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 Small-signal models are useful tools to preliminary understand the dynamics 

of interconnected systems like modular dc-dc converters which find a wide 

range of industrial applications. This work proposes a state-space-based 

averaged small-signal model in symbolic form for a peak current-mode 

controlled parallel-input/parallel-output buck converter operating in 

the continuous-conduction mode. In modeling the converter power-stage 

each module is independently represented. For modeling the current-mode 

control the state-space algebraic approach is used to incorporate the current-

mode control-law into the power-stage equations. For each module two 

parasitic elements in addition to the current-loop sampling action are 

included in the derivation. Furthermore, the control-to-output voltage transfer 

functions are presented in symbolic form for two cases of interest: the first 

when the converter has two non-identical modules to study the effect of 

inductor mismatch, and the second when the converter is composed of 

n-connected identical modules to assess the effect of varying the number of 

modules. All responses from PSIM cycle-by-cycle simulations are in good 

agreement with the mathematical model predictions up to half the switching 

frequency. 
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1. INTRODUCTION 

For more than two decades the modular approach in designing dc-dc converters has been employed 

to satisfy certain input/output requirements that cannot be efficiently met by single-cell converters. 

With this approach two or more single-cell converters are connected in a variety of arrangements to comply 

with design requirements. Several arrangements have been reported in the literature serving a wide range of 

applications such as distributed power systems, dedicated dc power supplies, and renewable energy systems. 

The four basic arrangements are: the parallel-input/parallel-output (PIPO), the parallel-input/series-output 

(PISO), the series-input/parallel-output (SIPO), and the series-input/series-output (SISO). Various dc-dc 

converter topologies like the buck and buck-based [1-19], the boost and boost-based [11, 19-29], and  

the buck-boost-based [25, 30-32] have been used for the constituent modules of modular converters.  

The semiconductor devices employed in these converters are commonly driven using pulse-width modulation 

(PWM) techniques with the converter being operated under voltage-mode control (VMC) or current-mode 

control (CMC) [1, 2, 4, 6-10, 12, 13, 16, 17, 19-26, 31, 32]. 

Whether the converter is operated under VMC or CMC, initial investigation of the dynamics of 

modular dc-dc converters is traditionally performed using small-signal (SS) transfer functions. Averaging 

techniques such as state-space averaging [33] and circuit averaging [34] are widely used for the SS modeling 
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of the power stages of these converters. Due to the complexity of modular converters SS modeling is often 

based on reduced-order (RO) power-stage models, where the modular converter is substituted 

by an equivalent single-cell one. Nevertheless RO models do not always give detailed description of the SS 

behavior and therefore a full-order model of the power stage, where each of the constituent modules is 

independently represented, becomes necessary [11]. 

For CMC converters, in addition to the power-stage model, a CMC-stage law has to be included  

into the development of the model. One of the CMC schemes that finds a wide popularity in the power 

supply industry is the ramp-compensated peak CMC (PCMC) traditionally used for single-cell dc-dc 

converters due to its advantages over VMC such as better line-noise rejection, and automatic overload 

protection. An Accurate SS model of PCMC requires the inclusion of the sampling effect of the current loop 

in its structure. Such a model can be added to the power-stage SS model in two ways: the first can be 

classified as circuit-oriented where a separate transfer-function block is interfaced with the power-stage 

model [1, 6, 7, 10, 12, 19, 21, 22, 26, 32], and the second is the state-space algebraic approach where  

the PCMC law is augmented with the power-stage matrices. The algebraic approach requires more 

mathematical manipulation but is more general since it allows the CMC converter model to be obtained in 

symbolic state-space form. This approach has been used for the SS modeling of single-cell PCMC dc-dc 

converters [35-37]. It has also been employed for one type of PCMC modular arrangements, namely  

the PISO structure, but with the assumption that the constituent modules are identical and the components  

are ideal [13, 25]. 

Among the modular arrangements the PIPO architecture has been widely used for power supply 

designs with several paralleling schemes being employed most of which are classified and evaluated in [3], 

and [26]. One of these schemes adopts the ramp-compensated PCMC. Small-signal modeling of PCMC PIPO 

converters has partially appeared in several publications [1, 6, 7, 10, 19, 21, 22, 26], but the ones that 

included parasitic elements and the sampling effect of the current loop have relied on RO models for  

power-stage modeling and the circuit-oriented approach for CMC modeling [1, 19, 21, 22]. There is no 

published work that combines a detailed power-stage SS model with an accurate CMC-stage law in a 

symbolic state-space form for PCMC PIPO converters. With the continuous interest in modular converters 

more research is needed into the area of SS of the PIPO architecture and other basic arrangements of modular 

converters. In fact, recent publications [38-40] show that there is still a need to improve existing models of 

the single-cell dc-dc converters. 

The contribution of this paper is: (1) we propose a state-space-based averaged SS model in symbolic 

form for a PCMC PIPO buck converter operating in the continuous-conduction mode. In modeling the power 

stage each module is independently represented. For CMC modeling the state-space algebraic approach is 

used to incorporate the PCMC law into the power-stage equations. The sampling effect of the current loop 

and two parasitic elements, namely the inductor internal resistance and the capacitor equivalent series 

resistance are included in the derivation. (2) Based on the proposed model, the control-to-output voltage 

expressions are derived in symbolic form for two cases of interest: The first is a two-module PCMC PIPO 

converter with mismatched circuit parameters to study the effect of inductor mismatch; and the second is  

a PCMC PIPO converter consisting of n-connected identical modules to assess the effect of varying 

the number of modules. These issues have not been addressed before and are amenable to investigation. 

It will be shown in the sequel that for circuit parameters based on a standard design, the inductor mismatch 

has small effect on the gain and phase of the control-to-output voltage responses at low frequencies, while 

varying the number of modules has a noticeable impact on the low-frequency region of these responses.  

The rest of this paper is organized as follows: Section 2 and the Appendix present the procedure 

used to construct the power-stage and CMC-stage models. Section 3 discusses the derivation of the  

control-to-output voltage expressions and the responses generated from feeding these expressions into 

Matlab. It also presents PSIM “ac sweep” simulation results for comparison. The conclusion is given in 
Section 4. 

 

 

2. SMALL-SIGNAL MODELING  
Figure 1(a) shows a two-module PCMC PIPO buck converter. The control of each module can be 

explained with the help of Figure 1(b): A constant-frequency clock starts the switching cycle (T) and 

transistor ON time. Inductor current (iL) sensed by resistor (Ri) is compared with control voltage (VC), 

generated by the voltage feedback loop. Transistor duty-ratio (D) is determined when the sensed inductor 

current whose rising slope [M1 = (VS −VO)*Ri /L] reaches a peak value set by VC. A compensating ramp with 

slope (MC) is needed to eliminate instability when D > 0.5 [41]. The converter works in the continuous-

conduction mode; the inductance and switching frequency are chosen such that iL never falls to zero. 
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Current-mode control results in an inner (current) loop that regulates the inductor current. The controller in 

the outer (voltage) loop generates the value of VC needed to regulate the output voltage (VO) at a desired 

value. The controller’s design is outside the scope of this work. 
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Figure 1. (a) Schematic of PCMC PIPO buck converter, (b) Supporting waveforms at steady state 
 

 

2.1.  Power-stage modeling 

Figure 2 shows the power stage of the converter of Figure 1(a) with transistors Q1 and Q2 replaced 

by switches S11 and S21 respectively. Diodes DR1 and DR2 are substituted by switches S12 and S22 

respectively. Capacitor Ce is the parallel combination of C1 and C2 while resistor Re represents the parallel 

equivalence of RC1 and RC2. A current source is added across the load to include the effect of changes in  

load current. 
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Figure 2. Schematic of the circuit used for power stage modeling  
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State-space equations (SSEs) describing the converter modes of operation are derived using circuit 

equations. After time averaging and SS linearization (details in Appendix) the SSEs representing the power 

stage are 

 

 ̇̂     [ ̂   ̂   ̂  ]  [  
   
   
 (      )               

–     (      )          
                    ]  

   
   [ ̂   ̂   ̂  ]  [  

   
   
              
              
         ]  

   
   
[  
  ̂  ̂  ̂  ̂ ]  
 
  (1)  

 

Where the symbol (^) represents SS variations and 

                  ;              (2)          (3) 

 

2.2.  CMC-stage modeling 
The “New Continuous Time” technique [41] for the SS modeling of single-cell PWM PCMC dc-dc 

converters is widely accepted and will be adopted for this work. Based on this technique, the SS model of  

the converter under consideration is shown in Figure 3. For each module, the CMC model includes:  

the modulator gain Fm, the sampling gain of the current loop HL, and the feedforward gains HS and HO 

created when the current feedback path is closed. 

a. Module pulse-width modulator gain  

The modulator gains of a module 1 and module 2 can be respectively written as 

      (       )   (   (     )      )  ;      (       )   (   (     )      )    (4) 

 

b. Sampling gain of the module current loop 

The CMC converter is considered a sample-and-hold system. Sampling gain is approximated by a 

double right-hand plane zero at half the switching frequency. For modules 1 and 2 sampling gains are 

respectively 

        (             ) ;        (             )  (5) 

 

Where       ⁄  and      ⁄  

c. Input voltage feedforward gain 

A Feedforward gain of the input voltage is created when the module current loop is closed.  

An improvement to the feedforward gain of [41] is presented in the analysis of [42] for the single-cell buck 

converter. It adds a high-frequency zero to the gain proposed in [41]. The input voltage feedforward gains of 

module 1 and module 2 can be respectively expressed as 

                     (     )      ;                     (     )      (6) 

 

d. Output voltage feedforward gain 

When the module current loop is closed a feedforward gain of the output voltage is also created. The 

output voltage feedforward gains of module 1 and module 2 respectively are 

     (    )         ;     (    )          (7) 

 

Referring to the block diagram of Figure 3, the duty-ratio laws of module 1 and module 2 become 

  ̂     ( ̂      ̂       ̂      ̂ ) ;  ̂     ( ̂      ̂       ̂      ̂ )  (8) 
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Figure 3. Small-signal block diagram of CMC control 

 

 

3. CONTROL-TO-OUTPUT VOLTAGE CHARACTERISTICS 

Applying Laplace transforms to (1), and substituting for each module its respective duty ratio given 

by (8), we get 

 

[  ̂    ̂    ̂  ]  [
                           ] [

 ̂   ̂   ̂  ]  [
                       ] [

 ̂  ̂  ̂ ]  (9) 

 

Where the A and B entries are given in Table 1. 

The (9) represents the SS model of the two-module converter with current loops closed and voltage 

loop open. The SS model represented by (9) is suitable for the control of each module individually. 

 

 

Table 1. Summary of the expressions of (9) 
Elements Equations Elements Equations          (         )                             (          )                           (          )           (          )         (          )                        (         )                                   (          )           (          )                                           

 

 

 

3.1.  Case 1: Control-to-output voltage with mismatched inductor values 

The control-to-output voltage transfer function is of interest to the power supply designer because it 

provides a tool for voltage-feedback control design. Referring to the converter of Figure 1(a) we have 

                 (10) 

 

Therefore the control-to-output voltage is 

  ̂  ̂   ̂   ̂ (       ) (11) 
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From (9) the control-to-output capacitor voltage can be derived as 

  ̂   ̂        ⁄               (12) 

 

Where 

                  (13a) 

       (             )     (             )  (13b) 

                (13c) 

       (       )                              (13d) 

       (             )     (             )     (             )  (13e) 

 

Where the A and B entries are given in Table 1. 

It should be noted here that elements A11 and A22 in (12) depend on the sampling effect terms given 

by (5), and therefore the numerator of (12) is third order while the denominator is of the fifth order. 

Using (11) the effect of mismatch between modules on the control-to-output voltage response can be 

assessed. As an example, a difference of 50% is assumed between inductances L1 and L2. Inductance 

mismatch can be less than this, but the worst-case scenario is behind this choice. Circuit parameters used are: 

 

L1 = 50 µH; L2 = 75 µH; RL1 = RL2 = 20 mΩ; VS = 40 V; VO = 24 V; R = 2.4 Ω; Ri1 = Ri2 = 0.1 Ω 

C1 = C2 = 10 µF; RC1 = RC2 = 50 mΩ; switching frequency fS = 100 kHz 

 

The (11) is programmed into Matlab. The control-to-output voltage responses are depicted  

in Figure 4, and Figure 5 with ramp amplitudes Vramp = 0.16 V and 0.59 V respectively. These values are 

chosen to demonstrate the underdamped and damped responses. The responses when identical inductors are 

used are also plotted for comparison. In addition, the figures illustrate PSIM “ac sweep” results. The “ac 
sweep” allows users to obtain frequency responses with the circuit being in its original switched-mode form. 

Good agreement can be generally observed between the model predictions and PSIM results up to half  

the switching frequency. Matlab pole-zero locations are given in Table 2. From Figure 4, Figure 5, and  

Table 2 the following can be realized: 

a. When identical inductors are used with Vramp = 0.16 V, Figure 4 shows that the converter control-to-

output voltage response becomes similar to that of the single PCMC buck. The behavior, after pole-zero 

cancellation, is influenced by a real left-hand plane (LHP) pole at low frequencies. At high frequencies 

there is a real LHP zero at 1/(CeRe). In addition, there is a complex pole at half the switching frequency 

(fS/2) which is responsible for the peaking observed. This double pole is due to the sampling effect of 

the current loop. The Q of this second-order pole is controlled using the compensation ramp. As in single-

cell PCMC converters [41], the equation used to decide on the size of ramp required to prevent peaking at 

fs2 is 

      [(   )(      ⁄ )    ] (14) 

 

Critical damping of the second-order pole is achieved with Vramp = 0.59 V as shown in Figure 5. 

This corresponds to slope ratio MC/M1 = 1.84. Table 2 shows that by increasing Vramp to 0.59V the double 

pole splits into two real LHP poles: One of these poles moves towards the low-frequency region and  

the other to frequencies beyond fS/2. 

b. With mismatched inductors and Vramp = 0.16 V, the double zero cancels out with the nearest double pole 

as Table 2 shows. Figure 4 indicates a slight decrease in the dc gain. Also, a small phase difference and 

less peaking at fS/2 can be observed. The effective slope ratio is 

             ⁄  (     )   ⁄      (       )⁄   (     ) (       )⁄             →       [(     )(      )    ]         

 

and the damping ratio = 0.5/Q = 0.314, which is close to the damping ratio of 0.312 predicted by Matlab.  
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When Vramp = 0.59 V, Figure 5 shows a slight decrease in the dc gain for the case of mismatched 

inductors, and there is around 2 dB drop in the gain and a phase difference of 6 degrees at 20 kHz.  

The figure also shows an overdamped response since 

             ⁄  (     )   ⁄      (       )⁄   (     ) (       )⁄             →       [(     )(      )    ]         

 

and the damping ratio = 1.581. Matlab, however, gives a damping ratio of 1 because the roots of the fifth-

order denominator are all first-order poles. 

To ensure good current sharing between the mismatched modules, each module should have its own 

ramp generator as shown in Figure 1(a). Good current sharing can be achieved by controlling the ramp slope 

difference (MC1−MC2). Current-mode control provides an excellent current sharing without compromising  

the system’s reliability and modularity [19]. 
 

 

  
 

Figure 4. Comparison of control-to-output voltage responses when identical and non-identical inductors 

are used with Vramp = 0.16 V. left traces: model predictions; right traces: PSIM results 

 

 

  
 

Figure 5. Comparison of control-to-output voltage responses when identical and non-identical inductors 

are used with Vramp = 0.59 V. left traces: model predictions; right traces: PSIM results 
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Table 2. Matlab pole-zero locations 
Under-damped Response (Ramp Amplitude = 0.16 V) Damped Response (Ramp Amplitude = 0.59 V) 

 
L1 = L2 = 50 µH 

damp. 

ratio 

L1 = 50 µH 

L2 = 75 µH 

damp. 

ratio 
L1 = L2 = 50 µH 

damp. 

ratio 

L1 = 50 µH 

L2 = 75 µH 

damp. 

ratio 

zeros 

 -2e+06 +  0i 

 -49348 + 3.106e+05i 

 -49348 - 3.106e+05i 

  -2e+06 +  0i 

 -74022 + 3.057e+05i 

 -74022 - 3.057e+05i 

  -2e+06 +  0i 

 -3.140e+05 +2373i 

 -3.140e+05 - 2373i 

   -2e+06 

 -6.593e+05 

 -1.504e+05 

 

poles 

-48738 + 3.123e+05i 

-48738 - 3.123e+05i 

-49348 + 3.106e+05i 

-49348 - 3.106e+05i 

 -22365 +  0i 

0.154 

0.154 

0.157 

0.157 

1 

-49046 + 3.115e+05i 

-49046 - 3.115 e+05i 

-98146 + 2.991e+05i 

-98146 - 2.991e+05i 

-22763 +  0i 

0.156 

0.156 

0.312 

0.312 

1 

-3.538e+05 + 0i 

-3.140e+05 + 2373i 

 -3.140e+05 - 2373i 

 -2.595e+05 + 0i 

 -35804 + 0i 

1 

0.997 

0.997 

1 

1 

 -8.788e+05 

 -3.381e+05 

 -2.831e+05 

 -1.019e+05 

 -38373 

1 

1 

1 

1 

1 

 

 

3.2.  Case 2: Varying the number of modules 
In this subsection, the state-space algebraic approach is applied for the small-signal modeling of  

the PCMC PIPO converter when (n) identical modules are used. The aim is to find an expression for  

the control-to-output voltage with (n) as a variable. The procedure used in the previous subsection is 

followed here. 

Referring to (9), if identical modules are assumed we have A11 = A22; A12 = A21; A13 = A23; A31 = A32 

and B11 = B21; B12 = B22; B13 = B23. The control-to-output capacitor voltage can then be derived as 

  ̂   ̂             (           )    (       )          (15) 

 

With three and four identical modules the control-to-output capacitor voltage laws are respectively 

  ̂   ̂             (            )    (        )          (16) 

  ̂   ̂             (            )    (        )         (17) 

 

In general, for (n) identical modules, the control-to-output capacitor voltage becomes 

  ̂   ̂             (    (   )       )    (    (   )   )         (18) 

 

Substituting for A and B entries (Table 1) and using the fact that      , the (18) is approximated as 

  ̂   ̂                [     (       (        )    )]        (       )    (19) 

 

Where Fm, HL, and HO are given by (4), (5), and (7) respectively. Using (11) the control-to-output voltage is 

  ̂  ̂        (       )        [     (       (        )    )]        (       )     (20) 

 

It can be noticed that the denominator of (20) is third order when we substitute for the sampling  

gain HL. This indicates that having identical modules reduces the system’s order from five to three. 

With identical modules and the same parameters of Subsection 3.1, Figure 6 shows the responses predicted 

by the derived model for n = 2, n = 3, and n = 4 with slope ratio MC/M1 = 0.5, while Figure 7 gives 

the responses when MC/M1 = 1.84. Each figure compares PSIM results with the model predications. 

Good agreement can be reported up to fS/2. It can be observed that although varying the number of modules 

has no effect on the peaking at fS/2 it does change the gain and phase responses at low frequencies. 

The significance of (20) is that it symbolically gives the control-to-output voltage response with n as 

a variable, with sampling gain and two parasitic elements included, which is a useful tool for designing 

the voltage feedback controller. 
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Figure 6. Control-to-output voltage response with n as a running parameter and MC/M1 = 0.5  

left traces: model predictions; right traces: PSIM results  

 

 

  
 

Figure 7. Control-to-output voltage response with n as a running parameter and MC/M1 = 1.84 

left traces: model predictions; right traces: PSIM results  

 

 

4. CONCLUSION 

A state-space-based averaged small-signal model in symbolic form is developed for a PCMC PIPO 

buck converter operating in the continuous-conduction mode. The model combines a detailed power-stage 

model with an accurate CMC-stage law that includes the current-loop sampling action. Based on  

the proposed model, the control-to-output voltage transfers are derived in symbolic form for two cases:  

The first is when the converter has two mismatched modules taking inductor mismatch as an example, and 

the second with the converter having n-connected identical modules. The derived expressions, validated by 

PSIM simulations, are insightful and do not require much computation time to produce the converter 

responses. The control-to-output voltage is 5
th

 order for the case of mismatched modules and 3
rd

 order when 

identical modules are used. Peaking at half the switching frequency is present in both cases and the value of 

ramp to prevent it has been quantified. Peaking is affected by inductor mismatch but not by varying  

the number of modules. Inductor mismatch has small effect on the gain and phase of the control-to-output 

voltage response at low frequencies even when this mismatch reaches a hypothetical 50%. Varying  

the number of modules on the other hand has a noticeable impact on the low-frequency region of the control-

to-output voltage response.  
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APPENDIX: PROCEDURE FOR DERIVING THE POWER-STAGE SMALL-SIGNAL MODEL 

Referring to Figure 2, there are four subintervals or modes of operation in a switching cycle as 

shown in the control sequence of Figure 8.  

MODE 1: Subinterval [0 ~ ΦT]: S11 ON/ S12 OFF and S21 OFF/ S22 ON 
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MODE 2: Subinterval [ΦT ~ D1T]: S11 ON/ S12 OFF and S21 ON/ S22 OFF 
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MODE 3: Subinterval [D1T ~ (Φ+D2) T]: S11 OFF, S12 ON and S21 ON, S22 OFF 
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MODE 4: Subinterval [(Φ+D2) T ~ T]: S11 OFF, S12 ON and S21 OFF, S22 ON 
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Figure 8. Switching sequence in one cycle of converter operation 

 

 

Since the switching frequency is much higher than the natural frequency of a converter module,  

the four state-space descriptions can be replaced by a single state-space description which represents  

the power stage over a complete period. This is done by time averaging (21)-to-(24), doing so we get  

  ̇  [    (    )   (       )   (      )  ]   [    (    )   (       )   (      )  ]   (25) 

 

Introducing small-signal perturbations      ̂        ̂        ̂ into (25), where  

symbol (^) means small-signal variations and  ̂       ̂      ̂    , and keeping the ac terms we get 

  ̇̂   [ (           )    (     )    (     )    ] ̂    [(     )  (     ) ] ̂  [(     )  (     ) ] ̂    [  (     )    (     )] ̂    [           ] ̂  (26) 

 

The (26) represents a general linearized small-signal model. Substituting for matrices A1, A2, A3, 

A4, B1, B2, B3 and B4 into (26), we get (1) used for the power-stage model in Subsection 2.1. 


