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Abstract—This paper presents a stability analysis of power
system stabilizers (PSS) for synchronous generators with inclu-
sion of time delays. The paper shows that a time delay in the
PSS feedback loop can improve the small-signal stability of a
power system if the regulator gain is properly tuned. The paper
provides a proof-of-principle analysis based on the classical model
of the synchronous machine as well as a case study based on a
detailed transient model of the IEEE 14-bus test system. The
paper also provides a discussion on the practical implications
that the properties of delayed PSS can have on the control of
synchronous machines and of the whole power system.

I. INTRODUCTION

Time-delay systems have been studied as early as 1920s.
Increasing number of publications written on the subject,
particularly in recent years, is evidence for the continuing
interest of mathematicians and engineers in delayed systems
[1]. One of the reasons for the importance of time delays
is that they arise in a wide variety of physical systems and
their effects on stability have been carefully investigated in
various engineering applications, including signal processing
and circuit design [2]–[6], as well as in biology, economics,
and population dynamics [7].

The effects of time delays on power system stability and
control have not been exhaustively studied to the best of our
knowledge. Historically, the main studies pertaining to power
systems and time delays focus mainly on long transmission
lines (see for example, [8]). However, for transient analysis,
controllers with delays are generally approximated with lag
transfer functions, which do not capture the dead-time feature
and the high-frequency response of delays. The effect of
delays on wide area measurements and, in particular, on Power
System Stabilizers (PSS) has actually been recognized as a
relevant topic, see for example [9]–[11]. In the cited studies,
the authors indicate the destabilizing effect of delays in the
PSS control loop.

In spite of the “bad reputation” of delays as a source
of destabilization, delays can also have surprisingly positive
effects on improving system stability [6]. Some studies have
shown that delays can benefit the closed-loop control, for
instance, in damping and stabilization of ordinary differential
equations [12] [13, Chapter 11], delayed resonators [14] and
nonlinear limit cycle control [15]. Inspired by these studies,
in particular by [12], this paper shows that time-delays in the

feedback control loop of PSS devices do not necessarily imply
a deterioration of the system transient response. Actually, we
show that, if the time delay is known, a proper adjustment of
the PSS transfer function gain can improve the overall system
stability.

In this paper, we are interested in determining how time
delays can affect the small-signal stability of power systems
with inclusion of PSS controllers, and how such delays can be
handled to avoid the occurrence of Hopf bifurcations followed
by unstable or undamped oscillations (i.e., limit cycles). Both
mathematical and computational aspects are taken into account
so that the proposed procedures for small-signal analysis as
well as for time domain integration can be applied to a power
system of any size and complexity.

Specifically, the paper provides a parametric small-signal
stability analysis of power systems with inclusion of time
delays. This is done via well-known stability maps for the
power system at hand [6]. With these maps, it becomes possi-
ble to display which parametric combinations render stability
or instability in the power system. While stability in power
systems was already studied without consideration of delays
[16] and [17], and although stability maps have been used
in many applications, to the best of out knowledge, these
parametric maps are new for power systems subject to delays.

The main challenge in extracting the stability maps of
systems with delays is due to the fact that the corresponding
characteristic equation of the system at an equilibrium point
is infinite dimensional; that is, the system has infinitely many
eigenvalues. Yet, extraction of stability maps require studying
some particular eigenvalues of the system, namely, those that
are critical from stability point of view. Consequently, although
not trivial, revealing stability maps is possible [7].

In PSS control, one however not only would like to achieve
stability, but also satisfy some performance criterion. For
instance, it is always desirable to have sufficient damping in
the system. To be able to study such transient characteristics
of the system with respect to delay and system parameters,
one needs to find out the dominant modes, i.e., the rightmost
eigenvalues of the state matrix of the system. This is a difficult
task since the system is infinite dimensional, and hence the
numerical computation of those eigenvalues is not always easy.
In this paper, we resolve the problem of computing system’s
eigenvalues by means of the frequency-domain approach dis-



cussed in [11]. This approach is based on a discretization
of a partial differential equation (PDE) representation of the
delayed differential algebraic equation (DDAE), modeling the
PSS control system [18]–[20]. The discretization allows com-
puting an approximated but accurate set of the eigenvalues of
the system that are relevant in terms of system stability and
performance. That is, the computation reveals the rightmost
eigenvalues of the system, thereby allowing one to infer system
damping and settling time characteristics approximated with
these eigenvalues.

The paper is organized as follows. Section II provides
a proof of concept for the parametric analysis carried out
in the paper and explores the stability regions in the delay
versus control-gain plane for a simplified PSS-synchronous
machine model. Section III extends the concepts presented in
Section II to a real-world power system model. For this aim,
the frequency-domain approach to compute the eigenvalues
of a DDAE system is briefly outlined. Section IV provides a
case study based on the IEEE 14-bus system. Finally, Section
V provides a discussion on the practical implications of the
small-stability analysis presented in the paper and duly draws
relevant conclusion and future work directions.

Note that, with a slight abuse in notation, in the remainder
of the paper, we use the term stability instead of asymptotic
stability of the equilibrium point.

II. THEORETICAL BACKGROUND – PROOF OF CONCEPT

Time delay in a system usually has detrimental effects on
the stability properties of that system. Sometimes even small
values of delays that seem harmless to ignore in modeling
a system, can lead to instability. For example, consider the
following LTI system, which has a globally asymptotically
stable equilibrium at the origin:

ẋ(t) + 2ẋ(t) = −x(t).

On the other hand, the trivial solution of the following neutral
type functional differential equation

ẋ(t) + 2ẋ(t− τ) = −x(t),

is unstable for any τ > 0, see [?, p. 28] for a proof.

Consider the well-known simplified electromechanical
model of a synchronous machine in steady state [21]:

2H
ω

dt
= pm − pe(δ), (1)

where ω is the rotor speed, H is the machine inertia constant,
pm is the mechanical power, and pe is the electromagnetical
power defined as:

pe(δ) =
e′qv

x′

d

sin(δ − θ), (2)

where δ is the rotor angle, v and θ are the machine bus
terminal voltage magnitude and phase angle, respectively, e′q
is the internal fem, and x′

d is the d-axis transient reactance.
Differentiating (1) leads to:

2H
∆ω

dt
= −

∂pe
∂δ

∆δ −
∂pe
∂e′q

∆e′q −
∂pe
∂v

∆v, (3)

which can be further simplified as follows. Since, without the
PSS and assuming an integral automatic voltage regulator, e′q
and v are constant, the above equation in Laplace s domain
becomes:

2Hs∆ω = −
∂pe
∂δ

∆δ := −K∆δ, (4)

where

K =
e′qv

x′

d

cos(δ0 − θ0), (5)

and we denote with δ0 and θ0 the rotor and bus voltage
phase angles, respectively, at the equilibrium point. Since
∆ω = s∆δ, we obtain the characteristic equation of the system
as:

f(s) = s2 +
K

2H
= 0, (6)

which corresponds to an oscillator with roots on the imaginary
axis of the complex plane.

As it is well-known, see, e.g., [21], the presence of a PSS
control loop leads to a right-hand side term in (6) proportional
to e′q ∝ s∆δ. Assuming now that the feedback is affected by
a delay term τ , then the system characteristic equation reads

f(s, e−τs) = s2 +Ase−τs + K̃ = 0. (7)

where K̃ = K/(2H), A is proportional to the rotor-speed
feedback-controller gain of the PSS, and τ ≥ 0 is the constant
delay. Equation (7) can be interpreted as the characteristic
equation of a feedback control system where an open loop

oscillator dynamics with natural frequency
√

K̃ is controlled
only by a derivative controller constructed based on delayed
measurements of the output. This system also resembles to
those studied in [6], [12].

We utilize the approaches in [6], [12], [22], [23] to reveal
the stability map of (7) in the parameter space of A versus τ .
To summarize, this mapping is obtained based on the following
principles [24], [25]: (a) the system poles move on the complex
plane continuously with respect to system parameters; (b) the
system stability is preserved as delay τ transitions from zero to
0+; and (c) the system may lose/recover stability only if at least
one of its poles crosses over the imaginary axis of the complex
plane. In light of these, one can determine the critical values of
A and τ for which (7) produces imaginary eigenvalues s = jω
on the complex plane. That is, the characteristic equation in
(7) needs to be solved for A and τ when s = jω, which reads

f(jω, e−jτω) = (jω)2 + jAωe−jτω + K̃ = 0. (8)

Once the critical values of A and τ are solved from (8),
corresponding to critical values of ω, with ω > 0 without loss
of generality, one can plot these critical points on τ versus
A plane, on which countably many “regions” will form. That
is, the critical values will decompose the parameter space into
regions, where in each region any parametric combination will
render the system to have a fixed number of unstable poles.
The regions where this number is zero, i.e., the system has
no unstable poles, are the regions where the system remains
stable. This is the main spirit behind τ -decomposition theorem
[6], which is instrumental in identifying stable and unstable
regions.



Identification of stable and unstable regions requires a sen-
sitivity analysis, namely, calculation of how the pole s = jω
moves across the imaginary axis as the corresponding critical
delay value increases infinitesimally, while all the remaining
parameters are kept fixed. Interested readers are referred to
[6], [7], [22], [23], [26] for the details. Once the sensitivity
analysis is completed, one has full information about how
system stability transitions as one moves across the bound-
aries that decompose the parametric space. If/when sensitivity
favors “stabilization” across a boundary, this would mean that
crossing the boundary will reduce the number of unstable
poles in the destination region, and if/when sensitivity shows
“destabilization”, the contrary happens. With the information
available regarding the number of unstable poles of the system
for the delay-free case (τ = 0), one can then use the sensitivity
information across the boundaries to calculate the number of
unstable poles in all the regions on A-τ plane, and thus identify
all the stability regions.

Figure 1 shows the stability map obtained by means of the
above procedure. In shaded regions, the system is stable, and
in the remaining regions it is unstable. The parameter values
to generate the map are: e′q = 1.8 pu, x′

d = 0.8 pu, vh = 1.0
pu, H = 2.0 s, and pm = 1.0 pu. These parameters lead to
K = 2.0156 ≈ 2.0. As expected, the delay-free system (τ = 0)
is stable for A > 0, as well as for small positive values of
τ . Moreover, Figure 1 clearly shows that larger delays do not
necessarily destabilize the system as long as the corresponding
gain A is properly adjusted.
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Fig. 1. Stability map on A-τ plane for K̃ ≈ 2.0. The power system is stable
in the shaded regions.

III. NUMERICAL ANALYSIS FOR LARGE POWER SYSTEMS

The example studied in Section II is a simplified one,
as it captures the behavior of a joint system composed of a
synchronous machine and the PSS control loop. This example
is a good choice for two reasons: (i) its characteristic equation
(7), which represents a delay differential equation (DDE) has
such a relatively simple form that the critical roots of (8) could
be determined analytically; and (ii) it motivates the rest of
the paper regarding the intriguing mechanisms of delays on
dynamic behavior.

In more general power control system models, however,
the arising characteristic equation can be in a more compli-
cated forms, e.g., the equations may have commensurate and
multiple delays. To study the stability maps of such systems,
various approaches can be adopted [7]. With this regard, we
incorporate in our model the interactions among synchronous
machines and the transmission system. This modeling part
is borrowed from [11] as excerpts and provided below for
completeness. The interested readers are referred to the cited
study for a detailed discussion on the numerical small-signal
stability analysis of delayed power system equations.

A. Standard Power System Model

The transient behavior of power systems is traditionally
described through a set of differential algebraic equations
(DAE) as follows:

ẋ = f(x,y,u), (9)

0 = g(x,y,u),

where f : Rn+m+p 7→ R
n, g : Rn+m+p 7→ R

m, x ∈ R
n are

state variables, y ∈ R
m are algebraic variables, and u ∈ R

p

are discrete variables modeling events, e.g., line outages and
faults.

B. Delayed Power System Model

When delays affect the dynamics in (9), the delayed
transient stability power system model becomes a set of delay
differential-algebraic equations (DDAE) in index-1 Hessenberg
form, as follows:

ẋ = f(x,y,xd,yd,u), (10)

0 = g(x,y,xd,u),

where xd and yd are the retarded or delayed variables with
respect to some state or algebraic variables, respectively. The
model described in (10) is the index-1 Hessenberg form and is
not the most general structure for DDAE. However, as shown
in [11], the model (10) is appropriate to describe the transient
stability of power systems and is thus used in the remainder
of the paper.

C. Characteristic Equation of Delayed Power Systems

Assume now that, for a given event u = u0, a stationary
solution of (10) is known and has the form:

0 = f(x0,y0,x0,y0,u0), (11)

0 = g(x0,y0,x0,u0),

Then, linearizing (10) at the stationary solution yields:

∆ẋ = f
x
∆x+ f

xd
∆xd + f

y
∆y + f

y
d
∆yd, (12)

0 = g
x
∆x+ g

xd
∆xd + g

y
∆y, (13)

where, as usual, it can be assumed that g
y

is non-singular.
Substituting (13) into (12) leads to:

∆ẋ = A0∆x+A1∆x(t− τ) +A2∆x(t− 2τ), (14)



where:

A0 = f
x
− f

y
g−1
y

g
x
, (15)

A1 = f
xd

− f
y
g−1
y

g
xd

− f
y
d
g−1
y

g
x
, (16)

A2 = −f
y

d
g−1
y

g
xd
. (17)

The first matrix A0 is the well-known state matrix that is
computed for standard DAE systems in the form of (9). The
other two matrices are not null since the system at hand is
affected by delays. The interested readers can find the details
on how to determine (15)-(17) in [11].

Equation (14) is a particular case of the standard form of
the linear delay differential equations:

ẋ = A0x(t) +

ν
∑

i=1

Aix(t− τi), (18)

where, in this case, ν = 2, τ1 = τ and τ2 = 2τ . The
substitution of a sample solution of the form x = estυ, with
υ being a non-trivial possibly complex vector of dimension
n× 1, leads to the characteristic equation of (18):

det ∆(s) = 0, (19)

where

∆(s) = sIn −A0 −

ν
∑

i=1

Aie
−sτi , (20)

is called the characteristic matrix [27], and In is the identity
matrix of dimension n× n. The solutions s of (19) are called
the characteristic roots or spectrum, similar to the finite-
dimensional case (i.e., the case for which Ai = 0 ∀i =
1, . . . , ν ). However, since (19) is transcendental, i.e., it has
infinitely many roots, one can only approximate the dynamic
behavior of the system based on its rightmost eigenvalues.

Similar to the finite-dimensional case, the stability of (18)
is guaranteed if and only if all the roots s of (19) have negative
real parts. Although the stability condition seems to be simple,
its assessment is quite difficult since it is impossible to find all
the roots of (19). Yet, some elegant approaches have already
been developed in the literature, to address this problem. These
approaches utilize three useful properties of the characteristic
equation [6], [27], as follows:

1) The power control system represented by (19) is of
retarded type. That is, the highest derivative of the
state in (18) is not affected by delay terms. This
guarantees that the stability properties of the system
at hand will be preserved as delay transitions from
zero to a very small positive number.

2) Equation (19) only has a finite number of character-
istic roots in any vertical strip of the complex plane,
given by {λ ∈ C : α < ℜ(λ) < β}.

3) There exists a number γ ∈ R such that all charac-
teristic roots of (19) are confined to the half-plane
{λ ∈ C : ℜ(λ) < γ}.

The above properties imply that the number of roots of the
characteristic equation in the right-half of the complex plane
is finite and if γ < 0, all the system eigenvalues have negative
real parts, indicating that the system is stable.

D. Approximated Solution of the Characteristic Equation

Unfortunately, an analytic solution of γ from the charac-
teristic equation is not possible. Hence, in this paper we use
the technique proposed in [18], [19], [28] based on recasting
(18) as an abstract Cauchy problem. This approach consists in
transforming the original problem of computing the roots of a
retarded functional differential equation as a matrix eigenvalue
problem of a PDE system of infinite dimension and then
discretizing such system by means of a finite element method.

The technical details of the discretization idea are sup-
pressed here, referring the readers to the cited studies. The
outcome of this approach is as follows:

• For stability analysis purposes, the approach should
be carried out to detect the parametric settings for
which the system has its rightmost eigenvalues ideally
with zero real parts, corresponding to the boundaries
separating stable from unstable regions. Note that
stability analysis can also be performed following the
ideas presented in [7], [22], [23] and the references
therein.

• For performance analysis purposes, e.g., for studying
the damping characteristics of the system, one could
use the same approach to compute the real part of
the rightmost eigenvalues of the system, in the pa-
rameter space, and using these eigenvalues, it would
be possible to approximate damping and settling time
properties of the system in the parameter space. Please
also refer to [7] for other techniques that can be used
to compute the system’s rightmost eigenvalues.

To better illustrate the approach, we first assume that
(10) has only one delay τ common to all retarded variables.
Moreover, it is assumed that A2 = 0. This hypothesis
is actually a consequence of considering that in (10) only
algebraic variables depend on the delay value. Hence, (10)
simplifies to:

ẋ = f(x,y,yd,u), (21)

0 = g(x,y,u),

and from (16) and (17) one obtains:

A1 = −f
y

d
g−1
y

g
x
, A2 = 0, (22)

from which, (19) becomes:

det∆(s) = det
(

sIn −A0 −A1e
−sτ

)

. (23)

Then, one has to choose the numbers of nodes N , which asso-
ciated with a Chebyshev’s discretization scheme. This number
affects the precision and the computational time needed in
the method, as explained below. Let DN be Chebyshev’s
differentiation matrix of order N and define

M =

[

Ĉ ⊗ In

A1 0 . . . 0 A0

]

, (24)

where ⊗ denotes Kronecker’s product; In is the identity matrix

of order n; and Ĉ is a matrix composed of the first N − 1
rows of C defined as follows:

C = −2DN/τ, (25)

Then, the eigenvalues of M approximate the spectrum of (23).



Without entering into mathematical details, one can see M
as the discretization of a PDE system where the continuous
variable, say ξ, corresponds to the time delay. Then ξ is dis-
cretized along a grid of N points. The position of such points
are defined by Chebyshev’s polynomial interpolation. The last
n rows of M correspond to the PDE boundary conditions
ξ = τ (e.g., A1) and ξ = 0 (e.g., A0), respectively. This
suggests also how to generalize M for a case of characteristic
equations with ν > 1. For example, the matrix M for ν = 2
can be formulated as follows:

M =

[

Ĉ ⊗ In

A2 0 . . .0 A1 0 . . .0 A0

]

, (26)

where N + 1 must be odd to allow A1 being in the central
node of Chebyshev’s grid.

As expected, the general case with multiple delays can be
implemented by increasing N and, hence, the size of the matrix
M , and modifying accordingly its last n rows. The interested
reader can find further insights on the multiple delay case in
[19] and [20]. For the sake of simplicity, in this paper, only
the case of a single delay is considered. This assumption is
justified by the fact that the delay originates from a single
device type, i.e., the PSS.

IV. CASE STUDY

The system considered in this paper is the IEEE 14-bus
system, which consists of two generators, three synchronous
compensators, two two-winding and one three-winding trans-
formers, fifteen transmission lines, eleven loads and one shunt
capacitor (see Fig. 2). The system also includes generator
controllers, such as the primary voltage regulators. All dynamic
data of this system as well as a detailed discussion of its
transient behavior can be found in [21].

Fig. 2. IEEE 14-bus test system. The system includes a PSS device connected
to generator 1.

In typical PSSs, the input signal is the synchronous ma-
chine rotor speed ω, which, in our formulation is a state
variable. In most cases, the rotor speed is measured locally,
i.e., it is the rotor speed of the machine where the PSS is
installed. However, there exist wide area measurement systems

(WAMS) where remote signals are used, e.g., the frequency of
a pilot bus [9]. Local measurements have at most a few ms
delay while remote measurements can be affected by a delay
of up to 100 ms or more [9]. In this paper we consider that
the input signal of the PSS of generator 1 is obtained through
a WAMS. A typical PSS control scheme includes a washout
filter and two lead-lag blocks. The resulting control scheme
diagram of the PSS is shown in Fig. 3. Observe that the DDAE
that describes the PSS satisfies the index-1 Hessenberg form
(10) where xd = ω(t − τω). The interested reader can find a
detailed description of the system equations in [11].

Thus the retarded measure of ω propagates into the PSS
equations, as follows:

v̇1 = −(Kwω(t− τω) + v1)/Tw (27)

v̇2 = ((1−
T1

T2

)(Kwω(t− τω) + v1)− v2)/T2

v̇3 = ((1−
T3

T4

)(v2 + (
T1

T2

(Kwω(t− τω) + v1)))− v3)/T4

0 = v3 +
T3

T4

(v2 +
T1

T2

(Kwω(t− τω) + v1))− vs

where v1, v2 and v3 are state variables introduced by the PSS
washout filter and by lead-lag blocks, and other parameters
are illustrated in Fig. 3. Observe that equations in (27) are in
the form of (10) with x = (v1, v2, v3), xd = ω(t − τω), and
y = vs.

Fig. 3. Power system stabilizer control diagram [21].

Applying the approaches summarized above, the small-
signal stability region for the delayed IEEE 14-bus system
is found as in Fig. 4. The shaded regions indicate stable
equilibria. The shape of the stable region is similar to the
one of the simplified system depicted in Fig. 1 only for small
positive values of τω , but for larger values of τω , there is
noticeable difference. Moreover, inspecting Fig. 4, one finds
out as a general rule that in order to keep the IEEE 14-bus
system in the stability region for larger τω values, one should
decrease Kw. Furthermore, there exists a region on the stability
map, corresponding to relatively large values of τω , for which
the system stability can still be maintained with the selection of
negative values of the PSS gain Kw. Finally, it is remarked that
a properly damped response, assuming that 5% is an adequate
damping threshold, is attainable in this case, as indicated by
the dark gray region in Fig. 4.1

The stable region for τω ∈ (0.2, 0.5) ms shows a cusp for
(τω,Kw) ≈ (0.3325,−5.067). This is a bifurcation point: the
descending branch remains stable for τω > 0.3325, but the

1Damping ratio ζ is approximated here as the negative cosine of the angle
formed by the complex vector defined by the imaginary and real part of the
stable rightmost complex eigenvalues z; ζ = − cos(arctan(ℑ(z)/ℜ(z))).
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Fig. 4. Stability map of the Kw-τω plane for the IEEE 14-bus system.
Shaded regions are stable. Dark shaded regions indicate a damping greater
than 5%.

other branch cuts the stability region. No stable points can be
found for Kw < −5.067.

To solve the stability map shown in Fig. 4, the software
Dome [29] has been used, which implements the frequency do-
main approach discussed in Section III. The number of points
of the Chebyshev differentiation matrix is N = 10, which leads
to a matrix M of order 520×520. On a Dell Precision T1650
equipped with 4-core Intel Xeon CPU 3.50GHz and 8 GB of
RAM, the solution of the rightmost eigenvalue spectrum for
each given point in the parameters space takes around 0.45 s.
The small-signal stability boundaries has been calculated using
a simple bisection method with a tolerance of 10−3 on the real
part of the critical eigenvalues.

To properly determine the whole stable region, an eigen-
value analysis for a grid of points in the rectangle defined by
τω ∈ [0, 0.5] ms and Kw ∈ [−5, 20] has been carried out.
Note that we have not detected other stable regions beside
the one shown in Fig. 4. However, even if such regions
would exist under different parametric settings, they would
be “islanded” regions, and thus would be likely unreachable
as system trajectories could not get to such disjointed stable
regions without passing through an unstable path. Hence the
stability region depicted in Fig. 4 is the only one that has
practical interest.

V. PRACTICAL IMPLICATIONS OF DELAYED PSS
AND FINAL REMARKS

The stability analysis presented in Sections II and IV allow
drawing general conclusions and lead to practical implications,
as follows:

• The system studied in Fig. 1 remains stable for
0 ≤ τ ≤ 1 s, provided that the gain A is properly
adjusted. However, although stable, the response of
the system in terms of damping can be unacceptable
for high values of τ . In fact, as τ increases, A has to
decrease to keep the system stable. The limit case is
A → 0 as τ → ∞ which means that the PSS control

loop is open and, hence, the system transient behavior
is driven by the sole synchronous machine, which is
generally poorly damped.

• In case of remote PSS input signals (see, for example,
[9]), estimating the value of time delay would allow
properly tuning the gain A so that the effect of
the delay on the system dynamic response could be
minimized.

• The effect of delays depends on K̃ and thus on
relevant parameters of the synchronous machines such
as pm, vh and e′q . This fact can be taken into account
to define a proper tuning of A in case of changes in
the operating point of the synchronous machine.

• To intentionally add delay to a control loop is gener-
ally not acceptable. However, the stability map shown
in Fig. 4 suggests that, in case the measured PSS input
signal is affected inevitably by a relatively large delay
(e.g., τ ∈ (0.1, 0.3) s), then it could be convenient
to introduce an additional delay, and to accordingly
change the control gain Kw, in order to improve
the overall system small-signal stability. This adaptive
control requires an estimation of the delay and, apart
from that, it can be easily implemented by means of
a look-up table based on the results obtained from the
small-signal stability analysis.

The analysis presented in this paper can be extended
towards several directions. For example, the effect of multiple
time-delays and their joint interaction on system stability
are still open questions. With this aim, a multi-dimensional
analysis has to be carried out. Future work will focus on
the definition of robust controllers that take advantage of
the effects of delays to properly damp synchronous machine
oscillations.
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“Nonlinear delay systems: Tools for a quantitative approach to stabi-
lization,” Stability and Control of Time-Delay Systems, pp. 218–240,
1998.

[14] N. Jalili and N. Olgac, “Optimum delayed feedback vibration absorber
for MDOF mechanical structures,” in Proceedings of the 37th IEEE

Conference on Decision and Control, vol. 4, 1998, pp. 4734–4739.

[15] W. Aernouts, D. Roose, and R. Sepulchre, “Delayed control of a Moore-
Greitzer axial compressor model,” International Journal of Bifurcation

and Chaos, vol. 10, no. 5, pp. 1157–1164, 2000.

[16] Y. V. Makarov, Z. Y. Dong, and D. J. Hill, “A general method for small
signal stability analysis,” IEEE Transactions on Power Systems, vol. 13,
no. 3, pp. 979–985, 1998.

[17] S. J. Gomes, N. Martins, and C. Portela, “Computing small signal
stability boundaries for large-scale power systems,” IEEE Transactions

on Power Systems, vol. 18, no. 2, pp. 747–752, 2003.

[18] A. Bellen and M. Zennaro, Numerical Methods for Delay Differential

Equations. Oxford: Oxford Science Publications, 2003.

[19] D. Breda, S. Maset, and R. Vermiglio, “Pseudospectral approximation of
eigenvalues of derivative operators with non-local boundary conditions,”
Applied Numerical Mathematics, vol. 56, pp. 318–331, 2006.

[20] D. Breda, “Solution operator approximations for characteristic roots of
delay differential equations,” Applied Numerical Mathematics, vol. 56,
pp. 305–317, 2006.

[21] F. Milano, Power system modelling and scripting. London: Springer,
2010.

[22] N. Olgac and R. Sipahi, “An exact method for the stability analysis of
time-delayed linear time-invariant (lti) systems,” IEEE Transactions on

Automatic Control, vol. 47, no. 5, pp. 793–797, 2002.

[23] S. I. Niculescu, Delay effects on stability: A robust control approach,
ser. Lecture notes in Control and Information Science. Springer Verlag,
2001, vol. 269.

[24] R. Datko, “A procedure for determination of the exponential stability
of certain differential-difference equations,” Quarterly Applied Math,
vol. 36, no. 3, 1978.

[25] C. S. Hsu, “Application of the tau-decomposition method to dynamical
systems subjected to retarded follower forces,” Journal of Applied

Mechanics, vol. 37, pp. 258–266, 1970.

[26] K. Gu, V. L. Kharitonov, and J. Chen, Stability of time delay systems.
Birkhauser, 2003.

[27] W. Michiels and S. Niculescu, Stability and Stabilization of Time-Delay

Systems. Philadelphia: SIAM, 2007.

[28] A. Bellen and S. Maset, “Numerical solution of constant coefficient
linear delay differential equations as abstract Cauchy problems,” Nu-

merische Mathematik, vol. 84, pp. 351–374, 2000.

[29] F. Milano, “A Python-based software tool for power system analysis,”
in Procs. of the IEEE PES General Meeting, Vancouver, BC, Jul. 2013.


