
Citation: Kolenderski, M.; Cariow, A.

Small-Size Algorithms for the Type-I

Discrete Cosine Transform with

Reduced Complexity. Electronics 2022,

11, 2411. https://doi.org/

10.3390/electronics11152411

Academic Editors: Constantin

Paleologu and Chiper Doru Florin

Received: 22 June 2022

Accepted: 26 July 2022

Published: 2 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Small-Size Algorithms for the Type-I Discrete Cosine
Transform with Reduced Complexity
Miłosz Kolenderski and Aleksandr Cariow *

Faculty of Computer Science and Information Technology, West Pomeranian University of Technology,
Żołnierska 52, 71-210 Szczecin, Poland; km46548@zut.edu.pl
* Correspondence: acariow@wi.zut.edu.pl

Abstract: Discrete cosine transforms (DCTs) are widely used in intelligent electronic systems for
data storage, processing, and transmission. The popularity of using these transformations, on the
one hand, is explained by their unique properties and, on the other hand, by the availability of fast
algorithms that minimize the computational and hardware complexity of their implementation. The
type-I DCT has so far been perhaps the least popular, and there have been practically no publications
on fast algorithms for its implementation. However, at present the situation has changed; therefore,
the development of effective methods for implementing this type of DCT becomes an urgent task.
This article proposes several algorithmic solutions for implementing type-I DCTs. A set of type-I
DCT algorithms for small lengths N = 2, 3, 4, 5, 6, 7, 8 is presented. The effectiveness of the proposed
solutions is due to the possibility of fortunate factorization of the small-size DCT-I matrices, which
reduces the complexity of implementing transformations of this type.

Keywords: digital signal processing; type-I discrete cosine transform; fast algorithms

1. Introduction

Discrete cosine transform (DCT) [1–6] is widely used in many radio-electronic and
telecommunication systems for data processing and transmission, including digital signal
and image processing [7–9], radar imaging [10], digital watermarking [11,12], analysis
of hyperspectral data [13,14], video compression [15–22], etc. In fact, there are eight
different types of DCTs [4–6]. In the DCT arsenal, the Type I Discrete Cosine Transform
(DCT-I) is one of the less popular ones. However, recently it has been increasingly used
in wireless communication systems in order to modernize the multicarrier modulation
and channel estimation techniques for Long Term Evolution (LTE) [23–27]. Since, like
other types of orthogonal transformations, the implementation of the DCT-I transformation
requires a lot of time, the search for algorithmic solutions that can reduce this time is an
urgent task. The reduction of the number of arithmetic operations is provided by the
so-called fast algorithms. Unfortunately, there are undeservedly few articles devoted to
fast algorithms for calculating DCT-I. With rare exceptions, most publications known to the
authors mainly deal with fast algorithms for other types of DCT. It should be noted that,
as in the case of other discrete orthogonal transformations [28–30], the DCT-I algorithms
for short sequences are also of particular interest. In the case of hardware or software
implementation of digital signal processing methods, small-sized DCT-I implementation
cores can serve as building blocks for the synthesis of larger-size algorithms [4,7,31–33].
Despite this, there is practically no information about DCT-I algorithms for short-length
sequences in the publications available to the authors. To eliminate these shortcomings, fast
DCT-I algorithms for input sequences of length N = 2, 3, 4, 5, 6, 7, 8 are described in detail.
This article continues the series of publications related to the development of small-sized
algorithms for fast orthogonal transforms [28–30].

Electronics 2022, 11, 2411. https://doi.org/10.3390/electronics11152411 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11152411
https://doi.org/10.3390/electronics11152411
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8034-1061
https://orcid.org/0000-0002-4513-4593
https://doi.org/10.3390/electronics11152411
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11152411?type=check_update&version=3


Electronics 2022, 11, 2411 2 of 18

2. Preliminary Remarks

The DCT-I transform is given by the following equation [3–5]:

ck =

√
2

N − 1

N−1

∑
n=0

xnεnεk cos
(

πnk
N − 1

)
, (1)

εn, εk =


1√
2

n, k = 0,
1√
2

n, k = N − 1,
1 otherwise,

k, n = 0, 1, . . . , N − 1,

where {xn} is an input data sequence and {cn} is a sequence of DCT coefficients. In
matrix-vector notation the pair of FTCT/IDCT transforms can be represented as:

YN×1 = CNXN×1, XN×1 = CT
NYN×1, (2)

where CN = ‖ck,n‖ is (N × N) discrete cosine transform matrix, XN×1 = [x0, x1, . . . , xN−1]
T

and YN×1 = [y0, y1, . . . , yN−1]
T are input and output data vectors, respectively. Symbol “T”

denotes the matrix transpose operation, and

ck,n =

√
2

N − 1
εnεk cos

(
πnk

N − 1

)
. (3)

In the case of DCT-I CN = CT
N . Based on that general considerations, we can describe

the entries of the DCT matrix in the following way:

CN =


c0,0 c0,1 . . . c0,N−1

c1,0 c1,1 . . . c1,N−1

...
...

. . .
...

cN−1,0 cN−1,1 . . . cN−1,N−1.

.

The entries of this matrix are real numbers and their values depend on both the indexes
k, n and the number N. However, it will be more convenient for us to denote the numerical
values of the matrix CN entries by means of the letters of the ordinary Latin alphabet
{aN , bN , cN , . . . , zN}. In this case, the subscript N will indicate the size of the DCT matrix.
This will simplify the identification of structural features of the matrix and the presence in
it of compositions of the same values of the entries.

3. Small-Size Algorithms for the DCT-I
3.1. Algorithm for the 2-Point DCT-I

Let X2×1 = [x0, x1]
T and Y2×1 = [y0, y1]

T be 2-element input and output data vectors.
The problem is to calculate the product:

Y2×1 = C2X2×1, (4)

where

C2 =

[
a2 a2

a2 −a2

]
, a2 =

√
2

2
.

Direct computation of (4) requires four multiplications and two additions. Because
every vector element needs to be multiplied by the same factor it is possible to perform the
additions first and then perform the multiplications.

Knowing that, the rationalized computational procedure for computing the 2-point
DCT-I can be described in the following form:



Electronics 2022, 11, 2411 3 of 18

Y2×1 = D2H2X2×1, (5)

where

H2 =

[
1 1
1 −1

]
, D2 = diag(s(2)0 , s(2)1 ), s(2)0 = s(2)1 = a2.

As shown in (5), the 2-point DCT-I can be calculated using only two multiplications
and two additions.

The same algorithm is represented as a data flow graph in Figure 1. In this paper all of
the data flow graphs represent data flow from left to right. Straight lines denote operations
of data transfer (data paths). Multiplications are shown as circles with a number inside
denoting the factor by which the data should be multiplied. Points where multiple lines
end denote summation nodes. Additionally dashed lines visualise data paths changing the
sign of a number (these data paths multiply a number by a factor of −1). We use the usual
lines without arrows on purpose, so as not to clutter the graphs.

x0

x1

y0

y1

H2

s0

(2)
 

s1

(2)
 

Figure 1. Signal flow graph of the algorithm for computing the 2-point DCT-I.

3.2. Algorithm for the 3-Point DCT-I

Let X3×1 = [x0, x1, x2]
T and Y3×1 = [y0, y1, y2]

T be 3-element input and output data
vectors. The 3-point DCT-I can be represented as:

Y3×1 = C3X3×1, (6)

where

C3 =

a3 b3 a3

b3 0 −b3

a3 −b3 a3

, a3 =
1
2

, b3 =

√
2

2
.

The C3 matrix can be described as a sum of two matrices: a3 b3 a3

b3 0 −b3

a3 −b3 a3

 = C(1)
3 + C(2)

3 ,

where

C(1)
3 =

 a3 0 a3

0 0 0
a3 0 a3

, C(2)
3 =

 0 b3 0
b3 0 −b3

0 −b3 0 .


The C(1)

3 matrix can be reduced to a 2× 2 matrix.

C(1)
3 → C(1)

2 =

[
a3 a3

a3 a3.

]
Multiplication by this matrix can be preformed using only one multiplication and one

addition using the following formula:

Y(1)
2×1 = 12×1a311×2X(1)

2×1

where
X(1)

2×1 = [x0, x2]
T, 11×2 = [1, 1], 12×1 = [1, 1]T, Y(1)

2×1 = [y0, y2]
T.

It is also possible to reduce the number of multiplications in the C(2)
3 matrix. In this

case the addition from the second row can be performed before multiplication. So, x1 can be



Electronics 2022, 11, 2411 4 of 18

multiplied by b3 first and then it can be replicated while changing the sign of the replicated
number to reproduce row numbers 1 and 3.

Taking into account the transformations made, the rationalized computational proce-
dure for the 3-point DCT-I can be written in the following form:

Y3×1 = W(2)
3 D3W(1)

3 X3×1, (7)

where

W(1)
3 =

1 0 1
0 1 0
1 0 −1

, D3 = diag(s(3)0 , s(3)1 , s(3)2 ), W(2)
3 =

1 1 0
0 0 1
1 −1 0

, s(3)0 = a3, s(3)1 = s(3)2 = b3.

As you can see, in this and some other cases, the developed algorithms contain
multiplications by 1

2 . This operation is reduced to the usual shift to the right by one position.
Due to the ease of implementation, these operations are usually not taken into account
when estimating computational complexity. Therefore, the 3-point DCT-I can be calculated
using only two multiplications and four additions. Figure 2 represents this algorithm in the
form of a data flow graph.

x0

x1

x2

y0

y1

y2

H2

s0

(3)
 

s1

(3)
 

s2

(3)
 

Figure 2. Signal flow graph of the algorithm for computing the 3-point DCT-I.

3.3. Algorithm for the 4-Point DCT-I

Let X4×1 = [x0, x1, x2, x3]
T and Y4×1 = [y0, y1, y2, y3]

T be 2-element input and output data
vectors. The 4-point DCT-I can be represented as:

Y4×1 = C4X4×1, (8)

where

C4 =


a4 b4 b4 a4

b4 a4 −a4 −b4

b4 −a4 −a4 b4

a4 −b4 b4 −a4

, a4 =

√
6

6
, b4 =

√
3

3
.

In the C4 the optimized version of the algorithm is not visible at a first glance. What
we can do is change the order of columns and rows of the matrix while also permuting
the corresponding elements in the input and output vectors. We chose to swap rows with
number 1 and number 3 and also columns with numbers 1 and 3. As a result, we get the
following matrix:

C̃4 =


a4 a4 b4 b4

a4 −a4 b4 −b4

b4 b4 −a4 −a4

b4 −b4 −a4 a4

 =

[
A(1)

2 B(1)
2

B(1)
2 −A(1)

2 .

]

Because of the structure it can be computed using the following procedure [34]:

C̃4 = (T(1)
2×3 ⊗ I2)[(A

(1)
2 − B(1)

2 )⊕ (−A(1)
2 − B(1)

2 )⊕ B(1)
2 ](T(1)

3×2 ⊗ I2),



Electronics 2022, 11, 2411 5 of 18

where

T3×2 =

1 0
0 1
1 1

, T2×3 =

[
1 0 1
0 1 1

]
.

In this article the “⊗” and “⊕” symbols are used to represent the Kronecker product
and direct sum of two matrices respectively [35,36]. Such factorization allows us to reduce
the number of the multiplications by a factor of 3

4 . Both A(1)
2 and B(1)

2 share similar structures,
which is a Hadamard matrix of order two multiplied by a scalar. Because of that it is possible
to further reduce the number of multiplications times two by first using Hadamard matrix
and later multiplying by proper scalars.

Knowing all of that, the rationalized computational procedure for computing the
4-point DCT-I can be described in the following form:

Y4×1 = P4A4×6D6W6A6×4P4X4×1 (9)

where

P4 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, A6×4 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1

, W6 = I3⊗H2, D6 = diag (s(4)0 , s(4)1 , s(4)2 , . . . , s(4)5 ),

s(4)0 = s(4)1 = a4 − b4, s(4)2 = s(4)3 = −a4 − b4, s(4)4 = s(4)5 = b4, A4×6 =


1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 0 1.


As shown in Figure 3, the 4-point DCT-I can be computed using only six multiplications

and 12 additions.

H2

H2

H2
x0

x1

x2

x3

y0

y1

y2

y3

s0

(4)
 

s1

(4)
 

s2

(4)
 

s3

(4)
 

s4

(4)
 

s5

(4)
 

Figure 3. Signal flow graph of the algorithm for computing the 4-point DCT-I.

3.4. Algorithm for the 5-Point DCT-I

Let X5×1 = [x0, x1, x2, x3, x4]
T and Y5×1 = [y0, y1, y2, y3, y4]

T be 5-element input and
output data vectors. The 5-point DCT-I can be represented as:

Y5×1 = C5X5×1, (10)



Electronics 2022, 11, 2411 6 of 18

where

C5 =


a5 b5 b5 b5 a5

b5 b5 0 −b5 −b5

b5 0 c5 0 b5

b5 −b5 0 b5 −b5

a5 −b5 b5 −b5 a5

, a5 =

√
2

4
, b5 =

1
2

, c5 = −
√

2
2

.

In this matrix it is also worth changing the order of columns and rows and reordering
them according to vector elements. It is also easier to fit one of the patterns after changing
some of the signs. After swapping column 2 with column 5, row 1 with row 4 and inverting
signs of x3 and y3 the matrix looks the following way:

C5 =


−b5 b5 0 b5 b5

b5 −b5 0 b5 b5

b5 b5 c5 0 0
a5 a5 b5 −b5 b5

a5 a5 b5 b5 −b5.


This matrix can be split into three matrices for applying corresponding rationalized

procedures:

A(2)
2 =

[
−b5 b5

b5 −b5

]
, B(2)

2 =

[
b5 b5

b5 b5

]
, A3×5 =

 b5 b5 c5 0 0
a5 a5 b5 −b5 b5

a5 a5 b5 b5 −b5

.

For the A(2)
2 and A(2)

2 matrices there are already optimised formulas. The A3×5 requires
an individual approach. The left part of this matrix can be reduced to a single addition and
two multiplications. The first step is to add x1 and x2. Then the same value can be used
twice and multiplied by b5 and a5 and added to corresponding rows. In this matrix it is
worth calculating the multiplications from column 3 separately. The right part containing
A(2)

2 matrix can also be computed using already existing procedures.
After applying all of this, the rationalized computational procedure for computing the

5-point DCT-I can be described in the following form:

Y5×1 = P(2)
5 W(2)

5 A5×7D7M7×5W
(1)
5 P(1)

5 X5×1, (11)

where

P(1)
5 =


1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0

, W(1)
5 =


1 −1 0 0 0
0 0 0 −1 1
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

, M7×5 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1


,

D7 = diag(s(5)0 , s(5)1 , s(5)2 , . . . , s(5)6 ), s(5)0 = s(5)1 = s(5)2 = s(5)5 = s(5)6 = b5 =
1
2

, s3 = a5, s4 = c5,

A5×7 =


1 −1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 1

, W(2)
5 = I3 ⊕H2, P(2)

5 =


0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1

.

As shown in (11) the 5-point DCT-I can be calculated using only two multiplications
and 10 additions. Figure 4 represents this algorithm in the form of a data flow graph.



Electronics 2022, 11, 2411 7 of 18

H2

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

s0

(5)
 

s1

(5)
 

s2

(5)
 

s3

(5)
 

s4

(5)
 

s5

(5)
 

s6

(5)
 

Figure 4. Signal flow graph of the algorithm for computing the 5-point DCT-I.

3.5. Algorithm for the 6-Point DCT-I

Let X6×1 = [x0, x1, x2, x3, x4, x5]
T and Y6×1 = [y0, y1, y2, y3, y4, y5]

T be 6-element input and
output data vectors. The 6-point DCT-I can be represented as:

Y6×1 = C6X6×1, (12)

where

C6 =



a6 b6 b6 b6 b6 a6

b6 c6 d6 −d6 −c6 −b6

b6 d6 −c6 −c6 d6 b6

b6 −d6 −c6 c6 d6 −b6

b6 −c6 d6 d6 −c6 b6

a6 −b6 b6 −b6 b6 −a6

, a6 =

√
10

10
, b6 =

√
5

5
,

c6 =

√
10
5

cos
π

5
≈ 0.51167, d6 =

√
10
5

cos
2π

5
≈ 0.19544.

Before trying to find any way to optimize, it is worth changing the order of columns
and rows. At first, we begin by swapping columns 2 with 6, 4 with 5, and rows 2 with 6
and 4 with 5. After this operation the matrix looks the following way:

C(1)
6 =



a6 a6 b6 b6 b6 b6

a6 −a6 b6 b6 −b6 −b6

b6 b6 −c6 d6 −c6 d6

b6 b6 d6 −c6 d6 −c6

b6 −b6 −c6 d6 c6 −d6

b6 −b6 d6 −c6 −d6 c6

 =

[
A(3)

2 A2×4

A4×2 A(1)
4

]
.

Similar to algorithms for N = 2, 3, 4, 5, the A(3)
2 matrix can be calculated by first per-

forming the additions (multiplying by an order 2 Hadamard matrix) and later performing
only two multiplications. The A2×4 matrix can be optimized by first calculating x2 + x3 and
x4 + x5, multiplying both expressions by b6, and as the matrix pattern suggests an order 2
Hadamard matrix to put everything together. The A4×2 matrix consists of two parts. Both
of these halves can be reduced to singular multiplications by first computing x1 + x2 and
x1 − x2 respectively and multiplying the results by b6. These additions are not required to



Electronics 2022, 11, 2411 8 of 18

be calculated, because the additions from A(3)
2 can be reused. The A(1)

4 is more complex than
previous matrices. In this case, the matrix has the following structure:

A(1)
4 =


−c6 d6 −c6 d6

d6 −c6 d6 −c6

−c6 d6 c6 −d6

d6 −c6 −d6 c6

,

 =

[
A(4)

2 A(4)
2

A(4)
2 −A(4)

2

]
.

It is noticeable that this structure makes it possible to reduce the number of multipli-
cations at least by a factor of 2. The multiplications can be performed for a single vertical
half of matrix and these values can be reused in the second half. The right half requires the
invertion of the signs of the results when reusing the results. In conclusion, only two matrix
multiplications by A(4)

2 are required instead of four. It is also possible to reduce the number
of multiplications in a single A(4)

2 matrix. To do so we can apply one of the templates of the
matrix structures [34]. In this case the procedure for A(4)

2 would have the following form:

Y2×1 = H2
1
2

diag(−c6 + d6,−c6 − d6)H2X2×1. (13)

Knowing all of that, the rationalized computational procedure for computing the
6-point DCT-I can be described in the following form:

Y6×1 = P6A6×10W
(2)
10 W(1)

10 D10M10×6W(1)
6 P6X6×1, (14)

where

P6 =



1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0

, W(1)
6 = I3 ⊗H2, M10×6 =



1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


D10 = diag(s0, s1, s2, . . . , s9), s0 = s2 = a6, s1 = s3 = s4 = s5 = b6,

s6 = s8 =
−c6 + d6

2
, s7 = s9 =

−c6 − d6

2
, W(1)

10 = I4 ⊕ (I3 ⊗H2), W(2)
10 = I6 ⊕ (H2 ⊗ I2),

A6×10 =



1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1

.

As shown in (14), the 6-point DCT-I can be calculated using only 10 multiplications
and 22 additions. Figure 5 represents this algorithm in the form of a data flow graph.



Electronics 2022, 11, 2411 9 of 18

H2

H2

H2

H2

H2

H2

H2

x0

x1

x2

x3

x4

x5

y0

y1

y2

y3

y4

y5

H2

s0

(6)

s1

(6)
 

s2

(6)
 

s4

(6)
 

s5

(6)
 

s6

(6)
 

s7

(6)
 

s8

(6)
 

s9

(6)
 

s2

(6)

s3

(6)
 

 

Figure 5. Signal flow graph of the algorithm for computing the 6-point DCT-I.

3.6. Algorithm for the 7-Point DCT-I

Let X7×1 = [x0, x1, x2, x3, x4, x5, x6]
T and Y7×1 = [y0, y1, y2, y3, y4, y5, y6]

T be 7-element
input and output data vectors. The 7-point DCT-I can be represented as:

Y7×1 = C7X7×1, (15)

where

C7 =



a7 b7 b7 b7 b7 b7 a7

b7 c7 a7 0 −a7 −c7 −b7

b7 a7 −a7 −d7 −a7 a7 b7

b7 0 −d7 0 d7 0 −b7

b7 −a7 −a7 d7 −a7 −a7 b7

b7 −c7 a7 0 −a7 c7 −b7

a7 −b7 b7 −b7 b7 −b7 a7


, a7 =

√
3

6
, b7 =

√
6

6
, c7 =

1
2

, d7 = −
√

3
3

.

For better clarity we begin with changing the order of columns and rows in the C7

matrix. In this case it is worth swapping columns 2 with 7, 4 with 5 and rows 2 with 7 and
4 with 5. This leaves us with the following matrix:

C(1)
7 =



a7 a7 b7 b7 b7 b7 b7

a7 a7 b7 b7 −b7 −b7 −b7

b7 b7 −a7 −a7 −d7 a7 a7

b7 b7 −a7 −a7 d7 −a7 −a7

b7 −b7 −d7 d7 0 0 0
b7 −b7 a7 −a7 0 c7 −c7

b7 −b7 a7 −a7 0 −c7 c7


=

[
A4 A(1)

4×3

A(1)
3×4 A(1)

3 .

]
.



Electronics 2022, 11, 2411 10 of 18

Because the A4 matrix has a following structure:

A4 =


a7 a7 b7 b7

a7 a7 b7 b7

b7 b7 −a7 −a7

b7 b7 −a7 −a7

 =

[
A(5)

2 B2

B2 A(5)
2 .

]
.

it is possible to apply the following procedure:

Y4×1 = (T2×3 ⊗ I2)[(A
(5)
2 − B2)⊕ (−A(5)

2 − B2)⊕ B2](T3×2 ⊗ I2)X4×1

where

T3×2 =

1 0
0 1
1 1

, T2×3 =

[
1 0 1
0 1 1

]
.

This way, the number of multiplications in A4 is reduced to only 3
4 of the original

multiplications. Additionally, matrices (A(5)
2 − B2), (−A(5)

2 − B2) and B2 have identical
structures and these matrices require only a single multiplication as shown in one of the
previous procedures. This means that multiplication by the A4 matrix can be reduced to
only three multiplications.

The A(1)
4×3 matrix can be split in the following way:

A(1)
4×3 =


b7 b7 b7

−b7 −b7 −b7

−d7 a7 a7

d7 −a7 −a7.

.

The upper half of this matrix can be calculated by adding all three of the input values
and multiplying them once. The same result can be used for both of the rows by inverting
the sign. The bottom half can be computed in a similar way, but the left part requires
additional multiplication by d7. Because this part requires the addition of the second and
third input elements and the upper part requires the addition of all three arguments it is
worth separating additions in two steps. Therefore, the number of multiplications in A4×3

can also be reduced to three multiplications.
The A(1)

3 matrix contains only zeros in the first column and the first row and can be
reduced to a 2× 2 matrix:

A(1)
3 → A(6)

2 =

[
c7 −c7

−c7 c7

]
.

Number of multiplications in this matrix can be reduced to a single multiplication by
performing the additions first and by knowing that both rows of this matrix are the same,
but with an inverted sign.

The last part of the C7 matrix has the following structure:

A3×4 =

 b7 −b7 −d7 d7

b7 −b7 a7 −a7

b7 −b7 a7 −a7.

.

The first step in this case is to calculate x1 − x− 2 and x3 − x4. The left part of A3×4

contains three identical rows so only a single multiplication of the first addition is required.
In the right side it is important to note that d7 = 2a7 and it is possible to calculate this part
by multiplying x3 − x4 only by a7. To calculate the first row we can use the same result,
reverse the sign and use a bitwise shift.

Knowing all of that, the rationalized computational procedure for computing the
7-point DCT-I can be described in the following form:



Electronics 2022, 11, 2411 11 of 18

Y7×1 = P7A7A7×10M10×9D9A9W9A9×7P7X7×1, (16)

where

P7 =



1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0


, A9×7 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

W9 =



1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 −1


, A9 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0


,

D9 = diag(s0, s1, s2, . . . , s8), s0 = a7 − b7, s1 = −a7 − b7, s2 = s3 = s7 = b7, s4 = d7,

s5 = s8 = a7, s6 = c7, s9 = 2, M10×9 = I8 ⊕
[

1
1

]
,

A7×10 =



1 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 1 1 0


, A7 =



1 0 1 0 0 0 0
1 0 −1 0 0 0 0
0 1 0 −1 0 0 0
0 1 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 1
0 0 0 0 −1 0 1


.

As shown in (16) the 7-point DCT-I can be calculated using only nine multiplications,
21 additions and a single bitwise shift. Figure 6 represents this algorithm in the form of a
data flow graph.



Electronics 2022, 11, 2411 12 of 18

H2

x0

x1

x2

x3

x4

x5

x6

y0

y1

y2

y3

y4

y5

y6

s0

(7)
 

s1

(7)
 

s2

(7)
 

s3

(7)
 

s4

(7)
 

s5

(7)
 

s6

(7)
 

s7

(7)
 

s8

(7)
 

s9

(7)
 

Figure 6. Signal flow graph of the algorithm for computing the 7-point DCT-I.

3.7. Algorithm for the 8-Point DCT-I

Let X8×1 = [x0, x1, x2, x3, x4, x5, x6, x7]
T and Y8×1 = [y0, y1, y2, y3, y4, y5, y6, y7]

T be 8-element
input and output data vectors. The 8-point DCT-I can be represented as:

Y8×1 = C8X8×1, (17)

where

C8 =



a8 b8 b8 b8 b8 b8 b8 a8

b8 c8 d8 e8 −e8 −d8 −c8 −b8

b8 d8 −e8 −c8 −c8 −e8 d8 b8

b8 e8 −c8 −d8 d8 c8 −e8 −b8

b8 −e8 −c8 d8 d8 −c8 −e8 b8

b8 −d8 −e8 c8 −c8 e8 d8 −b8

b8 −c8 d8 −e8 −e8 d8 −c8 b8

a8 −b8 b8 −b8 b8 −b8 b8 −a8


, a8 =

√
14

14
, b8 =

√
7

7
,

c8 =

√
2
7

cos
π

7
≈ 0.481588, d8 =

√
2
7

cos
2π

7
≈ 0.333269, e8 =

√
2
7

cos
3π

7
≈ 0.118942,

The first step for finding the algorithm is to split the C8 matrix in the following way:

C8 =



a8 b8 b8 b8 b8 b8 b8 a8

b8 c8 d8 e8 −e8 −d8 −c8 −b8

b8 d8 −e8 −c8 −c8 −e8 d8 b8

b8 e8 −c8 −d8 d8 c8 −e8 −b8

b8 −e8 −c8 d8 d8 −c8 −e8 b8

b8 −d8 −e8 c8 −c8 e8 d8 −b8

b8 −c8 d8 −e8 −e8 d8 −c8 b8

a8 −b8 b8 −b8 b8 −b8 b8 −a8


= A(1)

8 + A(2)
8 ,



Electronics 2022, 11, 2411 13 of 18

where

A(1)
8 =



a8 b8 b8 b8 b8 b8 b8 a8

b8 0 0 0 0 0 0 −b8

b8 0 0 0 0 0 0 b8

b8 0 0 0 0 0 0 −b8

b8 0 0 0 0 0 0 b8

b8 0 0 0 0 0 0 −b8

b8 0 0 0 0 0 0 b8

a8 −b8 b8 −b8 b8 −b8 b8 −a8


,

A(2)
8 =



0 0 0 0 0 0 0 0
0 c8 d8 e8 −e8 −d8 −c8 0
0 d8 −e8 −c8 −c8 −e8 d8 0
0 e8 −c8 −d8 d8 c8 −e8 0
0 −e8 −c8 d8 d8 −c8 −e8 0
0 −d8 −e8 c8 −c8 e8 d8 0
0 −c8 d8 −e8 −e8 d8 −c8 0
0 0 0 0 0 0 0 0.


.

Multiplication by A(1)
8 can be optimised by separating the multiplications from addi-

tions and performing them before multiplications. Simple techniques like factoring out
parentheses provide good results in this case and it is possible to reduce a multiplication by
A(1)

8 to only six multiplications.
The A(2)

8 matrix contains only zeros on its borders and can be reduced to a 6× 6 matrix:

A(2)
8 → A6 =



c8 d8 e8 −e8 −d8 −c8

d8 −e8 −c8 −c8 −e8 d8

e8 −c8 −d8 d8 c8 −e8

−e8 −c8 d8 d8 −c8 −e8

−d8 −e8 c8 −c8 e8 d8

−c8 d8 −e8 −e8 d8 −c8

.

To find a way to reduce the number of multiplications in this matrix the first step is to
change the order of columns in this matrix to: 1, 5, 3, 6, 2, 4 and the order of rows to: 3, 5,
1, 4, 2, 6 and invert the signs of the three last columns in the resulting matrix. After this
operation, the matrix looks as follows:

A(2)
6 =



e8 c8 −d8 e8 c8 −d8

−d8 e8 c8 −d8 e8 c8

c8 −d8 e8 c8 −d8 e8

−e8 −c8 d8 e8 c8 −d8

d8 −e8 −c8 −d8 e8 c8

−c8 d8 −e8 c8 −d8 e8

.

The structure of this matrix can be described in the following way:

A(2)
6 =



e8 c8 −d8 e8 c8 −d8

−d8 e8 c8 −d8 e8 c8

c8 −d8 e8 c8 −d8 e8

−e8 −c8 d8 e8 c8 −d8

d8 −e8 −c8 −d8 e8 c8

−c8 d8 −e8 c8 −d8 e8

 =

[
A(2)

3 A(2)
3

B3 −B3 .

]
.

Because of that it is possible to apply the following formula [34]:

Y6×1 = (A(2)
3 ⊕ B3)(H2 ⊗ I3)X6×1.



Electronics 2022, 11, 2411 14 of 18

This already reduces the number of multiplication by a factor of 2. The input vector is
multiplied by two 3× 3 matrices instead of a single 6× 6 matrix. These smaller matrices
share the same pattern and only all of the signs are inverted relative to the other matrix.
This means that we can take the same approach for both of these matrices.

Because of the characteristic structure of A(2)
3 , multiplication by this matrix can be

calculated using a three-point circular convolution [37] which has the following form
for A(2)

3 :
A(2)

3 = A(4)
3 A3×4D(1)

4 A(2)
4×3A(3)

3 ,

where

A(3)
3 =

1 1 1
1 0 −1
0 1 −1

, A(2)
4×3 =


1 0 0
0 1 0
0 0 1
0 1 1

, D(1)
4 = diag(s0, s1, s2, s3), s0 =

c− d + e
3

,

s1 = −c+ e, s2 = −c− d, s3 =
−2c− d + e

3
, A3×4 =

1 0 0 0
0 1 0 −1
0 0 1 −1

, A(4)
3 =

1 1 0
1 −1 −1
1 0 1

.

Knowing all of that, the rationalized computational procedure for computing the
8-point DCT-I can be described in the following form:

Y8×1 = A8×10A10A10×14D14M14×10W10W10×14M14×8X8×1, (18)

where

M14×8 =

[
P6×8

I8

]
P6×8 =



0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0

,

W10×14 = W(2)
6 ⊕W4×8, W4×8 =


1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 −1
0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0

,

W(2)
6 =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

, W10 = I2 ⊗A(3)
3 ⊕ I4, A(3)

3 =

1 1 1
1 0 −1
0 1 −1

,

M14×10 = I2 ⊗A(2)
4×3 ⊕M6×4, M6×4 =



1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, A(2)
4×3 =


1 0 0
0 1 0
0 0 1
0 1 1

,

D14 = diag(s(8)0 , s(8)1 , s(8)2 , . . . , s(8)13 ), s(8)0 =
c− d + e

3
, s(8)1 = −c + e, s(8)2 = −c− d,

s(8)3 =
−2c− d + e

3
, s(8)4 = −s(8)0 , s(8)5 = −s(8)1 , s(8)6 = −s(8)2 , s(8)7 = −s(8)3 , s(8)8 = s(8)11 = a8,



Electronics 2022, 11, 2411 15 of 18

s(8)9 = s(8)10 = s(8)12 = s(8)13 = b8, A10×14 = I2 ⊗A(2)
3×4 ⊕A4×6, A(2)

3×4 =

1 0 0 0
0 1 0 −1
0 0 1 −1

,

A4×6 =


1 0 0 0 1 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 −1 1

, A10 = I2 ⊗A(4)
3 ⊕ I4, A(4)

3 =

1 1 0
1 −1 −1
1 0 1



A8×10 =



0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1.


As shown in (18) the 8-point DCT-I can be calculated using only 14 multiplications

and 43 additions. Figure 7 represents this algorithm in the form of a data flow graph.

x0

x1

x2

x3

x4

x5

x6

x7

y0

y1

y2

y3

y4

y5

y6

y7

s0

(8)
 

s1

(8)
 

s2

(8)
 

s3

(8)
 

s4

(8)
 

s5

(8)
 

s6

(8)
 

s7

(8)
 

s8

(8)
 

s9

(8)
 

s10

(8)
 

s11

(8)
 

s12

(8)
 

s13

(8)
 

Figure 7. Signal flow graph of the algorithm for computing the 8-point DCT-I.

4. Computation Complexity

Despite the fact that we noted the number of arithmetic operations spent during the
implementation for each algorithm separately, in this section we provide a summary table.
Table 1 shows estimates of the number of arithmetic operations for short length DCT-I
algorithms. The penultimate column of Table 1 shows the percentage reduction in the



Electronics 2022, 11, 2411 16 of 18

number of multiplications, while the last column shows the percentage reduction in the
number of additions.

Table 1. Arithmetical complexities of naïve implementation and proposed solutions.

Length N

Numbers of Arithmetic Operations in DCT-I Algorithms

Naïve
Implementation

Proposed
Solutions

Percentage
Estimate

“×” “+” “×” “+” “×” “+”

2 4 2 2 2 50% 0%
3 9 6 2 4 78% 33%
4 16 12 6 12 63% 0%
5 25 20 2 10 92% 50%
6 36 30 10 22 72% 27%
7 49 42 9 21 82% 50%
8 64 56 14 43 78% 23%

5. Conclusions

This article presents a set of small-size type I discrete cosine transform algorithms with
a reduced number of multiplications. This fact suggests that with the correct hardware
implementation of the developed algorithms in the form of full-fledged ASIC modules,
these modules will take up less space and consume less energy. As a result, the entire system
in which these modules will be used as building blocks will have minimal dimensions
and low power consumption. This approach is especially important when dealing with
battery-powered devices. While modern stationary data processing systems have sufficient
processing power due to the parallelization of calculations, the process of designing battery-
powered mobile airborne systems contains many conflicting factors that prevent maximum
performance. The parallelization of computing, traditionally used to achieve high data
processing speed, leads to an increase in hardware costs and, as a result, to an increase in
the size, weight, and power consumption of the entire system. Therefore, we need solutions
that, on the one hand, maximize the use of parallel computing, and on the other hand,
minimize the hardware implementation costs. With proper implementation, the algorithms
proposed in the article can provide high technical characteristics. In the future, we plan to
expand the set of proposed algorithmic solutions, as well as implement and present the
algorithms in the form of IP cores. These issues will be consistently reflected in the authors’
subsequent publications.

Author Contributions: Conceptualization, M.K. and A.C.; methodology, A.C.; software, M.K.; vali-
dation, M.K. and A.C.; formal analysis, M.K. and A.C.; investigation, M.K. and A.C.; resources, A.C.;
data curation, M.K.; writing—original draft preparation, M.K.; writing—review and editing, A.C.;
visualization, M.K.; supervision, A.C.; project administration, M.K.; funding acquisition, M.K. and
A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This research was supported by ZUT Highfliers School/Szkoła Orłów ZUT/
project co-ordinated by Piotr Sulikowski, within the framework of the program of the Minister
of Education and Science, Poland/Grant No. MNiSW/2019/391/DIR/KH, POWR.03.01.00-00-
P015/18/, co-financed by the European Social Fund, the amount of financing PLN 1,704,201,66.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2022, 11, 2411 17 of 18

References
1. Ahmed, N.; Natarajan, T.; Rao, K. Discrete Cosine Transform. IEEE Trans. Comput. 1974, C-23, 90–93. [CrossRef]
2. Ahmed, N.; Rao, K.R. Orthogonal Transforms for Digital Signal Processing; Springer: Berlin/Heidelberg, Germany, 1975. [CrossRef]
3. Rao, K.; Yip, P. Discrete Cosine Transform: Algorithms, Advantages, Applications; Academic Press: Cambridge, MA, USA, 1990.

[CrossRef]
4. Britanak, V.; Yip, P.; Rao, K. Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations;

Academic Press: Cambridge, MA, USA, 2007. [CrossRef]
5. Ochoa-Domínguez, H.; Rao, K.R. Discrete Cosine Transform; CRC Press: Boca Raton, FL, USA, 2019. [CrossRef]
6. Elliott, D.F.; Rao, K.R. Fast Transforms: Algorithms, Analyses, Applications; Academic Press: Cambridge, MA, USA, 1983.
7. Chitprasert, B.; Rao, K.R. Discrete Cosine Transform Filtering. Signal Process. 1990, 19, 235–245. [CrossRef]
8. Armas Vega, E.A.; Sandoval Orozco, A.L.; García Villalba, L.J.; Hernandez-Castro, J. Digital Images Authentication Technique

Based on DWT, DCT and Local Binary Patterns. Sensors 2018, 18, 3372. [CrossRef] [PubMed]
9. Krikor, L.; Baba, S.; Alnasiri, T.; Shaaban, Z. Image Encryption Using DCT and Stream Cipher. Eur. J. Sci. Res. 2009, 32, 45–57.
10. Yang, J.; Jin, T.; Xiao, C.; Huang, X. Compressed Sensing Radar Imaging: Fundamentals, Challenges, and Advances. Sensors 2019,

19, 3100. [CrossRef]
11. Lee, C.F.; Shen, J.J.; Chen, Z.R.; Agrawal, S. Self-Embedding Authentication Watermarking with Effective Tampered Location

Detection and High-Quality Image Recovery. Sensors 2019, 19, 2267. [CrossRef] [PubMed]
12. Lu, W.; Chen, Z.; Li, L.; Cao, X.; Wei, J.; Xiong, N.; Li, J.; Dang, J. Watermarking Based on Compressive Sensing for Digital Speech

Detection and Recovery. Sensors 2018, 18, 2390. [CrossRef] [PubMed]
13. Boukhechba, K.; Wu, H.; Bazine, R. DCT-Based Preprocessing Approach for ICA in Hyperspectral Data Analysis. Sensors 2018,

18, 1138. [CrossRef]
14. Xu, P.; Chen, B.; Xue, L.; Zhang, J.; Zhu, L. A Prediction-Based Spatial-Spectral Adaptive Hyperspectral Compressive Sensing

Algorithm. Sensors 2018, 18, 3289. [CrossRef]
15. Agostini, L.; Silva, I.; Bampi, S. Pipelined fast 2D DCT architecture for JPEG image compression. In Proceedings of the Symposium

on Integrated Circuits and Systems Design, Pirenopolis, Brazil, 10–15 September 2001; pp. 226–231. [CrossRef]
16. Dhandapani, V.; Seshasayanan, R. Area and power efficient DCT architecture for image compression. J. Adv. Signal Process. 2014,

2014, 1–9. [CrossRef]
17. Budagavi, M.; Fuldseth, A.; Bjøntegaard, G.; Sze, V.; Sadafale, M. Core Transform Design in the High Efficiency Video Coding

(HEVC) Standard. IEEE J. Sel. Top. Signal Process. 2013, 7, 1029–1041. [CrossRef]
18. Yip, P.C.; Rao, K.R. High Efficiency Video Coding. ITU-T Rec. H.265 and ISO/IEC 23008-2 (HEVC). Standard, ITU-T and

ISO/IEC. 2013.
19. Meher, P.; Park, S.Y.; Mohanty, B.; Lim, K.; Yeo, C. Efficient integer DCT architectures for HEVC. IEEE Trans. Circuits Syst. Video

Technol. 2014, 24, 168–178. [CrossRef]
20. Kalali, E.; Mert, A.C.; Hamzaoglu, I. A computation and energy reduction technique for HEVC Discrete Cosine Transform. IEEE

Trans. Consum. Electron. 2016, 62, 166–174. [CrossRef]
21. Pastuszak, G. Hardware architectures for the H.265/HEVC discrete cosine transform. IET Image Process. 2015, 9, 468–477.

[CrossRef]
22. Pourazad, M.T.; Doutre, C.; Azimi, M.; Nasiopoulos, P. HEVC: The New Gold Standard for Video Compression: How Does

HEVC Compare with H.264/AVC? IEEE Consum. Electron. Mag. 2012, 1, 36–46. [CrossRef]
23. Zhou, M.; Jiang, B.; Li, T.; Zhong, W.; Gao, X. DCT-based channel estimation techniques for LTE uplink. In Proceedings of the

2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 13–16 September
2009; pp. 1034–1038. [CrossRef]

24. Ali, M.; Islam, M.; Memon, M.; Asif, D.M.; Lin, F. Optimum DCT type-I based transceiver model and effective channel estimation
for uplink NB-IoT system. Phys. Commun. 2021, 48, 101431. [CrossRef]

25. Domínguez-Jiménez, M.E.; Luengo, D.; Sansigre-Vidal, G. Estimation of Symmetric Channels for Discrete Cosine Transform
Type-I Multicarrier Systems: A Compressed Sensing Approach. Sci. World J. 2015, 2015, 1–10. [CrossRef] [PubMed]

26. Domínguez-Jiménez, M.E.; Luengo, D.; Sansigre-Vidal, G.; Cruz-Roldán, F. A novel channel estimation scheme for multicarrier
communications with the Type-I even discrete cosine transform. In Proceedings of the 2017 25th European Signal Processing
Conference (EUSIPCO), Kos Island, Greece, 28 August–2 September 2017; pp. 2239–2243. [CrossRef]

27. Domínguez-Jiménez, M.E.; Luengo, D.; Sansigre-Vidal, G.; Cruz-Roldán, F. A Novel Scheme of Multicarrier Modulation With the
Discrete Cosine Transform. IEEE Trans. Wirel. Commun. 2021, 20, 7992–8005. [CrossRef]

28. Cariow, A.; Makowska, M.; Strzelec, P. Small-Size FDCT/IDCT Algorithms with Reduced Multiplicative Complexity. Radioelectron.
Commun. Syst. 2019, 62, 559–576. [CrossRef]

29. Cariow, A.; Lesiecki, Ł. Small-Size Algorithms for Type-IV Discrete Cosine Transform with Reduced Multiplicative Complexity.
Radioelectron. Commun. Syst. 2020, 63, 465–487. [CrossRef]

30. Cariow, A.; Papliński, J.; Majorkowska-Mech, D. Some Structures of Parallel VLSI-Oriented Processing Units for Implementation
of Small Size Discrete Fractional Fourier Transforms. Electronics 2019, 8, 509. [CrossRef]

31. Britanak, V. New universal rotation-based fast computational structures for an efficient implementation of the DCT-IV/DST-IV
and analysis/synthesis MDCT/MDST filter banks. Signal Process. 2009, 89, 2213–2232. [CrossRef]

http://doi.org/10.1109/T-C.1974.223784
http://dx.doi.org/10.1007/978-3-642-45450-9
http://dx.doi.org/10.1016/c2009-0-22279-3
http://dx.doi.org/10.1016/b978-0-12-373624-6.x5000-0
http://dx.doi.org/10.1201/9780203729854
http://dx.doi.org/10.1016/0165-1684(90)90115-F
http://dx.doi.org/10.3390/s18103372
http://www.ncbi.nlm.nih.gov/pubmed/30304849
http://dx.doi.org/10.3390/s19143100
http://dx.doi.org/10.3390/s19102267
http://www.ncbi.nlm.nih.gov/pubmed/31100886
http://dx.doi.org/10.3390/s18072390
http://www.ncbi.nlm.nih.gov/pubmed/30041441
http://dx.doi.org/10.3390/s18041138
http://dx.doi.org/10.3390/s18103289
http://dx.doi.org/10.1109/SBCCI.2001.953032
http://dx.doi.org/10.1186/1687-6180-2014-180
http://dx.doi.org/10.1109/JSTSP.2013.2270429
http://dx.doi.org/10.1109/TCSVT.2013.2276862
http://dx.doi.org/10.1109/TCE.2016.7514716
http://dx.doi.org/10.1049/iet-ipr.2014.0277
http://dx.doi.org/10.1109/MCE.2012.2192754
http://dx.doi.org/10.1109/PIMRC.2009.5450015
http://dx.doi.org/10.1016/j.phycom.2021.101431
http://dx.doi.org/10.1155/2015/151370
http://www.ncbi.nlm.nih.gov/pubmed/26568981
http://dx.doi.org/10.23919/EUSIPCO.2017.8081608
http://dx.doi.org/10.1109/TWC.2021.3089237
http://dx.doi.org/10.3103/S0735272719110025
http://dx.doi.org/10.3103/S0735272720090022
http://dx.doi.org/10.3390/electronics8050509
http://dx.doi.org/10.1016/j.sigpro.2009.04.041


Electronics 2022, 11, 2411 18 of 18

32. Britanak, V. New Recursive Fast Radix-2 Algorithm for the Modulated Complex Lapped Transform. IEEE Trans. Signal Process.
2012, 60, 6703–6708. [CrossRef]

33. Britanak, V.; Rao, R. Two-dimensional DCT/DST universal computational structure for 2m × 2n block sizes. IEEE Trans. Signal
Process. 2000, 48, 3250–3255. [CrossRef]

34. Cariow, A. Strategies for the Synthesis of Fast Algorithms for the Computation of the Matrix-vector Products. J. Signal Process.
Theory Appl. 2014, 3, 1–19. [CrossRef]

35. Regalia, P.A.; Sanjit, M.K. Kronecker Products, Unitary Matrices and Signal Processing Applications. SIAM Rev. 1989, 31, 586–613.
[CrossRef]

36. Granata, J.; Conner, M.; Tolimieri, R. The tensor product: A mathematical programming language for FFTs and other fast DSP
operations. IEEE Signal Process. Mag. 1992, 9, 40–48. [CrossRef]

37. Cariow, A.; Paplinski, J.P. Algorithmic Structures for Realizing Short-Length Circular Convolutions with Reduced Complexity.
Electronics 2021, 10, 2800. [CrossRef]

http://dx.doi.org/10.1109/TSP.2012.2213082
http://dx.doi.org/10.1109/78.875483
http://dx.doi.org/10.7726/jspta.2014.1001
http://dx.doi.org/10.1137/1031127
http://dx.doi.org/10.1109/79.109206
http://dx.doi.org/10.3390/electronics10222800

	Introduction
	Preliminary Remarks
	Small-Size Algorithms for the DCT-I
	Algorithm for the 2-Point DCT-I
	Algorithm for the 3-Point DCT-I
	Algorithm for the 4-Point DCT-I
	Algorithm for the 5-Point DCT-I
	Algorithm for the 6-Point DCT-I
	Algorithm for the 7-Point DCT-I
	Algorithm for the 8-Point DCT-I

	Computation Complexity
	Conclusions
	References

