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Small-Signal Stability Analysis for Non-Index 1
Hessenberg Form Systems of Delay

Differential-Algebraic Equations
F. Milano, Fellow, IEEE, I. Dassios

Abstract— The paper focuses on the small-signal stability
analysis of systems modelled as differential-algebraic equations
and with inclusions of delays in both differential equations and
algebraic constraints. The paper considers the general case for
which the characteristic equation of the system is a series of
infinite terms corresponding to an infinite number of delays. The
expression of such a series and the conditions for its convergence
are first derived analytically. Then, the effect on small-signal
stability analysis is evaluated numerically through a Cheby-
shev discretization of the characteristic equations. Numerical
appraisals focus on hybrid control systems recast into delay
algebraic-differential equations as well as a benchmark dynamic
power system model with inclusion of long transmission lines.

Index Terms— Time delay, delay differential algebraic equa-
tions (DDAE), small-signal stability, long transmission line,
Chebyshev discretization.

I. INTRODUCTION

Time delays are intrinsic of a variety of electrical, electronic,
and communication systems. For example, several applications
of electronic circuits include delays, e.g., [1]–[4]. In control
applications, there is a huge variety of examples of neutral-
type time-delay systems as well as discrete-continuous hybrid
systems that can be regarded as Delay Differential-Algebraic
Equations (DDAEs). We cite, for example, [5]–[9]. Another
relevant example are power systems with long transmission
lines, which, under certain assumptions and approximations,
can be modelled as DDAEs [10]–[13]. Moreover, recent devel-
opments of wide area control schemes, the higher and higher
penetration of distributed generations with decentralized con-
trols and the increased number of measurements based on
telecommunication systems (e.g., phasor measurement units)
lead to an increasing impact of signal delays on power system
dynamic response and operation [14]–[21]. The study of the
stability of DDAEs is thus relevant for a large number of real-
world applications.

Recent works focus on delay stability margin and on the
impact of communication delays for load frequency control
(LFC) applications, e.g., [22] and [23]. In particular, in [22],
the authors consider an approach based on an iterative method
that involves the solution of linear matrix inequality (LMI)
problems and allows defining the stability of system with both
constant and time-varying delays. In [23], the authors provide

Federico Milano is with the School of Electrical and Electronic Engineer-
ing, University College Dublin, Ireland (e-mail: federico.milano@ucd.ie).

Ioannis Dassios is with MACSI, University of Limerick, Ireland
(e-mail: ioannis.dassios@ul.ie).

an exact method to define the stability margin of systems
with one or multiple LFC areas. Both methods above are
frequency-domain methods that do not involve the solution
of an eigenvalue problem. However, such methods are model-
and application-dependent and cannot deal with non index-1
Hessenberg form DDAEs, which are the main objective of this
paper.

This paper focuses on the evaluation of the small-signal
stability of DDAEs. Delays transform the classical problem
of finding the roots of the state matrix of the system at
the equilibrium point into the solution of a transcendental
characteristic equation, with infinitely many roots. In this
paper, we show that the characteristic equation of the most
general form of DDAEs also have infinitely many delays which
are multiples of the actual delays that appear in the DDAEs.

This paper utilizes a method based on a Chebyshev dis-
cretization of a set of partial differential equations (PDEs) that
are equivalent to the original DDAEs [24]–[27] to solve the
small-signal stability analysis of DDAEs with multiple delays.
The Chebyshev discretization has been successfully applied to
power systems modelled as index-1 Hessenberg forms with
single [28], [29] and multiple delays [30].

The novel contributions of the paper are the following:
• The derivation of the analytical expression of the charac-

teristic equation of general DDAEs. Such an expression
consists of a series whose convergence condition is also
defined in the paper. To the best of our knowledge, this
is the first attempt to define the small-signal stability of
DDAEs which are not index-1 Hessenberg form.

• The derivation of the explicit solution of the condition
above for power systems models with inclusion of long
transmission lines with delays and with and without
attenuation.

• A numerical appraisal based on the Chebyshev discretiza-
tion method of the approximated solution of characteristic
equation deduced in the paper for converging and diverg-
ing series.

The remainder of the paper is organized as follows. Section
II defines the formulation of delay differential-algebraic equa-
tions and derives the expression of the characteristic equation
for the most general case. Section III briefly recalls the
approach based on the Chebyshev discretization to estimate the
spectrum of a DDAE with inclusion of multiple delays. Section
IV presents several examples based on hybrid control systems
and power system models and particularize the structure of
the characteristic equation for such specific DDAEs. Section



V presents numerical results of the small-signal stability
analysis using tow simple continuous-discrete hybrid control
system examples and the New England 39-bus 10-machine test
system. Conclusions are drawn in Section VI.

II. SMALL-SIGNAL STABILITY OF DELAYED DAES

This section recalls definitions of DDAEs and presents the
derivation of the characteristic equation of the general case,
which leads to an infinite series of matrices. In the following,
the case with only a single delay will be considered. The
extension to the multiple delay case is straightforward and
is considered in Subsection V-C of the case study.

A. Differential-Algebraic Equations with Delays

Let us recall first conventional DAE models without delays.
These are described by the following equations:

x′ = f(x,y) (1)
0q,1 = g(x,y)

where f (f : Rp+q 7→ Rp) are the differential equations; g
(g : Rp+q 7→ Rq) are the algebraic equations; x (x ∈ Rp) are
the state variables; and y (y ∈ Rq) are the algebraic variables.
We also assume that (1) is autonomous, i.e., does not depend
explicitly on time t. With 0i,j we denote the zero matrix of i
rows and j columns.

The DDAE formulation is obtained by introducing time
delays in (1). Let

xd = x(t− τ) (2)
yd = y(t− τ)

be the retarded or delayed state and algebraic variables,
respectively, where t is the current simulation time, and τ
(τ > 0) is the time delay. In the remainder of this paper, since
the main focus is on small-signal stability analysis, time delays
are assumed to be constant.

In the most general case, both x and y appear in both the
differential and algebraic equations, f and g, respectively. This
assumption leads to the following system:

x′ = f(x,y,xd,yd) (3)
0q,1 = g(x,y,xd,yd).

Definition 1. The DDAE (3) is index-1 Hessenberg if gy
is nonsingular, i.e. det(gy) 6= 0 and yd = 0. Using the
implicit function Theorem, y is a function of x, t and can be
defined uniquely by the algebraic equation and then replaced
in the differential equation. The DDAE (3) is non index-1
Hessenberg if yd 6= 0 or gy is singular, i.e. det(gy) = 0.

Note that, in (3), g depends on yd. Hence, (3) is not the
index-1 Hessenberg considered in most examples of delay
power systems, e.g., [28]–[32]. It is not possible to determine
a closed form of the characteristic equation of (3). The
determination of such a characteristic equation is the main
theoretical contribution of this paper and is discussed in the
following subsection.

B. Characteristic Equation of General DDAEs

Assume that a stationary solution of (3) is known and has
the form:

0p,1 = f(x0,y0,x0,y0) (4)
0q,1 = g(x0,y0,x0,y0)

where it has been used the fact that, in steady-state, xd0 =
x0 and yd0 = y0. Then, differentiating (3) at the stationary
solution yields:

∆x′ = fx∆x + fy∆y + fxd
∆xd + fyd

∆yd (5)

0q,1 = gx∆x + gy∆y + gxd
∆xd + gyd

∆yd (6)

where, neglecting without loss of generality singularity-
induced bifurcation points, it can be assumed that gy is non-
singular. This assumption holds in the remainder of this paper.

To define the characteristic equation we use the results of
the following proposition.

Proposition 1. The linearized system of DDAEs (3) can
be written in the following matrix differential equation with
multiple delays:

∆x′ = A0∆x + A1∆xd +

∞∑
k=2

[Ak∆x(t− kτ)] , (7)

where

A0 =fx + fyA , (8)

A1 =fxd
+ fyd

A + fyD , (9)

Ak =ECk−2D, k ≥ 2, (10)

and

A = −g−1
y gx , B = −g−1

y gxd
, (11)

C = −g−1
y gyd

, D = B + CA ,

E = fyC + fyd
. 2

The first matrix A0 is the well-known state matrix that
is computed for standard DAEs of the form (1). The other
matrices are not null only if the system is of retarded type.
The matrix A1 is found in any delay differential equations,
while matrices Ak appear specifically in DDAEs. Note that
the series stops at k = 2 if gyd

is null. This is the case
considered in most papers on power system models based on
DDAEs, e.g., [28].

The series in (7) converges if and only if ‖C‖ < 1, where
‖ · ‖ induced norm, or, equivalently, if and only if ρ(C) <
1, where ρ(·) spectral radius of the eigenvalues of a matrix.
Moreover, if ρ(C) < 1, the matrices Ak tend to 0p,p as k →
∞. Hence, based on the definition of Ak in (10), the following
condition must hold:

ρ(C) = ρ(g−1
y gyd

) < 1 . (12)

Note also that, in (10), we assume that C0 = Ip, hence:

A2 =ED . (13)

For the sake of completeness, we provide below the proof
of Proposition 1.
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Proof of Proposition 1. From (6), we have

∆y = −g−1
y gx∆x− g−1

y gxd
∆xd − g−1

y gyd
∆yd , (14)

or, equivalently,

∆y = A∆x + B∆xd + C∆yd . (15)

Note that ∆y depends on ∆yd, which, based on the same
(15), can be written as

∆yd = A∆xd + B∆xdd + C∆ydd , (16)

where xdd = x(t − 2τ) and ydd = y(t − 2τ). In the same
vein, ∆yd depends on ∆ydd and so on. Hence, (15) can be
rewritten as follows:

∆y = A∆x + D∆xd + CB∆xdd + C2∆ydd , (17)

or, equivalently,

∆y =A∆x + D∆xd + CD∆xdd+ (18)

C2B∆xddd + C3∆yddd ,

or, equivalently,

∆y = A∆x +

n∑
k=1

[Ck−1D∆x(t− kτ) ] + (19)

CnB∆x(t− (n+ 1)τ) +

Cn+1∆y(t− (n+ 1)τ).

If the condition (12) holds, then

∆y = A∆x +

∞∑
k=1

[Ck−1D∆x(t− kτ)] . (20)

Substituting the above expression into (5), we obtain

∆x′ = (fx + fyA)∆x + (fxd
+ fyd

A)∆xd+ (21)

fy

∞∑
k=1

[Ck−1D∆x(t− kτ)]+

fyd

∞∑
k=1

[Ck−1D∆x(t− (k + 1)τ)] .

By taking into account that

fy

∑∞
k=1[Ck−1D∆x(t− kτ)] =

fyD∆xd + fy

∑∞
k=2[Ck−1D∆x(t− kτ)].

and
fyd

∑∞
k=1[Ck−1D∆x(t− (k + 1)τ)] =

fyd

∑∞
k=2[Ck−2D∆x(t− kτ)],

the equation (21) takes the form

∆x′ = (fx + fyA)∆x+ (22)

(fxd
+ fyd

A + fyD)∆xd+

fy

∞∑
k=2

[Ck−1D∆x(t− kτ)]+

fyd

∞∑
k=2

[Ck−2D∆x(t− kτ)],

or, equivalently,

∆x′ = (fx + fyA)∆x+ (23)

(fxd
+ fyd

A + fyD)∆xd+
∞∑
k=2

[fyCCk−2D∆x(t− kτ)]+

∞∑
k=2

[fyd
Ck−2D∆x(t− kτ)],

or, equivalently,

∆x′ = (fx + fyA)∆x+ (24)

(fxd
+ fyd

A + fyD)∆xd+
∞∑
k=2

[ECk−2D∆x(t− kτ)]

The proof is complete. 2
The characteristic equation of (7) is given by

det ∆(λ) = 0 (25)

where

∆(λ) = λIp −A0 −
∞∑
k=1

e−λkτAk (26)

is the characteristic matrix [33]. In (26), Ip is the identity
matrix of order p. 2

The solutions of (25) are called the characteristic roots or
spectrum, similar to the finite-dimensional case (i.e., the case
for which Ak = 0, ∀k = 1, . . . ,∞ ). As for the finite-
dimensional case the stability of (3) can be defined based on
the sign of the roots of (25), i.e., the stationary point is stable
if all roots have negative real part, and unstable if there exists
at least one eigenvalue with positive real part.

Equation (25) is transcendental and, hence, shows infinitely
many roots. In general, the explicit solution of (25) is not
known and only approximated numerical solutions of a subset
of the roots of (25) can be found. The Chebyshev discretization
method has proved to be accurate for large systems [30]. For
this reason, the Chebyshev discretization discussed in the next
section is the numerical method utilized for the case studies
presented in this paper.

Equation (26) has been determined for the single-delay case.
It is straightforward to generalize (26) for the multi-delay case.
Assuming that if (3) includes r delays, say τi, i = 1, 2, . . . , r,
(26) can be rewritten as:

∆(λ) = λIp −A0 −
r∑
i=1

∞∑
k=1

e−λkτiAi,k (27)

where Ai,k is the matrix associated with delay kτi.

III. CHEBYSHEV DISCRETIZATION SCHEME

This approach consists in transforming the original problem
of computing the roots of a retarded functional differential
equations into a matrix eigenvalue problem of a PDE system
of infinite dimensions. No loss of information is involved in
this step. Then the dimension of the PDE is made tractable
using a discretization based on a finite element method.
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In this paper, we consider the Chebyshev discretization,
which has led to excellent results for large DDAEs (see, for
example, [30]). The discretized matrix is build as follows. Let
ΞN be the Chebyshev differentiation matrix of order N (see
the Appendix I) and define

M =

[
Ψ̂⊗ Ip

ÂN ÂN−1 . . . Â1 Â0

]
, (28)

where ⊗ indicate the tensor product or Kronecker product (see
Appendix II); Ip is the identity matrix of order p; and Ψ̂ is
a matrix composed of the first N − 1 rows of Ψ defined as
follows:

Ψ = −2ΞN/τ , (29)

and matrices Â0, . . . , ÂN are defined as follows.
Let us consider that the characteristic equation (26) is

truncated at the first s terms, i.e., k = 1, 2, . . . , s. Hence, the
matrices Ak in the sum is associated with delay τk = kτ , with
τ1 < τ2 < · · · < τs−1 < τs. Let us also assume the general
case for which s 6= N , i.e., the point of the Chebyshev grid are
not the same as the number of matrices Ak. This assumption
will allow generalize the discussion given in this section to
the multi-delay case of (27).

The Chebyshev grid corresponds to a delay θj = (N −
j)∆τ , with j = 1, 2, . . . , N and ∆τ = τs/(N − 1). Hence,
j = 1 corresponds to the state matrix As, which corresponds
to the maximum delay τs = s τ ; and j = N is taken by the
non-delayed state matrix A0. If a delay τk = θj for some
j = 2, . . . , N −1, then the correspondent matrix Ak takes the
position j in the grid. However, in general, the delays of the
system will not match the points of the grid. In this case, a
linear interpolation is considered in this paper, as follows. Let
the time delay τk, k 6= j, satisfy the condition:

θj < τk < θj+1 . (30)

Then, the matrices that will be added to the positions j and
j + 1 are, respectively:

Âj,k =
τk − θj

∆τ
Ak , Âj+1,k =

θj+1 − τk
∆τ

Ak . (31)

Then, the resulting matrix of each point j of the grid is
computed as the sum of the contributions of each delay that
overlaps that point:

Âj =
∑
k∈Ωk

Âj,k , (32)

where Ωk is the set of delays τk that satisfies (30). Other more
sophisticated interpolation schemes can be used. For example,
a Lagrange polynomial interpolation is implemented in [34].

The eigenvalues of M are an approximated spectrum of
(25). As it can be expected, the number of points N of the
grid affects the precision and the computational burden of the
method, as it is further discussed in the case study.

The matrix M is the discretization of a set of PDEs where
the continuum is represented by the interval ξ ∈ [−τmax, 0].
The continuum is discretized along a grid of N points and
the position of such points are defined by the Chebyshev
polynomial interpolation.

Figure 1 illustrates the Chebyshev discretization approach
through a pictorial representation of matrix M . Note that, by
construction, τs = θ1 always holds. The other delays, however,
might not match exactly the nodes of the grid.

2

N21

1

N

n

t1 t2 t4 t5

s2 s3s1 s6s5s4

d

c

a0a1a2ac asan

Fig. 1. Representation of the Chebyshev discretization for a system with s
delays τ1 < τ2 < · · · < τs−1 < τs. In the general case, the delays do not
match exactly the grid and, thus, an interpolation between consecutive nodes
of the grid is required.

In practice, N cannot be very large, as the size of M
would prevent applying any numerical technique to compute
the eigenvalues. And, clearly, it is impossible to impose
N → ∞. Hence, (26) must be truncated at a certain s, for
s sufficiently big to allow properly estimate the spectrum of
(26) and sufficiently small to make tractable the solution of
the eigenvalue problem. The characteristic matrix that can be
evaluated is thus:

∆(λ) ≈ λIp −A0 −
s∑

k=1

e−λkτAk (33)

for some finite value of s.
The multi-delay case of characteristic equation (27) can be

treated just in the same way as the single-delay case above.
In this case, the matrices of (27) are A0 (corresponding to the
null delay) and r sets, each one composed of s matrices Ai,k,
with i = 1, 2, . . . , r and k = 1, 2, . . . , s. The delays associated
with these matrices can be arranged in a sequence of r·s terms,
corresponding to r · s sorted delays, i.e., τ1 < τ2 < · · · <
τr·s. Then the r · s matrices can be accommodated into the
Chebyshev grid as discussed above. The resulting truncated
characteristic equation of a multi-delay case is as follows

∆(λ) ≈ λIp −A0 −
r∑
i=1

s∑
k=1

e−λkτiAi,k (34)

for some finite value of s.
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IV. APPLICATIONS

This section illustrates applications of the formula deduced
in the previous section to neutral-type hybrid systems (Subsec-
tion IV-A) as well as to a power system model with inclusion
of long transmission lines (Subsection IV-B).

A. Neutral-Type Time-Delay Control Systems

In this section, we illustrate the small-signal stability anal-
ysis discussed above through two simple control systems
that were originally proposed in [35]. These are examples
of hybrid systems that include both continuous and discrete
variables. The latter can be reformulated as delayed variables,
where the delays are the sampling time of the original discrete
variables, as discussed, for example, in [36]. The two systems
considered in this subsection are linear and thus allow a
straightforward application of (7). These examples are also
utilized in the first two case studies included in Section V.

1) DDAE Example 1: Let us assume the following single-
delay linear system:

(y(t)−K22y(t− τ))′ = K11y(t) + K12y(t− τ) . (35)

If we set x(t) = y(t)−K22y(t−τ), we obtain the following
DDAE system:

x′ = K11x + (K11K22 + K12)yd (36)
0p,1 = x− y + K22yd .

where:

fx = K11 , fxd
= 0p,p ,

fy = 0p,q , fyd
= K11K22 + K12 ,

gx = Ip , gxd
= 0p,q ,

gy = −Ip , gyd
= K22 ,

and, according to the notation in (11):

A = Ip , B = 0p,p , (37)
C = K22 , D = K22 ,

E = K11K22 + K12 .

Then A0, A1 and Ak, k ≥ 2, in (8)-(10) take the form

A0 = K11 , (38)
A1 = K11K22 + K12 ,

Ak = (K11K22 + K12)(K22)k−1 , k ≥ 2 .

2) DDAE Example 2: Assume the following single-delay
linear system, which is again taken from [35]:

x′(t) = K11x(t) + K12y(t) , (39)
y(t) = K21x(t) + K22y(t− h) ,

or, equivalently, using the formulation of (3):

x′ = K11x + K12y , (40)
0p,1 = K21x− y + K22yd .

where

fx = K11 , fxd
= 0p,p ,

fy = K12 , fyd
= 0p,q ,

gx = K21 , gxd
= 0q,p ,

gy = −Ip , gyd
= K22 ,

and according to the notation in (11):

A = K21 , B = 0p,p , (41)
C = K22 , D = K22K21 ,

E = K12K22 .

Then A0, A1 and Ak, k ≥ 2 in (8)-(10) take the form:

A0 = K11 + K12K21 , (42)
A1 = K12K22K21 ,

Ak = K12(K22)kK21 , k ≥ 2 .

According to (12), the series converges if and only if
ρ(K22) < 1.

B. Power Systems with Long Transmission Lines

In this section, we consider the small-signal stability of a
power system model with inclusion of transmission line time
delays. Long transmission lines are best modelled through
a continuum, which leads to the well-known set of partial
differential equations:

∂v(`, t)

∂`
= Ri(`, t) + L

∂i(`, t)

∂t
(43)

∂i(`, t)

∂`
= Gv(`, t) + C

∂v(`, t)

∂t

where R, L, C and G are the resistance, inductance, capaci-
tance and conductance per unit length, respectively.

Equations (43) along with the conditions:

v(0, t) = vi(t), v(`ij , t) = vj(t) (44)
i(0, t) = ii(t), i(`ij , t) = ij(t) = −ii(t)

where `ij is the total length of the line, define a boundary value
problem whose general solution is too complex to be used for
systems with hundreds of lines. Thus, some simplifications are
required.

The first commonly accepted assumption is to use fast
balanced time-varying phasors. The boundary value problem
becomes:

∂v̄(`, t)

∂`
= Rī(`, t) + L

∂ī(`, t)

∂t
+ jω0Lī(`, t) (45)

∂ī(`, t)

∂`
= Gv̄(`, t) + C

∂v̄(`, t)

∂t
+ jω0Cv̄(`, t)

v̄(0, t) = v̄i(t), v̄(`ij , t) = v̄j(t)

ī(0, t) = īi(t), ī(`ij , t) = īj(t)

where ω0 is the synchronous pulsation.
Assuming G ≈ 0, the boundary value problem (45) has an

explicit solution [12]. Let define the following quantities:
• Characteristic admittance Yc =

√
C/L.
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• Time delay (or travelling time) τij = `ij
√
LC, i.e., the

time required by a wave to pass through the line at the
wave speed 1/

√
LC.

• Phase shift βij = ω0τij and attenuation factor αij =
R`ij

2 Yc.
Then, (45) has the solution:

0 =− īi(t) + īi(t− 2τij)e
−2(αij+jβij) − Ycw̄i(t) (46)

+ 2Ycw̄j(t− τij)e−(αij+jβij)

− Ycw̄i(t− 2τij)e
−(αij+jβij)

0 =− īj(t) + īj(t− 2τij)e
−2(αij+jβij) − Ycw̄j(t)

+ 2Ycw̄i(t− τij)e−(αij+jβij)

− Ycw̄j(t− 2τij)e
−2(αij+jβij)

where w̄i and w̄j satisfy the following set of complex differ-
ential equations:

w̄′i − v̄′i = −jω0w̄i −
R

2L
w̄i + jω0v̄i (47)

w̄′j − v̄′j = −jω0w̄j −
R

2L
w̄j + jω0v̄j

If R ≈ 0 (e.g., loss-less line), equations (46) become:

0 =− īi(t) + īi(t− 2τij)e
−j2βij − Ycv̄i(t) (48)

+ 2Ycv̄j(t− τij)e−jβij − Ycv̄i(t− 2τij)e
−j2βij

0 =− īj(t) + īj(t− 2τij)e
−j2βij − Ycv̄j(t)

+ 2Yij v̄i(t− τij)e−jβij − Ycv̄j(t− 2τij)e
−j2βij

Equations (46)-(47) or (48) are a set of functional differ-
ential equations with constant delays. These equations lead
to power system models in the form of (3). In particular,
assuming that synchronous machines and primary regulators
are modelled using conventional delay-free dynamic equations
(see, for example, [37]), one obtains:
• Equations (46)-(47) lead to:

x′ = f(x,y) (49)
0q,1 = g(x,y,xd,yd).

where delayed quantities are transmission line transient
voltages xd = [wre,d,wim,d], with w̄ = wre + jwim and
currents yd = [ire,d, iim,d], with ī = ire + jiim.

• Equations (48) lead to:

x′ = f(x,y) (50)
0q,1 = g(x,y,yd).

where delayed quantities are only transmission line cur-
rents yd = [ire,d, iim,d].

Note that, in (49) and (50) the complex expressions (46)-(47)
and (48), respectively, are split into their real and imaginary
parts to obtain a set of real equations.

From observing (49), we have, for each delay τij :

fx 6= 0p,p , fxd,ij
= 0p,p , fy 6= 0p,q , fyd,ij

= 0p,q ,

gx 6= 0q,p , gxd,ij
6= 0q,p , gy 6= 0q,q , gyd,ij

6= 0q,q .

and, substituting in (10), we obtain:

Ak,ij =fyC
k−1
ij Dij , k ≥ 1 , ij ∈ Ωij . (51)

where Ωij is the set of transmission lines. Hence, this is a
multi-delay system – delays τij are as many as the trans-
mission lines – and each delay generates an infinite series
of non-null matrices Ak,ij associated to delays kτij , k ≥ 1.
Such matrices converge to 0p,p if and only if ρ(Cij) < 1 for
ij ∈ Ωij .

Loss-less line model (50) shows same Jacobian matrices as
(49) but for gxd,ij

= 0q,p, which leads to:

Ak,ij =fyC
k
ijAij , k ≥ 1 , ij ∈ Ωij . (52)

To complete this section, we provide a proposition and
a corollary and their proofs regarding the spectral radii of
models (49) and (50), respectively, discussed above.

Proposition 2. The spectral radius of transmission lines
modelled with (46)-(47) satisfy the condition

ρ(Cij) = e−2αij . (53)

Proof of Proposition 2. Let us consider the structure of
equations (46)-(47) and their Jacobian matrices gy and gyd

.
Current injections īi and īj are the only algebraic variables
in (46) and appear as instantaneous and as delayed quantities,
with delay 2τij . While instantaneous currents also appear in
other equations, at least in the current balances of networks
buses, delayed currents do not appear in any other equation
of the system. Let us assume that (46) are split into their real
and imaginary parts, and write Jacobian matrices gy and gyd

by separating the terms depending on the real and imaginary
parts of īi and īj , respectively. Then, we obtain:

gy =

[
Jq−4,q−4 Jq−4,4

04,q−4 −I4

]
(54)

gyd
=

[
0q−4,q−4 0q−4,4

04,q−4 H4

]
(55)

where Jq−4,q−4 and J4,q−4 are sparse, non-null matrices and

H4 =

[
H2 02,2

02,2 H2

]
(56)

where

H2 =

[
e−2αij cos(2βij) e−2αij sin(2βij)

−e−2αij sin(2βij) e−2αij cos(2βij)

]
(57)

Given the structure of the Jacobian matrices above, we have:

Cij = −g−1
y gyd

=

[
0q−4,q−4 Ĵq−4,4

04,q−4 H4

]
(58)

where Ĵq−4,4 is a sparse, non-null matrix. Hence Cij has q−4
zero eigenvalues and two pairs of complex eigenvalues equal
to e−2(αij±jβij). The proof is complete. 2

Corollary 1. The spectral radius of transmission lines
modelled with (48) satisfies the condition ρ(Cij) = 1.

Proof of Corollary 1. Loss-less transmission lines have
R = 0, and, by the definition of the attenuation factor, αij = 0.
Hence, using Proposition 2, we obtain ρ(Cij) = e0. The proof
is complete. 2
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V. CASE STUDIES

In this section, we utilize the DDAE systems discussed
above to illustrate, through numerical examples, the impact
on small-signal stability of the series given in (7). With this
aim, we consider four relevant relevant cases: ρ(C) � 1;
ρ(C) > 1; ρ(C) = 1; and ρ(C) < 1 with ρ(C) ≈ 1. The
first two examples are based on the control systems discussed
in Subsections IV-A.1 and IV-A.2, respectively, while the last
two examples are based on the power system models with
delay line models discussed in Subsection IV-B.

A. DDAE with ρ(C) < 1

In this subsection, we study the numerical appraisal of the
small-signal stability analysis of a DDAE system for which
ρ(Ak) < 1. With this aim, let us consider the DDAE system
(36) described in Subsection IV-A.1. We assume the following
parameters:

K11 =

 −5 1 1

0 −5 1

1 0 −5

 , K12 =

 1 2 1

3 0 1

1 −1 2

 ,
K22 =

 0 0.5 1

0.1 0.1 0

0 1 0

 .
The equilibrium point (x,y) = (0p,1,0q,1) is stable for τ = 0.
The question is whether the system is stable for τ > 0. Let
us assume that τ = 0.005 s. Note that ρ(K22) = 0.279 < 1,
hence Ak satisfies condition (12) and converges to 0p,p for
k → ∞. The rightmost roots of (25) are thus expected to
converge to a constant value for sufficiently high values of k.
This fact is confirmed by the results shown in Fig. 2 that
depicts the three rightmost roots of (25). The eigenvalues
have been computed using N = 80 for the Chebyshev
discretization, which leads to a 120× 120 matrix M defined
in (28). Moreover, we have used (33) for s ∈ [2, 40]. Figure
2 indicates that, in this case, if s < 10, the stability margin
of the system, i.e., the distance of the rightmost eigenvalues
from the imaginary axis, as well as the dominant oscillation
mode can be overestimated. Finally, the rightmost eigenvalues
vary within a tolerance of less than 10−5 for s > 35.

B. DDAE with ρ(C) > 1

In this subsection, we consider the DDAE system described
by (40) discussed in Subsection IV-A.2 to illustrate the be-
haviour of the eigenvalues for an equilibrium point for which
ρ(Ak) > 1. We assume the following matrices:

K11 =

 −20 0 10

−10 −25 0

10 1 −20

 ,K12 =

 0.5 −1 −1

0.5 1 0

1 0 0.5

 ,

K21 =

 0.5 0 1

1 1 0

0 0.5 1

 ,K22 =

 0.9 0 1

1 0.6 0

0 −0.1 1

 .
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Fig. 2. Three rightmost eigenvalues of (36) for τ = 0.005 s.

Note that ρ(K22) = 1.147 > 1, hence Ak will not converge
to 0p,p for k →∞, so the impact on the system of the delay
increases as one increases the value of s in the truncated
characteristic matrix (33). For τ = 0, the equilibrium point
(x,y) = (0p,1,0q,1) is stable, but, since the eigenvalues
of K22 are positive, we expect that the system is actually
unstable for τ > 0. The real and imaginary parts of the
rightmost eigenvalue are depicted in Fig. 3. Simulations are
solved using τ = 0.001 s and N = 80 for the Chebyshev
discretization grid. The system instability becomes apparent
by properly increasing s, in this case for s ≥ 12. Clearly, the
value of s for which the instability of the system is revealed
depends on τ .

C. New England 39-bus System with Long Transmission Lines

In this subsection, the IEEE 39-bus system is utilized to
illustrate the effect of transmission line delays. Base case

7



0 5 10 15 20
Number of matrices Ak

−15.0

−10.0

−5.0

0.0

5.0

10.0

15.0

20.0

E
ig
en
va
lu
e
ℜ{

λ
1
}

0 5 10 15 20
Number of matrices Ak

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

E
ig
en
va
lu
e
|ℑ

{λ
1
}|

Fig. 3. Real and imaginary parts of the rightmost eigenvalues of (40) for
τ = 0.001 s.

TABLE I
LENGTHS, ATTENUATION FACTORS AND DELAYS OF FOUR TRANSMISSION

LINES OF THE NEW ENGLAND 39-BUS SYSTEM

Line i-j `ij [km] αij [Np] e−αij e−2αij τij [ms]
1-2 276 0.0179 0.9822 0.9648 1.131

23-24 234 0.0152 0.9849 0.9700 0.962

25-26 216 0.0141 0.9860 0.9723 0.887

26-29 418 0.0271 0.9732 0.9472 1.713

dynamic data1 have been modified as follows: (i) machine
inertias are reduced by ten times; (ii) AVR amplifier control
gains are reduced by ten times; and (iii) no PSS controller is
included.

Table I indicates the four lines that are considered “long”
and their lengths. For all these lines, the following per unit-
length parameters are assumed: R = 0.037 Ω/km, X =
ω0L = 0.367 Ω/km, and B = ω0C = 4.518 µS/km. These
are typical data of 345 kV lines as given in [38] and lead
to an attenuation factor α̂ij = 0.00066 Np/km and phase
shift β̂ij = 0.00129 rad/km. The total attenuation factors
αij = α̂ij · `ij , coefficients e−αij and time delays τij are
indicated in Table I.

We consider three cases:

• Standard lumped models of transmission lines, which

1Power flow and dynamic data of the New England 39-bus system can be
easily found on the internet. For example, data in PSS/E format are available
at: http://electrica.uc3m.es/pablole/new england.html.

TABLE II
STATISTICS OF THE THREE DYNAMIC MODELS OF THE NEW ENGLAND

39-BUS SYSTEM

DAE (1) DDAE (49) DDAE (50)
# of states, p 70 70 86

# of alg. vars, q 190 222 222

# of eigs., p ·N 70 700 860

# of delays - 51 204

lead to a conventional non-delayed DAE as in (1);2

• Dynamic delay models of the lines with attenuation, i.e.,
models (46)-(47), which lead to the DDAE as in (49);

• Delay loss-less line models (48), which lead to the DDAE
as in (50).

Since we assume four long lines, the system includes multiple
delays and r = 4. Then, to compute the truncated character-
istic equation (34), we have assumed s = 50. Hence, the total
number of terms in (34) are r ·s = 200. Finally, we have used
N = 10 to generate the Chebyshev grid. Statistics for the three
cases above are given in Table II. Note that the number of total
delays considered is not simply a multiple of s, as delays that
differs less than a given tolerance are merged into a single
delay and delays associated to Ak whose elements have a
maximum absolute value below a given threshold (10−18 in
the simulations solved for this case study) are neglected.

The spectral radii of each matrix Cij associated with each
delay are indicated in Table III. As expected, the lines with
attenuation show a spectral radius ρ < 1. On the other hand,
loss-lines have ρ = 1. This is thus a special case for which the
matrices Ak do not converge to 0p,p. Even if the series in (7)
does not converge, the values of matrices Ak are sufficiently
small not to concern the stability of the system. In the case of
line models with delay and attenuation, spectral radii satisfy
the condition ρ < 1, however, the attenuation is small, and
ρ ≈ 1, so the convergence of matrices Ak is slow. Also in
this case, the impact of Ak on the rightmost eigenvalues of
the system is negligible well before Ak vanishes. In this case
study, for s = 50, the error on the rightmost eigenvalues is
lower than 10−5. Finally, note that numerical results confirms
Proposition 2 given in Subsection IV-B. In fact, the values in
the fifth column of Table I and in the second column of Table
III are the same.

Table IV shows the 15 rightmost pairs of complex eigen-
values for the three cases above. Note that the impact of
line models is not negligible. The three models show the
same numbers of poorly damped oscillations modes, however,
the models with delays show, in general, a slightly lower
damping, in particular the case considering loss-less delay

2The lumped model of transmission lines is the standard π-circuit where
the series impedance and shunt admittance are evaluated based on per-unit
length parameters, as follows:

Z̄ij =
1

Yc
sinh(γ̄ij`ij), Ȳij = Yctanh(0.5γ̄ij`ij) ,

where

γ̄ =

√
R+ jω0L

G+ jω0C
.
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TABLE III
SPECTRAL RADII ρ(Cij) OF FOUR TRANSMISSION LINES OF THE NEW

ENGLAND 39-BUS SYSTEM

Line i-j Model (46)-(47) Model (48)
1-2 0.9648 1.0000

23-24 0.9700 1.0000

25-26 0.9723 1.0000

26-29 0.9472 1.0000

TABLE IV
15 RIGHTMOST COMPLEX PAIRS OF EIGENVALUES FOR THE NEW

ENGLAND 39-BUS SYSTEM AND DIFFERENT LINE MODELS

Lumped model Model (46)-(47) Model (48)
−0.1326 ± j14.250 −0.1209 ± j0.7791 −0.1314 ± j0.7290

−0.1505 ± j0.7320 −0.1529 ± j14.423 −0.1454 ± j15.017

−0.1851 ± j0.2378 −0.1765 ± j0.2383 −0.1810 ± j0.2379

−0.1909 ± j16.385 −0.2010 ± j0.3703 −0.1934 ± j0.3489

−0.2067 ± j0.3473 −0.2019 ± j0.3443 −0.1943 ± j0.5219

−0.2119 ± j0.3662 −0.2075 ± j16.547 −0.1971 ± j0.3724

−0.2262 ± j0.2149 −0.2079 ± j0.3311 −0.1990 ± j0.2169

−0.2293 ± j0.5186 −0.2105 ± j0.2167 −0.2050 ± j0.3264

−0.2306 ± j0.3343 −0.2120 ± j0.5240 −0.2127 ± j0.1967

−0.2405 ± j0.2293 −0.2191 ± j0.2323 −0.2130 ± j0.2307

−0.2501 ± j0.1802 −0.2282 ± j0.1909 −0.2277 ± j16.775

−0.2523 ± j0.4649 −0.2510 ± j0.4674 −0.2365 ± j20.883

−0.2810 ± j24.242 −0.2831 ± j24.396 −0.2507 ± j0.4665

−0.2842 ± j22.897 −0.2841 ± j22.659 −0.2910 ± j24.622

−0.3355 ± j20.643 −0.3186 ± j20.658 −0.2921 ± j22.639

line models. Note also that, without a proper small-signal
stability analysis, the only way to determine the behaviour
of the system would be a time domain integration, which, for
DDAEs, is particularly involved as it requires computationally
demanding implicit integration techniques, e.g., Lobatto IIIC.
The interested reader can find more details on the numerical
integration of DDAEs in [25].

VI. CONCLUSIONS

The paper provides a derivation of the characteristic equa-
tion of DDAEs. This is found to be a series of infinite terms as-
sociated with infinite delays, which are multiples of the delay
of the DDAE. The condition for the convergence of this series
are also provided in the paper. Then the paper discusses the
convergence condition of the characteristic equation for power
system models with inclusion of long transmission lines and
derives an explicit formula. The paper also provides a numeri-
cal appraisals based on a Chebyshev discretization methods of
the small-signal stability analysis based on truncated version of
the characteristic equation previously determined and defines
how the convergence of the series impact on the stability of
neutral-type hybrid control and power systems.

Future work will focus on the evaluation of the small-signal
stability analysis of hybrid systems combining continuous
and discrete (e.g., digital) variables and, in particular, on the
dynamic interaction of communication and power systems.

APPENDIX I
CHEBYSHEV DIFFERENTIATION MATRIX

Chebyshev’s differentiation matrix ΞN of dimensions N +
1 × N + 1 is defined as follows. Firstly, one has to define
N + 1 Chebyshev nodes, i.e., the interpolation points on the
normalized interval [−1, 1]:

xk = cos

(
kπ

N

)
, k = 0, . . . , N. (59)

Then, the element (i, j) differentiation matrix ΞN indexed
from 0 to N is defined as [39]:

Ξ(i,j) =


ξi(−1)i+j

ξj(xi−xj) , i 6= j

− 1
2

xi

1−x2
i
, i = j 6= 1, N − 1

2N2+1
6 , i = j = 0

− 2N2+1
6 , i = j = N

(60)

where ξ0 = ξN = 2 and ξ2 = · · · = ξN−1 = 1. For example,
Ξ1 and Ξ2 are:

Ξ1 =

[
1
2 − 1

2
1
2 − 1

2

]
, with x0 = 1, x1 = −1 .

and

Ξ2 =

 3
2 −2 1

2
1
2 0 − 1

2

− 1
2 2 − 3

2

 , with x0 = 1, x1 = 0, x2 = −1 .

APPENDIX II
KRONECKER PRODUCT

If A is a m × n matrix and B is a p × q matrix, then
Kronecker product A⊗B is an mp× nq block matrix [40],
as follows:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (61)

For example, let A =

[
1 2 3
3 2 1

]
and B =

[
2 1
2 3

]
.

Then:

A⊗B =

[
B 2B 3B
2B 2B B

]
=


2 1 4 2 6 3
2 3 4 6 6 9
6 3 4 2 2 1
6 9 4 6 2 3


Observe that A⊗B 6= B ⊗A.
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