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ABSTRACT The two-layer distributed control architecture, including the microgrid (MG) control layer and

MG cluster (MGC) control layer, can be used for interconnecting multiple MGs to form the MGC. However,

the coupling among multiple elements and the interaction between two control layers may introduce new

low-damping oscillatory modes and even reduce the stability margin. Unfortunately, the detailed small-

signal stability analysis and stability enhancement method of the MGCwith the two-layer distributed control

strategy have not been reported. To fill this gap, this paper first presents a unified small-signal dynamic

model of the MGC. Subsequently, a comprehensive small-signal stability analysis based on the model is

presented to analyze: 1) the mechanism of coupling/interaction among MGs and multiple control layers;

2) the participation factors of the low-damping modes; and 3) the sensitivity of the distributed control

parameters. Moreover, the design of the distributed control parameters is formulated as an optimization

problem, where the particle swarm optimization is employed to search for an optimal combination of

parameters to enhance system stability. Finally, the stability assessment and time-domain simulation are

carried out to validate the effectiveness of the proposed method.

INDEX TERMS Distributed control, hierarchical control, microgrid cluster, particle swarm optimization,

small-signal stability.

I. INTRODUCTION

In recent years, the microgrid (MG) has experienced rapid

development because it is an effective solution for the

reliable integration of distributed generation (DG) units,

energy storage systems, and loads [1]–[3]. Meanwhile, with

the increasing application of MGs, interconnecting MGs to

form a microgrid cluster (MGC) is considered as an effec-

tive option of enabling maximum utilization of renewable

sources, suppressing stress and aging of the components in

MGs [4] or even operating as an island to serve more area

when a major outage happened [5].

The three-level hierarchical control architecture includ-

ing primary control, secondary control and tertiary con-

trol is widely investigated for a single MG to realize its

The associate editor coordinating the review of this manuscript and
approving it for publication was Jagdish Chand Bansal.

voltage/frequency regulation, power balance and load shar-

ing [6], [7]. However, for a MGC, the two-layer architecture

is commonly adopted, in which the classical MG three-

level control is modified and embedded into the MG-control

layer, and a MGC-control layer is employed to overlook the

resources and realize coordination of multiple MGs [8]–[10].

For the two-layer control architecture of MGC, there are

centralized or distributed ways to perform the control actions.

Due to the advantages of reliability, reconfigurability and low

communication investment, the distributed control method

gains a lot of concerns for the MGC [11]–[15]. Based on

the distributed communication network, each DG unit or MG

unit only requires its own and the neighbor’s information to

realize control objectives. The existing two-layer distributed

control methods for the MGC mainly focus on realization of

the steady-state objectives, e.g., (i) elimination of system fre-

quency deviations [12], [15], (ii) regulation of system voltage,
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such as DG units AC-side voltages or critical bus voltage [13],

and (iii) accurate power sharing among MGs [11], [14].

However, the dynamic characteristics of the MGC may

be undesirable in terms of the system damping, response

time, stability margin and so on [16], [17]. First, the inter-

action between two control layers and the dynamic cou-

pling among multiple MGs may introduce new low-damping

modes, which lead to oscillatory responses or even desta-

bilize the system. Moreover, compared with the centralized

method, the neighboring communication characteristic of the

distributed control method may result in a more significant

interaction/coupling among DG or MG units. Therefore,

a detailed small-signal stability analysis for the MGC is

of significant importance. In [16], a small-signal modeling

method for the MGC is proposed, in which each MG is

simplified as a DG unit without considering its internal

dynamics. Thus, the simplification in [16] will inevitably lead

to analysis errors. In [17], a detailed small-signal dynamic

model of a PV-based MGC is proposed and the analysis

results indicate that the coupling among MGs will weaken

the system stability. However, only decentralized primary

control is employed with each DG in [17], which means

the impact of other control layers, especially the impact of

interaction between different control layers cannot be studied.

To the best of our knowledge, a comprehensive small-signal

stability analysis of the MGC considering detailed models

and distributed control method has not been reported before.

Furthermore, although many methods have been proposed

to enhance the stability of a single MG [18]–[21], to the

best of our knowledge, the stability enhancement via optimal

control parameters design for the MGC has not been reported

before. Compared with a single MG, the complicated inter-

actions/couplings in a MGC with the two-layer distributed

control strategy are strongly associated with multiple control

parameters. Therefore, the control parameters of both the

MGC and MG control layer should be optimized jointly.

Motivated by the aforementioned limitations, this paper

focuses on stability analysis and enhancement method of the

MGC with the two-layer distributed control strategy. The

main contributions of this paper include:

1) a comprehensive stability analysis of the MGC based

on its small-signal dynamic model to reveal the cou-

pling mechanism among multiple MGs, control inter-

action between different control layers and the impact

of control parameters on stability;

2) a formulation of the control parameters optimal

design problem considering bothMG-control layer and

MGC-control layer and a particle swarm optimization

(PSO) approach to jointly optimize multiple control

parameters to enhance the system stability.

This paper also presents time-domain simulation valida-

tions of the MGC small-signal dynamic model to ensure

an accurate and reliable stability analysis result. Eigenvalue

analysis and time-domain simulation are provided to verify

the effectiveness of the proposed parameters optimization

method.

The rest of the paper is organized as follows. Section II

describes the unified small-signal dynamic model of the

MGC with the two-layer distributed control method.

Section III presents the stability analysis of the MGC based

on the small-signal dynamicmodel. Section IV formulates the

control parameters optimization problem and the PSO based

solution method. Case studies are presented in Section V

to validate the effectiveness and of the proposed stability

enhancement method. Section VI concludes the paper.

II. SMALL-SIGNAL DYNAMIC MODEL OF THE MGC WITH

THE TWO-LAYER DISTRIBUTED CONTROL STRATEGY

In this section, the two-layer distributed control method for

the MGC is presented. Based on it, the small-signal dynamic

model is provided.

A. TWO-LAYER DISTRIBUTED CONTROL

FRAMEWORK FOR MGC

The two-layer distributed control framework includes

(i) primary and distributed secondary control levels in the

MG-control layer, (ii) tertiary and distributed quaternary

control levels in the MGC-control layer.

• The primary control (PC) level is responsible for con-

trolling the local power, voltage, and current of DGs.

• The distributed secondary control (DSC) level is intro-

duced to adjust the voltage phasor of the point of com-

mon coupling (PCC) in the MG by controlling the PCC

voltage magnitude and frequency at the reference values

received from the tertiary control level.

• The tertiary control (TC) level manages the power flow

through PCC of each MG by sending commands to the

secondary control level.

• The distributed quaternary control (DQC) level super-

vises the entire MGC and controls the critical bus volt-

age and system frequency as desired values.

A schematic diagram of the two-layer distributed control

framework is presented in Fig. 1.

FIGURE 1. Two-layer distributed control architecture of the MGC.
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Within an arbitraryMGk , eachDGunit communicates with

its neighbors to formulate the lower distributed communica-

tion network Gk . Then, each MG is represented by an agent

and communicates with its neighbors to formulate the upper

distributed communication network G̃. Note that each MG

agent needs to communicate with at least one DG unit inside

this MG, as shown by the red dashed lines in Fig. 1, to realize

the coordination between two control layers.

The corresponding control objectives are summarized as

follows:

(i) The system frequency ωsys is controlled as the desired

value ω∗
sys.

(ii) The critical bus voltage Vc is restored to the desired

value V ∗
c . Note that the critical bus can be selected according

to the operation requirement and only one critical bus is

selected in this paper.

(iii) The active and reactive power through PCC of each

MG are shared among them based on their capacities, i.e.,

PPCC1/PmMG1 = . . . = PPCCm/PmMGm (1)

QPCC1/QmMG1 = . . . = QPCCm/QmMGm (2)

where PmMGk ,QmMGk ,PPCCk ,QPCCk are active and reactive

power capacities of MGk , output active and reactive power

through PCCk , respectively, with k ∈ M,M = {1, 2, . . . ,m}.
(iv) Within each MG, the output active and reactive power

of each DG are shared among them based on their power

capacities, i.e.,

Pk1/Pmk1 = . . . = Pknk /Pmknk (3)

Qk1/Qmk1 = . . . = Qknk /Qmknk (4)

where Pmki, Qmki, Pki, Qki are active and reactive power

capacities, output active and reactive power of DGi in MGk ,

respectively, with i ∈ Nk , Nk = {1, 2, . . . ,nk}.

B. MG LAYER CONTROLLERS AND SMALL-SIGNAL

DYNAMIC MODELING

In the MG-control layer, the droop method is adopted as

the primary control. The distributed secondary control is

designed based on distributed cooperative control [22], [23]

and then implemented through the communication net-

work Gk which is modeled by a digraph in the graph

theory [24]. The associated adjacency matrix with Gk is

A
k =

[

akij

]

. Assume for an arbitrary MGk , the internal DG

units are considered as nodes in Gk , as shown in Fig. 1.

1) PRIMARY CONTROLLER (PC) AND DISTRIBUTED

SECONDARY CONTROLLER (DSC)

The PC is based on the droop method [25], [26] which

consists of the power controller, inner voltage controller, and

current controller, as shown in Fig. 2. The power controller

is

ωki = ωn − DPkiPki +�ki (5)

Eodki = Vn − DQkiQki + λki + hki (6-a)

Eoqki = 0 (6-b)

where ωki is the angular frequency of DGi in MGk , ωn

is the rated angular frequency, Vn is the rated voltage of

the low voltage (LV) network. Eodki is the d-axis voltage

reference, and the q-axis voltage reference Eoqki is set to

be zero. Eodki and Eoqki are provided to the inner voltage

controller. DPki and DQki are active and reactive power droop

coefficients, respectively. �ki, λki and hki are the distributed

secondary control variables.

The DSC is based on a distributed frequency and voltage

control method for MG introduced in our previous work [27].

More details can be found in [27]. The only modifica-

tion of the DSC in this paper is controlling the angular

FIGURE 2. A block diagram of the two-layer distributed control method.
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frequency ωPCC and PCC voltage VPCC as ωMGk and V
∗
PCCk

received from the TC instead of controlling them as rated

frequency and voltage in [27]. This modification can embed

the MG-layer control into the overall control architecture of

the MGC.

2) SMALL-SIGNAL DYNAMIC MODEL OF MGK

The reference frame of DG11, namely DG1 in MG1,

is selected as the common DQ-frame of the entire MGC.

Thus, the phase angle δki of DGki can be defined as

δ̇ki = ωki − ωg (7)

where ωg is the rotating frequency of the common DQ-frame

and equal to ω11, and ωki is the rotating frequency of local

dq-frame of DGki.

By modeling the dynamics of PCs, DSCs, lines and loads

inside MGk , the model of MGk can be obtained [27], i.e.,

[

1ṠMGk

]

= AMGk [1SMGk ] + BMGk1V
∗
PCCk

+CMGk

[

1iPCCDQk
]

(8)

where 1SMGk = [1XDGk ,1ilineDQk ,1iloadDQk ,1ψk ]
T ,

1XDGk refers to the state variables of all DG units in

MGk and 1XDGk = [1XDGk1,1XDGk2, . . . ,1XDGknk ]
T ,

1XDGki =
[

1δki,1Pki,1Qki,1�ki,1λki,1hki,1iodqki
]T
,

iodki, ioqki are the d-axis and q-axis component of DG output

current ioki in Fig.2.1ψk is a state variable introduced by the

PCC voltage controller,1V ∗
PCCk and1iPCCDQk are coupling

states which reflect the interactions among theMGk and other

MGs. AMGk ,BMGk and CMGk are parameter matrices. There-

fore, as indicated by (8), the dynamics of PCs, DSCs, loads

and lines are modeled and the detailed modeling process can

be found in [27].

C. MGC LAYER CONTROLLERS AND SMALL-SIGNAL

DYNAMIC MODELING

In the MGC-control layer, the TCs and DQCs are employed

to realize objective (i) - (iii).

1) TERTIARY CONTROLLER (TC)

The TC is a local controller which is responsible for regulat-

ing the active and reactive power through PCC of each MG.

To ensure the plug-and-play characteristic of MGs, each MG

is considered as a droop-controlled node, given by,

ωMGk = ωn − DPkPPCCk (9)

V̂PCCk = Vn − DQkQPCCk (10)

whereωMGk and V̂PCCk are the angular frequency and voltage

reference values, DPk and DQk are the active and reactive

droop coefficients of MGk , respectively, determined by

DPk = 1ωmax/PmMGk ,DQk = 1Vmax/QmMGk (11)

where 1ωmax and 1Vmax are the maximum acceptable

angular frequency and PCC voltage magnitude deviations,

respectively.

2) DISTRIBUTED QUATERNARY CONTROLLER (DQC)

The DQC is responsible for regulating system frequency and

critical bus voltage to the desired values. Besides, the inaccu-

rate reactive power sharing problem due to unbalanced line

impedance [28] is solved by DQC. The DQC is designed

based on the concept of the distributed cooperative control

[22], [23]. The communication network is denoted as G̃ with

the associated adjacency matrix A =
[

ãkl
]

. Each MG is con-

sidered as a node in G̃, as shown in Fig.1. For node k , the set

of its neighbors is denoted as Hk .

The frequency/active power controller of DQC level aims

at realizing objective (i) and (iii)-(1). The control variable�k

is introduced on (9), given by

ωMGk = ωn − DPkPPCCk +�k (12)

where �k consists of frequency control part eωk and active

power sharing control part epk , which satisfies

�k = eωk + epk (13)

The updating laws of eωk and epk are based on the distributed

cooperative control theory and given as

ėωk = cωk

[

∑

l∈Hk

ak (ωMGl−ωMGk)+gk
(

ω∗
sys − ωMGk

)]

(14)

ėpk = cpk
∑ ∑

l∈Hk

ak (DPlPPCCl−DPkPPCCk) (15)

where cωk and cpk are positive control gains, the pinning gain

gk ≥ 0 is the weight of the edge by which the kth MG unit is

connected to the reference. Eq. (14) is applied to synchro-

nize the frequency ωMGk of all MGs to the reference ω∗
sys

to achieve objective (i). Similarly, objective (iii)-(1) will be

realized by making DPkPPCCk of all MGs equal, as indicated

by (15). Note that ωMGk is provided to the DSC of MGk as

the frequency reference.

The critical bus voltage controller of DQC level is respon-

sible for realizing objective (ii). A control variable λk is added

in (10), i.e.,

V̂PCCk = Vn − DQkQPCCk + λk (16)

The updating law of λk is given by

λ̇k = cvk [
∑

l∈Hk

akl

(

V̂PCCl − V̂PCCk

)

+gk
(

V ∗
f − V̂PCCk

)

]

(17)

where cvk is a positive control gain. The dynamic process

of (17) results in V̂PCCk of all MGs converging to the common

reference V ∗
f . V

∗
f is generated through a PI controller such

that Vc recovers to its reference V
∗
c (objective (ii)), i.e.,

V ∗
f = Vn + kp

(

V ∗
c − Vc

)

+ ki

∫

(

V ∗
c − Vc

)

dt (18)

where kp and ki are the gains of the PI controller.

The reactive power controllerof DQC level is introduced

to solve the inaccurate reactive power sharing problem intro-

duced by TC and realize objective (iii)-(2). A control vari-

able hk is added to (16) to achieve accurate reactive power
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sharing, i.e.,

V ∗
PCCk = Vn − DQkQPCCk + λk + hk (19)

where V ∗
PCCk is generated as the voltage reference of DSC in

the MG-control layer, as shown in Fig. 2. Note that V̂PCCk
in (16) is an intermediate variable, and V ∗

PCCk is the final

value provided to DSC as the reference. This setting aims

to realize the objectives of critical bus voltage control and

reactive power sharing among MGs simultaneously. hk is

selected by

ḣk = cqk
∑

l∈Lk
akl

(

DQlQPCCl − DQkQPCCk

)

(20)

where cqk is a positive control gain. Eq. (20) is used to

make DQkQPCCk of all MGs equal to each other to achieve

objective (iii)-(2).

3) COMPLETE MODEL OF THE MG UNIT

The dynamics of PCs, DSCs, lines and loads of each MG in

the MG-control layer have been modeled by (8). Therefore,

in the MGC-control layer, each MG is considered as a black

box and referred to the MG unit, and its corresponding model

is about the dynamics of TCs and DQCs. By linearizing (12),

(14)-(17), and (19)-(20) around an operating point, the small-

signal dynamic model of MG unit k can be derived as

[

1ẊMGk

]

= AMGk [1XMGk ]+BMGk

[

1vbDQk
]

+CMGk1ωg

+
∑

l∈Hk
FMGk [1XMGl]HMGk1V

∗
f

+ IMGk

[

1VPCCDQk
]

(21)

where 1vbDQk is the deviation of MV bus voltage vbk in the

commonDQ-frame, AMGk , BMGkCMGk , FMGk and HMGk are

parameter matrices. Note that FMGk reflects the correlation

between unit MGk and its neighbors MGl , l ∈ Hk . The state

variables of each MG unit are

[1XMGk ] = [1δk ,1PPCCk ,1QPCCk ,1�k ,

1λk ,1hk ,1iPCCdk ,1iPCCqk
]T

(22)

where1iPCCdk and1iPCCqk represent the deviations of iPCCk
in the DQ-frame.

4) CRITICAL BUS VOLTAGE CONTROLLER MODEL

Stateψ is introduced to represent the dynamics of critical bus

voltage controller (18), given by

ψ̇ = V ∗
c − Vc (23)

where Vc is the magnitude which can be represented by vcD
and vcQ. By linearizing (18) and (23), the model of the critical

bus voltage controller can be obtained, i.e.,

1ψ̇ = −Ac
[

1vcDQ
]

(24)

1V ∗
f = −kpAc

[

1vcDQ
]

+ ki1ψ (25)

where 1v =
[

1vcD,1vcQ
]T
, and Ac is the parameter matrix.

5) MEDIUM VOLTAGE (MV) NETWORK AND LOAD MODELS

The RL feeder lines and the RL-type constant-impedance

load are assumed in this paper. The small-signal dynamic

model of MV network and load is similar to the LV network

and load model in [29], and it can be derived as

1i̇lineDQ = Anet
[

1ilineDQ
]

+ Bnet
[

1vbDQ
]

+ Cnet1ωg

(26)

1i̇loadDQ = Aload
[

1iloadDQ
]

+ Bload
[

1vbDQ
]

+ Cload1ωg

(27)

where 1ilineDQ, 1iloadDQ and 1vbDQ are deviations of all

MV line currents, load currents and bus voltages, respec-

tively.1iPCCDQ denotes1iPCCDQk of all the MG units. Then

MV bus voltage deviations 1vbDQ is represented as [29]

1vbDQ = RN (MMG

[

1iPCCDQ
]

+Mnet

[

1ilineDQ
]

+Mload

[

1iloadDQ
]

) (28)

Based on (28), the critical bus voltage 1vcDQ can be

expressed in terms of 1iPCCDQ, 1ilineDQ and 1iloadDQ and

named as 1vcDQexpression.

6) COMPLETE MGC LAYER MODEL

Denote the state variables of all MG units in the

MGC as 1XMG. Combine (21), (24), (26), (27) and

replace1V∗
f ,1vbDQ,1vcDQwith (25), (28) and1VcDQ

expression. Then, the small-signal dynamic model of the

MGC-control layer can be obtained, which is
[

1ṠMGC

]

= AMGC [1SMGC] + BMGC1VPCCDQk (29)

where 1SMGC = [1XMG,1ψ,1ilineDQ,1iloadDQ]
T ,

AMGC,BMGC are parameter matrices.

D. COMPLETE SMALL-SIGNAL DYNAMIC MODEL

OF THE MGC

By combining m MG-control layer models (8) and MGC-

control layer model (29) and then dealing with the cou-

pling states1V ∗
PCCk ,1iPCCDQk and1VPCCDQk , the complete

MGC model can be obtained as
[

1Ṡsys
]

= Asys
[

1Ssys
]

(30)

where 1Ssys = [1SMG1, . . . ,1SMGm,1SMGC]
T .

The system dynamics and stability can be evaluated based

on the state matrix Asys in (30), as given in Section III.

III. SMALL-SIGNAL STABILITY ANALYSIS

A detailed small-signal stability analysis of the test 40-bus

MGC with four identical LV MGs, as shown in Fig.3, is pre-

sented in this section. The MGC is operated as an electrical

island, i.e. circuit breaker (CB) is open and CB1-CB4 are

closed. The MV bus with critical load1 shown in Fig.3 is

selected as the critical bus. The rated voltages of MV and

LV network are 10kV and 0.38kV, respectively. Each MG

connects with the MV feeder through a 10kV/0.38kV 1/Yg

transformer. The corresponding electrical parameters and

36900 VOLUME 7, 2019
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FIGURE 3. A schematic diagram of the test 40-bus MGC.

FIGURE 4. Topology of the communication network Gk and G̃.

control parameters are given in Appendix. Fig. 4 shows the

communication networks of MG-control layer and MGC-

control layer, which are assumed to have the same topol-

ogy and adjacency matrix. From Fig.4, only one root node

receives reference values.

A. SMALL-SIGNAL DYNAMIC MODEL VALIDATION

BASED ON TIME-DOMAIN SIMULATION

Based on the aforementioned typical 40-bus MGC, a time-

domain validation of the small-signal dynamic model (solid

line) against the non-linear model (dashed line) established

in PSCAD/EMTDC is presented in Fig.5. Load 1 suffers

a step change from 150kW + 45kVar to 175kW + 65kVar

at t = 2s.

The good agreement between the solid line and dashed

line in terms of frequency, voltage, active and reactive power

in Fig.5 demonstrates the accuracy and the validity of the

small-signal dynamic model. The small differences during

the transient are mainly due to the linearization error and

the ignorance of voltage and current controller, Fig.2, in the

modeling process.

B. INFLUENCE OF INTERCONNECTING MGS ON

SYSTEM STABILITY

1) THE IMPACT OF INTERCONNECTION OF MG

As illustrated in Section II, the tertiary control is responsible

for interconnecting MGs as an islandedMGC. Fig. 6 presents

FIGURE 5. Comparison results between non-linear model (dashed line)
and small-signal dynamic model (solid line). (a) Active power outputs of
MG1-MG4. (b) Reactive power outputs of MG1-MG4. (c) System
frequency. (d) Critical bus voltage.

FIGURE 6. Comparison of eigenvalue spectrums of a single MG (with PC
and DSC) and a MGC (with PC, DSC, and TC).

the comparison of eigenvalue spectrums between a single

MG and the MGC in Fig. 3. Note that (i) the single MG is

employed with PC and DSC and operated as an island, and

(ii) the MGC consists of four single MGs with PC and DSC

which are interconnected with each other through TC level.

Fig.6 indicates that the interconnection ofMGs through TC

will complicate the system dynamic behavior and reduce the

system stability margin.

2) THE IMPACT OF DISTRIBUTED QUATERNARY

CONTROL LEVEL

Based on the tertiary control, the distributed quaternary con-

trol is introduced to realize frequency, critical bus voltage and

accurate power sharing objectives among MGs, as described

at Section II. However, the neighboring communication and

distributed control algorithm may further deteriorate the sys-

tem dynamic performance. Fig. 7 presents a comparison of
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FIGURE 7. Comparison of eigenvalue spectrums of the MGC with and
without the DQC control level.

eigenvalue spectrums of the MGC with and without the DQC

control level.

The results indicate that the distributed quaternary con-

trol introduces two low-damping modes with damping lower

than 10%, which will significantly reduce the system stability

margin and yield more oscillatory system response.

Comprehensively considering both Fig. 6 and Fig. 7, it can

be deduced that interconnection of MGs and the two-layer

distributed control method may lead to oscillations even if

the sub-MGs are individually stabilized.

C. PARTICIPATION FACTOR ANALYSIS

Participation factor is the multiplication of the corresponding

element in the right and left eigenvectors of the state matrix

to measure the association between the state variables and

the modes. Let ρki denote the participation factor of the state

variable xk in mode i, and ρi ∈ R
n be the vector with the

participation factor for all the states of MGC, namely 1Ssys.

Similarly, ρMGk,i
∈Rnk is the participation factor vector of

all the states of MGk (1SMGk ). ρMGC,i ∈ R
nNMG is the

participation factor vector of all the states of the MGC layer

(1SMGC).

1) MEASUREMENT INDEX OF THE COUPLING DEGREE

Interconnection of MGs and the two-layer distributed con-

trol method result in the dynamic coupling among multiple

MGs and different control layers. To reveal the relationship

between coupling and stability, a quantitative index of cou-

pling degree is proposed.

The index Clayer,i aims at describing the coupling degree

between the MG and MGC control layers in mode i. First,

a participation degree factor ηMG,i is defined as a measure of

the overall participation for MG-control layer states in mode i

such that

ηMG,i =
∑m

k=1

∥

∥ρMGk ,i
∥

∥

‖ρi‖
(31)

where ‖·‖ denotes the L1-norm. Similarly, the overall partic-

ipation for MGC-control layer states in mode i is defined as

ηMGC,i =
∑m

k=1

∥

∥ρMGC,i
∥

∥

‖ρi‖
(32)

Obviously, ηMG,i + ηMGC,i = 1. We define that when the

MG-control layer and MGC-control layer states have a fair

participation, namely ηMG,i = ηMGC,i = 0.5, the coupling

degree is the strongest. Therefore, Clayer,i is defined as

Clayer,i =
√
ηMG,i × ηMGC,i

(ηMG,i + ηMGC,i)/2
(33)

where
√
ηMG,i × ηMGC,i implies a penalty. The more devi-

ations from 0.5 of ηMG,i or ηMGC,i, the smaller this value

is. Obviously, Clayer,i ∈ [0, 1] and the larger the value is,

the stronger the MG and MGC layer couples.

The coupling degree among MGs is quantified by another

index CMG,i. The participation degree factor ηMGk,i repre-

sents participation of MGk in MG layer, given by

ηMGk,i =
∥

∥ρMGk,i
∥

∥

∑m
k=1

∥

∥ρMGk,i
∥

∥

(34)

Due to
∑m

k=1 ηMGk,i = 1, we define that (i) when each MG

has a fair participation, namely ηMG1,i = ηMG2,i = . . . =
ηMGm,i = 1

m
, the coupling is the strongest, and (ii) when only

one arbitraryMGk participates in mode i, namely ηMGk,i = 1,

the coupling is the weakest.

Therefore, CMG,i is defined as

CMG,i = 1 − mm

m− 1
×

∏m

k=1

∣

∣

∣

∣

ηMGk,i −
1

m

∣

∣

∣

∣

(35)

∏m
k=1

∣

∣

∣
ηMGk,i − 1

m

∣

∣

∣
means that the more deviations from 1

m

of ηMGk,i, the smaller this value is. Obviously, CMG,i will be

1 in the strongest coupling situation. The scaling factor mm

m−1
is applied to convert CMG,i to be 0 in the weakest coupling

situation.

Then, the comprehensive coupling degree index Ci con-

sidering layer coupling Clayer,i and MG coupling CMG,i is

defined as

Ci = 0.5 × Clayer,i + 0.5 × CMG,i (36)

2) PARTICIPATION FACTOR ANALYSIS

The low-frequency eigenvalue spectrum of the test MGC

considering the two-layer distributed control strategy is

shown in Fig.8. Table 1 provides the dominant low-frequency

modes, which are categorized as groupA, B, C, andD accord-

ing to their damping.

TABLE 1. Dominant low-frequency modes and corresponding damping
ratios.
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FIGURE 8. Low-frequency eigenvalue spectrum of the MGC.

Modes 1, 2, 3 and 4 are respectively selected as the repre-

sentative modes of group A, B, C, and D andmarked with red

in Fig. 8. Their corresponding participation factors of the sys-

tem state variables are shown in Fig. 9. Participation factors

of other modes are similar to the corresponding representative

modes and thus not presented. Fig.10 shows the damping

ratio ζi and coupling degree Ci of modes 1 ∼ 4. The analysis

results of Fig.9 and Fig.10 are summarized as follows.

FIGURE 9. Participation factors of modes 1, 2, 3 and 4.

(i) Modes 1,2,3 are inter-MG modes which means these

modes are associated with multiple MGs as shown in

Fig. 9 (a), (b), and (c). Mode 1 is affected by the states

of MG1 ∼ MG4 and mode 2 is associated with MG1 and

MG3. For mode 3, its difference from modes 1 and 2 is that

the participation of MGC-control layer further enhances the

inter-MG coupling for mode 1 and 2 but not for mode 3.

Moreover, Fig. 9(d) indicates that mode 4 is aMG local mode,

which is only affected by the states of MG4.

(ii) The coupling degree has a strong relationship with

the mode damping. As indicated in Fig. 10, the stronger the

coupling degree is, the less damped the mode is.

FIGURE 10. Damping ratios and coupling degree of modes 1, 2, 3 and 4.

(iii) Fig.9 indicates that the MG-control layer states

(1δki,1Pki,1Qki,1�ki,1λki,1hki) and MGC-control

layer

states (1δk ,1Pk ,1Qk ,1�k ,1λk ,1hk ) contribute to

modes 1-4 in different proportions. Since the MG-control

layer states associate with DSCs and MGC-control layer

states associate with DQCs of (14), (15), (17), and (20),

the impact of DSC and DQC parameters should be carefully

analyzed.

D. IMPACT OF CONTROL PARAMETERS ON SYSTEM

STABILITY

In this part, the impacts of control parameters are analyzed

in two aspects: (i) ratio of DSC and DQC parameters; (ii)

sensitivity analysis of DSC and DQC parameters.

1) IMPACT OF THE RATIO OF DSC AND DQC PARAMETERS

The DSC control parameter Cwki,Cpki,Cvki,Cqki are cho-

sen as (500, 50, 20 and 50). Note that Cwki,Cpki are the

parameters of distributed secondary frequency controller, and

Cvki,Cqki are the parameters of distributed secondary voltage

controller. More details can be found in [27]. The DQC

parameters are set as Cwk = γ ∗Cwki,Cpk = γ ∗Cpki,Cvk =
γ ∗ Cvki,Cqk = γ ∗ Cqki. Fig. 11 presents the traces of low-

frequency eigenvalues when γ varies from 0.1 to 5.

FIGURE 11. Traces of low-frequency eigenvalues when γ varies from
0.1 to 5.
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Fig. 11 indicates that a relatively smaller γ leads to a more

stable systemwhile a large value of γ may destabilize the sys-

tem. Therefore, it can be deduced that the interaction between

MG-control layer andMGC-control layer has a strong impact

on the system stability.

Remark 1: The DSC and DQC parameters are related with

the response time ofMG andMGCcontrol layer, respectively.

Thus, the ratio γ actually describes the time-scale separation

degree of the MG and MGC control layer. As shown by the

red arrow in Fig. 2, the DSC in MG-control layer tracks the

reference values from TC and DQC in MGC-control layer.

It should be noted that the time constant of TC is much

smaller compared with DQC and thus can be ignored in

the response time of MGC-control layer. Therefore, if the

reference values from the DQC in MGC-control layer vary

too fast, namely the response time of MGC-control layer is

much smaller than that of MG-control layer, the DSC cannot

follow the references and then the system becomes unstable.

2) SENSITIVITY ANALYSIS OF PARAMETERS ON STABILITY

As shown in Table 1, the damping of modes in group A is

less than 10% and therefore identified as the most dominant

oscillatory modes. Based on the participation factor analysis,

the MG-control layer parameters Cpki, Cvki and the MGC-

control layer parameters Cvk ,Cqk mainly affect modes in

group A and thus they are evaluated in this subsection. The

traces of modes as a function of Cpki, Cvki,Cvk ,Cqk are

shown in Fig. 12. The red circles are the eigenvalues with

initial parameters. Fig.12 (a)-(d) show that the variation of

parameters will make the damping of some modes decrease

obviously. And eventually, these modes cross the imaginary

axis to the unstable region. Thus, proper control parameters

should be selected to ensure sufficient damping. However,

Fig.12 (b) and (d) indicate that the trend of a parameter may

have opposite effects on the damping of different modes,

e.g., cqk and cvki on group A and group B. Therefore, a joint

FIGURE 12. Traces of dominant modes. (a) Cpki increases from 10 to 200.
(b) Cvki increases from 10 to 200. (c) Cvk increases from 10 to 250.
(d) Cqk increases from 5 to 150.

parameter selection method considering the impacts of mul-

tiple parameters needs to be studied.

E. SUMMARY

THE results in this section reveal that for a MGC with

the two-layer distributed control method, (i) the strong cou-

pling/interaction amongMGs andmultiple control layers will

introduce some new low-damping modes, which can reduce

the system stability margin and even destabilize the system,

(ii) the variation of DSC and DQC parameters will have

remarkable impacts on the mode damping, and (iii) a

reasonable selection of control parameters can enhance the

system stability. However, the large number of control param-

eters makes their selection a multi-dimensional optimization

problem, which is difficult to obtain an optimal solution.

Therefore, there is a need to provide a parameter optimiza-

tion method to carefully design the control parameters and

enhance the system stability.

IV. OPTIMAL DESIGN OF DISTRIBUTED CONTROL

PARAMETERS

In this section, the selection of DSC and DQC parameters

is formulated as an optimization problem and solved by the

particle swarm optimization (PSO) algorithm [30].

A. PROBLEM FORMULATION

In order to enhance the MGC stability margin and damping

characteristics, the objective function of the optimization

problem aims to (i) move the real part σ of eigenvalues to

a relatively far area from the imaginary axis and (ii) increase

their damping ratio ζ asmuch as possible. The comprehensive

assessment index J is defined as

J = Jatt + Josc (37)

where Jatt and Josc are assessment indices with respect to

attenuation modes and oscillation modes, respectively. Note

that the imaginary part of an attenuation mode is zero, and the

imaginary part of an oscillation mode is non-zero.

As the damping ratio ζ and real part σ are in different

dimensions, they cannot be readily applied in (37). Therefore,

variables fζ and fσ are introduced to normalize |σ | and ζ
within the range of 0 to 1. The normalized function fx is [31]

fx = 1 − e−
1
τ (µ−µ0), µ ≥ µ0 (38)

where µ0 and τ determine the function as shown in Fig. 13.

A pre-specified point (µs, 0.95) on the plot of Fig. 13 is used

to determine τ for (38), i.e.,

τ = µ0 − µs

ln 0.05
(39)

Based on (38), |σ | and ζ can be normalized as

f|σj| = 1 − e
− 1
τ|σj|

(

|σj|−µ0_|σj|
)

,
∣

∣σj
∣

∣ ≥ µ0_|σj| (40)

fζj = 1 − e
− 1
τζj

(

ζj−µ0_ζj

)

, µ ≥ µ0_ζj (41)
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FIGURE 13. Normalization function.

where f|σj| and fζj are the normalization values for |σ | and ζ
of mode j. µ0_|σj|, µ0_ζj , τ|σj| and τζj are the corresponding

parameters.

Therefore, the assessment indices Jatt and Josc can be

represented as

Jatt =
∑α

ρ=1
wρ f|σρ | (42)

Josc =
∑β

µ=1
wµ(f|σµ| + f

ζµ
) (43)

where α is the total number of attenuation modes, wρ is the

weighting factor and satisfies
α
∑

ρ=1

wρ = 1, β is the total

number of oscillation modes, and wµ is the weighting factor

and satisfies
∑β

µ=1 wµ = 1.

To optimize the system stability margin and damping,

index J must be maximized. Therefore, the optimization

problem is formulated as

max J =Jatt + Josc

s.t.























































































∣

∣λI − Asys
∣

∣ = 0,

Cmin
w_DG ≤ Cw_DG ≤ Cmax

w_DG,

Cmin
p_DG ≤ Cp_DG ≤ Cmax

p_DG,

Cmin
v_DG ≤ Cv_DG ≤ Cmax

v_DG,

Cmin
q_DG ≤ Cq_DG ≤ Cmax

q_DG,

Cmin
w_MG ≤ Cw_MG ≤ Cmax

w_MG,

Cmin
p_MG ≤ Cp_MG ≤ Cmax

p_MG,

Cmin
v_MG ≤ Cv_MG ≤ Cmax

v_MG,

Cmin
q_MG ≤ Cq_MG ≤ Cmax

q_MG,

(44)

where λ is the eigenvalue of Asys, I is the identity matrix.

The control parameters of MG-control layer (Cwki,Cpki,

Cvki, Cqki) and MGC-control layer (Cwk ,Cpk , Cvk , Cqk )

are chosen as optimization variables. To simplify analysis,

the DSC parameters of each DG unit are represented by

Cw_DG,Cp_DG,Cv_DG,Cq_DG, and the DQC parameters are

represented by CwMG,Cp_MG,Cv_MG,Cq_MG. They are con-

strained by the corresponding lower limits and upper limits

as shown in (44).

B. PSO IMPLEMENTATION

Problem (44) is a non-linear and non-convex optimization

problem, which also includes eigenvalues constraints. Thus,

PSO is adopted to solve this problem to obtain the optimal dis-

tributed control parameters. Fig. 14 depicts the computational

flowchart of themethod. The overall optimization process can

be described in the following steps:

FIGURE 14. Flow chart of the PSO-based distributed control parameter
optimization.

Step 1) (Initialization): generate a random particle popula-

tion and generate randomly initial velocities and positions for

each particle.

Step 2) (Obtain Eigenvalues): choose the first particle

and calculate the corresponding eigenvalues via matrix Asys
in (30). Note that the position vector of each particle consists

of DSC and DQC parameters.

Step 3) (Obtain σ and ζ and Normalization): obtain the

real part σ of attenuation modes and oscillation modes, and

calculate the damping ratio ζ of the oscillation modes. Then,

normalize σ and ζ by (40) and (41), respectively.

Step 4) (Calculate J for Each Particle i at Iteration k):

calculate J katt,i and J
k
osc,i by (42) and (43), respectively. Then,

the final objective function J ki can be obtained by (44).

Step 5) (Individual Best Updating): update J ki for each

particle in the population. If J ki > J i,best , then update the

individual best Ji,best = J ki and go to the next step; else do

not update and go to the next step.

Step 6) (Global Best Updating): Search for the maximum

value Jmax among the individual best Ji,best . If Jmax > Jg,best ,
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then update global best as Jg,best = Jmax and go to the next

step; else do not update and go to the next step.

Step 7) (Stopping Criteria): The search process will be

terminated if the number of iterations is greater than a pre-

specified number.

V. CASE STUDY

To evaluate the proposed optimal parameter design method,

stability assessment and time-domain simulation studies in

the PSCAD/EMTDC platform are carried out based on the

40-bus MGC shown in Fig. 3 and Fig. 4. The parameters are

given in Appendix.

A. STABILITY ASSESSMENT

Based on the optimal design method introduced at Section IV,

the MG-control layer and MGC-control layer parameters are

optimized and the results are given in Appendix. The con-

vergence performance of the PSO method, shown in Fig. 15,

indicates that the objective value converges to the maximum

value 2.61 around the 20th iteration, which shows a good

convergence performance of the PSO based method.

FIGURE 15. Convergence result of the PSO-based distributed control
parameter optimization.

1) COMPARISON OF EIGENVALUE SPECTRUM BEFORE AND

AFTER OPTIMIZATION

The low-frequency eigenvalue spectrum of the MGC before

and after optimization is compared in Fig. 16.

Fig. 16 indicates that after optimization, (i) the damping

ratios of the system critical oscillatory modes are increased,

and (ii) the critical system eigenvalues move further away

from the imaginary axis.

2) COMPARISON OF COUPLING DEGREE BEFORE AND

AFTER OPTIMIZATION

The average coupling degree of the five least-damped modes

is defined asCave and the coupling degree of the least damped

mode is defined asCl . The comparison of Cave and Cl before

and after optimization is given in Table 2.

Table 2 indicates that the coupling degrees of the low-

damping modes are significantly reduced after optimization.

Considering the result of Fig.16, it can be deduced that the

damping ratios of the low-damping modes are enhanced due

to the decreased coupling degree.

FIGURE 16. Comparison of eigenvalue spectrum before and after
optimization.

TABLE 2. Coupling degree comparison before and after optimization.

B. TIME-DOMAIN SIMULATION RESULTS

This subsection is organized into two studies. Study 1 evalu-

ates the stability enhancement effect with the optimally

designed two-layer distributed controllers. Study 2 vali-

dates the robustness of the proposed method under sudden

load changes.

1) STUDY 1: STABILITY ENHANCEMENT EVALUATION

The PCs are initially engaged and the DSCs and TCs are

activated at t = 1.5s. DQCs are employed at t = 3s.

Fig. 17 and Fig. 18 present the active and reactive power

outputs of MGs and DGs under initial control parameters and

FIGURE 17. Study 1: active and reactive output of MG1-MG4. (a) and (b):
before optimization; (c) and (d): after optimization.
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FIGURE 18. Study 1: Active and reactive output of DG41-DG44 in MG4.
(a) and (b): before optimization; (c) and (d): after optimization.

optimal control parameters, respectively. Note that only the

output power of DGs in MG4 is presented for simplification.

Fig. 19 shows the comparison results of system frequency

and critical bus voltage. Comparisons of Fig. 17, 18 and 19

reveal that the system stability is enhanced by the optimally

designed control parameters.

FIGURE 19. Study 1: System frequency and critical bus voltage before and
after optimization.

Moreover, considering the four control objectives in

Section II, Fig. 17, 18, and 19 indicate that the optimal

design of control parameter does not interfere with the sys-

tem steady-state performance, because the control strategy

can achieve objective (i): restoration of the system fre-

quency to the rated value 50 Hz, Fig. 19(a), objective (ii):

restoration of the PCC voltage to the rated value 1 p.u.,

Fig. 19(b), objective (iii): accurate active and reactive power

sharing among MGs with the ratios of PPCC1 to PPCC4 being

1.2:1:1.2:1 and QPCC1 to QPCC4 being 1:1.5:1:1.5, Fig. 17 (c)

and (d), and objective (iv): accurate active and reactive power

sharing among DGs within MG4with the ratios of P41 to P44
being 1:1:1:1 andQ41 toQ41 being 1:1:1:1, Fig. 18 (c) and (d).

Remark 2: with the optimal control parameters, the over-

shoot of active and reactive power responses is decreased and

the corresponding settling time is decreased. However, due

to the coupling/interaction among MGs and multiple control

layers, a certain degree of oscillation still exists. A possi-

ble way to further mitigate the oscillation is to introduce

supplementary controllers. This is beyond the scope of this

paper and will be investigated in future work.

2) STUDY 2: SUDDEN LOAD CHANGE

To evaluate the system dynamic performance when suffering

sudden load changes, 50% of load 1 is switched off at t =
2.5s and load 7 is switched off at t = 3.5s. The reactive power

outputs of MGs under initial control parameters and optimal

control parameters are presented in Fig. 20 (a) and (b), respec-

tively. The reactive power outputs of DGs in MG4 under

initial control parameters and optimal control parameters are

presented in Fig. 21 (a) and (b), respectively.

FIGURE 20. Study 2: reactive power outputs of all the MGs (a) before and
(b) after optimization.

FIGURE 21. Study 2: reactive power outputs of all the DGs in MG4

(a) before and (b) after optimization.

Comparisons in Fig. 20 and 21 indicate that the controller

with optimal parameters can mitigate the oscillations and

improve the system stability, which validates the robustness

of the controllers with optimal parameters under significant

load changes.

VI. CONCLUSIONS

This paper presents a detailed small-signal stability analysis

and optimal control parameters design method for MGCwith

the two-layer distributed control strategy. The small-signal

stability analysis reveals that (i) the interconnection of MGs

and the neighboring communication of distributed control

algorithm may introduce new low-damping modes to the

system, (ii) the coupling degree of a mode has an opposite

relationship with its damping ratio, (iii) the mode damping is

affected bymultiple parameters of bothMGandMGCcontrol

layer. Based on the small-signal dynamic model, the design

of MG and MGC layer control parameters is formulated as

an optimization problem and the optimal control parame-

ters are solved by PSO algorithm. Eigenvalue analysis and
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time-domain simulation on a test MGC system validate that

with the proposed optimal control parameter design method,

the stability performance of the MGC is improved.

APPENDIX

Table 3 provides the electrical parameters of the test MGC

in Fig. 3. Table 4 provides the parameters of PCs and TCs.

Tables 5 and 6 provide the control parameters of DSCs and

DQCs before and after optimization, respectively.

TABLE 3. Electrical parameters of MGC.

TABLE 4. Parameters of PCs and TCs.

TABLE 5. Parameters of DSCs and DQCs before optimization.

TABLE 6. Parameters of DSCs and DQCs after optimization.
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