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Abstract— As the performance of digital signal processors
has increased rapidly during the last decade, there is a grow-
ing interest to replace the analog controllers in low power
switching converters by more complicated and flexible digital
control algorithms. Compared to high power converters, the
control loop bandwidths for converters in the lower power
range are generally much higher. Because of this, the dynamic
properties of the uniformly-sampled pulse-width modulators used
in low power applications become an important restriction to
the maximum achievable bandwidth of control loops. Though
frequency- and Laplace-domain models for uniformly-sampled
pulse-width modulators are very valuable as they improve the
general perception of the dynamic behavior of these modulators,
the direct discrete design of the digital compensator requires a z-
domain model for the combination modulator and converter. For
this purpose a new exact small-signal z-domain model is derived.
In accordance with the zero-order-hold equivalent commonly
used for ‘regular’ digital control systems, this z-domain model
gives rise to the development of a uniformly-sampled pulse-width-
modulator equivalent of the converter. This z-domain model is
characterized by its capability to quantify the different dynamics
of the converter for different modulators, its ease of use and its
ability to predict the values of the control variables at the true
sampling instants of the real system.

I. INTRODUCTION

For reasons of price, control circuits for low power switch-

ing power supplies (<3 kW) are almost always implemented

using analog circuits. As the price/performance ratio of digital

signal processors has decreased rapidly during the last decade,

the interest for digital control of switching power supplies in

the low power range has grown [1], [2]. When applying digital

control to a switching power supply, the different switches

in the supply are often controlled by a digital or uniformly-

sampled pulse-width modulator. Consequently, the dynamics

of a digitally controlled switching power supply are influenced

by two nonlinear effects: quantization effects and modulation

effects. As the effects of quantization in digital control of

switching power supplies have been addressed before [3],

[4], this study focuses on modulation effects. Frequency-

and Laplace-domain models of the modulators [5] provide

insight in the fundamental dynamic behavior of uniformly-

sampled pulse-width modulators. However, the design of

the compensator must be performed in the Laplace-domain.

This Laplace transfer function is afterwards translated into

a discrete equivalent by approximation methods such as the

trapezoidal-rule, pole-zero mapping, etc. To avoid this indirect

design method for the discrete compensator, a z-domain model

for the combination converter-modulator is required. Discrete-

time models have already been reported [6] but their use in

control is limited because of the presence of matrix expo-

nentials and other highly nonlinear vector functions. Though

u us
ZOH

vc

y
uH

Ts

Fig. 1. A general uniformly-sampled pulse-width modulator

approximations of this bilinear discrete-time model such as [7]

provide a good solution to this problem, the usability of these

models is further restrained because they are only derived for

an end-of-on-time modulator and because they describe the

behavior of the control variable values at the beginning of the

switching cycle instead of at the sampling instants of the real

digital control system. After all, the sampling instants in a

real digital control system can be positioned anywhere in the

switching cycle.

To overcome these problems a new exact small-signal z-

domain model is derived based on the Laplace-domain analysis

presented in [5]. In accordance with the zero-order-hold equiv-

alent commonly used for ‘regular’ digital control systems, this

z-domain model gives rise to the development of a uniformly-

sampled pulse-width-modulator equivalent of the converter.

This z-domain model is characterized by its capability to

quantify the different dynamics of the converter for different

modulators, its ease of use as this approach uses only the

modified z-transform rather than complex functions, and its

ability to predict the values of the control variables at the true

sampling instants of the real system. The method is validated

and demonstrated on a digitally controlled buck converter

by comparing the samples predicted by the model with the

simulated waveforms retrieved from a Simulink model.

II. UNIFORMLY-SAMPLED PULSE-WIDTH MODULATORS

The pulse-width modulators embedded in modern digital

signal processors (e.g. TMS320C2XX of Texas Instruments,

ADSP2199X of Analog Devices, DSP568XX of Motorola,

etc.) operate all in a similar fashion. If we disregard quan-

tization effects, a model for the uniformly-sampled pulse-

width modulator is shown in Fig. 1. The input u(t), a

continuous function of time, is sampled with a frequency ωs

synchronously to the pulse-width modulation (Fig. 1). For

the derivation of the z-domain model only modulators with

a switching frequency equal to the sampling frequency ωs

(single-update-mode) are considered. The sampled input us(t)
is sent to a zero-order-hold circuit (ZOH). Finally, the PWM

waveform is generated by comparing the output of the ZOH

uH(t) to the value of the carrier waveform vc(t), a triangular

waveform. Depending on the shape of the carrier waveform
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Fig. 2. The single-update-mode sawtooth-carrier modulators. (a): end-of-on-
time, (b): begin-of-on-time

vc(t) different types of uniformly-sampled pulse-width mod-

ulators can be obtained. In commercial digital controllers two

possibilities are commonly offered: the carrier waveform is ei-

ther a sawtooth-carrier Fig. 2 or an isosceles-triangular-carrier

Fig. 3. When the carrier vc is a sawtooth carrier the commonly

available types are the end-of-on-time modulator Fig. 2(a) and

the begin-of-on-time modulator Fig. 2(b). For modulators with

an isosceles-triangular-carrier waveform, two modulators can

be identified: the symmetric-on-time modulator Fig. 3(a) and

the symmetric-off-time modulator Fig. 3(b).

III. Z-DOMAIN ANALYSIS

If we assume that the response of the output of the converter

q(t) to a change in the output of the uniformly-sampled pulse-

width modulator can be described by the Laplace transfer

function P (s)e−sτp , the schematic of the control loop can be

represented as in Fig. 4. The controlled output of the converter

q(t) is converted by a measurement with transfer function

H(s)e−sτm into the measured output qm(t). The latter is sam-

pled by the analog-to-digital converter of the microcontroller;

the output of the sampler is q∗m(t). Comparing this measured

value to its desired value q∗w(t) yields the sampled error e∗(t).
The digital compensator with pulse-transfer function G(z)
derives the control output c∗(t) from this error. To account

for the duration of the control calculations (calculations for

the output of G(z)) in the processor, a calculation delay τd is

introduced. The delayed control signal u∗(t) is the sampled

input of the modulator. The latter transforms the sampled input

u∗(t) into the switching function y(t), a continuous function of

time. If the pulse-width modulator can be modelled by a pulse-

to-continuous transfer function G∗

PWM
(s) describing in the

Laplace domain the change of the modulator output y(t) as a

function of the sampled input u∗(t), the model of Fig. 4 can be

simplified to that of Fig. 5. Note that this pulse-to-continuous
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Fig. 3. The single-update-mode triangular-carrier modulators. (a): symmetric-
on-time, (b): symmetric-off-time

transfer function for the modulator G∗

PWM
(s) is in accordance

with the model commonly employed for a regular control

system with zero-order-hold (G∗

ZOH
(s)=(1− e−sTs)/s).

If a hypothetical sampler with sampling period ωs is intro-

duced on the output of the converter q(t), the sampled output

q∗(t) is obtained. By using the z-transform, the sampled output

q∗(t) can be expressed as a function of the commanded output

q∗w(t):

Q(z)

Qw(z)
=

G(z)Z
{

e−s(τd+τp)G∗

PWM
(s)P (s)

}

1 + G(z)Z
{

e−s(τd+τp+τm)G∗

PWM
(s)P (s)H(s)

} ,

(1)

with Q(z) and Qw(z) the z-transforms of q∗(t) and q∗w(t),
respectively. Equation (1) clearly shows that the problem of

calculating the sampled output of a converter with a digital

control loop can be reduced to the problem of finding the

z-transform of

Gtot(z) = Z
{

e−sT∆G∗

PWM (s)R(s)
}

(2)

or the calculation of the z-transform of the characteristic

system as depicted in Fig. 6. Before the z-transform for

the characteristic system can be calculated, the pulse-to-

continuous transfer function of a uniformly-sampled pulse-

width modulator must be derived.

The derivation of the pulse-to-continuous transfer function

G∗

PWM
(s) of the digital pulse-width modulator is based upon

the small-signal Laplace-domain analysis presented in [5].

This Laplace-domain analysis uses the waveforms of the

general single-update-mode modulator (Fig. 7). This modu-

lator has a triangular waveshape as carrier waveform vc(t)
determined by the period Tc and the ratio α. The ratio α
is the duration of the falling edge of the triangle relative

to the period Tc = Ts (Fig. 7). Choosing α equal to 0, 1/2
and 1 allows to obtain the waveforms for the end-of-on-time
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Fig. 4. A model for the control loop of a digitally controlled converter with the pulse-width modulator modelled by a pulse-to-continuous transfer function
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Fig. 5. A model for the control loop of a digitally controlled converter with the pulse-width modulator modelled by a pulse-to-continuous transfer function
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Fig. 6. The characteristic system consisting of a linear system, a transporta-
tion delay and the uniformly sampled pulse-width modulator
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Fig. 7. The key waveforms for a general single-update-mode modulator

modulator, the symmetric-on-time modulator and the begin-

of-on-time modulator respectively. Hence, three out of four

different single-update-mode modulators can be analyzed in a

unified way.

The input of the modulator u(t) is separated into a steady-

state part U (a constant) and a small excursion to this steady-

state û(t), or

u(t) = U + û(t). (3)

The resulting output of the modulator y(t) can also be sepa-

rated into a steady-state portion Y (t) (the response to U ) and

a small excursion to the steady-state ŷ(t), or

y(t) = Y (t) + ŷ(t). (4)

By using the Laplace-domain analysis of [5], the small-signal

output ŷ(t) of the modulator can be expressed as a function

of the sampled version û∗(t) of the small-signal input û(t) of

the modulator (see [5])

Ŷ (s) = Ts

(
αe−sT0 + (1− α)e−s(Ts−T1)

)
Û∗(s), (5)

with T0, T1 and α defined in Fig. 7. In accordance with the

analysis used for a zero-order-hold in a ‘regular’ digital control

system [8], a pulse-to-continuous Laplace transfer function can

be derived from the equation above

G∗

PWM
(s) =

Ŷ (s)

Û∗(s)
= Ts

(
αe−sT0 + (1− α)e−s(Ts−T1)

)
.

(6)

If (6) is substituted in (2), the z-domain model for the

characteristic system can be calculated.

A. The UPWM-equivalent for the end-of-on-time modulator

As an example the z-domain model of the characteristic

system is derived for an end-of-on-time modulator. For this

modulator the following applies: α = 0 and T1 = (1 − D)Ts,

with D (= U ) the average duty-ratio. With these parameter

values, substitution of (6) in (2) yields

Gtot(z) = TsZ
{

e−sT∆R(s)e−sDTs

}

= TsZ
{

e−s(ζ+D)TsR(s)
}

, (7)
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TABLE I

THE UPWM-EQUIVALENT OF THE CHARACTERISTIC SYSTEM: (a) THE END-OF-ON-TIME MODULATOR, (b) THE BEGIN-OF-ON-TIME MODULATOR

(a)

case condition Gtot(z)

1 0<ζ <(1−D) TsR(z, 1−D−ζ)

2 (1−D)<ζ <1 Tsz
−1R(z, 2−D−ζ)

(b)

case condition Gtot(z)

1 0<ζ <D TsR(z,D−ζ)

2 D<ζ <1 Tsz
−1R(z, 1+D−ζ)

TABLE II

THE UPWM-EQUIVALENT OF THE CHARACTERISTIC SYSTEM: (a) THE SYMMETRIC-ON-TIME MODULATOR, (b) THE SYMMETRIC-OFF-TIME MODULATOR

(a)

case condition Gtot(z)

1 0<ζ < 1
2 (1−D) Ts

2

[
R

(
z, 1

2 (1 + D)− ζ
)

+ R
(
z, 1

2 (1−D)− ζ
)]

2 1
2 (1−D)<ζ < 1

2 (1+D) Ts

2

[
R

(
z, 1

2 (1 + D)− ζ
)

+ z−1R
(
z, 1 + 1

2 (1−D)− ζ
)]

3 1
2 (1+D)<ζ <1 Ts

2 z−1
[
R

(
z, 1 + 1

2 (1 + D)− ζ
)

+ R
(
z, 1 + 1

2 (1−D)− ζ
)]

(b)

case condition Gtot(z)

1 0<ζ < D
2

Ts

2

[
R

(
z, 1

2 (2−D)− ζ
)

+ R
(
z, 1

2D − ζ
)]

2 D
2 <ζ < 1

2 (2−D) Ts

2

[
R

(
z, 1

2 (2−D)− ζ
)

+ z−1R
(
z, 1 + 1

2D − ζ
)]

3 1
2 (2−D)<ζ <1 Ts

2 z−1
[
R

(
z, 1 + 1

2 (2−D)− ζ
)

+ R
(
z, 1 + 1

2D − ζ
)]

with ζTs =T∆. As in most cases the total delay T∆ is smaller

than the sampling period Ts, ζ is comprised between 0 and 1
and two cases can be distinguished





Gtot(z) = TsZ
{

e−s(ζ+D)TsR(s)
}

for ζ+D<1

Gtot(z) = Tsz
−1Z

{
e−s(ζ+D−1)TsR(s)

}
for ζ+D>1

.

(8)

If the modified z-transform of R(s) is defined as

R(z,m) = Zm{R(s)} = Z
{

e−s(1−m)TsR(s)
}

, (9)

equation (8) can be transformed into





Gtot(z) = TsR(z, 1−D − ζ) for ζ+D<1

Gtot(z) = Tsz
−1R(z, 2−D − ζ) for ζ+D>1

. (10)

This model Gtot(z) is the uniformly-sampled pulse-width-

modulator equivalent or UPWM-equivalent for an end-of-

on-time modulator of the transfer function R(s)e−sT∆ . A

summary of the z-domain models of the characteristic system

for an end-of-on-time modulator with their corresponding

conditions is shown in Table I(a).

The UPWM-equivalent for the begin-of-on-time modulator,

the other sawtooth-carrier modulator, can be derived in a

similar way. Though the calculation is omitted, the results are

tabulated in Table I(b). Note that the z-domain models for the

begin-of-on-time modulator can be deduced from the z-domain

models for the end-of-on-time modulator by substituting the

average duty ratio D in the latter with the complement of the

average duty-ratio 1−D, and vice-versa (compare Tables I(a)

and I(b)).

B. The UPWM-equivalent for the symmetric-on-time modula-

tor

As another example the UPWM-equivalent of the char-

acteristic system for a triangular-carrier modulator, the

symmetric-on-time modulator, is derived. The waveforms of

the symmetric-on-time modulator can be obtained by choosing

α=1/2 in Fig. 7. For this modulator the parameters T0 and

T1 are defined as T0 =T1 = Ts

2 (1−D). By using T∆ =ζTs

the UPWM-equivalent of the characteristic system can be

expressed as

Gtot(z) =
Ts

2
Z

{(
e−s(ζ+ 1−D

2 )Ts

+ e−s(ζ+ 1+D
2 )Ts

)
R(s)

}
. (11)

Depending on whether the different delays in (11) are larger

than the sampling period Ts or not, and taking into account

that ζ is almost always smaller than 1, three different cases can

be distinghuised. In the first case, defined by 0<ζ < 1
2 (1−D),

equation (11) can be rewritten by using the definition for the
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Fig. 8. A buck converter with a first order filter

modified z-transform of (9)

Gtot(z) =
Ts

2

[
R

(
z, 1

2 (1 + D)− ζ
)

+ R
(
z, 1

2 (1−D)− ζ
)]

. (12)

If the following applies 1
2 (1−D)<ζ < 1

2 (1+D), the second

transportation delay in (11) becomes larger than the sampling

period Ts. Consequently, the UPWM-equivalent of the char-

acteristic system becomes

Gtot(z) =
Ts

2

[
R

(
z, 1

2 (1 + D)− ζ
)

+ z−1R
(
z, 1 + 1

2 (1−D)− ζ
)]

. (13)

In the last case were ζ is comprised between 1
2 (1+D) and

1, both delays in (11) are larger than the sampling period.

Hence, the UPWM-equivalent of the characteristic system can

be expressed as

Gtot(z) =
Ts

2
z−1

[
R

(
z, 1 + 1

2 (1 + D)− ζ
)

+ R
(
z, 1 + 1

2 (1−D)− ζ
)]

. (14)

The z-domain models of the characteristic system for the

symmetric-on-time modulator (12)–(14) with their correspond-

ing conditions are recapitulated in Table II(a).

Similar calculations are performed to derive the z-domain

models of the characteristic system for a symmetric-off-time

modulator. Though the derivation of these models is not explic-

itly repeated, the results are summarized in Table II(b). Similar

to sawtooth-carrier modulators, the UPWM-equivalents for the

symmetric-off-time modulator can be obtained by replacing

D with its complement 1−D in the UPWM-equivalents for

the symmetric-on-time modulator, and vice-versa (compare

Tables II(a) and II(b)).

IV. MODEL VALIDATION

To show the validity of the approach, the discrete UPWM-

equivalent is deduced for the buck converter of Fig. 8 with a

first order output filter. If the input voltage Vin of the converter

is a constant, the Laplace transfer function of its output can

be written as (see also Figs. 4 and 5)

P (s) =
Vin

1 + sL/R
=

Vin

1 + sτ
. (15)

Under the assumption that the transfer function of the mea-

surement is given by

H(s)e−sτm = 1, (16)

�✂✁✄✆☎✞✝
✟✡✠☞☛ ✌ ✁ ✟✍✠☞☛✎ ✏ ✟✒✑✓☛ ✏ ✔✖✕✗✔ ✟✒✑✓☛ �✘✁✄

✟✡✠☞☛

Fig. 9. Block diagram for the digitally controlled buck converter

the pulse-transfer function of the closed loop system can be

written as

Q(z)

Qw(z)
=

Vo(z)

Vo,w(z)

=
G(z)Z

{
e−s(τd+τp)G∗

PWM
(s)P (s)

}

1 + G(z)Z
{
e−s(τd+τp)G∗

PWM
(s)P (s)

} . (17)

To calculate this transfer function, the delay τd+τp and the

type of modulator used must be known.

Assume that during normal operation the average duty ratio

D of the converter is between 0.5 and 1, and that the following

condition applies for the delay

τd + τp = ζTs ≥ 0.35Ts, (18)

than the type of modulator and its corresponding UPWM-

equivalent can be chosen.

If the different cases for the z-domain models in Tables I

and II are compared, it is clear that “case 1” guarantees

the fastest dynamics of the system. After all, in the other

cases an extra pole appears in the origin, indicating an extra

delay of a sampling period. Hence, the fastest response of

the closed loop system is achievable with a modulator for

which the “case 1” condition can be met. Keeping in mind

the required duty-ratio range and condition (18), the begin-

of-on-time modulator (Table I(b), case 1) is the best choice.

If only triangular-carrier modulators are considered (Table II),

the “case 1” condition can never be met. Hence, for these type

of modulators the best solution is to look for a modulator for

which the “case 2” condition is fulfilled. Consequently, the

fastest usable triangular-carrier modulator is the symmetric-

on-time modulator (Table II(a), case 2). For both the begin-

of-on-time modulator and the symmetric-on-time modulator

the discrete UPWM-equivalent of the buck converter with a

first order filter is derived and simulated in this section.

A. The begin-of-on-time modulator

To calculate the UPWM-equivalent of the buck converter of

Fig. 8, an expression for the modified pulse transfer function

of the first order system (15) is required:

P (z,m) = Z
{

P (s)e−s(1−m)Ts

}

= Vin

1

τ
e−

mTs
τ

1

z − e−
Ts
τ

. (19)

Hence, the discrete UPWM-equivalent of the buck converter

with a first order filter and with a begin-of-on-time modulator

becomes (Table I(b), case 1)

Gtot(z) = Vin

Ts

τ
e−

(D−ζ)Ts
τ

1

z − e−
Ts
τ

. (20)
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Fig. 10. The root locus for a buck converter with a first order filter, a
begin-of-on-time modulator and a discrete controller
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Fig. 11. The closed-loop response of the buck converter with a first order
filter and a begin-of-on-time modulator to a step in the commanded output
voltage (v∗

o,w
(t)): the simulated model (vo(t), sim.) and the z-domain model

(v∗
o
(t), z-mod.)

With this pulse transfer function and with (16) the control

circuit of Fig. 5 can be simplified to the block diagram

represented in Fig. 9.

If the steady-state error of the control loop of Fig. 9 must be

zero, the controller G(z) requires a pole at z=1. Furthermore,

a zero of the controller can be used to compensate for the pole

of the process (20) at z=e−
Ts
τ . The resulting controller is

G(z) = K
z − e−

Ts
τ

z − 1
. (21)

The root locus of the closed loop system for a variable gain K
is depicted in Fig. 10. Apart from the hidden mode at z=e−

Ts
τ

there remains only one closed loop pole that can be placed in

the origin by choosing the gain of the controller as follows

K =
1

Vin

Ts

τ
e(Do−ζ) Ts

τ , (22)

with Do the design value for the average duty ratio. Conse-

quently the closed-loop system will behave as a delay of one

sampling period or, the response is a dead-beat response. If the

average duty-ratio D differs from its design value Do, the loop

Re(z)

Im(z)

1z=a

Fig. 12. The root locus for a buck converter with a first order filter, a
symmetric-on-time modulator and a discrete controller
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v∗

o,w
(t)

v∗
o
(t), z-mod.

·
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]
◮
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Fig. 13. The closed-loop response of the buck converter with a first order
filter and a symmetric-on-time modulator to a step in the commanded output
voltage (v∗

o,w
(t)): the simulated model (vo(t), sim.) and the z-domain model

(v∗
o
(t), z-mod.)

gain will increase or decrease (20). As a result the position

of the closed-loop pole in the origin will alter depending on

the average value of the duty ratio. Nevertheless, with a duty-

ratio range of 0.5 up to 1 and with a design value for the

average duty-ratio of Do =0.75 this effect only results in a

slight change in closed-loop response.

To verify the theoretical results the closed loop step response

of the buck converter is simulated with Simulink. The simu-

lated waveforms are compared to the results obtained with the

z-domain model. For the simulation the following parameters

were used 




Vin = 400 V, Ts = 20 µs,

L = 1 mH, R = 32 Ω,

ζ = 0.375, Do = 0.75.

(23)

The result is depicted in Fig. 11 (D=Do). A comparison

between the waveforms obtained with the Simulink model

(the solid lines) and the step response of the z-domain model

(crosses) shows that the z-domain model accurately predicts

the closed-loop behavior of the digitally controlled buck
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converter. Moreover, the step response is clearly a dead-beat

response.

B. The symmetric-on-time modulator

If a triangular-carrier modulator is to be used, the best

choice is the symmetric-on-time modulator. The discrete

UPWM-equivalent for the buck converter with a first order

filter and a symmetric-on-time modulator can be calculated

with (19) and Table II(a), case 2 (keeping in mind condition

(18)):

Gtot = Vin

Ts

2τ
e−( 1

2 (1+D)−ζ)Ts
τ ·

z + e−(1−D) Ts
τ

z
(
z − e−

Ts
τ

) . (24)

This pulse transfer function does not only contain the same

pole as the system of (20), but it also contains an extra pole

in the origin and an extra zero. A dead-beat controller for this

system is of the following form

G(z) = K
z

(
z − e−

Ts
τ

)

(z − 1)(z − a)
, (25)

with

a = −e−(1−Do) Ts
τ . (26)

However, due to important changes in the position of the

system zero at z = −e−(1−D) Ts
τ caused by the various values

the average value of the duty ratio D may adopt (24), the

closed-loop behavior may change drastically. To avoid this, it

is better to choose a somewhat slower controller with a settling

time of 2 sampling periods. To achieve this the closed-loop

system should have a double pole in the origin, or the root

locus should have a breakpoint in the origin. A root locus has

a breakpoint in the origin if (for D=Do)

d

dz
(G(z)Gtot(z))

z=0
= 0. (27)

This equation yields a value for a

a = −
e−(1−Do) Ts

τ

1 + e−(1−Do) Ts
τ

. (28)

The root locus of the closed loop poles with this value for a

is depicted in Fig. 12. Besides the hidden mode at z=e−
Ts
τ ,

the two closed-loop poles of the system coincide in the origin

for

K =
(1 + a)

Vin

·
2τ

Ts

e(
1
2 (1+Do)−ζ)Ts

τ . (29)

The simulation is performed for ζ =0.5, while the other

parameters are chosen according to (23). The closed-loop

step response for the buck converter is shown in Fig. 13

(for D=Do). The comparison between the simulation results

(solid line) and the results predicted by the z-domain model

reveals the good agreement. As indicated above the settling

time for a step response is equal to 2 sampling periods.

V. CONCLUSION

As the performance of digital signal processors has in-

creased rapidly during the last decade, there is a growing inter-

est to replace the analog controllers in low power switching

converters by more complicated and flexible digital control

algorithms. Compared to high power converters, the control

loop bandwidths for converters in the lower power range are

generally much higher. Because of this, the dynamic properties

of the uniformly-sampled pulse-width modulators used in low

power applications become an important restriction to the

maximum achievable bandwidth of control loops. Though

frequency- and Laplace-domain models for uniformly-sampled

pulse-width modulators are very valuable as they improve the

general perception of the dynamic behavior of these modu-

lators, the direct discrete design of the digital compensator

requires a z-domain model for the combination modulator

and converter. For this purpose a new exact small-signal z-

domain model is derived. In accordance with the zero-order-

hold equivalent commonly used for ‘regular’ digital control

systems, this z-domain model gives rise to the development

of a uniformly-sampled pulse-width-modulator equivalent of

the converter. This z-domain model is characterized by its

capability to quantify the different dynamics of the converter

for different modulators, its ease of use and its ability to

predict the values of the control variables at the true sampling

instants of the real system. The obtained z-domain models are

compared with the results retrieved from simulation models of

a buck converter with a first order filter.
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