#

0
] ( [ ikV

b
)q5 [ '0 ] (0 ]e~qeikk(g~g0) , (C1)

where kk \ k Æ c and curvature has been neglected. The terms in parentheses contribute at last scattering due to weighting by
the visibility function and the integrated Sachs-Wolfe metric terms play a role between last scattering and theVc \ q5 e~q,
present. This formal solution is made practical by replacing the sources and with their acoustic solution at last#

0
V
bscattering.

It may seem that employing the tight coupling solution through decoupling would lead to erroneous results. In particular,
the damping approximation should break down if the optical depth through a wavelength drops below unity. However, let us
examine the tight coupling solution more carefully. impliesEquation (B1)

[# ] (](g
0
, k, k) \

P
0

g0
dg(#Œ

0
] ( [ ikVŒ

b
)MVc e~*k@kD(g)+2Neikk(g~g0) ]

P
0

g0
dgR(Me~*k@kD(g)+2 [ 1NVc eikk(g~g0) . (C2)

Although baryon drag e†ects such as acoustic displacement and enhancement are already encorporated in the acoustic
solution (see the residual R( term appears beneath the di†usion scale. Let us ignore this for the moment. The#Œ

0
eq. [A16]),

e†ective visibility for the acoustic oscillations is given by

VŒ c \ Vc e~*k@kD(g)+2 . (C3)

This function is plotted for a given model in Unlike is damped exponentially at late times by the growingFigure 2. Vc, VŒ cdi†usion length and thus peaks at earlier times. Note that a 10% shift in redshift represents a factor of 3 in optical depth near
last scattering. Thus, the region in which we expect the approximation to break down is given little weight in the integral.
More speciÐcally, the exponential damping ensures that most contributions come from before the epoch at which the
di†usion length surpasses the wavelength. As we have seen in the optical depth through a wavelength is high atAppendix A,
this time and justiÐes the tight coupling expansion.

The damping of acoustic modes through last scattering can occur in general due to two di†erent mechanisms working in
di†usion and cancellation. However, the e†ects are of greatly unequal magnitude. Cancellation occurs becauseequation (C2) :

on small scales many wavelengths of the perturbation span the Compton visibility function. Photons that scattered last at the
crests of the perturbations will have their e†ect canceled by those that scattered at the troughs. Mathematically this occurs in
equation (C2) because the oscillating plane wave is integrated over the visibility function. Cancellation leads to a power-law
damping of Ñuctuations as the scale decreases below the width of the visibility function. However, in the case of di†usion
damped acoustic contributions, it is not the width of the Compton visibility function that is relevant but rather theVcacoustic visibility function As one goes to smaller and smaller scales (high k), the width of this function decreases as well.VŒ c.Thus, even at high k the cancellation regime is never fully reached, and one may approximate the integral (C2) by replacing

by a delta function, i.e.,VŒ c
(# ] ()(g

0
, k, k) ^ (#Œ

0
] ( [ ikVŒ

b
)(g

*
, k)eikk(g*~g0)Dc(k) , (C4)

where

Dc(k) \
P
0

g0
dgVŒ c \

P
0

g0
dgVc e~*k@kD(g)+2 . (C5)

The observable anisotropy follows by decomposing into Legendre moments and summingequation (C4) # \ &([i)l#
l
P

l
(k)

over k-modes k)/(2l ] 1) o2d ln k Decoupling thus increases the e†ective di†usion damping lengthC
l
\ (2/n) / k3o #

l
(g

0
, (HSa).

due to the corresponding increase in the mean free path of the photons. The result is a near-exponential damping with scale
that overwhelms completely the small residual cancellation damping.



FIG. 9.ÈResidual baryon drag e†ect after last scattering in an adiabatic CDM model. On scales under the width of the visibility function, cancellation
between contributions that came from potential wells and hills at last scattering damps Ñuctuations from the baryon drag e†ect. Note that cancellation
damping is weak and scales as in contrast to the exponential di†usion damping. Projection relates the rms Ñuctuation in (a) to the anisotropy(kg

*
)~1@2,

power spectrum in (b).
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Cancellation damping does occur for the baryon drag e†ect [R( in that remains after di†usion damping.equation (C2)
The amplitude of the resultant Ñuctuations can be estimated by noting that

(# ] ()(g
0
, k, k) \ [

P
0

g0
dgVc R(eikk(g~g0) , (C6)

is approximately a Fourier transform. Employing ParcevalÏs theorem, we obtain

o #
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] ( o
rms
2 4

1
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P
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1
o # ] ( o2dk ^

n
k

P
0
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o R(Vc o2dg ^

n
k

o ((g
*
, k) o2

P
0

g0
(RVc)2dg . (C7)

Thus, the contribution to the rms is suppressed by roughly due to cancellation. Note that the residual baryon drag(kg
*
)~1@2

e†ect only appears in models in which ( itself is not damped away by di†usion, e.g., adiabatic CDM and isocurvature BDM
models. In we display this e†ect. The amplitude of the e†ect is overestimated slightly because baryon drag weakensFigure 9a,
through last scattering. Its e†ect on the anisotropy is shown in Figure 9b and can be obtained analytically in a computa-
tionally simple matter through the approximations of & White Since it is unlikely to be observable due to e†ects inHu (1996).
the foreground of last scattering, we omit a detailed calculation here.

C2. BARYON DECOUPLING

The formal solution to the baryon Euler equation is(A3)

aV
b
\
P
0

g
dg@a(q5

d
#

1
] k()e~qd , (C8)

where and quantities in the integrand are evaluated at g@. The two source terms are the Compton drag e†ect andq5
d
\ q5 /R

infall into potential wells. The former forces the baryon velocity to follow the photon dipole (velocity) at high drag optical
depth The presence of the scale factor a in the equation represents the fact that baryon velocities decay as a~1 in theq

d
.

absence of sources. Since is very nearly a delta function with respect to variations on the expansion timescale, thisq5
d
e~qd

equation is conceptually identical to its photon analog with the replacement The plane-wave factor is absent for(C1) q5 ] q5
d
.

the baryons because their particle velocities are low and the streaming can be neglected in comparison to the wavelength.
Drag depth unity marks the transition between the drag and infall epochs. For the drag epochq

d
(z

d
) \ 1 )

b
h2 Z 0.03,

precedes last scattering assuming standard recombination. If the universe is reionized after recombination to somez
d
[ z

*ionization level and the drag epoch signiÐcantly precedes last scattering inx
e
, z

d
\ 263()

0
h2)1@5x

e
~2@5(1 [ Y

p
/2)~2@5#

2.7
~8@5

most scenarios.5 Here is the helium mass fractionY
p

Y
p
^ 0.23.

By analogy to the photon case, it is useful to deÐne the drag visibility function

V
b
\

aq5
d
e~qd

/
0
g0 dgaq5

d
e~qd

, (C9)

suitably normalized to have unity area. Di†usion damping modiÐes the acoustic visibility function as

VŒ
b
\ V

b
e~*k@kD(g)+2 . (C10)

Thus, we expect that immediately after the drag epoch the baryon velocity and density perturbations are approximately
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where

D
b
(k) \

P
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dgVŒ

b
\
P
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g0
dgV

b
e~*k@kD(g)+2 , (C12)

and recall that and were given in#Œ
1

dü
b

equation (B7).

APPENDIX D

MATTER EVOLUTION

After horizon crossing but before the end of the drag epoch, baryons follow the acoustic solution of and theequation (C11)
CDM follows its own pressureless evolution. After the drag epoch, the baryon evolution equation is identical to the cold(A3)
dark matter, and their joint evolution can be expressed in terms of Ñuctuations in the total nonrelativistic matter density d

m
.

5 This di†ers from the treatment of in which was deÐned to be the epoch when the perturbation joined the growing mode of pressureless linearHSb z
dtheory. The presence of a decaying mode lowers this redshift by a factor of (see3

5
Appendix D, eq. [D19]).
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Thus, the solution for the time evolution of the matter Ñuctuations requires knowledge of both the baryon and CDM
perturbations at the drag epoch. The baryonic contribution was obtained in Let us now evaluate the CDMAppendix C.
contributions.

D1. EXACT CDM SOLUTIONS

The evolution of CDM Ñuctuations is described by Since the curvature or " terms are negligible before theequation (B10).
drag epoch, this equation can be rewritten in terms of the equality-normalized scale factor asy \ a/a

eq
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dy2
d
c
]

(2 ] 3y)
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0
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. (D1)

Here we have assumed that the radiation contributions to the gravitational potential have decayed to zero well after horizon
crossing. In typical adiabatic models, the CDM contribution usually dominates the nonrelativistic matter. Consider Ðrst the
limit of negligible baryon fraction, In this case, the matching condition at the drag epoch becomes trivial because)

b
/)

0
> 1.

the baryons have no e†ect on the CDM. If has the same solution before and after the drag epoch (see)
c
\ )

0
, equation (D1)

eqs. [12.5] and [12.9]),Peebles 1980,
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before curvature or " domination. Matching to the radiation-dominated solution we obtain(B12),
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for k ? k
eq

.
Let us now solve for the case in which the contribution of baryon is not negligible. The two independentequation (D1)

solutions are given in exact form through GaussÏs hypergeometric function F by
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where i \ 1, 2 and
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, (D5)

with minus and plus signs for i \ 1 and 2, respectively. Note that Thus, the main e†ect of the baryons is tolim
y?=

U
i
\ y~ai.

slow the power-law growth of CDM after equality.
It is easy to show that these solutions are identical to for They also take on elementary forms forequations (D2) )
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In order to map the solution for the radiation-dominated limit onto amplitudes of and we have to take the(B12) U
1

U
2
,

limit as y ] 0 of By using a linear transformation of the hypergeometric function (see, e.g., eq. 15.3.9 inequation (D4).
& Stegun we ÐndAbramowitz 1965),

lim
y?0

U
i
\

!(2a
i
] 1/2)

!(a
i
)!(a

i
] 1/2)

C
[ln y ] 2t(1) [ t(a

i
) [ t

A
a
i
]

1
2

BD
, (D8)

where !(x) and t(x) \ !@(x)/!(x) are gamma and digamma functions, respectively. Matching to the radiation-dominated
solution (B12) yields
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FIG. 10.ÈCDM evolution in the Compton drag epoch. If baryons contribute a signiÐcant fraction of the total matter density, CDM growth will be slowed
between equality and the drag epoch. Held by Compton drag, the baryons do not contribute their self-gravity. For the numerical results, we choose a model
that never recombined, so that a
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valid at the percent level for and)
b
/)

0
\ 1

2
,

A
2

\ [
!(a

2
)!(a

2
] 1/2)

!(2a
2

] 1/2)

C !(2a
1

] 1/2)
!(a

1
)!(a

1
] 1/2)

A
1

] 1
D

. (D13)

For the three special cases, we can describe by elementary functions. If is given by whereasd
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In we show the time evolution of before the drag epoch for several di†erent values of Numerical results inFigure 10, d
c

)
b
/)

c
.

this Ðgure are for fully reionized models so that the drag epoch ends well after equality, unlike other examples in this paper.

D2. MATTER TRANSFER FUNCTION

With the baryon and CDM Ñuctuations at the drag epoch from equations and respectively, we can now solve(C11) (D9),
for the evolution to the present. After the drag epoch, baryons behave dynamically as CDM, and the combined nonrelativistic
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matter Ñuctuations
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follow the growing and decaying solutions for d
m

(Peebles 1980),
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before curvature or " domination. To account for e†ects from curvature and " at or y ? 1, one needs simply toa ? a
eqreplace a ] D, where
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is the growing mode of radiationless linear theory normalized to equal a at early times.
By matching the Ñuctuations at the drag epoch, we obtain for the growing mode
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and similarly for the decaying mode. The combined time evolution is plotted in for a BDM model with IfFigure 4 d
m

\ d
b
.

reduces to the familiar formz
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Notice that on scales much less than the horizon at the drag epoch, the velocity at dominates the growing mode if the twog
dvalues are comparable at (see This ““ velocity overshoot ÏÏ e†ect occurs because the peculiar velocity moves theg

d
Fig. 11).

matter and creates density Ñuctuations kinematically. Expansion drag on the velocity eliminates it in an expansion time g
d
,

and thus causality prevents this e†ect from generating density Ñuctuation above the horizon at the drag epochkg
d
> 1.

It is conventional to recast the evolutionary e†ects in terms of a transfer function. As with we can break theequation (D15),
present-day transfer function up into a baryonic and cold dark matter contribution at the drag epoch

T (k) \
)

b
)

0

T
b
(k) ]

A
1 [

)
b

)
0

B
T

c
(k) . (D20)

It should be kept in mind that and do not represent the respective transfer functions today. Let us consider the adiabaticT
b

T
ctransfer function. Here one expresses the evolution of small-scale Ñuctuations in terms of those at large scales, i.e.,
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The acoustic contribution of the baryon is therefore
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. (D22)

This equation is compared with numerical results for the adiabatic transfer function in Figure 5a.
For isocurvature BDM models, and it is conventional to deÐne it such that k) o2 withT \ T

b
, o d

T
(g

0
, k) o2 P T 2(k) oS(0,

normalization From the small-scale tail of the transfer function becomeslim
k?=

T (k) \ 1. equation (B6),

T (k) \ 1 [
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. (D23)

This function is plotted in Figure 5b.
In the limit, the CDM contributions can be expressed in terms of elementary functions as)

b
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0
] 0
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fl \ 0.405 , (D24)
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FIG. 11.ÈVelocity overshoot e†ect. Below the horizon at the drag epoch the acoustic velocity at dominates the growing mode and hence thekg
d
? 1, z

dÐnal transfer function. Near the horizon, the acoustic density becomes comparable and shifts the zero points of the oscillation.

where This should be compared with the high-k tail of the standard Ðtting function to theq \ (k/Mpc~1)#
2.7
2 ()

0
h2)~1.

numerical results (BBKS),

T
BBKS

(q) \
ln (1 ] 2.34q)

2.34q
[1 ] 3.89q ] (16.1q)2 ] (5.46q)3 ] (6.71q)4]~1@4 , (D25)

i.e., which di†ers by D10% from the analytic prediction at small scales. In fact, since thelim
q?=

T (q) \ ln (2.34q)/15.7q2,
Ðtting formula was designed to Ðt intermediate scales, is more accurate at extremely small scales.equation (D24)

If the baryon fraction is nonnegligible, the contribution is expressed in terms of hypergeometric functions through equation
(D4),

T
c
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Though exact, this expression is rather complicated. It is useful and instructive to seek a simple scaling relation for this form.
Notice that for all cases the scale dependence of the transfer function may be written as

T
c
^ a

ln 1.8bq

14.2q2
, (D27)

for Here a and b are functions of and Note that as q ] O the modiÐcation due to b becomesfl \ 0.405. )
0

h2 )
b
/)

0
.

insigniÐcant. A very accurate Ðt to both a and b is given in equations and The numerical, analytic,Appendix E, (E12) (E13).
and Ðtted analytic results are compared with the empirical scalings of & Dodds and inPeacock (1994) Sugiyama (1995) Figure

The analytic calculation is essentially exact while the Ðtted analytic form works to 1% accuracy. Notice that in this12.
extreme case we have improved signiÐcantly upon previous results.

breaks down for intermediate to large scales. The CDM contribution can be scaled approximately from theEquation (D27)
form asBBKS

T
c
(k) ^ T

BBKS
(q8 ) , q6 (k) \

k

Mpc~1
a~1@2()

0
h2)~1#

2.7
2 . (D28)

This expression is employed in with the coefficient 6.71 in replaced by 6.71(14.2/15.7) \ 6.07 to matchFigure 5 equation (D25)
the analytic small-scale tail. Notice that at the largest scales, this expression underestimates the matter transfer function. This
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FIG. 12.ÈAdiabatic CDM transfer function in a high case. The analytic solution is essentially exact in the small-scale limit. Simple Ðts based on)
b
/)

0
\ 2

3the BBKS form can cause large errors at the small scale & Dodds The Ðtting function developed here (see equation [D27])(Peacock 1994 ; Sugiyama 1995).
works at the 1% level, even for this extreme case.

is because baryon contributions must be included properly. Although the limiting form is simple, the behaviorlim
k?0

T
b
\ 1

near the horizon scale at is not. Since this region is not the main focus of this work, we do not attempt to describe thisz
danalytically. If the baryonic oscillations are small or smoothed over, an approximate patch is given by
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which extends the & Dodds approach to highPeacock (1994) )
b
/)

0
.

Finally, we can express the ratio of the acoustic peak heights to the CDM tail with equations and(D20), (D22), (D24),
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if the velocity overshoot e†ect dominates the acoustic contributions. We can simplify this expression by noting that G
2
(g

d
) ^

Furthermore, the function peaks at roughly with an amplitude of With the2
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scaling of the peak relative amplitude of the acoustic oscillation is approximatelyequation (D27),
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The logarithmic term is roughly unity and may be dropped for estimation purposes (see roughlyeq. [9]). Equation (D31)
quantiÐes the prominence of the acoustic oscillations in a CDM model. For best accuracy, however, the solutions and(D22)

for the baryons and CDM respectively should be employed.(D26)

APPENDIX E

RECOMBINATION FITTING FORMULAE

Rather than recalculate the atomic physics of recombination each time one needs to consider e†ects at the last scattering
and drag epochs, it is convenient to have accurate Ðtting formulae that incorporate the ionization history. In general, all
quantities associated with the ionization history must be functions of and alone once the CMB temperature)

0
h2 )

b
h2

K et al. neutrino fraction and helium fraction are Ðxed. Fitting functions inT
0

\ 2.726 (Mather 1994), fl \ 0.405, Y
p
^ 0.23
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this Appendix are designed to be valid at the percent level for an extended range of parameter space, 0.0025 [ )
b
h2 [ 0.25

and and consequently they appear rather complicated. We employ a recombination calculation based0.025 [ )
0

h2 [ 0.64,
on the improvements discussed in et al.Hu (1995).

The last scattering epoch is a very weak function of parameters and is given by

z
*

\ 1048[1 ] 0.00124()
b
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1
()

0
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b
h2)1.81]~1 . (E1)

The drag epoch ends at a related redshift that depends somewhat more strongly on the parameters

z
d
\ 1345
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b
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h2)0.223 . (E2)

The two are approximately equal if )
b
h2 ^ 0.03.

The di†usion damping envelope can be approximated through the Ðrst decade of damping by the form

Dc(k) ^ e~(k@kDc)mc , (E3)

where the e†ective damping scale has simple asymptotic scaling,k
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The basic scaling in the low limit can be understood by the Saha approximation in which the ionization fraction scales)
b
h2

approximately as Thus, the di†usion length Since inx
e
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the matter-dominated high limit, this is approximately of the same form as For high the corrections)
0

h2 equation (E5). )
b
h2,

from an accurate treatment of the atomic levels become more important due to the high Lya opacity. These two simple limits
can be joined accurately by a rather artiÐcial looking but highly accurate form,
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From we see that this overestimates the true damping as due to a breakdown of tight coupling. It isFigure 2, )
b
h2 ] 0

interesting to note that the full numerical results suggest that the Saha estimation of in equations and is ap
1

^ 0.25 (E5) (E6)
somewhat better phenomenological Ðt.

The steepness index of the di†usion damping envelope is a very weak function of cosmological parameters. In the limitmcthat last scattering occurred instantaneously, The Ðnite width of the visibility function modiÐes this asmc ] 2.

mc \ 1.46()
0

h2)0.0303(1 ] 0.128 arctan Mln [(32.8)
b
h2)~0.643]N) , (E7)

which only varies by D10% across the full range of parameter space.
Silk damping for the baryons can likewise be approximated by

D
b
(k) ^ e~(k@kS)ms , (E8)

with

k
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Mpc~1
\ 1.38()

0
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b
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and the steepness index by

m
S
\ 1.40

()
b
h2)~0.0297()

0
h2)0.0282

1 ] (781)
b
h2)~0.926

. (E10)

As is the case with the photons, the latter accounts for the width of the visibility function and is almost independent of
cosmological parameters.
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TABLE 1

COMMONLY USED SYMBOLSa

Symbol DeÐnition Equation

# . . . . . . . . . . . CMB temperature perturbation (A1)
#

0
. . . . . . . . . CMB monopole perturbation (A1)

#
1

. . . . . . . . . Vc-CMB dipole perturbation (A1)
%

T
. . . . . . . . . Anisotropic stress perturbation (A5)

' . . . . . . . . . . . Curvature perturbation (A5)
( . . . . . . . . . . . Newtonian potential (A5)
)

i
. . . . . . . . . . Critical fraction in i (1)

a . . . . . . . . . . . Baryon T -suppression (E11)
a
1

a
2

. . . . . . . U
1

U
2

power law (D5)
b . . . . . . . . . . . Baryon T -log correction (E11)
g (g

t
) . . . . . . . Conformal time (at t) (A1)

d
i
. . . . . . . . . . . Density perturbation in i (8)

q . . . . . . . . . . . . Compton optical depth (A1)
q
d

. . . . . . . . . . . Drag optical depth (C8)
u . . . . . . . . . . . Acoustic frequency (A13)
Dc . . . . . . . . . . Photon damping factor (C5)
D

b
. . . . . . . . . . Baryon damping factor (C12)

Vc . . . . . . . . . Compton visibility (C1)
VŒ c . . . . . . . . . CMB acoustic visibility (C3)
V

b
. . . . . . . . . Drag visibility (C9)

VŒ
b

. . . . . . . . . Baryon acoustic visibility (C11)
A

1
A

2
. . . . . . Boost CDM matching condition (D10)

C
A

. . . . . . . . . . Adiabatic acoustic amplitude (B5)
C

I
. . . . . . . . . . Isocurvature acoustic amplitude (B6)

D . . . . . . . . . . . Radiationless growth (D17)
D

1
D

2
. . . . . . Matter-radiation growth (D16)

G
1

G
2

. . . . . . Drag matching condition (D18)
I
1

I
2

. . . . . . . . CDM boost integrals (B14)
U

1
U

2
. . . . . . Drag CDM growth (D4)

R (R
t
) . . . . . . b/c momentum (at t) (A2)

T . . . . . . . . . . . Transfer function (D20)
T

b
. . . . . . . . . . Baryon T drag contribution (D22), (D23)

T
c

. . . . . . . . . . CDM T drag contribution (D28)
V

i
. . . . . . . . . . . Velocity in i (A1)

a (a
t
) . . . . . . . Scale factor (at t) (A1)

a
H

. . . . . . . . . . Horizon crossing a (B13)
c
s

. . . . . . . . . . . Photon-baryon sound speed (A2)
fl . . . . . . . . . . . Neutrino fraction (B2)
k . . . . . . . . . . . Wavenumber (Laplace eigenvalue) (A1)
k
D

. . . . . . . . . . Di†usion wavenumber (A14)
k
Dc . . . . . . . . . CMB damping wavenumber (A14), (E6)

k
S
. . . . . . . . . . . Silk damping wavenumber (6), (E9)

k
eq

. . . . . . . . . . Equality horizon wavenumber (B2)
kcj . . . . . . . . . . jth photon peak wavenumber (2)
k
bj

. . . . . . . . . . jth baryon peak wavenumber (5)
mc . . . . . . . . . . CMB damping steepness (4), (E7)
m

S
. . . . . . . . . . Baryon damping steepness (6), (E10)

q . . . . . . . . . . . Scaled wavenumber (D25)
r
s

. . . . . . . . . . . Sound horizon (A2)
y . . . . . . . . . . . a/a

eq
(D1)

z
*

. . . . . . . . . . Last scattering redshift (E1)
z
d

. . . . . . . . . . . Drag redshift (E2)
z
eq

. . . . . . . . . . Equality redshift (1)

a Fluid elements are i \ b, c, c, l, m, r for the baryons, CDM,
photons, neutrinos, total nonrelativistic matter, and total relativistic
matter, respectively. Special epochs include t \ \, d, eq, H for last
scattering, the drag epoch, matter-radiation equality, and horizon
crossing, respectively. Overdots represent conformal time derivatives.

Finally, by employing for the drag epoch, the cumbersome analytic result for the CDM drag contribution toequation (E2)
the small-scale transfer function from can be Ðtted asT \ ()

b
/)

0
)T

b
] ()

c
/)

0
)T

c
equation (D26)

T
c
^ a

ln (1.8bq)
14.2q2

, (E11)

with

a \ a
1
~)b@)0a

2
~()b@)0)3 ,

a
1

\ (46.9)
0

h2)0.670[1 ] (32.1)
0

h2)~0.532] ,

a
2

\ (12.0)
0

h2)0.424[1 ] (45.0)
0

h2)~0.582] , (E12)
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as the suppression factor and

b~1 \ 1 ] b
1
[()

c
/)

0
)b2 [ 1] ,

b
1

\ 0.944[1 ] (458)
0

h2)~0.708]~1 ,

b
2

\ (0.395)
0

h2)~0.0266 , (E13)

as the correction to the logarithm. A table of these and other commonly used symbols is provided in Table 1.
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