
Small Scale Variants of the AES

C. Cid?, S. Murphy, and M.J.B. Robshaw

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, U.K.
{Carlos.Cid,S.Murphy,M.Robshaw}@rhul.ac.uk

Abstract. In this paper we define small scale variants of the AES. These
variants inherit the design features of the AES and provide a suitable
framework for comparing different cryptanalytic methods. In particular,
we provide some preliminary results and insights when using off-the-
shelf computational algebra techniques to solve the systems of equations
arising from these small scale variants.

1 Introduction

The potential for algebraic attacks [1, 2, 8] on the AES [4, 11] has been the source
of recent speculation. Two important (and complementary) approaches to the
algebraic analysis of the AES were provided in [2] and [8]. In [2] it was shown
how recovering an AES encryption key could be viewed as solving a set of sparse
overdefined multivariate quadratic equations over GF (2) and a method—the
XSL method—for solving this set of AES-specific equations was proposed. In [8]
the AES was embedded in a related cipher (called the BES) and it was shown
how recovering an AES encryption key could be viewed as solving a similar set
of equations over GF (28). The highly structured equation systems that result
from this approach may well be more tractable than those arising from a GF (2)
perspective [8, 9].

Currently, however, it is unknown whether the XSL—or any other proposed
method of solution—works on the AES. For most types of cryptanalysis it is
straightforward to perform experiments on reduced versions of the cipher to
understand how an attack might perform. However this is not so easy for the
AES, and while some experiments have been conducted [2], the equation systems
used were very different from those that might actually arise from the AES.

With this goal in mind, we specify a family of small scale variants of the AES.
Previous variants have been used before as an educational tool [10, 12], but our
aim is to provide a fully parameterised framework for the analysis of AES equa-
tion systems. We describe how to construct the equation systems corresponding
to these small scale variants of the AES, and give an example of such a system
derived using the BES-style embedding. We report on some preliminary analysis
of a number of small scale variants and provide the first experimental insight
into the behaviour of algebraic cryptanalysis on AES-like ciphers.
? This author was supported by EPSRC Grant GR/S42637.



2 Small Variants of the AES

We define two sets of small scale variants of the AES; these differ in the form of
the final round. These two sets of variants will be denoted by SR(n, r, c, e) and
SR∗(n, r, c, e).

2.1 Small Scale AES Parameters

Both SR(n, r, c, e) and SR∗(n, r, c, e) are parameterised in the following way:

– n is the number of (encryption) rounds;
– r is the number of “rows” in the rectangular arrangement of the input;
– c is the number of “columns” in the rectangular arrangement of the input;
– e is the size (in bits) of a word.

SR(n, r, c, e) and SR∗(n, r, c, e) both have n rounds and a block size of rce
bits, where a data block is viewed as an array of (r × c) “words” of e bits. We
will see that the full AES is equivalent to SR∗(10, 4, 4, 8).

Number of Rounds n. The AES is an iterated block cipher consisting of 10
rounds. The typical round uses four different operations. The small scale variants
SR(n, r, c, e) and SR∗(n, r, c, e) consist of n rounds, with 1 ≤ n ≤ 10, using small
scale variants of these operations. These operations are specified in Section 2.2.

Data Block Array Size (r × c). Each element of the data array is a word of
size e bits. The array itself has r rows and c columns. We consider small scale
variants of the AES with both r and c restricted to 1, 2, or 4. Some examples
are given below. Note that we adopt the AES-style of numbering “words” within
an array and work by column first.

0
0
1

0 2
1 3

0 4
1 5
2 6
3 7

0 2 4 6
1 3 5 7

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Word Size e. We define small scale variants of the AES for word sizes e = 4
and e = 8. It is natural within the context of the AES to regard a word of size
e as an element of the field GF (2e). Thus we define small scale variants of the
AES with respect to the two fields GF (24) and GF (28).

The small scale variants SR(n, r, c, 4) and SR∗(n, r, c, 4) use the field GF (24).
We use the primitive polynomial X4 +X +1 over GF (2) to define this field. We
let ρ be a root of this polynomial, so

GF (24) =
GF (2)[X]

(X4 + X + 1)
= GF (2)(ρ).



When referring to elements of GF (24), we sometimes use hexadecimal notation,
so that D = ρ3 + ρ2 + 1 and so on.

The small scale variants of the AES with word size 8, SR(n, r, c, 8) and
SR∗(n, r, c, 8), use the field GF (28). The Rijndael polynomial X8 + X4 + X3 +
X+1 over GF (2) is used to define this field. We let θ be a root of this polynomial,
so

GF (28) =
GF (2)[X]

(X8 + X4 + X3 + X + 1)
= GF (2)(θ).

When referring to elements of GF (28), we again sometimes use hexadecimal
notation, so that D1 = θ7 + θ6 + θ4 + 1 and so on.

2.2 Small Scale Round Operations

Each round of the AES consists of some combination of the following operations:

1. SubBytes
2. ShiftRows
3. MixColumns
4. AddRoundKey

A round of the small scale variants of the AES consists of small scale variants
of these operations. For the last round of the AES, the operation MixColumns is
omitted. Similarly, for SR∗(n, r, c, e) the final round does not use MixColumns,
whereas MixColumns is retained for the final round of SR(n, r, c, e). The AES is
thus identical to SR∗(10, 4, 4, 8).

Note that the two ciphertexts produced by SR(n, r, c, e) and SR∗(n, r, c, e)
when encrypting the same plaintext under the same key are related by an affine
mapping. A solution of the system of equations for one cipher would immediately
give a solution for the other and so, without loss of generality, we only consider
SR(n, r, c, e) for the remainder of this paper.

SubBytes. The operation SubBytes uses an S-Box and is defined to be the
simultaneous application of the S-Box to each element of the data array. For
the small scale variants SR(n, r, c, 4) based on the field GF (24), we define the
S-Box by analogy with the AES. Thus this S-box consists of the following three
(sequential) operations.

1. Inversion. The first operation of the S-Box is an inversion in the field GF (24)
(with 0 7→ 0), using the representation defined in Section 2.1. The look-up
table for this inversion map is given below.

Inversion in GF (24)
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 0 1 9 E D B 7 6 F 2 C 5 A 4 3 8



2. GF (2)-linear map. The output of the inversion is the input to a GF (2)-
linear map. This GF (2)-linear map is given by (the pre-multiplication by)
the circulant GF (2)-matrix 



1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1




with respect to the “FIPS component ordering” [11]. The look-up table for
the GF (2)-linear map is given below.

GF (2)-linear map in GF (24)
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 0 D B 6 7 A C 1 E 3 5 8 9 4 2 F

Note that this GF (2)-linear map can also be expressed as the linearised
polynomial f(X) = λ0X

20
+λ1X

21
+λ2X

22
+λ3X

23
, where (λ0, λ1, λ2, λ3) =

(5, 1, C, 5). Thus we have

f(X) = (ρ2 + 1)X + X2 + (ρ3 + ρ2)X4 + (ρ2 + 1)X8

= 5X + 1X2 + CX4 + 5X8

3. S-Box constant. The S-Box constant 6 (or equivalently ρ2 + ρ) is added (as
an element of GF (24)) to the output of the GF (2)-linear map. This result
is the output of the S-Box.

The look-up table for the entire S-Box is given below.

S-Box over GF (24)
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 6 B 5 4 2 E 7 A 9 D F C 3 1 0 8

For the small scale variants SR(n, r, c, 8) we use the AES S-Box. The values
of the S-box operation over GF (28) are available in the AES specification [11].

S-Box Summary GF (24) GF (28)

Irreducible polynomial X4 + X + 1 X8 + X4 + X3 + X + 1

GF (2)-linear map




1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1







1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1




Constant 6 63

ShiftRows. The ShiftRows operation is defined to be the simultaneous (left)
rotation of the row i of the data array, 0 ≤ i ≤ r − 1, by i positions. This is
independent of the number of columns and the top row is fixed by this operation.



MixColumns. The MixColumns operation pre-multiplies each column of the data
array by an invertible circulant GF (2e)-matrix with row (and column) sum 1.
These matrices are all MDS matrices (see [4]) and the choice of matrix in a small
scale variant depends on the number of rows in the data array.

Number of Rows GF (24) GF (28)
r = 1

(
1
) (

1
)

r = 2
(

ρ + 1 ρ
ρ ρ + 1

) (
θ + 1 θ

θ θ + 1

)

r = 4




ρ ρ + 1 1 1
1 ρ ρ + 1 1
1 1 ρ ρ + 1

ρ + 1 1 1 ρ







θ θ + 1 1 1
1 θ θ + 1 1
1 1 θ θ + 1

θ + 1 1 1 θ




AddRoundKey. The key schedule (described in Section 2.3) for an n-round small
scale variant of the AES produces n + 1 subkey blocks. AddRoundKey simulta-
neously adds (as elements of GF (2e)) each element of the subkey block to some
intermediate data block. Since the AES begins with an initial AddRoundKey, the
small scale variants SR(n, r, c, e) also begin with this operation.

2.3 Small Scale Key Schedule

The structure of one round of the AES key schedule is illustrated below left (we
only consider equal block and key sizes). Each vertical line represents one column
of bytes, and Fi is the non-linear key schedule function for round i applied to
one column of the array holding the previous round key. The function Fi consists
of the application of the AES S-Box to all r components of the column, along
with a word-based rotation and addition of a constant. When considering small
scale analogues, we use this standard key schedule structure for four columns
(c = 4). For two columns or one column (c = 2 or c = 1) we use the key schedule
structures given by the diagrams below center and below right respectively.

?

?

?

?

?

?

?

?

?

?

?

?

¾¾

-

-

-

i
i

i
i

Fi

?

?

?

?

?

?

¾¾

-

i
i

Fi ?

?

Fi

Using this framework we can define key schedules for the small scale variants.
SR(n, r, c, e) has a user-provided key of size rce bits, which is considered to be
an array of (r × c) e-bits words. This key forms the initial subkey. Each subkey
is then used to define the succeeding subkeys. We provide a full description of
the small scale key schedules in Appendix A.



3 Multivariate Quadratic Equation Systems

The existence of a sparse multivariate quadratic equation system over GF (28) for
an AES encryption was shown by defining a new block cipher, the Big Encryption
System (BES), as well as a “BES”-embedding of the AES [8]. The main idea of
the BES-embedding is to use the vector conjugate mapping φ to embed the AES
into the larger cipher BES [8].

This technique can be used to derive sparse multivariate quadratic equation
systems over GF (2e) for the small scale variants of the AES. This is based on
the vector conjugate mapping φ for GF (24) defined by

φ(a) =
(
a20

, a21
, a22

, a23
)T

.

Any element a ∈ GF (24) can be embedded as an element (a, a2, a4, a8)T ∈
GF (24)4 under φ. We now describe how operations on a data block a in small
scale variants SR(n, r, c, 4) can be replicated by operations on the vector con-
jugate φ(a). Further details and the justification for these operations are given
in [8].

SubBytes. Consider the three component operations of the S-box separately.

1. Inversion. The operation of inversion can be replicated by the component-
wise inversion of the vector conjugate.

2. GF (2)-linear map. The effect of the GF (2)-linear map can by replicated by
pre-multiplying the (column) vector conjugate by the matrix




λ0 λ1 λ2 λ3

λ2
3 λ2

0 λ2
1 λ2

2

λ4
2 λ4

3 λ4
0 λ4

1

λ8
1 λ8

2 λ8
3 λ8

0


 =




5 1 C 5
2 2 1 F
A 4 4 1
1 8 3 3


 ,

where (λ0, λ1, λ2, λ3) are the coefficients of the linearised polynomial given
previously.

3. S-Box constant. The effect of adding 6 to a data array element can be repli-
cated by adding (6, 7, 6, 7)T to its vector conjugate.

ShiftRows. The effect of ShiftRows on the conjugate embedding can be easily
replicated for the small variants SR(n, r, c, 4). For example, the operation on
SR(n, 1, 1, 4), SR(n, 2, 1, 4) and SR(n, 2, 2, 4) is given by the following matrices,
where I4 denotes the 4× 4 identity matrix over GF (24):

(
I4

)
,

(
I4 0
0 I4

)
, and




I4 0 0 0
0 0 0 I4

0 0 I4 0
0 I4 0 0


 .



MixColumns. The effect of multiplying a field element by some other field element
z can be replicated by pre-multiplying its (column) vector conjugate by the
diagonal matrix

Dz =




z 0 0 0
0 z2 0 0
0 0 z4 0
0 0 0 z8


 .

Clearly MixColumns is a trivial operation when r = 1. For r = 2 and r = 4 the
effect of MixColumns can be replicated by pre-multiplying the vector conjugates
of the column of the corresponding data array by the matrices

(
Dρ+1 Dρ

Dρ Dρ+1

)
and




Dρ Dρ+1 1 1
1 Dρ Dρ+1 1
1 1 Dρ Dρ+1

Dρ+1 1 1 Dρ


 respectively.

AddRoundKey. This operation can be replicated by adding the appropriate vec-
tor conjugates. As the key schedule essentially uses the same operations as the
encryption process, it can also be easily replicated using vector conjugates.

Since inversion is the only non-linear part of the round function, we can
move the S-Box constant into a slightly modified key schedule and construct an
augmented linear diffusion layer consisting of the GF (2)-linear map, ShiftRows
and MixColumns [7]. This augmented linear diffusion layer is given by an (rc×rc)
matrix; examples of this useful representation are given in Appendix B.

In Appendix C, we give an example of a multivariate quadratic equation sys-
tem for SR(2, 2, 2, 4), as well as a link to a website where systems for other small
scale variants can be downloaded from. The given systems are constructed using
the “BES-style” embedding. If the plaintext and ciphertext are known, which
we assume, then the given equations are sufficient. If they are unknown, then
the plaintext and ciphertext can be treated as variables. We note that whilst
the system of equations is systematic, it does not form a minimal system. Fur-
thermore, the systems of equations presented are correct only if no 0-inversion
is performed either in the key schedule or in the encryption rounds. The prob-
ability of any particular inversion being a 0-inversion is 2−e, so the probability
that the entire equation system is free from 0-inversions can be easily estimated.
In general, equations for the small scale variants can be easily established and
the number of equations and variables for different variants are given here:

Equations State Variables Key Variables
Encryption (4n + 1)rce 2nrce (n + 1)rce

Key Schedule 2nrce + 2nre + rce - nre (additional)
Total (6n + 1)rce + 2nre + rce 2nrce (n + 1)rce + nre

An alternative approach would be to work with equation systems over GF (2),
as originally proposed in [2]. If w, x ∈ GF (2e) are the input and output respec-



tively of the “AES inversion”, the relation wx = 1 gives rise to e bilinear expres-
sions over GF (2). Furthermore, we also have the “associated inversion” relations
w2x = w and wx2 = x, each of which give e further independent relations at the
bit level. While there are also further relations of the form w4x = w2 · w and
wx4 = x · x2, we do not consider these. Using these expressions and those de-
rived from the linear layer, we can construct a system of multivariate quadratic
equations over GF (2) in a similar manner to that given by [2]. In Section 4 we
present the results of some experiments using both the GF (2) and the BES-style
representations.

4 Experimental Results

In this section we describe some experimental results concerning the solution of
the equation systems that arise for these small scale variants of AES. These are
basic timing experiments for the solution of the relevant system of equations by
computing the Gröbner basis of the related polynomial ideal. The computations
were made using the MAGMA 2.11-1 computer algebra package [6], which in-
cludes a highly efficient (particularly for GF (2)) implementation of Faugère’s
F4 algorithm [5]. In general, the Gröbner bases were computed with respect to
the graded reverse lexicographic monomial ordering. All experiments were per-
formed on a HP workstation, with Pentium 4 - 3GHz processor, 1 GB RAM,
running Windows XP.

We are aware of the limitations of performing simple timings experiments
using off-the-shelf software with limited computing resources. However we believe
that such experiments can still be helpful in a preliminary assessment of algebraic
attacks as cryptanalytic techniques. And while particularly degenerate small
scale variants might not exhibit all the features of the AES, a comparison of
attacks on such variants will help to provide an understanding of how various
components and representations of the cipher contribute to the complexity of
algebraic attacks.

4.1 SR(n, 1, 1, e)

We ran experiments with the simple variants SR(n, 1, 1, 4) and SR(n, 1, 1, 8)
for different number of rounds. We performed computations using the BES-
style equation system over GF (2e), as well as the equation system over GF (2).
The GF (2) equation systems are similar to that given in [2] with the addition
of all field polynomials of the form z2 + z. Table 1 shows the results for the
computations; timings are given in seconds and N/A denotes insufficient memory
to complete the computation.

In view of their simple form, we would expect to solve such equation systems
for many rounds. This happened for SR(n, 1, 1, 4), where we ran tests for up to
10 rounds. However the time required varied greatly when we changed the order-
ing of variables. When working with the cipher SR(n, 1, 1, 8), we had problems
with insufficient memory as early as three rounds. In particular, we note that



Cipher Variables Equations Monomials Time Equations Monomials Time
GF (2e) GF (2e) GF (2) GF (2)

SR(2,1,1,4) 36 72 89 0.11 104 137 0.03

SR(3,1,1,4) 52 104 129 0.75 152 201 0.11

SR(4,1,1,4) 68 136 169 2.02 200 265 0.28

SR(5,1,1,4) 84 168 209 7.47 248 339 0.97

SR(6,1,1,4) 100 200 249 23.71 296 393 4.30

SR(7,1,1,4) 116 232 289 56.74 344 457 11.26

SR(8,1,1,4) 132 264 329 43.70 392 521 16.56

SR(9,1,1,4) 148 296 369 219.38 440 585 46.05

SR(10,1,1,4) 164 328 409 340.31 488 649 74.06

SR(2,1,1,8) 72 144 177 43.55 172 365 118.45

SR(3,1,1,8) 104 208 257 N/A 252 541 N/A

Table 1. Time (in seconds) for Gröbner Basis computation of the GF (2e) and GF (2)
equation systems that arise from SR(n, 1, 1, e) (using graded reverse lexicographic
monomial ordering).

the system for SR(3, 1, 1, 8) has a similar number of variables, monomials and
equations as the system for SR(6, 1, 1, 4). Thus we might expect a similar perfor-
mance for these two systems. However, our results show that this is not the case.
This suggests that the underlying field equations, which are implicitly included
in the BES-style equations, may play an important role in the computations for
solving the system. However, this is yet to be established.

By comparing the results in Table 1, it is clear that the timings of compu-
tations for SR(n, 1, 1, 4) over GF (2) are much better than those over GF (24).
However it is not clear whether this means that bit-level equations offer a better
representation than BES-style equations in general, since MAGMA’s implemen-
tation of the F4 algorithm is heavily optimised for operations over GF (2) [13].
(In fact we see the opposite behaviour occurring for the cipher SR(n, 1, 1, 8).)
Given the highly structured form of the BES-style systems we would expect com-
putations using equation sets over GF (2e) to be generally more efficient than
those over GF (2).

4.2 SR(n, 2, 1, 4) and SR(n, 2, 2, 4)

Some basic timing experiments with the systems derived from the variants
SR(n, 2, 1, 4) and SR(n, 2, 2, 4) are given below. For these two variants, we also
used MAGMA’s implementation of Buchberger’s algorithm in addition to com-
putations of the Gröbner bases using the F4 algorithm. While we would expect
Buchberger’s algorithm to be slower, it should require less memory than the F4
algorithm. As before, timings are given in seconds, with N/A meaning insufficient
memory to complete the computation (see Table 2).

By comparing the results in Table 2, we note that the equation system derived
from SR(4, 2, 1, 4) has a similar number of variables, monomials and equations
as the equation system arising from SR(2, 2, 2, 4). Therefore we might expect



Cipher Variables Equations Monomials Time Time
F4 Buchberger

SR(1,2,1,4) 40 80 97 0.22 1.11

SR(2,2,1,4) 72 144 177 24.55 40.58

SR(3,2,1,4) 104 208 257 519.92 2649.90

SR(4,2,1,4) 136 272 337 N/A 28999.41

SR(1,2,2,4) 72 144 169 27.73 444.07

SR(2,2,2,4) 128 256 305 N/A N/A

Table 2. Time (in seconds) for Gröbner Basis computation of GF (24) equation systems
with F4 and Buchberger’s algorithm (using graded reverse lexicographic monomial
ordering).

a similar performance in the computation for these two systems. However, our
results confirm the important role played by the inter-word diffusion in the com-
plexity of the computations. The diffusion of SR(n, 2, 1, 4) is limited, whereas
SR(n, 2, 2, 4) has a similar diffusion pattern to that seen in the AES.

4.3 Meet-in-the-Middle Approach

Our experiments used the exact equation systems discussed in this paper; no
pre-computation was performed and we did not explore any special structure.
However it is well-known that the equation systems derived from the AES are
highly structured, especially when represented as the set of BES-style equations
over GF (2e). In particular, these systems might be viewed as “iterated” systems
of equations, with similar blocks of multivariate quadratic equations repeated
for every round. These blocks are connected to each other via the input and
output variables, as well as the key schedule. When working with systems with
such structure, a promising technique to find the overall solution is, in effect,
a meet-in-the-middle approach: rather than attempting to solve the full system
of equations for n rounds (we assume that n is even), we can try to solve two
subsystems with n

2 rounds, by considering the output of round n
2 (which is also

the input of round n
2 + 1) as variables. By choosing an appropriate monomial

ordering we obtain two sets of equations (each covering half of the encryption
operation) that relate these variables with the round subkeys. These two sys-
tems can then be combined along with some other equations relating the round
subkeys. This gives a third smaller system which can be solved to obtain the
encryption key.

We have tried this approach with some of the AES variants and compared
the results with the timings obtained earlier. Our experiments suggest that this
approach may be more efficient. For example, we were able to solve the system
for SR(10, 1, 1, 4) using this approach in 42 seconds compared with 340 seconds
using the naive approach. We also obtained better results for SR(4, 1, 1, 8) and
SR(4, 2, 1, 4) using this approach (see Table 3).

This technique is cryptographically intuitive and is in fact a simple applica-
tion of Elimination Theory [3], in which the Gröbner bases are computed with



Cipher Variables Equations Monomials Time

SR(10,1,1,4) - 5 rounds ↓ 88 172 217 19.22

SR(10,1,1,4) - 5 rounds ↑ 76 148 189 22.41

Solve 16 40 52 0.02

Total: 41.65

SR(4,1,1,8) - 2 rounds ↓ 80 152 193 15466.37

SR(4,1,1,8) - 2 rounds ↑ 56 104 137 4603.89

Solve 32 80 576 215.92

Total: 20286.18

SR(4,2,1,4) - 2 rounds ↓ 80 152 193 667.17

SR(4,2,1,4) - 2 rounds ↑ 56 104 137 2722.43

Solve 80 176 524 14.87

Total: 3404.47

Table 3. Time (in seconds) for the meet-in-the-middle approach using F4 Gröbner
Basis computation of equation systems arising from SR(10, 1, 1, 4), SR(4, 1, 1, 8) and
SR(4, 2, 1, 4) using lexicographic ordering.

respect to the appropriate monomial ordering to eliminate the variables that
do not appear in rounds n

2 and n
2 + 1. One problem with this approach is that

computations using elimination orderings (such as lexicographic) are usually less
efficient than those with degree orderings (such as graded reverse lexicographic).
Thus, for more complex systems, we might expect that using lexicographic order-
ing in the two main subsystems would yield only limited benefit when compared
with graded reverse lexicographic ordering for the full system. As an alternative,
we could simply compute the Gröbner bases for the two subsystems (using the
most efficient ordering) and combine both results to compute the solution of
the full set equations. While this approach was more expensive for the variant
SR(10, 1, 1, 4), it was more efficient for the cipher SR(4, 2, 1, 4) (see Table 4).

Cipher Variables Equations Monomials Time

SR(4,2,1,4) - 2 rounds ↓ 112 216 273 553.63

SR(4,2,1,4) - 2 rounds ↑ 104 200 257 1501.41

Solve 136 1197 918 12.68

Total: 2067.72

Table 4. Time (in seconds) for the meet-in-the-middle approach using F4 Gröbner
Basis computation of equation systems arising from SR(4, 2, 1, 4) using graded reverse
lexicographic monomial ordering.

These results suggest the applicability of a more general divide-and-conquer
approach to this problem, in which some form of (perhaps largely symbolic)
pre-computation could be performed and then combined to produce the solution
of the full system. This might be a promising direction and more research will



assess whether this approach might increase the efficiency of algebraic attacks
against the AES and related ciphers.

5 Conclusions

We have defined a family of small scale variants of the AES. This provides a com-
mon framework for the analysis of AES-like equation systems. We also present
some basic experimental results when using off-the-shelf computational algebra
techniques to solve these systems. These provide some preliminary insight into
the behavior of algebraic attacks and future work can now take place within a
framework for the systematic analysis of small scale AES variants.

References

1. C. Cid, S. Murphy, and M.J.B. Robshaw. Computational and Algebraic Aspects
of the Advanced Encryption Standard. In V. Ganzha et al., editors, Proceedings
of the Seventh International Workshop on Computer Algebra in Scientific Com-
puting - CASC 2004, St. Petersburg, Russia, pages 93–103, Technische Universität
München. 2004.

2. N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In Y. Zheng, editor, Proceedings of Asiacrypt 2002, LNCS 2501,
pages 267–287, Springer-Verlag, 2002.

3. D. Cox, J. Little and D. O’Shea. Ideals, Varieties, and Algorithms. Undergraduate
Texts in Mathematics, Second Edition, Springer-Verlag, 1997.

4. J. Daemen and V. Rijmen. The Design of Rijndael: AES – The Advanced Encryp-
tion Standard, Springer-Verlag, 2002.

5. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra, 139, pages 61–88, 1999.

6. Magma V2.11-1, Computational Algebra Group, School of Mathematics and Statis-
tics, University of Sydney. Website: http://magma.maths.usyd.edu.au. 2004.

7. S. Murphy and M.J.B. Robshaw. New Observations on Rijndael. Submitted to
NIST. Available via csrc.nist.gov. 7 August 2000.

8. S. Murphy and M.J.B. Robshaw. Essential Algebraic Structure within the AES.
In M. Yung, editor, Proceedings of CRYPTO 2002, LNCS 2442, pages 11–16,
Springer-Verlag, 2002.

9. S. Murphy and M.J.B. Robshaw. Comments on the Security of the AES and the
XSL Technique. Electronics Letters Vol. 39, pp 36-38, 2002.

10. M.A. Musa, E.F. Schaefer, and S. Wedig. A simplified AES algorithm and its linear
and differential cryptanalysis. Cryptologia, Vol. XXVII (2), pages 148-177, 2003.

11. National Institute of Standards and Technology. Advanced Encryption Standard.
FIPS 197. November 26, 2001.

12. R.C.-W. Phan. Mini Advanced Encryption Standard (Mini-AES): A Testbed for
Cryptanalysis Students, Cryptologia, Vol. XXVI (4), pages 283-306, 2002.

13. A. Steel. (Magma Development Team). Personal communication, October 2004.



Appendix A: Key Schedule Equations

SR(n, r, c, e) has a user-provided key of rce bits, which is considered to be an
array of (r × c) e-bits words. This key forms the initial subkey. Each subkey is
then used to define the next subkey as described below. This description uses
constants and functions which depend on the field GF (2e). All constants and
functions (apart from the round constant κi) have been discussed elsewhere and
are summarised in the following table.

GF (24) GF (28)
Round constant κi ρ(i−1) θ(i−1)

S-Box constant d 6 63
Inversion z 7→ z(−1) Inversion in GF (24) Inversion in GF (28)

GF (2)-linear map z 7→ L(z) L for GF (24) L for GF (28)

We regard each round subkey as a column GF (2e)-vector of length rc. In
order to define the key schedule, we effectively divide the round subkey vector
into c subvectors of length r. Thus the subkey vectors are given below.

Initial Subkey
(
k0,0, . . . , k0,r−1, . . . , k0,r(c−1), . . . , k0,rc−1

)T

Round 1 Subkey
(
k1,0, . . . , k1,r−1, . . . , k1,r(c−1), . . . , k1,rc−1

)T

...
...

Round n Subkey
(
kn,0, . . . , kn,r−1, . . . , kn,r(c−1), . . . , kn,rc−1

)T

The definition of the round subkeys now depends on the number of rows (r)
and columns (c) in the array. The round subkeys are defined recursively for each
round 1 ≤ i ≤ n.

Key Schedule for One Row (r = 1).

s0 = k
(−1)
i−1,c−1.

– One column (r = 1, c = 1).

(ki,0) = (L(s0)) + (d) + (κi) .

– More than one column (r = 1, c > 1). For 0 ≤ q ≤ c− 1

(ki,q) = (L(s0)) + (d) + (κi) +
q∑

t=0

(ki−1,t).

Key Schedule for Two Rows (r = 2).

s0 = k
(−1)
i−1,2c−1, s1 = k

(−1)
i−1,2c−2.



– One column (r = 2, c = 1).
(

ki,0

ki,1

)
=

(
L(s0)
L(s1)

)
+

(
d
d

)
+

(
κi

0

)
.

– More than one column (r = 2, c > 1). For 0 ≤ q ≤ c− 1

(
ki,rq

ki,rq+1

)
=

(
L(s0)
L(s1)

)
+

(
d
d

)
+

(
κi

0

)
+

q∑
t=0

(
ki−1,rt

ki−1,rt+1

)
.

Key Schedule for Four Rows (r = 4).

s0 = k
(−1)
i−1,4c−1, s1 = k

(−1)
i−1,4c−2, s2 = k

(−1)
i−1,4c−3, s3 = k

(−1)
i−1,4c−4.

– One column (r = 4, c = 1).



ki,0

ki,1

ki,2

ki,3


 =




L(s0)
L(s1)
L(s2)
L(s3)


 +




d
d
d
d


 +




κi

0
0
0


 .

– More than one column (r = 4, c > 1). For 0 ≤ q ≤ c− 1



ki,rq

ki,rq+1

ki,rq+2

ki,rq+3


 =




L(s0)
L(s1)
L(s2)
L(s3)


 +




d
d
d
d


 +




κi

0
0
0


 +

q∑
t=0




ki−1,rt

ki−1,rt+1

ki−1,rt+2

ki−1,rt+3


 .

Appendix B: Augmented Linear Diffusion Layer

For small scale variants of the AES, we can construct an augmented linear diffu-
sion layer that consists of the GF (2)-linear map, ShiftRows and MixColumns [7].
This helps to provide a natural set of equations. The augmented linear diffusion
layer can be represented by an (rc × rc) matrix. If we replace every entry z of
this matrix by Dz given earlier, we obtain an (rce×rce) matrix which replicates
the augmented linear diffusion layer for vector conjugates. We provide these ma-
trices for different array sizes over GF (24). For array sizes (1×1) and (2×1), the
augmented linear diffusion layers for vector conjugates are given by the matrices




5 1 C 5
2 2 1 F
A 4 4 1
1 8 3 3


 and




F 3 7 F A 2 B A
A A 5 6 8 8 4 9
7 8 8 2 D C C 3
4 6 C C 5 E F F
A 2 B A F 3 7 F
8 8 4 9 A A 5 6
D C C 3 7 8 8 2
5 E F F 4 6 C C




, respectively.



For the (2× 2)-array, the augmented diffusion layer is given by



F 3 7 F 0 0 0 0 0 0 0 0 A 2 B A
A A 5 6 0 0 0 0 0 0 0 0 8 8 4 9
7 8 8 2 0 0 0 0 0 0 0 0 D C C 3
4 6 C C 0 0 0 0 0 0 0 0 5 E F F
A 2 B A 0 0 0 0 0 0 0 0 F 3 7 F
8 8 4 9 0 0 0 0 0 0 0 0 A A 5 6
D C C 3 0 0 0 0 0 0 0 0 7 8 8 2
5 E F F 0 0 0 0 0 0 0 0 4 6 C C
0 0 0 0 A 2 B A F 3 7 F 0 0 0 0
0 0 0 0 8 8 4 9 A A 5 6 0 0 0 0
0 0 0 0 D C C 3 7 8 8 2 0 0 0 0
0 0 0 0 5 E F F 4 6 C C 0 0 0 0
0 0 0 0 F 3 7 F A 2 B A 0 0 0 0
0 0 0 0 A A 5 6 8 8 4 9 0 0 0 0
0 0 0 0 7 8 8 2 D C C 3 0 0 0 0
0 0 0 0 4 6 C C 5 E F F 0 0 0 0




.

Appendix C: Equation System for SR(2, 2, 2, 4)

We illustrate the kind of equation systems that arise by listing the BES-style
relations between variables in an SR(2, 2, 2, 4) encryption and key schedule. If
neither the encryption nor the key schedule require a 0-inversion, then each of
these relations is identically 0. Under this assumption, the following relations
give a multivariate quadratic equation system for SR(2, 2, 2, 4) over GF (24).
The probability that the encryption rounds do not require any 0-inversions is
about

(
15
16

)8 ≈ 0.60. The probability that the key schedule does not require any
0-inversions is about

(
15
16

)4 ≈ 0.77. Systems for other small scale variants can be
downloaded from the site http://www.isg.rhul.ac.uk/aes/index.html.

Component j and conjugate l for the plaintext, ciphertext and the key (also
used as the initial subkey) are denoted by pjl, cjl and k0jl respectively. We regard
the two rounds as round one and round two. We denote the input and output
of the inversion and the subkey used in round i for component j and conjugate
l by wijl, xijl and kijl respectively.

GF (24) Variable Round i Component j Conjugate l

Plaintext pjl 0, 1, 2, 3 0, 1, 2, 3
Ciphertext cjl 0, 1, 2, 3 0, 1, 2, 3

State
Inversion Input wijl 1, 2 0, 1, 2, 3 0, 1, 2, 3

Inversion Output xijl 1, 2 0, 1, 2, 3 0, 1, 2, 3
Key

Subkey kijl 0, 1, 2 0, 1, 2, 3 0, 1, 2, 3
Dummy sijl 0, 1 0, 1 0, 1, 2, 3



Initial Subkey Relations

w100 + p00 + k000 w110 + p10 + k010 w120 + p20 + k020 w130 + p30 + k030

w101 + p01 + k001 w111 + p11 + k011 w121 + p21 + k021 w131 + p31 + k031

w102 + p02 + k002 w112 + p12 + k012 w122 + p22 + k022 w132 + p32 + k032

w103 + p03 + k003 w113 + p13 + k013 w123 + p23 + k023 w133 + p33 + k033

Inversion and Conjugacy Relations: Rounds 1 and 2

w2
100 + w101 w100x100 + 1 x2

100 + x101 w2
200 + w201 w200x200 + 1 x2

200 + x201

w2
101 + w102 w101x101 + 1 x2

101 + x102 w2
201 + w202 w201x201 + 1 x2

201 + x202

w2
102 + w103 w102x102 + 1 x2

102 + x103 w2
202 + w203 w202x202 + 1 x2

202 + x203

w2
103 + w100 w103x103 + 1 x2

103 + x100 w2
203 + w200 w203x203 + 1 x2

203 + x200

w2
110 + w111 w110x110 + 1 x2

110 + x111 w2
210 + w211 w210x210 + 1 x2

210 + x211

w2
111 + w112 w111x111 + 1 x2

111 + x112 w2
211 + w212 w211x211 + 1 x2

211 + x212

w2
112 + w113 w112x112 + 1 x2

112 + x113 w2
212 + w213 w212x212 + 1 x2

212 + x213

w2
113 + w110 w113x113 + 1 x2

113 + x110 w2
213 + w210 w213x213 + 1 x2

213 + x210

w2
120 + w121 w120x120 + 1 x2

120 + x121 w2
220 + w221 w220x220 + 1 x2

220 + x221

w2
121 + w122 w121x121 + 1 x2

121 + x122 w2
221 + w222 w221x221 + 1 x2

221 + x222

w2
122 + w123 w122x122 + 1 x2

122 + x123 w2
222 + w223 w222x222 + 1 x2

222 + x223

w2
123 + w120 w123x123 + 1 x2

123 + x120 w2
223 + w220 w223x223 + 1 x2

223 + x220

w2
130 + w131 w130x130 + 1 x2

130 + x131 w2
230 + w231 w230x230 + 1 x2

230 + x231

w2
131 + w132 w131x131 + 1 x2

131 + x132 w2
231 + w232 w231x231 + 1 x2

231 + x232

w2
132 + w133 w132x132 + 1 x2

132 + x133 w2
232 + w233 w232x232 + 1 x2

232 + x233

w2
133 + w130 w133x133 + 1 x2

133 + x130 w2
233 + w230 w233x233 + 1 x2

233 + x230

Diffusion Relations: Rounds 1 and 2

w200 + Fx100 + 3x101 + 7x102 + Fx103 + Ax130 + 2x131 + Bx132 + Ax133 + k100 + 6

w201 + Ax100 + Ax101 + 5x102 + 6x103 + 8x130 + 8x131 + 4x132 + 9x133 + k101 + 7

w202 + 7x100 + 8x101 + 8x102 + 2x103 + Dx130 + Cx131 + Cx132 + 3x133 + k102 + 6

w203 + 4x100 + 6x101 + Cx102 + Cx103 + 5x130 + Ex131 + Fx132 + Fx133 + k103 + 7

w210 + Ax100 + 2x101 + Bx102 + Ax103 + Fx130 + 3x131 + 7x132 + Fx133 + k110 + 6

w211 + 8x100 + 8x101 + 4x102 + 9x103 + Ax130 + Ax131 + 5x132 + 6x133 + k111 + 7

w212 + Dx100 + Cx101 + Cx102 + 3x103 + 7x130 + 8x131 + 8x132 + 2x133 + k112 + 6

w213 + 5x100 + Ex101 + Fx102 + Fx103 + 4x130 + 6x131 + Cx132 + Cx133 + k113 + 7

w220 + Ax110 + 2x111 + Bx112 + Ax113 + Fx120 + 3x121 + 7x122 + Fx123 + k120 + 6

w221 + 8x110 + 8x111 + 4x112 + 9x113 + Ax120 + Ax121 + 5x122 + 6x123 + k121 + 7

w222 + Dx110 + Cx111 + Cx112 + 3x113 + 7x120 + 8x121 + 8x122 + 2x123 + k122 + 6

w223 + 5x110 + Ex111 + Fx112 + Fx113 + 4x120 + 6x121 + Cx122 + Cx123 + k123 + 7

w230 + Fx110 + 3x111 + 7x112 + Fx113 + Ax120 + 2x121 + Bx122 + Ax123 + k130 + 6

w231 + Ax110 + Ax111 + 5x112 + 6x113 + 8x120 + 8x121 + 4x122 + 9x123 + k131 + 7

w232 + 7x110 + 8x111 + 8x112 + 2x113 + Dx120 + Cx121 + Cx122 + 3x123 + k132 + 6

w233 + 4x110 + 6x111 + Cx112 + Cx113 + 5x120 + Ex121 + Fx122 + Fx123 + k133 + 7



c00 + Fx200 + 3x201 + 7x202 + Fx203 + Ax230 + 2x231 + Bx232 + Ax233 + k200 + 6

c01 + Ax200 + Ax201 + 5x202 + 6x203 + 8x230 + 8x231 + 4x232 + 9x233 + k201 + 7

c02 + 7x200 + 8x201 + 8x202 + 2x203 + Dx230 + Cx231 + Cx232 + 3x233 + k202 + 6

c03 + 4x200 + 6x201 + Cx202 + Cx203 + 5x230 + Ex231 + Fx232 + Fx233 + k203 + 7

c10 + Ax200 + 2x201 + Bx202 + Ax203 + Fx230 + 3x231 + 7x232 + Fx233 + k210 + 6

c11 + 8x200 + 8x201 + 4x202 + 9x203 + Ax230 + Ax231 + 5x232 + 6x233 + k211 + 7

c12 + Dx200 + Cx201 + Cx202 + 3x203 + 7x230 + 8x231 + 8x232 + 2x233 + k212 + 6

c13 + 5x200 + Ex201 + Fx202 + Fx203 + 4x230 + 6x231 + Cx232 + Cx233 + k213 + 7

c20 + Ax210 + 2x211 + Bx212 + Ax213 + Fx220 + 3x221 + 7x222 + Fx223 + k220 + 6

c21 + 8x210 + 8x211 + 4x212 + 9x213 + Ax220 + Ax221 + 5x222 + 6x223 + k221 + 7

c22 + Dx210 + Cx211 + Cx212 + 3x213 + 7x220 + 8x221 + 8x222 + 2x223 + k222 + 6

c23 + 5x210 + Ex211 + Fx212 + Fx213 + 4x220 + 6x221 + Cx222 + Cx223 + k223 + 7

c30 + Fx210 + 3x211 + 7x212 + Fx213 + Ax220 + 2x221 + Bx222 + Ax223 + k230 + 6

c31 + Ax210 + Ax211 + 5x212 + 6x213 + 8x220 + 8x221 + 4x222 + 9x223 + k231 + 7

c32 + 7x210 + 8x211 + 8x212 + 2x213 + Dx220 + Cx221 + Cx222 + 3x223 + k232 + 6

c33 + 4x210 + 6x211 + Cx212 + Cx213 + 5x220 + Ex221 + Fx222 + Fx223 + k233 + 7

Key Schedule Conjugacy Relations

k2
000 + k001 k2

100 + k101 k2
200 + k201

k2
001 + k002 k2

101 + k102 k2
201 + k202

k2
002 + k003 k2

102 + k103 k2
202 + k203

k2
003 + k000 k2

103 + k100 k2
203 + k200

k2
010 + k011 k2

110 + k111 k2
210 + k211

k2
011 + k012 k2

111 + k112 k2
211 + k212

k2
012 + k013 k2

112 + k113 k2
212 + k213

k2
013 + k010 k2

113 + k110 k2
213 + k210

k2
020 + k021 k2

120 + k121 k2
220 + k221

k2
021 + k022 k2

121 + k122 k2
221 + k222

k2
022 + k023 k2

122 + k123 k2
222 + k223

k2
023 + k020 k2

123 + k120 k2
223 + k220

k2
030 + k031 k2

130 + k131 k2
230 + k231

k2
031 + k032 k2

131 + k132 k2
231 + k232

k2
032 + k033 k2

132 + k133 k2
232 + k233

k2
033 + k030 k2

133 + k130 k2
233 + k230

Key Schedule Inversion and Conjugacy Relations

k030s000 + 1 s2
000 + s001 k130s100 + 1 s2

100 + s101

k031s001 + 1 s2
001 + s002 k131s101 + 1 s2

101 + s102

k032s002 + 1 s2
002 + s003 k132s102 + 1 s2

102 + s103

k033s003 + 1 s2
003 + s000 k133s103 + 1 s2

103 + s100

k020s010 + 1 s2
010 + s011 k120s110 + 1 s2

110 + s111

k021s011 + 1 s2
011 + s012 k121s111 + 1 s2

111 + s112

k022s012 + 1 s2
012 + s013 k122s112 + 1 s2

112 + s113

k023s013 + 1 s2
013 + s010 k023s113 + 1 s2

113 + s110



Key Schedule Diffusion Relations: Round 1

k100 + k000 +5s000 + 1s001 + Cs002 + 5s003 + 7

k101 + k001 +2s000 + 2s001 + 1s002 + Fs003 + 6

k102 + k002 +As000 + 4s001 + 4s002 + 1s003 + 7

k103 + k003 +1s000 + 8s001 + 3s002 + 3s003 + 6

k110 + k010 +5s010 + 1s011 + Cs012 + 5s013 + 6

k111 + k011 +2s010 + 2s011 + 1s012 + Fs013 + 7

k112 + k012 +As010 + 4s011 + 4s012 + 1s013 + 6

k113 + k013 +1s010 + 8s011 + 3s012 + 3s013 + 7

k120 + k020 + k000 +5s000 + 1s001 + Cs002 + 5s003 + 7

k121 + k021 + k001 +2s000 + 2s001 + 1s002 + Fs003 + 6

k122 + k022 + k002 +As000 + 4s001 + 4s002 + 1s003 + 7

k123 + k023 + k003 +1s000 + 8s001 + 3s002 + 3s003 + 6

k130 + k030 + k010 +5s010 + 1s011 + Cs012 + 5s013 + 6

k131 + k031 + k011 +2s010 + 2s011 + 1s012 + Fs013 + 7

k132 + k032 + k012 +As010 + 4s011 + 4s012 + 1s013 + 6

k133 + k033 + k013 +1s010 + 8s011 + 3s012 + 3s013 + 7

Key Schedule Diffusion Relations: Round 2

k200 + k100 +5s100 + 1s101 + Cs102 + 5s103 + 4

k201 + k101 +2s100 + 2s101 + 1s102 + Fs103 + 3

k202 + k102 +As100 + 4s101 + 4s102 + 1s103 + 5

k203 + k103 +1s100 + 8s101 + 3s102 + 3s103 + 2

k210 + k110 +5s110 + 1s111 + Cs112 + 5s113 + 6

k211 + k111 +2s110 + 2s111 + 1s112 + Fs113 + 7

k212 + k112 +As110 + 4s111 + 4s112 + 1s113 + 6

k213 + k113 +1s110 + 8s111 + 3s112 + 3s113 + 7

k220 + k120 + k100 +5s100 + 1s101 + Cs102 + 5s103 + 4

k221 + k121 + k101 +2s100 + 2s101 + 1s102 + Fs103 + 3

k222 + k122 + k102 +As100 + 4s101 + 4s102 + 1s103 + 5

k223 + k123 + k103 +1s100 + 8s101 + 3s102 + 3s103 + 2

k230 + k130 + k110 +5s110 + 1s111 + Cs112 + 5s113 + 6

k231 + k131 + k111 +2s110 + 2s111 + 1s112 + Fs113 + 7

k232 + k132 + k112 +As110 + 4s111 + 4s112 + 1s113 + 6

k233 + k133 + k113 +1s110 + 8s111 + 3s112 + 3s113 + 7


