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Two-dimensional Boussinesq convection is studied numerically using two different methods: a 
filtered pseudospectral method and a high-order accurate ENO scheme. The issue whether finite 
time singularity occurs for initially smooth flows is investigated. In contrast to the findings of 
Pumir and Siggia who reported finite time collapse of the bubble cap, the present numerical 
results suggest that the strain rate corresponding to the intensification of the density gradient 
across the front saturates at the bubble cap. Consequently, the thickness of the bubble decreases 
exponentially. On the other hand, the bubble experiences much stronger straining and 
intensification of gradients at its side. As the bubble rises, a secondary front also forms from its 
tail. Together with the primary front, they constitute a pair of tightly bound plus and minus 
double vortex sheet structure which is highly unstable and vulnerable to viscous dissipation. 

I. INTRODUCTION 

In this paper, we present the results of a careful and 
detailed numerical study of the small-scale structures in 
two-dimensional Boussinesq convection in the absence of 
viscous effects. In particular, we address the issue of 
whether a finite time singularity can form out of a smooth 
initial data. Recently in their numerical study of the same 
problem,’ Pumir and Siggia observed that the cap of a 
symmetric rising bubble (with smooth density variation) 
collapses in a finite time. In contrast, our results suggest 
that collapse of the bubble cap is a very unlikely candidate 
for finite time singularity formation. The strain rate asso- 
ciated with the intensification of the density gradient satu- 
rates at the cap, implying an exponential decay for the 
thickness of the cap. We note that the scaling argument in 
Ref. 2 also predicts an exponential increase of the density 
gradient at the cap. This is reminiscent of the situation 
found in vortex reconnection:3-5 When two vortex tubes 
are brought together, the axial strain rate saturates and the 
core of the tubes undergoes enormous deformation to 
avoid reconnection (in the absense of viscosity). Thus the 
inviscid solution manages to escape from forming a finite 
time singularity. For the present problem, what prevented 
the collapse at the cap is the geometrical simplicity of the 
cap. While secondary instabilities are very likely to occur 
at the side of the bubble, we failed to find any mechanism 
to cause secondary perturbations at the cap which would in 
turn complicate the geometry there. We also found that as 
the bubble rises, a secondary front also forms from its tail. 
Together with the primary front, they constitute a pair of 
tightly bound plus and minus double vortex sheet structure 
which is highly unstable and vulnerable to viscous dissipa- 
tion. The roll-up of the tail vortices packs together tightly 
these vortex sheet pairs. 

There are two main motivations for the study of the 
two-dimensional Boussinesq convection. One comes from 
the potential relevance of this problem to the study of at- 
mospheric and oceanographic turbulence, as well as other 

astrophysical situations where rotation and stratification 
play a dominant role. The second motivation comes from 
the fact that from a computational viewpoint, this is the 
simplest among the class of incompressible flows which 
exhibit vorticity intensification. In particular, it is an open 
question whether the baroclinic generation of vorticity 
leads to a finite time singularity. Such singularities, if exist, 
provide an effective mechanism for the cascade of energy to 
small scales. This scenario also provides a convenient basis 
for various turbulence theories which assume, in one form 
or another, that the (ensemble average of) rate of viscous 
dissipation of energy remains finite in the limit of vanishing 
viscosity, implying the occurrence of finite time singulari- 
ties for abundance of Euler flow~.~ 

There is a well-known analogy between the two- 
dimensional Boussinesq convection and the three- 
dimensional axisymmetric swirling flows: 

u,+uu,+wu,+- (l/r)uv=O, 

w~+uw,+ww,- (l/r)uw-(l/r)(u*),=O. 
(1) 

Here, u=ue,+vee+ we, is the velocity, w=uZ- w, is the 
azimuthal vorticity. Comparing (1) with (2)~(5), we see 
that the centrifugal force plays a similar role as the gravity, 
and the azimuthal circulation plays a similar role as the 
density. Grauer and Sideris7 were the first to seek linite 
time singularities in this restricted class. Although their 
numerical result still remains inconclusive, it has stimu- 
lated a lot of recent work along the same direction, includ- 
ing the present study. Also of interest is the work of 
Caflisch* on singularity formation in the complex solutions 
of (1). 

A related problem was studied earlier by Childress,’ 
where he considered nearly two-dimensional Euler flows 
and derived effective equations governing their slow varia- 
tion using contour averaging methods. Under a change of 
variables, the effective equation takes a form similar to the 
axisymmetric Euler equations with nonstandard connec- 
tion between circulation, radius, and the anguIar velocity 
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component. Childress went further to study numerically a 
simplified version of his effective equations and observed 
finite time singularities for the simplified model. This was 
interpreted as a signal for the re-three-dimensionalization 
of the original (nearly two-dimensional) flow. 

This paper is organized as follows. In Sec. II, we for- 
mulate the problem and present some preliminary mathe- 
matical remarks. In Sec. III, we describe the numerical 
methods used to study this problem. The numerical results 
are presented in Sec. IV. 

II. FORMULATlON OF THE PROBLEM 

The equations describing Boussinesq convections are 
the following: 

pt+u*vp=o, 

0 
u,+u*vu+vp= 0 P’ (2) 

v*u=o. 
Here, p is the density (usually this should be the temper- 
ature and denoted by 8 or T, but we are accustomed to call 
it density, and therefore denote it by p), u= ( U,U) is the 
velocity, p is the pressure. We have normalized the gravi- 
tational constant to be 1. 

It is convenient to write (2) in the streamfunction- 
vorticity formulation: 

pt+u*Vp=Q 

o,+u-vw= --/lx, (3) 

-- A$=@. 

Here, w is the vorticity, $I is the streamfunction: 

w=uy--v~~, u= -I&, u=11?,. (4) 

Introducing the material derivative D,=d,+ u l V, (3 ) be- 
comes simply 

D,p=O, D@=p,. (5) 

It is straightforward to show that if the initial data 
u(x,y,O) =u,,ix,y> and pix,y,O> =po(xg) is smooth 
enough, then the solution to (2) exists and remains smooth 
for a short time. It is not clear whether any solution would 
lose its regularity at a finite time. However, following 
Beale, Kato, and Majda,” one can show that if a solution 
losses its regularity, then the density gradient has to blow 
up. More precisely, we have 

Theorem: Define the norms: 

If i . )Ilm= a, E>o JR2 1 ;!ct;;;i2 
al+a2<m 

Ifi-)lm= max If(w 
(VI d2 

Assume that for some m > 2, Iju( * ,O) Ilm+ IIp( . ,O) Ilm 
is finite, but there exists a T* such that 

IIu(.,T*)II,+IIpi.,T*)lJm=-t~.Then 

s I’Ita(-,tjImdt=+m (6) 

and 

P f 

s I 0 
o Ipx(*,s)Ic,dsdt=+co. (7) 

ProoJ We will only give a sketch of the proof since it 
follows closely the argument of Beale, Kato, and Majda.” 
We will use C to denote a generic constant. 

Straightforward energy estimates lead to 

~llPi~~~~llb<lvui~,t,i,lipi~.t)ll~, 

; Ilui . $1 IIf6 I Vu( . J) I mllU( * J) II”,+ llpi * ,t>II;. 

The logarithmic Sobolev inequality gives us, for m>2 

IVu(.,t)I,~Cl~i.,~)l,[l+logllu(.,t)ll,]. 

Therefore, if we let 

Y(f) = lIpi . J) II’,+ Ilui * J) II;, 

we have 

jl~~)~Cl~i.,t)I,[l+logY(t)]y(tj. 

Solving this differential inequality, we get 

y(t)~pxp[C~~l~c-,~jI,~~ly(0). 

On the other hand, since Dp= -px, we have 

Hence, 

and 

y(t) <eexP[cl~l~lP,J ’ ‘~Hrn~~~~lY((-j)* 

Since y(O) is finite, we conclude that if Y( T*) = + a,, then 
(6) and (7) hold. 

Remark: Eqs. (6) and (7) tell us the minimum rate of 
a blowup: If max I o I blows up like ci ( T* -t) -n, and 
max I px I blows up like c2 ( T* - t) -fi, then a> l&.2. Since 
(2) is invariant under the following scaling transforma- 
tions: 

x--cj12x, r-h, p+p, u-h, 

a self-similar blowup implies a= 1, /3=2. At this ievel, it is 
consistent with the findings of Pumir and Siggia. 

III. THE NUMERICAL METHODS 

+ Computing singular or nearly singular solutions is a 
difficult task, particularly so in the context of incompress- 
ible flows. To obtain maximum information one has to 
push the numerical method to the point where the flow is 
only marginally resolved. In this situation any numerical 
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method is likely to exhibit its own artifacts. Such numeri- 
cal artifacts may not go away under simple mesh refine- 
ment checks, and they do not necessarily manifest them- 
selves in scales comparable to the grid size. Therefore, 
there is a real danger of being misled by a particular nu- 
merical result. To avoid this, we have solved (2) using two 
different numerical methods: a Fourier-collocation method 
and an ENO scheme. When the solution develops large gra- 
dients, the Fourier-collocation method usually exaggerates 
the situation, whereas the ENO scheme tends to smear out 
the large gradients. By comparing the numerical results 
using the two different methods, we can be more sure of 
what phenomena are likely to be physical. Below we will 
describe separately the two methods. 

A. Spectral method with smoothing 

This is the standard Fourier-collocation method” with 
smoothing or dealiasing. Roughly speaking, the differenti- 
ation operator is approximated in the Fourier space, while 
the nonlinear operations such as multiplications are done 
in the physical space. We used the intrinsic Cray FPT 
routines which considerably enhanced the performance of 
the code. 

Since the solutions have large gradients, it is crucial to 
add filters to the spectral method in order that the numer- 
ical solutions do not degrade catastrophically if some part 
of the steep gradients are not adequately resolved. A robust 
way of adding the filters’” is to replace the Fourier multi- 
plier ik, for the differentiation operator dX, by ikjq ( 1 kj 1) , 

where 

cp(k) =ematWN)‘“‘, for 1 kj aV. (8) 

Here, N is the numerical cutoff for the Fourier modes, mf 

is the order of the filter, and a: is chosen so that 

p(N) =e --a = machine accuracy. The machine accuracy 
on Cray YMP with single precision is roughly 10-14. De- 
note by F and F-‘, respectively, the forward and back- 
ward Fourier transform operators, then the numerical de- 
rivative is evaluated as 

DNf=F-‘[ikp( Ikl )]Ff. (9) 

The accuracy of such an approximation scheme depends 
on the parameter mf. For smooth functions f(x), we have 

Ilf’(X)-DNf(X)II=O(N-m/). (10) 

We will denote the Fourier-collocation method with mfth 

order filter as SPmf. Unless otherwise stated, the results 
presented in Sec. IV B were computed with mf = 10. 

B. The ENO scheme 

The essentially nonoscillatory (ENO) scheme is used 
for the convection (spatial) part of the flow. We use ENO 
schemes based on point values and numerical fluxes, de- 
veloped by Shu and Osher in Refs. 13-15. Some interesting 
calculations for incompressible flows using ENO schemes 
can be found in Ref. 16. 

To apply ENO approximations, the equation is first 
written in a conservation form. For example, the tirst equa- 
tion in (3) is written as 

pt+ (up),+ (up),=O. (11) 

The ENO operator is then applied to each of the con- 
servative derivatives in a dimension-by-dimension fashion: 
when approximate ( UP)~, y is viewed as being fixed. Un- 
like the compressible flow, the incompressible flow equa- 
tions are naturally written in characteristic form. Thus no 
expensive characteristic decomposition is needed. Upwind- 
ing can be simply determined by the signs of u and u. 

We shall only briefly describe the approximation of a 
single derivative, say f, . More details can be found in 
Refs. 13-15. 

The conservative approximation is of the form: 

1) 
(fx>j-=(1/11x)(~j+1/2-fj-1/2) (12) 

which, for rth order EN0 scheme, approximates the deriv- 
ative to rth order: 

(l/Ax).(~j+l,,-~j-l/z)=f,l,=,,.+,,+d(Ax’), (13) 

II 
where the numerical flux fj+l,z is obtained by interpolat- 
ing the point values off on a stencil of r+ 1 consecutive 
grid points. The stencil is chosen inductively as follows. 
For r= 1, we choose the stencil to be [ j - 1,f or [ j,j + l] 
depending on the sign of u. For r> 1, left or right neigh- 
boring points are added to the stencil at the previous level 
Y- 1, according to the absolute value of the divided differ- 
ences they each give. In most of our calculations, we used 
r=3. We will denote this method by EN03. Notice that the 
scheme is actually r+ lth order in L, norm. That is, the 
third-order ENO scheme we use is actually fourth order 
accurate in the L, norm. 

The potential equation in (3) is solved with a fourth 
order central differencing (implemented in the Fourier 
space via FFT) plus a fourth-order exponential filtering in 
the Fourier space described above. This guarantees fourth 
order accuracy and in most cases avoids instability. We are 
not sure whether ENO should or can be applied to this 
potential solver, since it is an elliptic equation with possibly 
singular right-hand side. Unlike in the compressible case, 
some small oscillations can still be seen in the ENO solu- 
tion, probably due to this potential solver. 

For the temporal discretization, we used Runge-Kutta 
methods of various order designed in Ref. 14. No major 
difference between the third, fourth, and fifth-order meth- 
ods were found in the numerical results. It seems to be a 
general fact that temporal accuracy is much less important 
than the spatial accuracy. We used the third-order version 
most often since it only requires three auxiliary arrays, 
whereas the fourth-order version requires five auxiliary ar- 
rays. We take initial data that is periodic with period D 

where D= [0,2?r] X [0,2?r]. Although periodic boundary 
conditions are rather unphysical for the convection prob- 
lem, we expect that it does not matter for what we are 
interested in, which is the small-scale structures. The re- 
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sults reported below were computed using CFL equal to 
0.5. This is very much within the stability region of these 
methods. 

In the calculations reported below, energy is always 
conserved to within one-tenth of a percent. It is much more 
difficult to preserve the maximum and minimum of the 
density. The ENO scheme gives far better result on that [see 
Figs. 5(a) and 5(b)]. 

We point out that our experience favors strongly the 
use of high-order schemes because of their small dispersive 
errors. In a marginally resolved situation, even though the 
filtered spectral method does generate small oscillations 
near the front where the density experiences a jump, the 
oscillations are effectively localized near the front. This is 
because the spurions numerical oscillations travel at 
roughly the right speed which is the speed of the front. The 
higher the order of the filter, the more accurate the prop- 
agation speed, the more localized the oscillations. Of 
course eventually the Gibbs phenomena prevail and the 
numerical result becomes noise. 

IV. NUMERICAL RESULTS 

A. Formation of the front 

We have numerically integrated (2) with a variety of 
initial data. The initial density is usually a perturbation of 
the uniform state, and the perturbations are localized in 
each period. The early time evolution of such flows is char- 
acterized by the formation of a front across which density 
varies sharply. As time evolves the front gets increasingly 
sharp and the tail starts to roll up. Figures l-3 present the 
time development of such events for the initial data 

4wO) =o, 

p~~,Y,~~=5~pl~~tY~pz~~,Y~~~-~pl~~,Y~l, 

where 

(14) 

( 
2 

PI (x,y) =exp l- 14-x” - (y-a)Z ’ 1 

if x2+ (~-rr)~<d, 

=0 otherwise, 

I~~(~~Y)=~~P 
( 

(i-95%-)" 
1-(1.95rr~2-(x-2rr~2 9 

1 

if Ix-27rl<1.9571, 

= 0 otherwise. 

Figure 1 is the density contour at t= 1.6 computed using 
SPIO on a 512’ grid. At this time, the flow looks roughly 
like a rising bubble. In Figs. 2(a) and 2(b) we present, 
respectively, the contours of density and vorticity at t= 3. 
By now the outer boundary of the bubble has become a 
sharp front. We notice that as the bubble rises, it leaves 
behind a long and thin filament of light fluid. This is a 
check on the amount of numerical diffusion present in the 
scheme. A low-order method with numerical viscosity 

FIG. 1. Density contour at t= I.6 for initial data (14) computed on a 
5 12’ grid. A front has formed at this time. 

(needed to stabilize the front) will destroy the thin fila- 
ment. From Fig. 2(b) we see that most of the vorticity 
resides on the front, the rest of the flow domain has very 
little vorticity. This fact is more drastically displayed in 
Figs. 3 (a) and 3(b) where we plot, respectively, the slice 
of w and px at y=r. Since w and - px have the same sign, 
from the vorticity equation (3) we see that the vorticity 
peaks will be increasingly and monotonically sharper. The 
development of the front is most clearly seen in Fig. 4, 
which displays the evolution of the density along the sym- 
metry axis x=r at times t=0.5, 1, 1.5, 2, and 2.5. It shows 
clearly the formation of a front, similar to the formation of 
shock fronts in the solutions of the Burgers equation. At 
t=2.5, SPIO on the 5122 grid is not resolving the flow and 
small numerical oscillations appear on the profile. How- 
ever, the numerical oscillations are not present on the re- 
fined grid 10242. The result of the latter calculation is su- 
perimposed in Fig. 4 on the solution of the 512’ grid. 

These results, particularly Fig. 2(a) motivate the fol- 
lowing question: Is it possible that the density develops 
jump discontinuities at the entire front or part (not a single 
point) of the entire front at the same time? For this to 
happen, fluids with intermediate densities should be sud- 
denly swept to the back of the bubble. Clearly this needs 
infinite velocity whereas all of our numerical results give 
velocities that are very well bounded. 

Before ending this subsection, we present the compar- 
ison of the numerical results computed using the two dif- 
ferent methods described in Sec. III. Figures 5 (a) and 
5(b) display, respectively, the time history of the maxi- 
mum and minimum density computed using SPIO on 2562, 
5122, and 1O242 grids, and EN03 on the 5122 grid. These 
quantities should be conserved by the exact solutions. As 
expected, EN0 does a much better job in avoiding over- 
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@ ‘) 

FIG. 2. (a) Density contour at t=3 for initial data ( 14) computed on a 
15C@ grid. The bubble cap is unstable according to (A14). But no small- 
scale instability at the cap is seen here, (b) Vorticity contour at the same 
time as in (a). 

shoots and undershoots. Figure 5 (c) compares the numer- 
ical results for p at y=z-, t-2.5, computed using ~~10 and 
EN03 on 512’ grid. The result of ~~10 undershoots much 
more than the result of EN03, although the latter also con- 
tains some small numerical oscillations. On the other hand, 
although not shown here, ENO is usually less accurate than 
the Fourier-collocation method and contains more numer- 
ical dissipation. 

B. Evolution of the bubble cap 

When the bubble rises, lighter iiuid has larger acceler- 
ation and heavier fluid has smaller acceleration. This re- 
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FIG. 3. (a) The slice of o at y=v, t=2.5. (b) The slice of px at 
y=r, t=2.5. 

suits in the formation of fronts. However, once the front is 
formed, pressure gradient becomes important across the 
front. In fact, as is shown in Figs. 6(a) and 6(b), the in- 
creasing pressure gradient may reverse the initial picture. 
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FIG. 4. Evolution of density along the symmetry axis X=P at t=O.S, 1, 
1.5, 2, and 2.5, computed using SPIO on a S12L grid. The result at t=2.5 
computed on a 1O242 grid is also superimposed. Notice that the small 
numerical oscillations disappear on the refined grid. 
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FIG. 5. (a) Time history of the maximum density from different com- 
putations. From top to bottom: SPIO on the 2562 grid, SPIO on the 512* 
grid, SPIO on the 1024’ grid, and EN03 on the 512l grid. (b) Time history 
of the minimum density from differeut computations. From bottom to 
top: ~~10 on the 256* grid, SPIO on the 512’ grid, SPIO on the lO24L grid, and 
EN03 on the 512* grid. (c) Comparison of the numerical results for p 
across the front at y=v, t=2.5 for two different methods, SPIO and ~03, 

both on the 5122 grid. EN03 has less numerical oscillation. 

In Figs. 6(a) and 6(b), we plot the slice of -p,,, p, and 
the acceleration p-py along the symmetry axis x=r at 
two different times t=0.5 and t=2. At t=0.5, the acceler- 
ation p-py decreases across the front, whereas at t=2 it 
increases across the front. (The density p always decreases 
across the front, see Fig. 4.) This implies that the velocity 
difference between the fluid particles at the tip and the back 
of the front will not increase further after t=2, assuming 
that the picture remains valid. 

-__L 
0 1 2 3 4 5 6 

(4 Y 

loo 

1 

P-Py 

,P 
-pY 

-20’ 
0 1 2 3 4 5 6 

(W 

FIG. 6. (a) Slice of - p, , p, and p -pr at t=0.5 along the symmetry axis 
x=rr. The acceleration p-p,, decreases across the front. (b) Slice of 
---A, p, and p-py at t=2 along the symmetry axis x=rr. The acceler- 
ation p-p,, now increases across the front. 

At the symmetry axis we have 

pt+ up,=O, 

u=o, (15) 

v,+ vvu= p ‘Pu. 

On the other hand, pressure satisfies 

p+p=u~+u;+22.+, (16) 

which reduces to 

Py-Pyy-Pxx=24 

at the symmetry axis. 

(17) 

Let c= py ,v = vy . Then we have, at the symmetry axis, 

45’= -5% 

D,v =pxx+ q2. 
(18) 

Let us examine this in a bit more detail. Consider two 
fluid particles at the front and the symmetry axis: (r9yl) 
and (~-,y~). Assume that 0 < Y=y, -y2 < 1. We have 
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FIG. 7. Time history of 1 q.1 $ ) u,l + 1 u,,l + luvl at the cap. This is FIG. 8. Comparision of the (time history of) maximum of 
roughly twice the strain rate. It saturates from t= 1.7 and only increases I u,l + 1 u,l + I a,,1 + 1 u,,l over the whole domain and at the cap. The bub- 
slightly after t=3. ble is stretched much more at the side than the cap. 

p= (p-py) (7i-,Yl,d - (p-p,) (~,Y2,e 

= up -Py>,(~,Y”J), (19) 

where y2<y*<yi. Assume for the moment that pxr is neg- 
ligible compared with pyy . Then 

%2YL$(7r,y”,t). (20) 

Since 

uy&$ Lv*-Y2)=;~ (21) 

we get 

%2( F/Y)“Y. 

Consequently, we have 

(22) 

. . 
Y 

0 
FZ 

Y 
=j&IrQ-(f)2]= y >o. 

0 
(23) 

This implies that for some constants cl,cO, we have 

y(t) > e- (=lf+=o) (24) 

precluding the possibility of having a finite time collapse at 
the bubble cap. 

This conclusion can also be drawn directly from ( 18). 
If pxx-t-$ > 0, then q is bounded from below. Therefore, 

c(t) = e. -.~‘~(s)dsQO) does not blow up. (Here we ne- 
glected the Lagrangian coordinate of the fluid particles.) 
Hence, for the collapse to occur, it is necessary that at 
some point of the symmetry axis and the front, 

pxx < -v;. (25) 

This means that variations along the front should be com- 
parable to variations across the front. In other words, the 
front develops instabilities with wavelength comparable to 
the thickness of the front. Here lies the key difference be- 
tween the calculations presented in this paper and the ones 
in Ref. 1. 

To examine this issue in detail, we need to ask two 
questions. One is whether the front is indeed unstable to 
small-scale perturbations. The other is the source of per- 
turbations: What causes the front to start to wrinkle? 

The linear stability analysis along the lines Refs. 1 and 
17 is presented in the Appendix. Let us check whether the 
instability criterion (A14) is satisfied at t=3. From Fig. 
2(a), we haved roughly R/S>45 gz2.65, s=: 1.9. So the 
left-hand side of (A14) is about 2.1 X 103, and the right- 
hand side is about 8.8~ 103. Therefore the bubble cap is 
unstable, according to (A 14). 

However, in all the calculations we have done for this 
and other data, we have never observed small-scale insta- 
bility at the cap. Even for the bubble shown in Fig. 10 at 
t=3.16, for which R/S > 100, and the ratio of the right- 
hand side of (A14) to the left-hand side is larger than 
1.8 x 102, no small-scale instability was observed at the cap. 

We also tried different sets of initial data. Some of the 
numerical results were reported in Ref. 18. Again, no 
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FIG. 9. Comparision of the (time history of) maximum of I pXj + 1 eyj 
over the whole domain and at the cap. This also shows that the bubble cap 
is less dangerous than the side. 

Phys. Fluids, Vol. 6, No. 1, January 1994 W. E and C.-W. Shu 55 

Downloaded 14 Dec 2006 to 128.112.16.126. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



FIG. 10. Density contour at t=.3.16 shows the formation of a second 
front which runs parallel to the primary front but bifurcates from it at an 
inHection point (see text), SPIO on a 1500’ grid. 

small-scale instabilities were observed at the cap even 
though the bubble cap in Figs. 9(b) and 11 of Ref. 18 were 
unstable, according to (A14). 

C. Other aspects of the flow 

There is strong evidence that the side of the bubble is 
much more dangerous than the cap. This can be seen 
partly from Figs. 7-9. Figure 7 shows the time history of 
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FIG. Il. Velocity field nearby the inflection point. 

The evolution of the front is rather complicated. After 
the formation of the primary front, a secondary front also 
forms from the tail vortices. This is clearly shown in Fig. 
10. This secondary front runs almost parallel to the pri- 
mary front to a point where it bifurcates from the primary 
front. This point is also characterized by the fact that the 
front is most flat there. It can be seen from Fig. 10 that this 
point is becoming an inflection point for the front. We also 
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FIG. 12. (a) A cut of vorticity profile through the roll at t=3.16. The 
outer-most peaks are accompanied by peaks in the opposite direction. 
This is an illustration that the primary front and the secondary front form 
a pair of tightly bound plus and minus vortex sheets. (b) A cut of the 
density profile through the roll at f=3.16. 

themaximumof (Itl,I+Iu,I+Iv,I+lv,l) over thedo- 
main and compared to its value at the cap (the flat curve). 
This maximum is attained at the bottom of the front where 
the front has been stretched the most. The maximum of the 
local strain rates, the eigenvalues of the strain matrix, 
shows exactly the same behavior. At t= 3.4, the maximum 
local strain rate is about 520. In comparison, the strain rate 
at the cap, shown in Fig. 8, saturates starting from t= 1.7 
at a value of about 1.9 and only increases slightly after 
t=3. A similar comparison is made in Fig. 9 for the density 

gradient lpxl + Ip,,l. Th e maximum of the density gradi- 
ent occurs at the side of the bubble (between the cap and 
the inflection point in Fig. 10, see below). 
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show in Fig. 11 the velocity field nearby this point. Pre- 
liminary calculations suggest that the front starts to roll up 
here, but so far we have not been able to resolve the sub- 
sequent roll-ups with enough confidence. In terms of vor- 
ticity, the primary front corresponds to a vortex sheet (or 
almost a vortex sheet, to be more precise). The secondary 
front corresponds to another vortex sheet, but the vorticity 
has the opposite sign. So we have a pair of tightly bound 
plus and minus vortex sheets coming out of the roll. These 
are very much analogous to the canonical structures in 
turbulence suggested by Chorin:” tightly folded hairpins 
or antiparallel vortex filaments. Indeed, small perturba- 
tions in the third dimension will break them into hairpin 
vortices. To illustrate these sheet pairs we plot in Fig. 
12(a) a cut of vorticity profile through the roll. We can see 
clearly that the outermost vort.icity peaks are accompanied 
by peaks in the opposite direction. This also happens for 
several other vorticity peaks. The corresponding density 
profile is shown in Fig. 12(b). 

Such structures are very unstable and vulnerable to 
viscous dissipation. Indeed, experimental resultsI provide 
overwhelming evidence that the lower part of the bubble is 
much easily destroyed by perturbations, whereas near the 
cap, the shape of the bubble is very easily maintained. 
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APPENDIX: LINEAR STABILITY OF THE BUBBLE CAP 
IN A STRAINING FLOW 

Here we give a brief presentation of the linear stability 
analysis of a bubble near the cap in a straining flow using 
the Boussinesq approximation. We follow closely Refs. 17 
and 1. 

We begin with the Boussinesq equations 

pt+(u*Wp=O, 

@Au,+ ~u-V>ul +vp=/x, 
‘(Al) 

where g= (0,l). As in Ref. 1, we study the idealized situ- 
ation where the density jumps from pa+p to p0 across the 
bubble surface, and view the small thickness of the bubble 
front as a cutoff for the wavelength of possible perturba- 
tions. The radius of curvature near the cap is assumed to be 
R. In polar coordinates (r,6) the perturbed bubble can be 
represented in the following form: 

r=R+q(O,r,t). (AZ) 
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We will assume that the flow is irrotational both inside and 
outside the bubble. This is a reasonable assumption since 

almost all vorticity is concentrated at the front, see Figs. 
2 (b) and 3 (a). Introducing the velocity potentials p1 and 
q2 inside and outside the bubble, respectively, we have 

p1=@++47;,p~=++cp;,and 

-Acpr=O, -Aq?=O, (A3) 

where @ is the velocity potential for the unperturbed bub- 
ble. We assume that the unperturbed velocity ue=VQ, is a 
straining flow near the cap: 

uozsx, ZJOZ --sty-- l), 

where s is the strain rate. 

(A4) 

The dynamic condition, given by Bernoulli’s law, 
states that p. (pi 1 Vg, 1 2, - pg should be continuous across 
the interface. Neglecting higher-order terms in FP; and 
qP;, this gives 

po( pit+; de) =po( cd,+; de) --Pm cm 8. (A51 

We also have the kinematic condition which states that 
fluid particles at the surface flow with the velocity of the 
surface r= 1: 

UO rl a 
‘l’+?? rle+R Sin 8 ae 

ad ad 
- - (u. sin 6) =F==~. (‘461 

Near the cap, we get the following set of equations 
using u. ~sx~sRf3, c=R& 

PoMt+&&) =po(4+&4g) -Pm (A7) 

= 
Let z=y--1, q=A(t)ein5, ‘pi = Bl(t)e”(if;+z), pi 

B2(t)e’@-‘). From (A7) we have 

B,=-B2==B, 

k+2sA=nB, 

Po&=po&--pgA, 

ii= --sn. 

(A81 

Hence, we get 

k=-&A+nB, 

b= (@/2po)A=~A. 

Since we expect that high wave-number modes will be 
most unstable, we solve (A9) using WKB approximation. 
Let 

A(t)=exp( Jif(r)dr). 

From (A8) we have 

(AlO) 
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n(t) =noe+‘, (All) 

f(t) =pe--(si2)t- (.S/4)s+correction, (A121 

where 2 = n& 

The maximum growth rate is 

5 s A= ( -- 1 
4a 

5'2e~20,sw2~ 
9 (A13) 

which is attained at t* = - (2/s)in[ (5/4) (s/a)]. 
The finite thickness of the front presents a ultraviolet 

cutoff for the available modes. In Ref. 1, this cutoff is 
chosen to be no= R/6 where S is the thickness of the front. 
Pumir and Siggia call the bubble cap unstable if the max- 
imum amplification factor is larger than R/S. In the 
present context, their instability criterion reads 

where a,= (RF/S) ‘12. 
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