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Small-Scale Structure in the Lithosphere and Asthenosphere 

Deduced From Arrival Time and Amplitude Fluctuations 
at NORSAR 
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Physics Department and Institute of Tectonics, University of California, Santa Cruz 

We analyze the pattem of phase and amplitude variations of seismic waves across the NORSAR array on a 
statistical basis in order to determine the statistical distribution of heterogeneities under NORSAR. Impor- 
tant observables that have been analyzed in the past are the phase (or travel time) and log amplitude vari- 
ances and the transverse coherence functions (TCFs) of phase and amplitude fluctuations. We propose and 
develop the theory and methods of using other observables to reduce the degree of nouniqueness and 
increase the spatial resolution of the analysis. Most important are the angular coherence functions (ACFs), 
which characterize quantitatively the change in the pattern of fluctuations across the array from one incom- 
ing angle (or beam) to another and which have a different sensitivity to the depth distribution of hetero- 
geneities than the TCFs. A combination of the ACFs and TCFs allows estimation of the power spectra of 
the P wave speed variations under the array as a function of depth. We use data for phase fluctuations 
from 104 incident beams and amplitude fluctuations from 185 beams with 2-Hz center frequency at NOR- 
SAR to calculate the three ACFs and three TCFs (of phase, log amplitude, and their cross coherence). The 
measured rms travel time fluctuation is 0.135 s, and the rms log amplitude fluctuation is 0.41. The half- 
coherence widths of the ACFs are 3 ø for log amplitude and 9 ø for phase. The half-coherence widths of the 
TCFs are 18 km for phase and less than the minimmn separation between the elements of the array for log 
amplitude. In order to account for these features of the data, we adopt a two-ovedapping4ayer model for 
lithospheric and asthenospheric heterogeneities undemeath NORSAR, with spectra that are band-limited 
between the wavelengths of 5.5 and 110 km. Our best model has an upper layer with a flat power spec- 
trum extending from the surface to about 200 km, and a 4 lower layer with a K power spectrum extending 
from 15 to 250 km. The latter spectrum corresponds to an exponential correlation function with scale 
larger than the observation aperture (110 km). The rms P wave speed variations lie in the range 1-4%. 
The small scale heterogeneities may be attributed to clustered cracks or intrusions; the larger-scale wave- 
speed heterogeneifies are temperature or compositional heterogeneities that may be related to chemical dif- 
ferentiation, or dynamical processes in the boundary layer of mantle convection. 

1. INTRODUCTION 

Observations of direct P wave amplitude and arrival time 

fluctuations [Ak/, 1973; Capon, 1974; Capon and Berteussen, 
1974; Berteussen et al., 1975a, b; Powell and Meltzer, 1984], 

coda strength [Aki, 1981; Sato, 1982; Wu and Aki, 1985a, hi, 

and attenuation by scattering [Aki and Chouet, 1975; A/d, 1980; 

Wu, 1982; Sato, 1982] have all been used in attempts to deter- 
mine some statistical characteristics of small-scale structure in 

the Earth. Statistical analyses of amplitude and arrival time 

fluctuations have previously involved the variances of log ampli- 

tude and arrival time, the covariance of log amplitude and 

arrival time, and the coherence functions of log amplitude and 

arrival time as functions of spatial separation along the Earth's 

surface (the transverse coherence functions, or TCFs) [Ak/, 

1973; Capon, 1974; Capon and Berteussen, 1974; Berteussen et 
al., 1975a, b; Powell and Meltzer, 1984]. 

Theoretical analyses of the observations assume a particular 

medium structure and, by various techniques, compare theoreti- 

cal predictions of seismic wave properties to the observations. 

Previous seismic wave analyses followed Chernov [1960], who 

used the Rytov and Fresnel approximations to connect wave 

fluctuations to medium variations. His expressions involving 
general random media in the space domain are formidable, but 

he evaluated them explicitly for a statistically uniform and iso- 
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tropic random medium with a Gaussian correlation function; his 

resulting expressions have been used by previous workers to 

obtain strengths and scale sizes of the P wave speed variations 

in the lithosphere by modeling it as a uniform layer of a single- 
scale random medium. 

This paper has several purposes: first, to point out that the log 

amplitude and arrival time fluctuations at large seismic arrays 

like NORSAR and LASA have further important statistical 

information that has not been utilized in previous analyses, espe- 

cially the coherence function of waves from different sources, 

and hence different incoming directions; second, to present a 

statistical analysis of NORSAR data that includes this new 

information; third, to present results from the modem theory of 

wave propagation through random media (WPRM) that are 

based on the parabolic wave equation approach and are some- 

what simpler than Chemov's because they are formulated par- 

tially in the spectral domain and can accommodate easily any 

model of the medium spectrum; and fourth, to present a model 

of the inhomogeneifies in the lithosphere and asthenosphere 

under the NORSAR array that is consistent with the available 
data. 

Before discussing the most interesting of the new information 

available, it is important to point out that there are three vari- 

ances involved in arrival time and log amplitude fluctuations at a 

given seismic frequency; the variances of arrival time and log 

amplitude, and the covariance between the two. Each of these 

variances leads to a coherence function of any variable being 

investigated; for example, previous analyses [Aki, 1973; Capon, 

1974; Capon and Berteussen, 1974; Berteussen et al., 1975a, b; 
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Powell and Meltzer, 1984] have used the arrival time and log 

amplitude transverse coherence functions, but we will be analyz- 

ing here for the first time the transverse cross-coherence func- 

tion between arrival time and log amplitude. 
The main new information that can be obtained from an array 

that detects waves arriving from many directions ("beams") is 
the set of three angular coherence functions (ACFs): that is, the 

coherence functions of arrival time, log amplitude, and their 

cross coherence, all as a function of the angle between two 
incoming directions. Since the difference in direction between 

two beams may be as small as 1% the information at a given 

receiver probes (in a statistical sense) inhomogeneities that are 

quite small: of the order of 1 km at 60-kin depth. The 

transverse coherence functions from a coarse array with-10-kin 
spacing cannot probe to scales smaller than 10 km. 

Data on arrival time and amplitude fluctuations of the first- 

arrival teleseismic P wave signal are analyzed in a different 

fashion than data involving large-angle scattering of wave 

energy. The difference involves the realization that the full 

wave equation need not be solved, but rather a simpler equation: 
the parabolic wave equation (PWE) that adequately treats waves 

in a narrow angular cone. (Note that if coda is interpreted as 
large-angle scattered waves, it cannot be treated in the same 

way.) One consequence of using the PWE is that the theoretical 

formulas are easily expressed in terms of an integral along the 

unperturbed ray, rather than as a volume integral over all of 

space. Section 2 briefly introduces the modem theory of WPRM 
theory based on the PWE and "weak" fluctuations. Section 3 

specifically describes the theory of the angular coherence func- 
tions. 

The NORSAR data used in our analysis consist of the travel 
time anomalies [Berteussen, 1974] at 22 subarrays for 104 
beams; and the log amplitude fluctuations [Berteussen and 

Husebye, 1974] at 22 subarrays for 185 beams. All the beams 
have incoming directions within a 35 ø cone around the zenith. 

The smallest distance between subarrays is about 10 kin, and the 
largest is about 110 km. The data used were filtered for 1-3 Hz, 

so the nominal frequency is 2 Hz. It is important to realize that 
the data that we analyze are insensitive to inhomogeneities with 
wavelengths greater than about 100 km because of the finite size 

of the array and are also insensitive to inhomogeneity 
wavelengths less than about 5 km because of two effects: first 

the data are averages over subarrays that are 7 km in diameter, 
and second, the wavelengths of the seismic waves are about 4 

km. Section 4 describes the data analysis and presents results 
for coherence functions at NORSAP,. 

It does not take a sophisticated theory to draw some dramatic 

conclusions from this new analysis of NORSAR data. Briefly, 
the log amplitude ACF drops rapidly, reaching a value of 0.5 at 
an angle of 2 ø, followed by a more gradual drop to 0.1 at 10 ø. In 

contrast, the arrival-time ACF drops much more slowly, imply- 
ing much larger-scale structure. Yet all the TCFs at first glance 
have scales in the range of 10-20 km. Section 5 contains the 

quantitative comparison of weak scattering models with the 

NORSAR data. We have found that medium spectral models 
that are homogeneous in depth (that is, the spectrum does not 
change with depth) down to a cutoff depth between 0 and 500 
km cannot fit all the data at once; in particular, such models, 

which can fit the TCFs by themselves, cannot simultaneously fit 
the shapes of the ACFs. We suggest a two-overlapping-layer 
model in which the medium spectrum is characterized by a 
power law K-•' over the sensitive wave number band 

(5< •. <1001cm). An upper layer with significant small-scale 
structure (p = 0) spans 0 < z < 200 km and a lower layer with 

strength concentrated at large scales (p = 4) spans 

15<z <250kin. The P wave rms velocity variations in our 

model vary between 1 and 4%. A specific prediction of the 
model that we suggest is a rapid drop in the log amplitude TCF 

for separations of a few kilometers, followed by a more gradual 

drop with a scale of tens of kilometers. We have checked this 

prediction by determining the TCF of log amplitude from the 

individual stations at NORSAP,, using 13 nuclear explosion 

events. We find consistency with our prediction, giving us some 

confidence in our interpretation. 

2. THEORY OF ¾•/PRM 

Many aspects of seismic wave propagation in the Earth involve 

examples of a more general branch of science; namely, wave 

propagation through random media (WPRM). Progress in this 

field has involved coupling of the theory of WPRM with investi- 

gation into the detailed character of the (generally fluid) random 

medium. At least two theoretical approaches may be taken: first, 

the problem may be approached from a deterministic point of 

view in which the analysis is carded out for particular complex 

media. Numerical simulation is the extreme of this point of 

view. Second, the problem may be treated statistically from the 
outset. In this approach, one assumes a spectral model for the 

medium and attempts by analytical means to predict the statisti- 

cal behavior of the propagating wave field. Here we take this 

second point of view. 

The modem theory of WPRM may be said to have begun in 

the late 1940s and early 1950s [Bergmann, 1946; Mintzer, 1953; 
Chernov, 1960; Tatarskii, 1971] when researchers used pertur- 

bation techniques to develop general formulas for propagation 
through weak fluctuations. These formulas involved the Born 

approximation and hence a volume integral over the medium 

inhomogeneities. In comparing with experiment they assumed 
that the medium was characterized by a Gaussian correlation 

function, but unfortunately, no natural medium is known with 

this property. 

The problem of radio wave propagation in and through the 
Earth's ionosphere has been of interest since the 1940s. This 

field made a crucial contribution to WPRM through the work of 
Leontovich and Foclc [1946] and Foclc [1950], who introduced 

the parabolic equation method, which treats waves that are con- 

centrated within a small angular region around the direction of 

propagation. Nearly all subsequent analytic work has used the 

parabolic equation as a starting point, which restricts validity to 

waves with directions confined within a cone of full angle about 

30 ø. A great advantage of the parabolic equation is that it results 

in formulas requiring line integrals along deterministic rays, 

rather than volume integrals. 

A major step forward in WPRM was taken in the 1960s, in 

response to developing understanding of Kolmogorov's pioneer- 
ing characterization of the p = 11/3 power law spectrum of 
homogeneous, isotropic turbulence (HIT). A theory for wave 
propagation through HIT was developed, primarily by Soviet 
workers, and successfully applied in the case of weak fluctua- 

tions to light transmission through the atmosphere, making use 
of the parabolic equation. Their work was summarized in the 

influential book by Tatarsldi [ 1971] and a review article by Pro- 
khorov et al. [1975], and more recent results in this field are 

covered in the review articles by Ishimaru [1977], Fante [1980], 
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and Tatarskii and Zavorotnyi [1980], as well as in the book 

edited by Strohbehn [1978]. 

It is now understood that weak fluctuation theory applies 

when the variance of log amplitude is small compared with 
unity. We realize that many seismic data sets have large inten- 

sity variations, but in this paper we consider only those for 

which the log amplitude variance is small. For example, the 

NORSAR data set of subarray amplitude variations has a log 

amplitude variance of 0.2. We defer discussion of the problem 

of strong fluctuations to the future. 

Seismic rays often tum through large angles, so that the para- 

bolic approximation is not clearly appropriate. However, if the 

wave fluctuations are caused by medium variations that are 

confined to regions near the source and receiver (within a few 
hundred kilometers), then the rays are not changing their angles 

significantly, and the parabolic approximation is valid. 
Work on fluctuations in sound transmission through the ocean 

during the 1960s was largely a misguided attempt to graft the 

concept of HrI' onto ocean variability [Tatarskii, 1971]. By the 
mid-1970s, oceanographers had identified internal waves as the 

most important source of variability on time scales from a few 

minutes to a day [Garrett and Hunk, 1975]. 
The ocean internal wave medium provided a challenge to 

those interested in WPRM, particularly in strong fluctuations. A 

s'ignificant response to this challenge was developed over the 
late 1970s. The first success in this area was achieved for weak 

fluctuations by Hunk and Zachariasen [1976], whose absolute 
calculations of variances in phase and log amplitude from inter- 

nal wave effects were within a factor of 2 of the available exper- 

imental results. Strong fluctuations were another matter. 

A further basic step forward took place between 1975 and 
1977, with the consideration of the arbitrary field of wave speed 

in Feynman's path integral as a statistical random medium 
[Dashen, 1979; Flatte' et al., 1979], in combination with the 

understanding of the ocean internal wave field as the source of 

medium fluctuations. These ideas led to successful comparisons 

with a number of ocean acoustics experiments, summarized in 

the monograph by Flatte' et al. [1979], the review article by 

Flattd [1983], and subsequent publications [Dashen et al., 1985; 

Reynolds et al., 1985; Flattd and Stoughton, 1986; Stoughton et 
al., 1986; Flattd, et al., 1987a, b]. 

With this background in mind, we now apply parabolic equa- 

tion, weak-scattering theory to P wave teleseismic propagation. 

We take the point of view that the seismic waves arrive a few 

hundred kilometers below an array like NORSAR in essentially 

plane wave form: that any effect due to inhomogeneities near the 

source is too large scale to be observed by a 100-km array and 

that the very deep mantle has imposed no significant structure on 

the wave that has scales less than the 100-km size of the array. 

The reason that the inhomogeneities near the source have litfie 

effect is that only a very small range of initial angles at the 

source is seen by the array, and the spreading of the ray tube 

magnifies any small-scale fluctuations of the wave front into 

large-scale fluctuations at the receiver. 
Furthermore we assume that the effect on the arrival time and 

amplitude fluctuations of inhomogeneities within a few hundred 

kilometers depth below the array results mainly from wave 

scattering within a reasonably narrow cone. We realize that 

coda can represent scattering at larger angles; however, the first 

few seconds of P wave arrivals are restricted to small angles. 
Since NORSAR data (by subarray) show a log amplitude 

variance of 0.2, we use weak fluctuation theory. It has been 

Fig. 1. Schematic of P wave propagation through the upper mantle, 
lithosphere, and crust to a surface seismic array. The heavy solid 
straight line is the incident wave front, the light solid horizontal line is 
the wave front arriving at the receiving array in the absence of fluctua- 
tions. The wavy line could represent either the wave front arrival time 
accros the array or the intensity at each point in the arriving wave front. 

established that even if intensity fluctuations are large, if they 
are averaged over a small source (or receiver) region, such that 

the residual (larger scale) intensity fluctuations are small, then 

weak-fluctuation theory can be applied [Wang et al., 1978]. 

There are probably aspects of this averaging in the NORS AR 
data because of the 7-km width of a typical subarray and 

because of fmite wavelength effects, which result in the 
observed log amplitude variance of 0.2. 

Finally, we neglect the small deterministic refraction in the 
few hundred kilometers below the array; in the absence of inho- 

mogeneities, the wave fronts remain plane in the same direction. 

(See Figure 1.) 
We now state the results of weak-scattering theory under the 

above restrictions. First, define the medium P wave speed as a 

function of position: 

c(.x) = co + (1) 

where Co is a reference deterministic speed that might depend 

on depth z, and Ix ( .x ) is a random function with zero mean that 
represents inhomogeneities. The statistics of IX are assumed to 
be quasi-homogeneous. That is, we can define a spectrum at 

depth z, and this spectrum is allowed to change slowly with 

depth. In this case, the character of IX (.x) is described by a 
three-dimensional spectrum W ( .K, z ), such that 

i i at .( x- x') <IX(.X)IX(.X')> = d3.KW(.K,z)e (2) 

where we have assumed that the spectrum depends on a three- 

dimensional wave vector _K and depth z, and the angle brackets 
represent an average over the statistical ensemble of random 

media. Since the spectrum does not depend on transverse posi- 
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tion and depends only slowly on depth z, the medium correla- 
tion function < g ( .x ) g (.x ') > depends only on the difference 
vector .x- .x', except for a slow dependence on z which is 
implicit. Note the normalization of the spectrum is such that 

where < Ix 2 > is the variance of the fractional change in wave 
speed due to the random inhomogeneities; it can depend on 

depth z. 

Consider a given frequency co in the incoming wave. That 

frequency has wave number k = to/Co. Let the complex wave 

function arriving at the center of the array be 

ulJ =_ A e i* ulJ o (4) 

where •o is the wave function that would arrive in the absence 

of the random inhomogeneities and where the amplitude A and 

phase • are defined in this relation. Define the log amplitude as 
u, so that 

ln(•/•o) = u + i q• (5) 

It is known in the case of weak scattering confined to an narrow 

cone, in an intrinsically dispersion-free medium, that the arrival 

time fluctuation x and the phase fluctuation • are in one-to-one 
correspondence: 

•=oyr 

We now point out that for a specific realization of inhomo- 
geneities, u and • are functions of both the receiver position .x 
and the source position, represented by a unit vector ? describ- 

ing the direction of the incoming plane wave. (See Figure 1.) 
Note first that we have made the approximation that the ran- 

dom medium is "horizontally homogeneous"; that is, the spec- 

trum is independent of horizontal position. We also consider 
waves arriving within 30 ø of the zenith, so we avoid some sim- 
ple geometrical corrections that are important only for highly 
slanted rays. We can split the three-dimensional wave number 

.K into a component along the z direction K, and a two- 
dimensional vector .Kr transverse to z: that is, .Kr is in the x-y 
plane. Then the medium spectrum can be expressed as 

W( •,z ) -- W(K,, .Kr ,z ) (6) 

With the above definitions and approximations, the result 

[Munk and Zachariasen, 1976; Flattd et al., 1979' S.M. Flatt6 
and T. Moody, manuscript in preparation, 1987] for the vari- 
ances of the seismic wave fluctuations at the surface of the earth 

are 

R 

<u2> = 2nk2 I dz I d2-Kr W( O, Kr, z )sin2[Kr2z/2k] (7) 
R 

= I w(o,g,z ) (8) 
R 

s•[Kr 2z/• ] cos [Kr 2z/• ] (9) 

0.0 
-0.2 0.0 0.2 0.4 0.6 0.8 

P 

Fig. 2. Variance ratio • versus amplitude-phase correlation D for uni- 
form extended media. The solid circles are from Aki [ 1973]. The solid 

squares are from Capon [1974]. The open circle comes from our 
analysis of NORSAD, data. The quantity p is the spectral power law 
index (equation (30)). Position along one of the curves is determined by 
the wave parameter D=4R//ca 2 where R is the propagation range, k is 
the wave number, and a is the correlation length. 

An example of information to be gained from evaluation of 
the variances is given in Figure 2, which plots the two quantities 

Urll• 

y - (10) 
•r• 

< 
p = (11) 

where u2• = < u2> and •2• = < •2>. Both y and p are ratios 
that do not depend on the overall strength < g2 > of the inho- 
mogeneities. For a medium that extends to depth R with 
fluctuation statistics that are independent of depth, both y and p 

depend on one parameter. Given a scale a that characterizes the 

spectrum W( .K), that parameter is D = 4R/(k a2), which was 
defined as the wave parameter by Chernov [1960]. bor each 

choice of medium spectrum there is a unique curve in y- p space 

traced out through different values of D. Some examples are 

given in Figure 2 along with some experimental results. It is 
seen that spectra of the power law type are a better fit to the vari- 
ances than a Gaussian spectrum and that the values of p cluster 

around 0.3, while the values of y vary substantially. Note that 

higher seismic frequencies will tend to have lower y because 
increases with frequency faster than U•m•. Of course, a medium 
whose spectrum is dependent in some way on depth will lead to 
p, y values that do not lie on these sample curves, but the general 
trend of smaller p for power law spectra versus Gaussian spectra 
will apply. 

Further information beyond the variances is available in 
coherence functions. For example, the phase coherence between 

two receivers at positions x. •r and x. 2r can be expressed as 

<q•(.x•r )q•(.x2r )> = <q•(.xr)q•(0)> (12) 

where R is the depth of the deepest inhomogeneities being 
analyzed. 

where we have defined x.r m x.2r - x. It and we have used hor- 
izontal homogeneity of the specmnn. We define the transverse 
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coherence functions (TCFs) corresponding to each of the above 

variances < u (.xr) u (0) >, < • (.xr) • (0) >, and 
< u (.xr) • (0) >, respectively. Again, since horizontal homo- 
geneity of the spectrum is assumed, these functions depend only 

on the difference between the two positions. The expression for 

the TCFs in terms of the medium specman are (Flatt• and 

Moody, manuscript in preparation, 1987) 

R 

< u ( x r) u (0) > 2•rk dz d 2 KT W (0, KT, z ) u. -0.5 = 

' ' • 1.0 

sin 2 [Kr 2 z/2k ] cos[ .Kr' .x r ] (13) 
u. 0.5 

R 

<, ( (0) > I w(0, = 

o 0.0 

cos 2 [Kr2z/2k]cos[.Kr ß xr] (14) - 

'II <u (.xr)e(0)> = 2rdc dz 2.KrW(O, Kr, z ) •- 1.0 

cos[Kr 2 z/2k ] sin[Kr 2 z/• ] cos[ .Kr' .x r ] (15) 

Since W is assumed not to depend on the direction of .K r but 
only its magnitude (horizontal isotropy), the .Kr integral can be 
expressed in polar coordinates, and the angular integral may be 
done. The results are then a function only of the magnitude of 

the separation x.r and not its direction: 

R • 

< u (Xr) u (0) > = 4•2k2 I dz I Kr dKr W (0, Kr, z ) 
sin2[Kr2z/2k] Jo(Krxr) (16) 

R • 

< *(Xr) ,(0) > = 4•2k2 I dz I Kr dKr W(0, Kr, z ) 
cos2[Kr 2 z/2k ] Jo (Krxr) (17) 

R • 

< u (xr), (0) > : 4n2k2 I dz I Kr dKr 14' (0, Kr, z ) 
sin[KT2z/2k]cos[Kr2z/2k] J0(Kr xr) (18) 

We find it convenient to work with normalized TCFs defined 

as follows: 

< ½(Xr) •(0) > 
< • (Xr) • (0) > • = 09) 

<u (xr)u (0)> 
< u (xr) u (0) > s = 2 (20) 

<u > 

< u (xr ) u (0)> 
< u (xr) ½(0) > • : (2•) 

Unto •)rms 

These normalized functions, like the quantities 7 and p, do not 
depend on the overall strength < Ix 2 > of the medium fluctua- 
tions. We note that the values of these coherences at xr = 0 are 

1, 1, and p, respectively. 

Note that our expressions for the variances and the TCFs are 

simpler than the usual Born approximation volume-integration 

expressions (S.M. Flatt• and T. Moody, manuscript in prepara- 

tion, 1987). Here we have a one-dimensional integral along z 

and a one-dimensional integral over the spectrum. We see that 

1.0 .... I .... I .... I .... 
LogA 

0.0 

0.5 

0.0 

-0.5 

'35 

.... I .... I .... I .... 

0 20 40 60 80 

r T (km) 

.0 ..... I '1:•' 

.5 

.0 

.5 

GROSS 

200 1[••__•••_ 
,, , , I,, , ,I .... 

0 10 20 30 

0 (degrees) 

Fig. 3. The three transverse coherence functions (TCFs) and the three 
angular coherence functions (ACFs) for an extended medium with an 
exponential correlation function with scale a = 10 km and a seismic 
frequency of 1 Hz. The different curves are results for media that extend 
from the surface to different depths given by the curve labels in kilome- 
ters: that is, varying from 35 to 500 km. 

the log amplitude fluctuation u is weighted toward higher wave 

number K r than the phase fluctuation due to the "Fresnel filter" 

factors sin2[KT2 z/2k ] and cos2[KT 2 z/2k ]. We also see that this 
weighting is more pronounced for smaller z; in other words, 

fluctuations of u with wavelengths )•a:> 2•r(z/k) • are 
suppressed. Note that there is more suppression near the sur- 

face; it is difficult for wave speed fluctuations to cause ampli- 
tude fluctuations without a sufficient drift space before the 
receiver. 

It is helpful to show some examples of the normalized TCFs 

for an interesting medium specmma. Figure 3 shows the three 

TCFs for a medium with an exponential correlation function 
with scale a = 10 kin. That is, 

W(.i.K) = < Ix2 > a3 1 (22) 
•2 (1 + K 2 a2) 2 

We see that the width of the phase coherence function is larger 
than the width of the medium correlation function, while the 

width of the log amplitude coherence function is smaller. This 

is due to the Fresnel-filter factor which favors high wave number 
and hence small scales in the log amplitude coherence. 

3. ANGULAR CORRELATION FUNCTIONS 

Consider teleseismic waves arriving from two different direc- 

tions indicated by unit vectors 9t and .02; let the vectorial 
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converging to the same point on the surface of the earth from the 

two different directions .0• and .02. (See Figure 4.) 
The normalized ACFs have at least two import_ant properties: 

First, they provide another set of observables from array data 
that give a different weighting to inhomogeneities at different 
depths than the TCFs and hence provide further important con- 
straints on medium models. Second, the variable 0 depends on 

having at least two sources; since there are many more source 

(earthquake) locations than there are stations in a typical seismic 

array and since these earthquakes provide angular differences 
down to fractions of a degree, the ACFs provide a much finer 

resolution of the medium inhomogeneities than the TCFs. For 

example, the NORSAR subarrays are separated by distances of 

10 krn or more, so that the transverse coherence for separations 

xr smaller than about 10 km cannot be observed. However, 

observations with angular differences in incoming direction of 

about 1ø are not uncommon, providing a probe of scales of i km 

even at a depth of 60 km. 

Predictions for normalized ACFs for the medium specmma of 

(22) (an exponential medium correlation function) are shown in 

Figure 3. Now the depth to which the medium extends becomes 

a more important factor in determining the curves. We see that 

the ACFs become narrower for media extending to larger depth 

if other parameters are kept the same. 

Fig. 4. Schematic of incident P waves from two different sources 
incident on a seismic array (see Figure 1). 

difference in angle be .0 = .02- _01. Finally, the magnitude of 
the angle between the two unit vectors is denoted by 0. It is well 

known that the patterns of u and • on the Earth's surface will be 
different for waves from the two different directions, and this 

difference will be greater for larger angular differences: that is, 

larger 0. (See Figure 4.) If we again make the assumption of 

horizontal homogeneity and isotropy of the medium fluctuation 

specmnn, then statistical correlation between the log amplitudes 

and phases of the waves from two different directions will be a 

function only of the magnitude of the angular difference 

between the two waves; that is, the magnitude of .0 and not its 
direction. We can then write (S.M. Flatt• and T. Moody, 

manuscript in preparation, 1987): 

<0,>- I 
sin2[ Kr2z/2k ] J0 (Krz 0 ) 

R ** 

<, (0), (0) > = 4n2k2 I dz I Kr dKr W(0, Kr, z) 

(23) 

(24) cos2[ Kr 2z/2• ] J0 (Kr z 0) 
R ** 

< u (0), (0) > = 4n2k2 I dz I Kr dKr W (0, Kr, z ) 
sin[Kr2z/2k ]cos[Kr2z/2k ] J0(Krz 0) (25) 

Thus these angular correlation functions (ACFs) are very 
similar to the TCFs except that the transverse separation xr has 
been replaced by z 0; in other words, the transverse separation is 
a linear function of depth, given by the separation of two rays 

4. EXPERIMENTAL RESULTS 

Previous results for the variances have been given by Aki 
[1973], Capon [1974], Berteussen et al., [1975a, b], Powell and 

Meltzer [1984], and others. In many cases they presented their 
results in terms of a uniform, isotropic random layer with a 
Gaussian spectrum. We have inverted the relevant equations 
where necessary to revive their variance data with no imposition 
of a medium model. In cases where event-by-event results were 
given, we have averaged all the events presented. The results 

are given in Table 1. We see general agreement between the 

various determinations when expressed in this form, except for a 
few cases where a very small number of events were used. 

. Variance results are graphed in Figure 2, where it is seen that 

individual events have a reasonably large scatter; averages are 
consistent with a power law type of medium rather than a Gaus- 
sian spectrum. 

Previous results for TCFs were restricted to the log amplitude 
and phase without the cross-coherence TCF. Aki [1973] and 

Capon [1974] have presented approximate TCFs from LASA 
data showing decorrelation scales of the order of 10 km. 

Previous results for ACFs consist only of qualitative com- 
ments. Berteussen [1975] remarks that events are well corre- 

lated in amplitude fluctuations if they are within a slowness 

difference of 0.5 s/deg, which implies that their incoming direc- 

TABLE 1. Experimental Values for Variances 

Reference •m•, s unm P 

Aki [1973] 0.13 0.32 0.35 

Capon [1974] 0.10 0.40 

Berteussen et al. [1975a, b] 0.006-0.11 0.2-0.4 

This work 0.135+0.004 0.410-!-0.006 0.26-!-_0.03 
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Fig. 5. Subarray spatial distribution at NORSAR. Subarray 01A is at 
latitude 60.82 N and longitude 10.83 E. 

tions are within about 2 ø and gives an example showing that two 

events are substantially decorrelated if they are 7 ø apart in 
azimuth, which implies that their incoming directions are 5 ø 

apart. 

There are many other publications that include attempts to fit 
a deterministic structure to the data from one or many events; 

we will not try to discuss their data, as it would have been 

presented in such a different way that the observations relevant 
to our attempts to observe small scale structure would not have 

been given. We discuss the relationship of our results to some 
of the deterministic results of others in section 6. 

We now discuss our presentation of the NORS AR subarray 

data given in two NORSAR reports by Berteussen [1974] and 
Berteussen and Husebye [ 1974]. The data have been filtered in 

two important ways. First, a frequency filter has restricted the 
seismic frequency to 1-3 Hz, so the nominal center frequency is 
2 Hz. Second, the elements within the subarrays have been 

added coherently; each subarray has about six elements spread 
over a circle of radius -3.5 km. The spatial distribution of 

subarrays is shown in Figure 5. 
The travel time anomalies given by Berteussen [1974] are 

given for 104 beams; each beam is an average over a number of 
events whose source locations are close such that their incoming 

directions at the NORS AR array are within a few tenths of a 

degree. The travel time anomalies consist of arrival time resi- 

dues with respect to a "best plane wave." We have removed the 
mean arrival time for each beam in our calculations. Figure 6 

shows the arrival angle distribution of these beams. 

The subarray intensity variations are given by Berteussen and 

Husebye [1974] for 185 beams. We have normalized these data 

such that for each beam the mean log amplitude is zero. 

With this brief description of the gathering of the data (more 

details are given in the original reports) we now describe our 

method of estimating variances, TCFs and ACFs. More details, 

including our method of estimating the associated statistical 

errors, are given in the appendix. 

If we had subarrays that were far apart and beams that were 

far apart in angle, then the information from each subarray and 

from each beam would be statistically independent. The subar- 

rays are far enough apart in location that they are reasonably 
independent for the purposes of error calculations. However, 

the beams are often close together, and hence the assumption of 

independent beams is not valid. If the beams are not indepen- 

dent, then the calculation of any quantity should use an 

appropriate weight for each beam. Let b be an index over the N 

beams; then we define ws as the weight of beam b. The appen- 
dix describes our form for the weight. In order to calculate rea- 
sonable errors, we must establish the effective nmber of 

independent beams; this is also done in the appendix. We note 

that the number of independent beams is different for the dif- 
ferent TCFs; we find 42.1, 11.5, and 32.4 for the effective 

nmber of independent beams in determining the TCFs of log 
amplitude, phase, and their cross-TCF, respectively. The ACFs 

have similar nmbers, although the particular number varies 
with the angle. 

To describe our formulas for the determination of experimen- 

tal quantities, consider first the variances. We have 

1 • wb • • (Ub,)2 (26) < u2>: N• b:• .:• 

1 • w• • • (,•,)2 (27) <,2> = N. •:• .:• 

z Z Z (28) <u,>: /V. •:• ,:• 
where b is an index over the N beams, Nw = •ws, and s is an 
index over the M subarrays. The only difficulty in the above 

calculations is that the sets of beams for u and • are not identi- 
cal. In order to calculate the cross coherence, we have searched 

through the two sets of beams and found corresponding pairs 
that are within 1 ø of each other and have considered them the 

same beam. The calculation of the errors is somewhat involved 

100 ''''i:'''!''' '1''' ß.. -30• . . 
50 • % - 20- •.• , 

' 

-'oo , , I , , , I , , I , , 
-100 -50 0 50 100 

U x (ms/km) 

Fig. 6. Arrival angle distribution of the various beams defined at NOR- 
SAR. Each beam represents data from a duster of earthquakes that are 
close enough that their seismic waves arrive at NORSAR with angles 
that are within a few tenths of a degree. The circles are labelled with the 
angle from the zenith in degrees. The axes are labelled with the com- 
ponents of slowness. 
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Fig. 7. Observed normalized TCFs and ACFs at NORSAR. Note that 
the regions of rapid variation in the TCFs are not covered well by the 
data, because the different subarrays have a m'mimum separation of 
about 15 km; the regions of rapid variation in the ACFs are well covered 
by the data, because the minimum separation in angle between the dif- 
ferent beams is in the range of a few tenths of a degree. 

and is given in the appendix. The results of the calculations of 

(26)-(28) are given in Table 1. 

The TCFs are calculated with formulas analogous to (26)- 

(28). In order to plot a point at a transverse separation xr, we 
include in the sum all pairs of elements with their separation xr 

within a given bin. The results of this procedure are shown in 

Figure 7. We see that the smallest separation available is about 

15 krn, and the coherence is already below 0.5 at that separation. 
Finally, we calculate the ACFs by the same method, with the 

order of summation reversed and with selection of pairs of 

beams whose angular difference is within a specified bin. The 

ACFs are also shown in Figure 7. We see that the experimental 

points in the ACFs have as much statistical precision and more 
resolution within the variable range for which there is significant 

variation in the coherence than the TCFs. The higher resolution 
of the ACFs compared with the TCFs follows from the closeness 

in arrival angle of the beams as compared to the spatial separa- 
tion of the subarrays. 

Certain dramatic features of the ACFs provide constraints on 

earth structure models. The phase coherence function has a 

smooth almost linear drop to a small coherence at an angle of 

about 15 ø. The log amplitude coherence has a distinctively dif- 

ferent shape than the phase coherence; it drops sharply to 0.5 at 
an angle of about 2 ø but retains significant correlation out to 

angles of order 10% We shall see in the next section the impli- 
cations of these features for Earth models. 

It is to be emphasized at this point that the nature of the NOR- 

SAR array restricts the scales of Earth structure that can be 

observed with NORSAR data. The approximate diameter of the 

ß array is 110 km. Because means and "best plane waves" have 

been subtracted from the data across the array, we cannot 

• observe Earth structure with scales larger than about 110 km. 
Because the data consist of coherent addition of stations over 

subarrays that are about 7 km in diameter, we cannot observe 

structure with wavelengths smaller than about 5 kin. Further- 

more, our typical seismic wavelength at 2 Hz of 4 km also 

implies that we cannot observe structure wavelengths less than 
-4 kin. These facts have to be taken into account in the theoreti- 

cal models with which we compare the experimental data. 

It is true that the separations of stations within subarrays are 
in the 1- to 7-kin range. We have obtained station data for 13 
nuclear explosion events of high signal-to-noise ratio at NOR- 

. SAP,. We have found that the station-by-station time anomalies 
' are less than 0.1 s and are difficult to measure reliably because 

of the differing signal temporal structures. The signal intensifies 
are more reliable; we have taken a 5-s time window at the start 

of the signal and have calculated the log amplitude TCF in the 

same manner that we did for the subarray data. The results will 

be shown later when we compare models to the data. 

It is of interest to note that the results of this and the previous 
section, that is, the TCFs and the ACFs, can be used to under- 

stand the errors and possible biases of sparse arrays in measur- 

ing the magnitude of an earthquake or nuclear explosion. The 

3o analysis technique of McLaughlin et al. [1988], along with our 

experimentally determined coherence functions, could be 

applied to this problem. 

5. SPECTRAL MODELS OF EARTH STRUCTURE 

UNDER NORSAR 

We picture the crust, lithosphere, and asthenosphere below 

the Earth's surface as having random variations in seismic wave 

speed that are described by a spectrum that may depend on 
depth and may be anisotropic. We assume that the spectrum 

does not depend to first order on small changes in geographical 
position within the region under the NORSAR seismic array. 
The most desirable situation would be one in which we had 

enough experimental information to invert the data for all the 
characteristics of the spectrum describing these variations. We 

do not delude ourselves into thinking that our present data set is 

adequate for the task. However, we can impose some con- 

straints on these type of models by analysis of the data, and we 
can find an Earth model which is at least consistent with the data 

and with what we know of the Earth's struc•e from other 

information. 

We need to modify our theoretical expressions for the fact 

that the NORSAR array has a finite size and for the fact that the 

NORSAR data are averaged over subarrays and is at finite 

nonzero wavelength. The finite size is modeled by removing 

from the spectrum all wavelengths greater than 110 km. There 

is a considerable uncertainty in exactly where this upper 
wavelength cutoff should be because it depends on exactly how 

the "best plane waves" were removed and how averages of log 
amplitude were made; the main comment to make is that this 

cutoff should be arranged to fit the coherence functions at large 

separations; as a result the observed large-separation coherences 

are not a strong constraint on Earth models. This cutoff does not 
introduce artifacts into the coherence functions at small 

transverse separations or at small angular separations. 
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The subarray averaging might be modeled by assuming that 

the data are averaged uniformly over the area of a circle of 
radius ro = 3.5 km. This convolution corresponds in the spec- 

tral domain with multiplying our spectra by the following func- 
tion of Kr: 

IZlz(Krrø)l 2 (29) C (Kr) --- Krro 

This function has its first zero at Krro = 3.8, or a medium- 

wavelength scale of 5.5 km. In our theoretical models we use a 

small-wavelength cutoff of 5.5 km. Again, this cutoff does not 
introduce artifacts into the coherence functions, but it does affect 

their exact shape at very small separations (of order 5 km or 1 o); 
future investigation of individual station waveforms will allow a 
more rigorous treatment of these cutoffs. 

The first model we may try is one with an exponential correla- 

tion function with a scale length of 10 km, following those 

authors who have looked only at TCFs [Ak/, 1973; Capon, 1974; 

Capon and Berteussen, 1974; Berteussen et al., 1975a, b; 
Powell and Meltzer, 1984]. (See Figure 8.) We see that the TCF 
data and the ACF of phase are not badly fit with medium varia- 

tions extending down to about 200 km, but the ACF of log 

amplitude and the cross ACF have significant disagreements 
between model and data. The disagreements have to do with the 

shapes of the ACFs in the regions of their rapid variations: at 

angles less than 10 ø. We should point out that disagreements at 
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There is a wide variety of models with power law spectra 

because the power law index p may change with depth, as may 

the strength A. We have tried many examples of uniform media 
down to a cutoff depth, but none of the fits were judged to be 

acceptable. For example, Frankel and Clayton [1986] suggested 
the use of a uniform layer with a power law medium with p = 3, 

-0.5 

r T (km) 0 (degrees) 

Fig. 8. Comparison between the data and calculations based on uniform 
random extended media with exponential correlation functions having a 
scale length of 10 km. The media extend from the surface to depths of 
35 to 500 km. Note that the best medium extent for the ACF of phase is 
about 200 kin, but that model does not give a good fit to the shapes of 
the ACF of log amplitude and the cross ACF. 

which they refer to as a self-similar medium. Figure 9 shows 
0 20 40 60 80 0 10 20 30 the predictions of such a medium; we see that the fit is better 

than that of the exponential medium, but some disagreements 

remain in the ACF of log amplitude and the cross ACF at angle•, 
less than 10 ø. 

We have found one combination of power law media that we 

feel does fit the data reasonably well. We have not yet com- 

pleted a full inversion to obtain a quantitative idea of the param- 

W(.K) = AK- (30) 

large angles are probably less important because the shapes of 
the functions there are affected by the finite apemare of the 

NORSAR array. It is of interest even in this rather unsatisfac- 
tory model that structure is necessary down to several hundred 
kilometers to give a fit with reasonable average scale lengths. 

The data in Figure 2 indicate that a power law spectrum is 
also appropriate for comparison to the data (in this case, •/and 

p). We will therefore restrict further models to a particular type 
of spectrum: a power law expressed in the form 

Fig. 9. Comparison between the data and calculations based on uniform 
random extended media with power-law spectra having index p = 3 
(self-similar). The media extend from the surface to depths of 35 to 500 
km. As in Fig. 8, the best medium extent for the ACF of phase is about 
200 km. This self-similar model gives a better fit than the exponential 
correlation model, but the self-similar model still does not fit the shapes 
of the ACF of log amplitude and the cross ACF. 
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Fig. 10. Schematic representation of our best model of random varia- 
tions under the NORSAR array. The model spectra have sharp cutoffs at 
low and high wave number to simulate the effects of the finite array 
aperture, the finite size of the subarrays, and the finite seismic 
wavelength. 

eter uncertainties in this model. Our best model consists of two 

overlapping layers (Figure 10). The first layer from the surface 

down to 200-km depth has a power law index p = 0: in other 

words, a band-limited white specmma. The second layer lies 

between depths of 15 and 250 km and has a power law index 
p = 4 and a strength such that the p = 0 and p = 4 spectra cross 

at K = 0.31 km- •. Note that p = 4 corresponds to the high wave 
number behavior of an exponential correlation function. 

Comparison of the data and our best model is shown in Figure 

11. One impoRant feature of the data that constrains the model 

is the rapid decrease in the log amplitude ACF compared with 

the phase ACF. Most single-layer models have a similar shape 

for the two ACFs; in our best model, the log amplitude ACF is 
controlled by the shallow, flat spectrum layer, and the phase 

ACF is controlled by the deep, steep specmam model. 

Figure 12 shows the predictions of several variations on our 

best model: the shallow layer alone, the deep layer alone, the 

result of extending the shallow layer to 250 km instead of only 

200 km, and the result of extending the deep layer up to the 

surface instead of only to 15-km depth. The fits are clearly infe- 

rior to the best model, although the differences of the latter two 

examples from our best fit model are not terribly striking. 
The rms variations in phase and log amplitude are directly 

proportional to the rms variation in P wave velocity in our 

model. However, they are also proportional to the square root of 

the medium correlation length in the vertical, which we have not 

measured. If we assume that the medium specmun is isotropic, 

then taking the observed rms value of u as 0.41, we deduce an 

rms variation in P wave velocity of 0.9% in the upper layer and 

0.5% in the lower layer. If we use the observed rms value of 

which is 1.70, we find values of 2.2 and 1.3%. We regard the 

difference between the values obtained from log amplitude vari- 

ance and from arrival time variance as not very significant 
because the determination of overall variance, as opposed to 

spectral level, is notoriously difficult [Flatte' et al., 1979]. The 

difference does imply that our result for rms P wave velocity 

fluctuation must be stated with large uncertainty; that is, it is 

between I and 4%, if an isotropic specmma is assumed. How- 

ever, it does not seem likely that isotropy is appropriate. If we 

define the anisotropy ratio as the horizontal correlation length 
over the vertical correlation length, then our result for the velo- 

city fluetuarion is proportional to the square root of that ratio. 

The fact that the upper and lower layers have rms variations 
within a factor of 2 of each other indicates that neither are 

second-order effects; both layers are significant in determining 
the wave fluctuations observed in the seismic array. 

The predictions for the phase and cross TCFs fit the data rea- 

sonably well, but the log amplitude TCF prediction appears, 

mainly because of one data point, to decrease more rapidly than 

the data. After observing this discrepancy we used 13 nuclear 
explosion events at NORSAR to determine a more accurate 

experimental log amplitude TCF. (See section 4.) This TCF 
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Fig. 11. Comparison between the data and the predictions of our best 
model, consisting of two overlapping layers. Each layer has a power law 
speetnun characterized by spectral index p. The characteristics of the 
two layers are (0<z <200 kin; p = 0) and (15<z <250 km; 
p = 4) with normalization such that in the overlapping depth region 

1 
they have equal spectral levels at wavenumber 0.31 km- . The fit is 
quite reasonable, panicularly in the regions of rapid variation (less than 
10 ø in the ACFs). 
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•_ 0 our spectral model is a few percent over the wavelength band 
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. • ties of materials combined with the above geophysical parame- 

ters. 
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,,[ .... • .... • .... 1.0 We may note some relationships of our results to previous 

fi ' Cross I studies of deterministic stamcture in the same depth regime. All of these studies deduced structure whose lateral variations are at 

ß . o.5 scales larger than 100 km. Our data discriminate against stmc- 

ß " ture with lateral wavelengths greater than 110 km. Therefore 
our results are complementary to the following deterministic stu- 

"- .............. i*; ..i .................. 0.0 dies, whose results should in some cases be geologically related 
to ours. 

Haddon and Husebye [1978] constructed a model with a sin- 
-0.5 

0 20 40 60 80 0 10 20 30 gle, deep dipping layer (thin lens model), calculated its predic- 
t T (kin) 0 (degrees) tions by the parabolic wave equation, and compared them with 

the spatial structure of arrival time and amplitude across the 

NORSAR array. They concluded that a layer at a depth of 
150-200 lcm explains a good fraction of the variances. Their 

involves single seismometer stations rather than subarray aver- 

ages and hence involves separations down to 3 kin. We were 

gratified to observe the agreement between our best model pred- 

iction and this data set obtained after we had developed our best 

model mostly from the ACFs. (See Figure 13.) 

6. GEOPHYSICAL INTERPRETATION OF THE OBSERVED 

MED• VARIATIONS 

The Earth is characterized by vigorous geological activity 

driven by convection in the mantle. It is believed that most of 

the temperature increase with depth in the Earth occurs within 

thin boundary layers at the top and bottom of the manfie. But 

this is a statement about averages, and numerical simulations of 

manfie convection have indicated that strong variations may 

occur in these boundary layers [Boss and Sacks, 1985; Olson et 

al., 1987]. These variations may involve temperature differ- 

ences of up to 1000 K, with spatial scales perhaps comparable to 

the postulated boundary layer thicknesses of order 100 km. The 
variations may also involve compositional differences or, in the 

upper manfie, variations due to partial melting. Although there 

is a wide variety of possibilities for the formation of Earth inho- 

mogeneities, we think it helpful to note that our observations can 

be interpreted as small-scale variations driven by dynamic man- 

fie convection, or as fossilized compositional differences, 

perhaps induced by convective processes in earlier eras. 

The change from the shallow layer with its abundant small- 
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Fig. 13. The TCF of log amplitude for 13 nuclear explosion events 
(eight from the Soviet Union, five from the United States) detected at 
NORS AR (open circles). The data were calculated from individual- 
station waveforms; note that the individual stations have separations that 

range down to about 3 km. We see that when the resolution is available, 
the coherence function drops to less than 0.5 in a few kilometers. For 
comparison, the solid circles are the same points shown in Figure 7, 
which represent subarray-averaged data. 
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amplitude data had been smoothed such that only the large-scale 

systematic variation was kept. Therefore their results are com- 

plementary to ours. 

Sacks et al. [1979] deduce a discontinuity at 250 km from 

observations of long-period precursors to direct $ at NORSAR. 
They suggest the precursors result from S to P conversion at the 

discontinuity, which they assume to be the lithosphere- 
asthenosphere boundary. Our results also show that 250 lcm is 

an interesting depth. We would rather favor the interpretation 
that 250 km is the bottom of a thermal boundary layer in the 
mantle, with the bottom of the lithosphere being at 200 km. 

Given and Helmberger [1980] deduce laterally independent 
structure of P wave velocity as a function of depth for northwest 
Eurasia, using short-period and long-period body waves from 

nuclear expbsions. They see a bw-vebcity zone in the regime 
of 150-200 krn, which is likely to be geologically related to our 
observations of changes at 200 and 250 kin. 

Husebye et al. [1986] reported a seismic tomographic survey 
of the lithosphere-asthenosphere beneath southern Scandinavia 

using travel time residuals. They placed the boundary between 
the lithosphere and asthenosphere between 100 and 200 km, 

with lateral variations of scale greater than 100 km. 

Thus other studies of the larger-scale lateral variations under 

NORSAR have indicated structure at depths of 150-250 km, 
which should be combined with our observations of smaller- 

scale lateral variations down to the same depth range in order to 
create a geologically consistent picture. 

Present ability to model the detailed dynamics of mantle con- 

vection is so crude that as yet no meaningful comparison 

between the strength and spec• of variations that we observe 

and the expected product of mantle convection is possible. 

However, one can hope that future understanding of mantle con- 

vection, perhaps involving numerical simulation, will be 

influenced by measurements such as ours of the strength and 

spectnma of seismic wave speed variations in the thermal boun- 

dary layers of the mantle. More generally, improved geological 

understanding of the crust and lithosphere may come from 

requiring agreement with the small-scale variations that we 

observe in our shallow layer. 

TCFs and Their Statistical Errors 

We begin the treatment of error estimates for the TCFs by 

considering the expression for the TCF of log amplitude 
obtained from the data of one beam: 

1 M 

c• (xr) = •- •', u•, u•, (A1) 
p=l 

where p is an index over the M pairs of subarrays whose separa- 
tion is within the desired bin of xr. (The index of the first 

member of the pair is s; the index of the second member is t .) 

The approximate variance of c•, is obtained as follows: First, the 

expectation value of O, is needed, 

< c• > = p,(xr) (A2) 

where Pt is the unnormalized TCF at xr. Next, the expectation 
value of the square is needed, 

<c•2> = •22 •< u•,u•,u•u•. > (A3) 
Our assmption of Gaussian variables allows us to evaluate the 

above fourth moment in terms of all possible permutation of 

products of second moments [Flatt• et al., 1979]. The result is 
then 

1 2 2 
> (A4) 

where we have ignored many of the off-diagonal coherences as 

small compared with the variance of u. Thus the variance of cb 

1 u 2 2 2 = < > 
It is important to note that because we have many beams, we can 

observe o• at each xr. We simply plot the distribution of c• 
from the many beams and calculate the variance of the distribu- 

tion. The question is, what is the uncertainty in c• after combin- 
ing all the information from the many beams? We will couch 

this in the form of the question of determining Neff, the effective 
number of independent beams. 

Since we have data from N beams, we should combine them 

in an appropriate manner; that is, with weights: 
N 

1 •', w•c• (xr) (A6) c(xr)-= <u (xr)u (0)> - Nw •=• 
where b is an index over the N beams, w• is the weight 
assigned to each beam, and 

N 

Nw = •w• (A7) 
b=l 

If the N beams were independent, then the optimal combination 
would require w•, = 1, and it is simple to show that the variance 
of c is given by 

1 2 2 
0 2 = • < u > (AS) 

We define the number of effective beams as 

!3b 2 
Nc•r m • (A9) 

c• 2 

That is, in order to calculate the variance of our measurement of 

the TCF at a particular xr, we observe the distribution of that 

TCF from our many beams, determine its variance from that dis- 

tribution, and then divide by Noer. For the case of independent 

beams, from (A5) and (A8) we see that No• is equal to the total 
number of beams N. 

However, many of the beams in this data set are so close to 

each other that the information in each is not independent. 
Therefore a more accurate measure of the TCF is obtained by 
weighting each beam by a number smaller than unity if there are 

nearby similar beams. We have chosen weights for each beam in 
the following way: 

1 

w• = N (A10) 
I + •p•(O•/) 

d• 

where p,, (0a/) is the ACF between beams and 0a/ is the angle 
between beam b and beam d. This weighting has the appropri- 
ate limits; first, it is equal to unity if all beams are far from each 

other and therefore independent; second, if there are n beams on 

top of each other, each beam has a weight of 1/n. 
Now we must estimate the statistical error on this coherence 

function. We emphasize that our treatment of errors makes 

significant approximations; it is very difficult to be more accu- 
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rate in the evaluation of errors without going through an exten- 

sive program of numerical simulation. We assume that all the 

beams are in a narrow cone, so that the expectation value of the 
TCF for each beam is the same, and we assume that the statistics 

of the log amplitude or arrival time are close enough to Gaussian 
to estimate the error reasonably. Let us use a shorthand notation 

in which xr is suppressed: 

1 N 

and we need to find an appropriate expression for <c 2>. 

1 •v N 

<c:>= (AI) w b=ld=l 

But each cb is the sum of products of two log amplitudes. We 
may indicate this by 

M M 

= (AS) 
zr, 

where xij and yij are separated in space by xr and 0b is the 
angle of beam b. Thus we need to evaluate a fourth moment of 

log amplitude. The Gaussian assumption provides us with the 
means; in the Gaussian case the fourth moment is the sum of all 

possible permutations of products of second moments [Flattd et 

al., 1979]. Consider first the permutation in which the pair of u 

from beam b and the pair of u from beam d are kept together. 

Each pair has an expectation value of Pt, and the entire contribu- 
tion of that permutation consists of pt 2. The other permutations 
involve second moments with one u from beam b and one u 

from beam d. We consider only the contributions for those 

pairs of u that are at the same station, since other pairs will have 
a substantially smaller coherence. It then follows that 

1 N <cZ> = + -7-? ''w b=ld=l 

and that the variance of c is 

o • = 5• •w• w•• 
zvw b=ld=l 

The effective number of beams is then determined from (A5), 

(A9), and (A15) to be 

1 

NonC • = N,• 2 • •ws w• (A16) b =ld=l < U 2>2 

and we note that the last ratio is just what we call the normalized 
ACF. We can use our measurements of the normalized ACF to 

evaluate Neff for each point on the TCF, and our measurements 
of the values of c• for the different beams to evaluate the vari- 

ance of c•. Finally, we apply (A9) to find o. The above pro- 

cedure is easily applied to the other two TCFs as well. 

ACFs and Their Statistical Errors 

The above principles also apply to the problem of evaluating 
the ACFs and their errors. In the ACF case the fundamental 

measurement requires a pair of beams instead of the single beam 
of the TCF case. In establishing the weights, we ask whether a 
given pair is independent of another pair. Furthermore, when 

we form a fourth moment of a quantity, we are dealing with four 
beams instead of two. 

Our procedure for forming the weights is as follows: First, 

we find all pairs of beams that are separated by a desired angle 
0. Then the weight for pair q is given by 

w;' = 1 + EP. (e,)p. (09 (A17) 

where the sum is over all the other pairs. The angles 0x and 02 

are chosen so that the product of the p's is the maximum. 

Again, this form has the correct limiting values. 

The expression for the ACF can be given then as 

1 •v 1 M 

-- $=1 

where q and r are the indices of the beams making up pair p 

and s is the index of the station within the array. In evaluating 

the fourth moment as a product of second moments, we again 
treat the first permutation completely and then ignore those pairs 

which belong to different stations in subsequent permutations. 
We find 

Nc•_ x = 1 Nw 2 •wp w v p.. (m)P• (W) (A19) p q 

where p and q are different beam pairs with •gle dffferen• 

•d p• • •e no••d ACF. •e •gle • • •e sm•t •gle 
ob•• by sel•tMg one •• • each of •e two • 

p•. •e •gle W is •e •gle •een •e o•er two ••. 

Ag•, • is m a•rox•afion, wMch h• •e figM •havi• 

•e l••g c• of m•y be• p•s, e•h of wMch is made 
of •e s•e be•s. 

It • of Mmrest w •Mt out •at wi• o• a•rox•atiom, 
v•ues of a TCF at •fer•t xr •d •e valu• of • ACF at dff- 
fer•t 0 •e not c•elat•. 
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