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Abstract. We show the existence of ε-nets of size O
(

1
ε
log log 1

ε

)

for planar point sets and axis-
parallel rectangular ranges. The same bound holds for points in the plane and “fat” triangular ranges
and for point sets in R

3 and axis-parallel boxes; these are the first known nontrivial bounds for these
range spaces. Our technique also yields improved bounds on the size of ε-nets in the more general
context considered by Clarkson and Varadarajan. For example, we show the existence of ε-nets of
size O

(

1
ε
log log log 1

ε

)

for the dual range space of “fat” regions and planar point sets (where the
regions are the ground objects and the ranges are subsets stabbed by points). Plugging our bounds
into the technique of Brönnimann and Goodrich or of Even, Rawitz, and Shahar, we obtain improved
approximation factors (computable in expected polynomial time by a randomized algorithm) for the
hitting set or the set cover problems associated with the corresponding range spaces.
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1. Introduction. Since their introduction in 1987 by Haussler andWelzl [HW87]
(see also Clarkson [Cla87] and Clarkson and Shor [CS89] for related techniques), ε-
nets have become one of the central concepts in computational and combinatorial
geometry and have been used in a variety of applications, such as range searching, ge-
ometric partitions, and bounds on curve-point incidences; see, e.g., Matoušek [Mat02].
We recall their definition: A range space (X,R) is a pair consisting of an underlying
universe X of objects and a certain collection R ⊆ 2X of subsets (ranges). Of partic-
ular interest are range spaces of finite VC-dimension; the reader is referred to [HW87]
for the exact definition. Informally, it suffices to require that, for any finite subset
P ⊂ X , the number of distinct sets r ∩ P for r ∈ R be O(|P |d) for some constant d
(which is upper-bounded by the VC-dimension of (X,R)).

Given a range space (X,R), a finite subset P ⊂ X , and a parameter 0 < ε < 1,
an ε-net for P and R is a subset N ⊆ P with the property that any range r ∈ R with
|r ∩P | ≥ ε|P | contains an element of N . In other words, N is a hitting set for all the
“heavy” ranges.
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The ε-net theorem of Haussler and Welzl asserts that, for any (X,R), P , and
ε as above, such that (X,R) has finite VC-dimension d, there exists an ε-net N of
size O

(

d
ε log

d
ε

)

, and that in fact a random sample of elements from P of that size
is an ε-net with constant probability. In particular, the size of N is independent of
the size of P . The bound on the size of the ε-net was later improved to O

(

d
ε log

1
ε

)

by Blumer et al. [BEHW89], and then to (1 + o(1))dε log
1
ε by Komlós, Pach, and

Woeginger [KPW92].

In geometric applications, this abstract framework is used as follows. The ground
setX is typically a set of simple geometric objects (points, lines, hyperplanes), and the
ranges inR are defined in terms of intersection with (or, for point objects, containment
in) simply shaped regions (halfspaces, balls, simplices, etc.), formally assumed to be
regions of constant description complexity, meaning that they are semialgebraic sets
defined in terms of a constant number of polynomial equations and inequalities of
constant maximum degree. It is known that in such cases the resulting range space
(X,R) does have finite VC-dimension (see, e.g., [SA95]).

For example, the main result of our paper concerns the range space in which
the objects are points in the plane and the ranges are axis-parallel rectangles; more
precisely, each range is the intersection of the ground set with such a rectangle. The
dual range space in this case is one in which the objects are rectangles and each point
p in the plane defines a range which is the subset of the given rectangles that contain
p. An ε-net in this case is a subset of the rectangles that covers all the “deep” points.

One of the major questions in the theory of ε-nets, open since their introduction
more than 20 years ago, is whether the factor log 1

ε in the upper bound on their size
is really necessary, especially in typical low-dimensional geometric situations. To be
precise, in the general abstract context the answer is “yes,” as shown by Komlós,
Pach, and Woeginger [KPW92], using a randomized construction on abstract hyper-
graphs (see also [PA95]). However, there is no known lower bound, better than the
trivial Ω (1/ε), in any “concrete” case and certainly in any geometric situation of the
kind mentioned above. The prevailing conjecture is that, at least in these geometric
scenarios, there always exists an ε-net of size O(1/ε) [MSW90].

This “linear” upper bound has indeed been established for a few special cases,
such as point objects and halfspace ranges in two and three dimensions and point
objects and disk or pseudodisk ranges in the plane; see [MSW90, Mat92b, CV07,
HKSS08, PR08]. Additional progress was made recently. Clarkson and Varadarajan
[CV07], essentially adapting Matoušek’s technique [Mat92b] to their more general
setting, have introduced a method for constructing small-size ε-nets in dual range
spaces arising in geometric situations where, as above, the ground set is a collection
of regions, and each point p determines a range equal to the set of those regions which
contain p, and where the combinatorial complexity of the union of any finite number r
of the regions in the ground set is small—specifically o(r log r). (The exact condition is
slightly more involved; see below.) As a matter of fact, albeit not explicitly presented
in this manner, the technique of [CV07] is more general and can also be applied to the
primal version of the problem, provided that it satisfies a condition analogous to the
one on small union complexity; see below for more details. More recently, Pyrga and
Ray [PR08] have proposed a general abstract scheme for constructing small-size ε-nets
in hypergraphs (i.e., range spaces) which satisfy certain properties and have applied
it to the special cases of halfspaces in two and three dimensions and to several other
related scenarios. Very recently, Varadarajan [Var09] has independently obtained a
similar improvement on the bound of [CV07] for the size of an ε-net in the dual range
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space of α-fat triangles and planar point sets using very different methods. Shortly
after the publication of this work, King and Kirkpatrick [KK10] showed the existence
of ε-nets of size O

(

1
ε log log

1
ε

)

for points in a simple polygon P , where the ranges are
the visibility polygons from points on ∂P .

The set cover and hitting set problems. Given a range space (P,R), with
P and R finite, the set cover problem is to find a minimum-size subcollection
S ⊆ R, whose union covers P . A related (dual) problem is the hitting set problem,
where we want to find a smallest-cardinality subset H ⊆ P , with the property that
each range r ∈ R intersects H . Equivalently, a set cover for (P,R) is a hitting set
for the dual range space. The general (primal and dual) problems are NP-hard to
solve (even approximately) [GJ79, Kar72], and the simple greedy algorithm yields
the (asymptotically) best possible approximation factor of O(1 + log |P |) computable
by a polynomial-time algorithm, under appropriate complexity-theoretic assumptions
[BGLR93, Fei98].

Most of these problems remain NP-hard even in geometric settings [FG88, FPT81].
However, one can attain an improved approximation factor of O(logOpt) in polyno-
mial time for many of these scenarios, where Opt is the size of the optimal solution.
This improvement is based on the techniques of Even, Rawitz, and Shahar [ERS05]
and of Brönnimann and Goodrich [BG95] (see also Clarkson [Cla93]), where the key
observation is the relation to ε-nets: The existence of an ε-net of size O

(

1
εϕ

(

1
ε

))

for any ε > 0 implies that these techniques generate, in expected polynomial time, a
hitting set (or a set cover) whose size is O(Opt · ϕ(Opt)).

Hence, for range spaces of finite VC-dimension, the Haussler–Welzl theorem leads
to an approximation factor O(logOpt). Consequently, improved bounds for the size
of ε-nets, in the primal or the dual setting, imply improved approximation factors
for the corresponding hitting set or set cover problems, at least in the context
of randomized polynomial-time constructibility (which is what is provided by the
procedures of Brönnimann and Goodrich or of Even, Rawitz, and Shahar).

Our results. In this paper we first consider the cases of point objects and axis-
parallel rectangular ranges in the plane, and of point objects and axis-parallel box
ranges in three dimensions, and show that both range spaces admit ε-nets of size
O
(

1
ε log log

1
ε

)

, thus significantly improving the standard bound O
(

1
ε log

1
ε

)

. Our
technique is similar in spirit to those of Chazelle and Friedman [CF90] and of Clarkson
and Varadarajan [CV07], but it differs from them in one key (and fairly simple) idea
(that of oversampling; see below), which, incidentally, can also be used in the more
general context of [CV07] to improve the bounds that are obtained there for the
size of the respective ε-nets. We also propose a different probabilistic model, which
eventually yields, as a by-product, a simpler analysis than that of [CV07]; see below.
An interesting feature of our technique is that it can be extended to points and axis-
parallel boxes in any dimension, provided that the input points are randomly and
uniformly distributed in the unit cube.

We also describe how to construct these ε-nets in randomized expected nearly
linear time. Our results then lead to randomized polynomial-time approximation
algorithms for the hitting set problem in these two range spaces, involving axis-
parallel rectangles and boxes, respectively, which guarantee an approximation factor
of O (log logOpt).

In fact, we observe that the technique can be cast in a fairly general setting, which
we present and analyze. This allows us to extend it, with relative ease, to many other
concrete range spaces. Specifically, we extend it to the case of planar point sets and
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Table 1
The bound on the ε-net size and the corresponding approximation factor for the hitting set

problem for the primal range spaces of points and the regions listed in the table.

Dimension Regions ǫ-net size Approximation factor

d = 2 axis-parallel rectangles O(ε−1 log log (ε−1)) O(log logOpt)
d = 2 α-fat triangles O(ε−1 log log (ε−1)) O(log logOpt)
d = 3 axis-parallel boxes O(ε−1 log log (ε−1)) O(log logOpt)
d ≥ 1 axis-parallel boxes with

points
uniformly distributed in
[0, 1]d

O(ε−1 log log (ε−1)) O(log logOpt)

Table 2
The bound on the ε-net size and the corresponding approximation factor for the set cover

problem for the dual range spaces of the planar regions listed in the table and points.

Planar regions ǫ-net size Approximation factor

α-fat triangles O(ε−1 log log log (ε−1)) O(log log logOpt)
locally γ-fat objects O(ε−1 log log (ε−1)) O(log logOpt)
locally γ-fat objects of the same
size

O(ε−1 log βs+2(ε−1)) O(log βs+2(Opt))

semiunbounded
pseudotrapezoids

O(ε−1 log βs+2(ε−1)) O(log βs+2(Opt))

pseudo-halfplanes O(ε−1 log βs(ε−1)) O(log βs(Opt))
regions bounded by Jordan arcs
with three intersections per pair

O(ε−1 logα(ε−1)) O(logα(Opt))

α-fat triangles (for the primal range space), that is, triangles, each of whose angles
is at least α, for some constant α > 0 (see [MPSSW94]). In this case as well we
show the existence of ε-nets of size O

(

1
ε log log

1
ε

)

, leading to an approximation factor
of O (log logOpt) for the corresponding hitting set problem. Table 1 summarizes
these results.

Similarly, we obtain improved bounds for the size of ε-nets in the dual range
space, and, consequently, for approximation factors for the corresponding set cover
problem, in the following cases, all involving points and regions in the plane (refer to
section 7 for the exact definition of the range spaces, and see Figure 14 for an illus-
tration). We consider the following collections of planar regions: (a) α-fat triangles,
(b) locally γ-fat objects (with slightly better bounds when all objects have nearly
equal size), (c) semiunbounded pseudotrapezoids, and (d) regions bounded by Jordan
arcs with three intersections per pair. These results are summarized in Table 2.

Our technique for rectangles—a brief overview. We start with a brief overview of
our analysis, in which we assume some familiarity with the earlier papers [CF90, CV07]
cited above. Let P be a given set of n points in the plane. We first sketch a somewhat
simpler approach that almost works; it does not properly address a certain critical
technical issue but captures the essence of our method. We then briefly describe how
to modify it so that it does produce ε-nets of the desired size.

Put r = 1/ε. We draw a random sample R of s ≫ r points of P (this is the
oversampling ingredient of our technique; the specific choice of s, made below, is
crucial) and make R part of the ε-net to be constructed, and so it remains only to
handle axis-parallel rectangles which contain at least n/r points but are R-empty,
i.e., (axis-parallel) rectangles which do not contain any point of R. To “pierce” every
such rectangle, we form the subset M of maximal R-empty rectangles, so that any
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(a) (b)

Fig. 1. (a) A configuration with quadratically many maximal R-empty rectangles (the points
of R are shaded darker and lie on the two extreme staircases). (b) A configuration with an ex-
pected quadratic number of maximal R-empty rectangles, each containing Ω(n/s) points. The lower
staircase contains n/2 points, and each of the s upper “diagonals” contains n

2s
points.

other R-empty rectangle is contained in one of them. By the standard ε-net theory
of [HW87], with high probability each rectangle of M contains at most O

(

n
s log s

)

points of P . Moreover, in a sense that we do not make very precise here, the expected
number of points of P in such a rectangle is O(n/s). Since s ≫ r, most rectangles
of M contain fewer than εn = n/r points of P , so an R-empty rectangle Q with
at least n/r points will not fit into any of them, and we can simply ignore them.
For each of the relatively few “heavy” rectangles M of M, we apply the resampling
technique of [CF90, CV07] and sample a small subset of O(t log t) points of M ∩ P ,
where t = s|M ∩P |/n, to serve as a (1/t)-net for M ∩P . The union of R and all these
samples constitutes the desired ε-net; it is fairly easy to show that this is indeed an
ε-net.

This approach does not quite work because, for a bad choice of R, the number
of maximal R-empty rectangles can be Θ(s2) in the worst case (see, e.g., [NLH84]
and Figure 1(a)). Moreover, even if we consider only random subsets R, which is
what the technique produces anyway, there are point sets where the expected number
of maximal R-empty rectangles which contain Ω(n/s) points of P is still Θ(s2); see
Figure 1(b). Using the technique outlined above literally turns out to yield a bound
of Θ

(

1
ε2

)

on the expected size of the ε-net in the worst case, which is of course much
too large.

We overcome this issue by modifying the scheme so that it produces fewer maximal
empty rectangles. To do so, we reset r := 2/ε and decompose the plane into a binary-
tree-like hierarchy of vertical strips, stopping just before reaching strips that contain
fewer than n/r points of P . For any rectangle Q̃ which contains at least εn points of
P , we find the first (highest in the hierarchy) strip-bounding line which crosses Q̃, take
one of its halves, Q, which contains at least εn/2 = n/r points, and consider only such
rectangles in the construction of our net. We thus face subproblems, each involving
a vertical strip σ and the corresponding subset P ∩ σ of P , and ranges which are
rectangles that are “anchored” at a specific side of σ (so that they effectively behave
like three-sided unbounded rectangles for P ∩ σ; refer to Figure 2). The number of
maximal R-empty rectangles of this type, within σ, is only linear in |R ∩ σ|, leading
to an overall collection M of maximal R-empty rectangles of the new kind, whose size
is only O(s log r).

We now choose s := cr log log r for an appropriate absolute constant c. Using
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σu

σv

ℓu

Q̃

Q

Fig. 2. The half-rectangle Q is anchored at the left entry side ℓu of the strip σv.

the so-called Exponential Decay Lemma of [AMS98, CF90], one can show that the
expected number of maximal heavy empty rectangles that can contain rectangles Q
of the above kind is only sublinear in r, which in turn implies that (even after taking
into account the sizes of the resampled nets within each of these rectangles, and not
just their number) the expected size of the ε-net is dominated by the expected size of
R, namely, O(r log log r) = O

(

1
ε log log

1
ε

)

.

The general framework. In section 3 we argue that our technique can be applied in
a more general setting. We formulate this extension in terms of an abstract framework
in which the given ranges are required to satisfy several properties, similar to those
which we used in the case of axis-parallel rectangles. When these properties hold,
essentially the same machinery as in the case of rectangles can be applied to yield
ε-nets of smaller size; see section 3 for complete details. We then apply this general
technique to all the other primal range spaces listed above.

Improving the general bounds in [CV07]. Readers familiar with the technique of
Clarkson and Varadarajan [CV07] will notice the similarity of our approach to theirs.
The key new ingredient is that we use a larger initial sample R of expected size
Θ(r log log r) rather than O(r); that is, the essence of our approach is oversampling.
The same idea can be applied in the more general context of [CV07] and leads to
an improvement of each of their bounds that are superlinear in r. In a sense, the
Clarkson–Varadarajan technique is a dual version of the general set-up discussed
above for dual range spaces. Specifically, Clarkson and Varadarajan consider dual
range spaces and show that if the union complexity of any m of the ranges (i.e.,
objects in the dual ground set) is O(mϕ(m)) for an appropriate slowly increasing
function ϕ, then there exist ε-nets in such a dual range space of size O(1εϕ(

1
ε )). Using

our approach, we obtain ε-nets of size O(1ε logϕ(
1
ε )). Moreover, their method yields

improved bounds for ε-nets only when ϕ(m) = o(logm), whereas our method yields
improved bounds as long as ϕ(m) = 2o(logm). The case of rectangles is interesting
in this aspect because, with the addition of the divide-and-conquer decomposition
scheme mentioned above, the complexity of the appropriate analogue of the union
of m dual ranges (which is the number of maximal empty rectangles) is O(m logm),
which is the threshold bound at which the more straightforward sampling approach
of [CV07] fails.1

1As already noted, the logm factor comes from the binary-tree hierarchy—see what follows for
details.
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2. Small-size ε-nets for axis-parallel rectangles. Let P be a set of n points
in the plane. Put r := 2/ε and s := cr log log r, where c > 1 is an arbitrary constant.
For simplicity of presentation, we assume that each of n, r is a power of 2, thereby
avoiding the need for rounding. This involves no loss of generality. Construct a
balanced binary tree T over the points of P in their x-order in the following manner:
Sort the points according to their x-coordinates; then group them into r groups, each
of size n/r. Now construct a full binary tree of height log2 r on these groups. The
leaves of the tree correspond to the groups, and each internal node corresponds to the
union of the groups stored at the leaves of its subtree. Each internal node stores a
vertical line that separates the points of the left subtree from those of the right one.
By construction, T has log r levels.

Fix a random sample R ⊆ P , so that each point p ∈ P is chosen independently
to be included in R with probability π := s/n; thus the expected size of R is s. The
sample R is part of the ε-net N that we are about to construct.

Each node v of T is associated with a subset Pv of P (resp., Rv of R), consisting
of those points of P (resp., of R) stored at the subtree rooted at v. We also associate
with v a vertical line ℓv which splits Pv into the two subsets Pv1 , Pv2 associated with
the children v1, v2 of v. Using the lines ℓu, we associate with each node v a strip σv,
which contains Pv (and Rv), where σroot is the entire plane, and, for a left (resp.,
right) child node v �= root of its parent u, σv is the left (resp., right) portion of σu

delimited by ℓu. We call ℓu the entry side of σv.

Note that, since the sets Pv are defined ahead of the draw of R, our sampling
model guarantees that, for each node v, Rv is an unbiased sample of Pv, drawn from
Pv by exactly the same rule, namely, by choosing each point independently with
probability π.

Let Q̃ be an axis-parallel rectangle containing at least εn points of P , and let u
be the highest node of T such that ℓu crosses Q̃, partitioning it into two parts, one
of which necessarily contains at least εn/2 = n/r points of P . Denote that portion of
Q̃ by Q, and let v be the child of u such that Q ⊆ σv. We say that Q is anchored at
the entry side ℓu of σv; see Figure 2.

If Q contains a point of R, we are done, as Q ⊂ Q̃ and the goal was to construct
a subset of P that meets every rectangle Q̃ containing at least εn points of P . So we
may assume that Q does not contain such a point; we then say that Q is R-empty;
equivalently, Q is Rv-empty.

We define, for each node v of T , a set Mv consisting of all the maximal (open) an-
chored Rv-empty axis-parallel rectangles contained in σv. Without loss of generality,
assume that the entry side ℓu of σv is its left side. In general, a rectangle M in Mv

is determined by three points of Rv, one point lying on each of the three unanchored
sides ofM (see Figure 3(a)), but Mv may also contain degenerate rectanglesM where
some (or all) of these points are missing, in which case M extends as much as possi-
ble, within σv, in the appropriate direction (upward, downward, or to the right). In
particular, when Rv = ∅, there is precisely one maximal Rv-empty rectangle, namely,
the whole strip; see Figure 3(b)–(e), which illustrates some of these cases.

It is easy to show that |Mv| = 2rv + 1, where rv := |Rv|. Indeed, if a rectangle
M has a point q ∈ Rv on its right side, then q cannot lie on the right side of any
other rectangle in Mv, so the number of such rectangles is rv (equality is also easy
to verify). Otherwise, the points of Rv on the top and bottom sides of M must be
consecutive in Rv in the y-order, and there are rv − 1 such pairs. Finally, there are
two semiunbounded rectangles—one delimited from below by the highest point of Rv
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ℓu

M

σv

M

ℓu

σv

M

ℓu

σv

ℓu

M

σv

M

ℓu

σv

(a) (b) (c) (d) (e)

Fig. 3. An anchored maximal R-empty rectangle that is determined by three points (a), by a
pair of points (b)–(d), or by a single point (e).

and the other delimited from above by the lowest point (as in Figure 3(e)). It is easily
checked that the bound 2rv + 1 also applies when rv = 0, 1. It thus follows that the
overall number of such maximal empty rectangles M ∈ Mv, over all nodes v of T at
any fixed level, is O(|R| + r′), where r′ is the number of nodes at the level, and the
total over all levels of T is O(r + |R| log r).

Returning now to the anchored rectangle Q and the corresponding node v, we
note that Q is contained in at least one rectangle in Mv. Indeed, assuming, as above,
that the entry side of σv is its left side, expand Q by pushing its right side to the
right until it touches a point of Rv or reaches the right side of σv, and then push the
top and bottom sides until each of them meets a point of Rv or extends to ±∞. The
resulting rectangle belongs to Mv and encloses Q.

For each node v of T , and each member M ∈ Mv, define the weight factor tM
of M to be ⌈s|M ∩ P |/n⌉. Rectangles M with tM < s/r = c log log r can be ignored,
because they contain fewer than n/r points of P , so no anchored rectangle Q, as
above, can be completely contained in one of them. By the standard ε-net theory
[HW87], for each M ∈ Mv with tM ≥ c log log r, there exists a subset NM ⊆ M ∩ Pv

of size c′tM log tM that forms a (1/tM )-net for M ∩ Pv, where c′ is another absolute
constant.

The final ε-net N is the union of R with the sets NM , over all the heavy rectangles
M (i.e., rectangles with tM ≥ c log log r) in the respective sets Mv, over all nodes v
of T .

N is an ε-net. Since R ⊆ N , it suffices to show that for any R-empty rectangle
Q contained in a strip σv, anchored at the entry side of σv, and containing at least
εn/2 = n/r points of P (i.e., of Pv), and for any M ∈ Mv which contains Q, we have
Q ∩NM �= ∅. We have

|Q ∩ P |

|M ∩ P |
≥

n/r

ntM/s
=

c log log r

tM
≥

1

tM
.

Since NM is a (1/tM )-net for M ∩ P , it follows that Q ∩NM �= ∅, as asserted. Note
that the above inequality implies that we need not sample that many points in NM

and can make do with c′t∗M log t∗M points, where t∗M := tM/(c log log r). However, this
slight improvement does not asymptotically affect the bound that we are about to
derive.
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Estimating the size of N . The expected size of N is equal to

Exp

{

|R|+ c′
∑

v

∑

M∈Mv
tM≥c log log r

tM log tM

}

= cr log log r + c′ ·Exp

{

∑

v

∑

M∈Mv
tM≥c log log r

tM log tM

}

.

We continue the analysis using the notation of [AMS98]. Fix a level i; each node v
at this level satisfies |Pv| = n/2i. Let CT(R) denote the union of the collections Mv

over all nodes v at level i. For a positive parameter t, let CTt(R) denote the subset of
CT(R) consisting of those rectangles M with tM ≥ t. Let R′ denote another random
sample of P , where each point p ∈ P is now chosen independently to belong to R′

with probability π′ := π/t.

Let C denote the set of all rectangles M such that M is anchored at the entry
side of σv for some node v at level i and has one point of P on each of its three other
sides (the cases of degenerate rectangles, determined by fewer than three points, are
treated in a fully analogous manner). For a rectangle M ∈ C, its defining set D(M)
is the set of these three points, and its killing set K(M) is the set of points of P in
the interior of M . (Recall that throughout this discussion we have fixed the level i.)

Agarwal, Matoušek, and Schwarzkopf [AMS98] impose two axioms on the sets
CT(R). These axioms are too intricate for what we need here, while they are necessary
to handle the more involved scenario considered in [AMS98]. For our purpose, we can
replace them by the single “axiom” asserting that a rectangle M ∈ C belongs to
CT(R) if and only if D(M) ⊆ R and K(M) ∩R = ∅, which holds by construction in
our setting. (We also caution the reader that our sampling model is different from
that of [AMS98]; they pick a random subset of a fixed given size uniformly from
all such subsets, whereas we independently choose each point of P to belong to the
sample. Nevertheless, the lemma, given below, also holds in our model; if anything,
the analysis is simpler. For the sake of completeness, we give, in the appendix, a short
(but complete) proof of our variant of the lemma.)

Lemma 2.1 (Exponential Decay Lemma; Agarwal, Matoušek, and Schwarzkopf
[AMS98]).

Exp
{

|CTt(R)|
}

= O
(

2−tExp
{

|CT(R′)|
})

.

We apply the lemma with t = c log log r, so π′ = π/t = r/n. Recall that CT(R′)
is the set of all maximal R′-empty rectangles anchored at the entry sides of their
respective strips σv at the fixed level i. Their number is |CT(R′)| =

∑

v(2r
′
v + 1),

where R′
v := R′ ∩ σv and r′v := |R′

v|. Since the sets R′
v at level i are disjoint,

∑

v r
′
v = |R′|. Hence, since there are at most 2r nodes at a fixed level of the tree, we

have |CT(R′)| ≤ 2|R′|+ 2r. Hence Exp
{

|CT(R′)|
}

= O(r). We thus have

Exp
{

|CTt(R)|
}

= O
(

2−tExp
{

|CT(R′)|
})

= O
(

r2−c log log r
)

= O (r/ logc r) .

More generally, for any j ≥ t, we have Exp
{

|CTj(R)|
}

= O(r/2j), as is easily
checked.

Getting back to the contribution of the fixed level i to the expected size of N , we
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have (where t = c log log r)

Exp

{

∑

v at level i

∑

M∈Mv
tM≥t

tM log tM

}

= Exp

{

∑

j≥t

∑

M∈CT(R)
tM=j

j log j

}

(∗)

= Exp

{

∑

j≥t

j log j ·
(

|CTj(R)| − |CTj+1(R)|
)

}

= Exp

{

t log t · |CTt(R)|

+
∑

j>t

(

j log j − (j − 1) log(j − 1)
)

|CTj(R)|

}

= O

(

r

logc r
(t log t) +

∑

j>t

r

2j
log j

)

= O

(

rt log t

logc r

)

= O

(

r log log r log log log r

logc r

)

.

Recall again that the analysis so far has been confined to a single level i. Repeating
it for each of the 1 + log r levels, we obtain, since c > 1,

Exp {|N |} = O

(

r log log r +
r log log r log log log r

logc−1 r

)

= O(r log log r).

We have thus shown the following theorem.
Theorem 2.2. For any set P of n points in the plane and a parameter ε > 0,

there exists an ε-net of P , of size O
(

1
ε log log

1
ε

)

, for axis-parallel rectangles.
Remark. A key ingredient of the analysis is that we have managed to reduce the

expected number of R-empty rectangles from Θ(s2) to O(s log r), using a decomposi-
tion of the point set into canonical subsets, so that (i) any rectangle Q̃ with at least
εn points of P interacts with just two subsets (any constant number would do just as
well), and (ii) for each canonical subset, the number of maximal R-empty rectangles
(now anchored at the entry side of the respective strip and fully contained in that
strip) is only linear in the number of sample points in that strip.

Constructing the ε-net. We next present a randomized algorithm for constructing
an ε-net of the above size.

We construct the balanced binary tree T over the points of P in O(n log r) time
(stopping at nodes v for which |Pv| = n/r) and generate the random sample R using
the drawing model assumed above; the expected size of R is s.

Following the above notation, we associate with each node v �= root of T a strip
σv, the subsets Pv, Rv, and an entry side ℓu of σv (where u is the parent of v). We
next construct, for each such node v, the set Mv of all maximal anchored Rv-empty
axis-parallel rectangles contained in σv. This is easy to do in time O(rv log rv), where
rv := |Rv|, as follows. Assume that ℓu is the left side of σv. Sort the points of Rv

by their y-coordinates, and find, for each point q, the lowest point q′ which lies above
q and to its left. This can be done in linear time by scanning the points of Rv in
decreasing y-order and by dynamically maintaining the sorted sequence of xy-minima
[CLRS01]. Symmetrically, we find, for each point q, the highest point q′′ which lies
below q and to its left. The resulting triples (q, q′, q′′) (including degenerate ones)
determine rv of the maximal empty rectangles in Mv. Each of the other rv + 1
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rectangles straddles σv from left to right and either is delimited by a pair of points
of Rv, consecutive in the y-order, which lie on its top and bottom sides, or is an
unbounded half-strip, bounded by a single point.

It thus follows that the overall expected running time for constructing the sets
Mv, over all nodes v at a fixed level i, is O(s log r) (by bounding log rv by log r and
using linearity of expectations) for a total of O(s log2 r) time over all levels i.

We next count, for each resulting rectangle M , the number of points in M ∩ P
using a standard two-dimensional range-tree data structure. This yields the re-
spective weight factors tM , as defined above; we keep only those rectangles with
tM ≥ c log log r. For each of these surviving rectangles M , we report the set P ∩M
and construct a (1/tM)-net for P ∩ M using, e.g., the deterministic algorithm of
Matoušek [Mat95] (or a straightforward random sampling mechanism [HW87]). We
output the union of R with all the resulting nets. Using the Exponential Decay
Lemma and considerations similar to those in the proof of Theorem 2.2, it can be
shown that the overall expected number of reported points in the sets P ∩ M , over
all heavy rectangles M and nodes v, is only linear in n.

As argued above, the output N is guaranteed to be an ε-net for P (if we construct
the subnets NM deterministically). The size of N is a random variable whose expec-
tation is O(r log log r). We can ensure this size with high probability by discarding
outputs that are too large and by repeating the sampling.

The entire algorithm takes O(n log n) randomized expected time, as is easily seen.
Remark. The running time of the algorithm can be slightly improved to O(n log r)

using machinery similar to that used above, where we modify the range-tree data
structure to support only approximated range counting queries (where the approxi-
mation is within a factor of roughly n/r). In this case the height of the range-tree
decreases to O(log r). We leave the easy details to the reader.

3. An abstract framework. In this section we generalize the method used
above in order to apply it in several other situations.

We are given a range space (P,R), where P is a finite set of points in R
d and

where R is some class of d-dimensional objects of constant description complexity. We
seek conditions on R that would enable us to extend the technique of the previous
section to construct small ε-nets for (P,R).

We call a region in R
d Y -empty if its interior does not intersect Y for a set

Y ⊆ R
d.

Definition 3.1. We say that (P,R) has the small cover property if there exist two
other classes, R0, R1, each consisting of d-dimensional objects of constant description
complexity, so that each object of R1 is defined by a constant number of points of P
in the sense of [CV07, CS89]. We also assume that there exist constants A,B ≥ 1, so
that the following conditions hold. Consider any ε > 0, 1 ≤ s ≤ n, and any random
sample R ⊆ P , obtained by picking each element of P independently with probability
π := s/n. Let R′

0 be the subcollection of R0 consisting of the R-empty regions in R0,
and let R′

1 be the subcollection of R1 consisting of the R-empty regions in R1, such
that all their defining points belong to R. Then the following hold.

(a) For every R-empty region Q ∈ R, with |Q ∩ P | > Bεn, there exists Q0 ∈ R′
0

such that
(i) Q0 ∩ P ⊂ Q ∩ P ,
(ii) |Q0 ∩ P | > εn, and
(iii) Q0 is covered by at most A elements of R′

1, or, more precisely, Q0 ∩ P ⊆
⋃

i(Q
(i)
1 ∩ P ) for some choice of at most A sets Q

(i)
1 ∈ R′

1.
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(b) The expected size of R′
1, over the random choices of R, is at most sϕ(s),

where ϕ(x) is a sublinear function (i.e., one satisfying ϕ(xy) ≤ xϕ(y) for any integers
x, y ≥ 1) and s is the expected size of R.

Note that this set-up does indeed extend that for points and axis-parallel rectan-
gles. Here R0 is the set of all axis-parallel anchored rectangles over all strips in the
binary decomposition, R1 is the set of anchored axis-parallel rectangles, each defined
by up to three points on its boundary, in the manner described in section 2, again,
over all strips, A = 1, B = 2, and ϕ(x) = O(log x).

Theorem 3.2. If (P,R) has the small cover property, with the parameters as
specified in Definition 3.1, then it admits an ε-net of size O

(

1
ε logϕ

(

1
ε

))

for any
0 < ε ≤ 1.

Proof. We follow the same general construction as for the case of points and
axis-parallel rectangles in the plane. Put r := B/ε, s := Cr logϕ(r), and π := s/n,
where C > A is any fixed constant. We draw a random sample R of points of P ,
picking each point, independently, with probability π.

We then form the sets R′
0 ⊆ R0 and R′

1 ⊆ R1 of R-empty regions; by assumption,
they satisfy the above properties. We define the weight factor tM of a region M ∈ R′

1

to be s|M ∩ P |/n. By the standard ε-net theory [HW87], it follows that, with high
probability, we have |M ∩ P | = O

(

n
s log s

)

for each region M , and, in an informal
and imprecise sense, the expected size of M ∩ P , for a region M , is only O(n/s). As
above, we take each “heavy” region M ∈ R′

1, with |M ∩P | ≥ n/(Ar), or, equivalently,
with tM ≥ s/(Ar) = (C/A) logϕ(r), and use the standard theory of ε-nets to deduce
that there exists a (1/tM )-net NM for the range space (M ∩ P,R′

0), whose size is
O(tM log tM ). We output the union of R with all the sets NM , over all heavy regions
M , as the desired ε-net N .

Adapting the arguments from section 2, it is easy to verify that N is an ε-net for
(P,R). Indeed, let Q be a range of R containing at least εn = Bn/r points of P and
not containing any point of R. Then Q contains a subrange Q0 ∈ R′

0 which contains
at least n/r points of P . By assumption, there exist at most A sets of R′

1 which cover
Q0 ∩ P , so at least one of them, M , satisfies |M ∩ Q0 ∩ P | ≥ n/(Ar). By the choice
of tM , we have

|M ∩ P ∩Q0|

|M ∩ P |
≥

n/(Ar)

ntM/s
=

1

tM
·
s

Ar
≥

1

tM
,

so M∩Q0 must contain a point of NM , showing that N is indeed an ε-net, as claimed.
To bound the expected size of N , we follow the previous analysis and apply the

Exponential Decay Lemma in the new set-up, where CT(R) is our set R′
1, and CTt(R)

is the subset of CT(R) consisting of those regions with weight factor at least t; the
defining set and the killing set are defined in a manner similar to that used earlier.

It thus follows that the Exponential Decay Lemma is applicable in this scenario
as well, and it implies that, for any t,

Exp
{

|CTt(R)|
}

= O
(

2−tExp
{

|CT(R′)|
})

= O
(

2−tExp
{

|R′|ϕ(|R′|)
})

,

where R (resp., R′) is a random sample in which each point of P is chosen indepen-
dently with probability s/n (resp., s/(tn)).

To bound the latter expectation, we argue as follows.2 Let z := s/t denote the
expected value of |R′|. By Chernoff’s bound (see, e.g., [AS92]),

Pr
{

|R′| ≥ ξz
}

≤ e−(ξ−1)2z/3

2Here we pay back a little for using the simpler sampling model.
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B̃

B

hu′

σu′

σu

σu,v

hu,v′
M

hu′

hu,v′

σu,v

(a) (b)

Fig. 4. A two-dimensional illustration: (a) The box B is anchored at the (apex of the) quadrant
σu,v (octant in 3-space). (b) An anchored box that is determined by a pair of points (a triple in
3-space).

for any ξ > 1. Hence, using the sublinearity of ϕ,

Exp
{

|R′|ϕ(|R′|)
}

≤ 2zϕ(2z) +
∑

j≥2

Pr
{

|R′| ≥ jz
}

(j + 1)zϕ((j + 1)z)

≤ zϕ(z) ·

(

4 +
∑

j≥2

(j + 1)2e−(j−1)2z/3

)

= O(zϕ(z)).

In particular, for t = c logϕ(r), each point is chosen in R′ with probability r/n (so
z = r), and we get

Exp
{

|CTt(R)|
}

= O
(

2−c logϕ(r)rϕ(r)
)

= O

(

r

ϕc−1(r)

)

,

which, for c > 1, is sublinear in r. The expectation is O (2−t(s/t)ϕ(s/t)) for larger
values of t.

We can now continue with the original analysis almost verbatim, arguing that the
overall expected size of the subsamples “within” each heavy region of R′

1 is sublinear
in r, so the expected size of N is dominated by that of R; thus it is O(r logϕ(r)).

In the following sections, we present several cases in which Theorem 3.2 can be
applied, leading to an improved bound on the size of the corresponding ε-nets. With
a few exceptions, the heart of the analysis is in finding good sets R0 and R1 which
satisfy the conditions in the above definition.

4. Small-size ε-nets for axis-parallel boxes in three dimensions. We next
extend our construction to the three-dimensional case, drawing upon the general
construction provided in Theorem 3.2. We now let P be a set of n points in R

3 and
R be the set of all axis-parallel boxes, and we put r := 8/ε and s := cr log log r for
some fixed constant c > 3. We use a sampling model similar to that used in the
two-dimensional problem in order to generate a random subset R ⊆ P of expected
size s. As above, we simplify the presentation by assuming n and r to be powers of 2.

We now describe the construction of the sets R0 and R1 and the various other
parameters in the preceding analysis. To this end, we construct a three-level range-
tree T over the points of P (see, e.g., [dBCKO08]), where the points are sorted by
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their x-coordinates in the primary tree, by their y-coordinates in each secondary tree,
and by their z-coordinates in each tertiary tree. We associate with each node u of
the primary tree the subset Pu of points that it represents and a secondary (y-sorted)
tree Tu on Pu. Similarly, with each node v of a secondary tree Tu we associate the
corresponding subset Pu,v of Pu and a tertiary (z-sorted) tree Tu,v. Finally, each
node w of a tertiary tree Tu,v is associated with the corresponding subset Pu,v,w of
Pu,v. We construct each of the three levels of T down to nodes for which the size of
their associated subset is n/r. Clearly, each of the primary, secondary, and tertiary
trees has at most log r levels, and the total number of nodes in the range-tree T is
O(r log2 r). Moreover, the sum of the sizes of all the subsets stored at the various
nodes is O(n log3 r); see, e.g., [dBCKO08] for further (standard) details.

Similar to the set-up in section 2, we associate with each nonleaf node of any
subtree an axis-parallel plane which evenly splits the subset stored at the node into
the two subsets stored at its children. More specifically, each nonleaf node u of the
primary tree stores a plane hu orthogonal to the x-axis, each nonleaf node v of a
secondary tree Tu stores a plane hu,v orthogonal to the y-axis, and each nonleaf node
w of a tertiary tree Tu,v stores a plane hu,v,w orthogonal to the z-axis.

These planes define, for each node w of a tertiary tree Tu,v, an octant σu,v,w

which is the intersection of three halfspaces Hu ∩Hu,v ∩Hu,v,w, where (i) Hu is the
halfspace bounded by hu′ and containing Pu, where u′ is the parent of u; (ii) Hu,v

is the halfspace bounded by hu,v′ and containing Pu,v, where v′ is the parent of v in
Tu; and (iii) Hu,v,w is the halfspace bounded by hu,v,w′ and containing Pu,v,w, where
w′ is the parent of w in Tu,v. In what follows we consider only triples (u, v, w) of
vertices, each of which has a parent in its respective tree. Thus all three halfspaces
are proper, and σu,v,w is a nondegenerate octant. (Note, though, that, in general, it
is more accurate to regard σu,v,w as a box, or a clipped octant, bounded on the other
sides also by planes associated with ancestors of u, v, and w. Nevertheless, in most of
the following analysis, it suffices to treat σu,v,w as an octant.)

Let B0 be an axis-parallel box containing at least εn = 8n/r points of P . Let
u′ be the highest node in T , so that the plane hu′ meets B0. This plane partitions
B0 into two portions, one of which (call it B1) contains at least 4n/r points of P .
Let u be the corresponding child of u′ so that Hu contains B1. Next, let v′ be the
highest node in Tu, such that hu,v′ meets B1, partitioning it into two portions, one
of which, B2, contains at least 2n/r points of P . Let v be the child of v′ for which
Hu,v′ contains B2. Finally, let w

′ be the highest node in Tu,v, such that hu,v,w′ meets
B2, partitioning it into two portions, one of which, B, contains at least n/r points
of P . Let w be the child of w′ for which Hu,v,w′ contains B. (Note that u, v, and
w are well defined in the sense that each of the subboxes is indeed split by a plane
associated with a node in the corresponding truncated tree and does not reach a leaf
without being split.)

By construction, B is anchored at the resulting octant σ := σu,v,w in the sense
that the apex o of σ is a vertex of B and the three facets of B adjacent to o lie on
the three respective axis-parallel planar quadrants bounding σ. See Figure 4(a) for
an illustration of (the two-dimensional analogue of) this scenario. We take R0 to be
the set of all R-empty anchored boxes of this kind over all triples u, v, w.

For each node w of a tertiary tree Tu,v, put Ru,v,w = R ∩ σ̄u,v,w, where σ̄u,v,w

is the actual box that the “octant” σu,v,w represents (see the comment above), and
ru,v,w = |Ru,v,w|. Let Mu,v,w denote the set of all maximal anchored R-empty (i.e.,
Ru,v,w-empty) axis-parallel boxes contained in the octant σu,v,w. Since each box
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M ∈ Mu,v,w behaves as an octant inside σu,v,w , it is determined by at most three
points of Ru,v,w, each lying on a distinct facet of M ; see Figure 4(b) for a two-
dimensional illustration. The number of such empty boxes (or, rather, octants) is
only O(ru,v,w + 1), as shown3 in [BSTY98, KRSV08]. It thus follows that the size of
the combined set M =

⋃

u,v,w Mu,v,w, over all nodes w of all tertiary trees Tu,v, is

O(|R| log3 r + r log2 r).

We are now in a position to apply Theorem 3.2 to the set-up just developed, with
the collections R0 as just defined and R1 =

⋃

u,v,w Ru,v,w, where Ru,v,w is the set of
all anchored axis-parallel boxes contained in the octant σu,v,w (and then R′

1 is set to
M). Clearly, all the required properties hold. In particular, every (8n/r)-heavy and
R-empty range of R contains an (n/r)-heavy range of R′

0, and every range of R′
0 is

contained in a region of M = R′
1. Here A = 1 and B = 8. The size of M, as noted

above, is O(|R| log3 r+ r log2 r), whose expected value is at most O(s log3 r). We thus
have the following theorem.

Theorem 4.1. For any set P of n points in R
3 and a parameter ε > 0, there

exists an ε-net of P , for axis-parallel boxes, of size O
(

1
ε log log

1
ε

)

.

Constructing the ε-net. We construct an ε-net of this size using an easy extension
of the algorithm presented in section 2. We start by building a three-level range-tree
over the points of P , using O(n log2 n) time and storage. The enumeration of the
maximal anchored Ru,v,w-empty octants in any canonical octant σu,v,w can be per-
formed in O(|Ru,v,w | log

2 r) time, using the algorithm described in [KRSV08]. Using
our range-tree, we compute the weight factor tM of each maximal octant M , collect
all the heavy octants M (using counting queries), report the corresponding subsets
P ∩ M , and construct, for each such octant M , a (1/tM )-net of size O(tM log tM )
for P ∩M using standard techniques, as in the two-dimensional case. Omitting the
further easy details, we obtain that the expected running time of the algorithm is
O(n log2 n), as asserted.

As in the planar case, the algorithm can be slightly improved to O(n log2 r) using
similar refinements.

5. Random point sets in any dimension. The technique fails in four and
higher dimensions because the number of maximal empty orthants with respect to
a set of m points can be Θ

(

m⌊d/2⌋
)

(see [BSTY98, KRSV08]), which is at least
quadratic for d ≥ 4. It is a challenging open problem to extend our results to points
and axis-parallel boxes in four and higher dimensions.

Nevertheless, there is one scenario in which the technique works in any dimen-
sion, which is the case when the ground set P consists of randomly and uniformly
distributed points in R

d. Specifically, we assume that each point of P is chosen inde-
pendently at random from the uniform distribution in [0, 1]d. As shown in [KRSV08],
the expected number of maximal empty boxes in this case, for a set of m points, is
only O(m logd−1 m) (see also [NLH84] for an earlier treatment of the planar case).
Moreover, our random sampling model (where the random choices are assumed, of
course, to be made independently of the random drawings of the points of the input
set) ensures that the sample R is also an unbiased set of randomly, independently,
and uniformly distributed points, so the expected number of maximal R-empty boxes
is O(s logd−1 s) (this is proved as a special case of the analysis in section 3); the ex-

3In fact, the result in [KRSV08] is more general. It asserts that the number of maximal empty
orthants for a set of m points in R

d is O(m⌊d/2⌋). It is the nonlinearity of this bound for d ≥ 4
which hampers the extension of our technique to higher dimensions.
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pectation is with respect to both the random drawing of the points of the input set
and our drawing of the sample R.

The set-up that we have reached is similar to those obtained in two and three
dimensions. Thus Theorem 3.2 can be applied, and we obtain the following theorem.

Theorem 5.1. For any set P of n points in R
d, each of which is drawn inde-

pendently from the uniform distribution on [0, 1]d, and a parameter ε > 0, there exists
an ε-net of P , for axis-parallel boxes, of expected size4 O

(

1
ε log log

1
ε

)

.

6. Small-size ε-nets for fat triangles in the plane. In this section we present
an extension of our technique to the range space of points in the plane and α-fat
triangles for some fixed constant α > 0. Recall that a triangle is α-fat if each of its
angles is at least α. We thus have a set P of n points in the plane, and a parameter
ε > 0, and our goal is to construct a small-size ε-net N ⊆ P so that any α-fat triangle
that contains at least εn points of P contains a point of N . As before, we assume
that n, and the parameter r introduced below, are powers of 2.

Passing to semicanonical triangles. Following the analysis of [MPSSW94], we
cover each α-fat triangle T by a triple of “semicanonical” (α/2)-fat triangles, each
of which has a pair of edges with orientations taken from a fixed finite set D of
O(1/α) directions, and a third edge that bounds T ; see [MPSSW94, Lemma 3.2] and
Figure 5(a). Clearly, if T contains at least εn points of P , then at least one of the
three covering triangles contains at least εn/3 points of P .

This canonization step yields a constant number (O(1/α3), to be precise) of sub-
families of (α/2)-fat triangles, where the triangles in each subfamily have two edges at
fixed orientations in D and a third edge whose orientation can be assumed to belong
to a sufficiently small range. Our strategy is thus to construct an (ε/3)-net for P and
each of these subfamilies, and the union of all these nets will be an ε-net for P and
the family of all α-fat triangles.

Thus, in what follows we focus on a fixed semicanonical family F . As in [MPSSW94],
by applying an appropriate affine transformation, we may assume that each triangle
T ∈ F is an “almost isosceles” right triangle with one horizontal edge and one ver-
tical edge, which meet at the lower-left vertex of T , so that the orientation of the
hypotenuse of T differs from 135◦ by at most one degree, say; see Figure 5(b).

Thus let P and F be as above, and put r := 132/ε and s := cr log log r for some
fixed constant c > 2.

We begin the construction of our ε-net by preparing an auxiliary (1/r)-net N1 of
size O(r log log r) = O

(

1
ε log log

1
ε

)

for axis-parallel rectangular ranges, as provided
by Theorem 2.2, and include it in our overall net. Thus, if a triangle T ∈ F contains
a “heavy” rectangle, which contains at least n/r points of P , then it also contains
a point of N1, and we are done. We may therefore restrict the analysis to triangles
T ∈ F which do not contain any heavy axis-parallel rectangle.

We use a sampling model similar to that used in the cases of axis-parallel rectan-
gles and boxes for drawing a random subset R ⊆ P of expected size s. We include R
in our ε-net, so we need only cater to R-empty triangles T ∈ F .

We next construct a two-level range-tree T , over the points of P , in a manner
analogous to that presented in section 4. The points are sorted by their x-coordinates
in the primary tree and by their y-coordinates in each secondary tree, and we construct
each of the two levels of T down to nodes for which the size of their associated
subset is n/r. (We will shortly add a third level to T to handle one special case

4The expectation is with respect to the random choice of P .
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D

O

A

B

C

(a) (b)

Fig. 5. (a) The canonization step. The triangle ABC is covered by three triangles, each of
which contains the center O of the inscribed circle of ABC and has two edge orientations that are
taken from a fixed set of O(1/α) directions. Only one of these triangles (ABD) is depicted in the
figure. (b) A semicanonical right triangle after an appropriate affine transformation.

ℓu′

ℓu,v′′

σu,v

ℓu,v′

ℓu′′

T0

T ′

T0

T ′

(a) (b) (c)

Fig. 6. (a) The “quadrant” σu,v is defined by the line splitters ℓu′ , ℓu,v′ , but it is also bounded
on the other sides by ancestor splitters ℓu′′ and ℓu,v′′ . (b) The apex of σu,v, depicted by the black
dot, misses the triangle T0 when its heavy part T ′ is the left portion. (c) An anchored subtriangle T
appears as a triangle (lightly shaded) homothetic to T0 at the upper right quadrant or as a right-angle
trapezoid (darkly shaded) at the lower right quadrant.

in the analysis, but for the time being, two levels suffice.) Following the notation
of section 4, each node u of the primary tree is associated with the subset Pu of
points that it represents, and a secondary (y-sorted) tree Tu on Pu, and a node v of a
secondary tree Tu is associated with a corresponding subset Pu,v of Pu. Each nonleaf
node u of the primary tree stores a vertical line “splitter” ℓu, and a nonleaf node v
of a secondary tree Tu stores a horizontal line splitter ℓu,v. For each such secondary
node v of a tree Tu, the lines ℓu′ and ℓu,v′ , where u′ is the parent of u in T and v′

is the parent of v in Tu (as before, we handle only nodes for which u′ and v′ exist),
define a quadrant σu,v, which is the intersection of two halfplanes bounded by ℓu′ and
ℓu,v′ and containing Pu,v. (Technically, similar to the situation in section 4, σu,v is a
(possibly unbounded) rectangle, where the other vertical and horizontal edges of σu,v,
if they exist, are portions of respective splitters ℓu′′ , ℓu,v′′ , where u′′ is an appropriate
ancestor of u′ in T and v′′ is an appropriate ancestor of v′ in Tu; see Figure 6(a).)

Let T0 be a right triangle in our semicanonical family F containing at least εn/3 =
44n/r points of P . We locate first the highest node u′ in T so that the line ℓu′ meets
T0, thus splitting it into two parts, where the right part is a triangle, homothetic
to T0, and the left part is a right-angle trapezoid. Let T ′ be the part that contains
at least 22n/r points of P , and let u be the corresponding child of u′ so that its
slab σu contains T ′. We next locate the highest node v′ in Tu such that ℓu,v′ meets
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ℓu′

σu,v

M

ℓu,v′

ℓu′

ℓu,v′

σu,v

M

(a) (b)

Fig. 7. A maximal anchored Ru,v-empty (a) right triangle and (b) right trapezoid.

T ′, splitting it into two subparts. We focus on the part T of T ′ that contains at
least 11n/r points and denote by v the child of v′ whose corresponding quadrant σu,v

contains T .

We observe that when T ′ is the right portion of T0, the apex o of σu,v must
be contained in T0, which is helpful for our analysis since then it implies that T is
anchored at o in a sense similar to that in the preceding sections. However, this
property does not necessarily hold when T ′ is the left portion of T0, in which case the
analysis is more involved and some part of it requires an additional structure built on
top of the tree T —see Figure 6(b) and below. We thus begin with the analysis for
the former case and then proceed to the more intricate latter case.

T ′ is the right portion of T0. The clipped region T is either (a) a triangle, ho-
mothetic to T0, whose right-angle vertex is the apex o of σu,v, or (b) a right-angle
trapezoid, having o as its top left vertex, so that its bases are horizontal, its left side
is vertical, and its right side is a portion of the hypotenuse of T0; see Figure 6(c). In
both cases we refer to T as being anchored at o. Note that in case (a) v is a right
child of its parent, representing an upper quadrant, and that in case (b) v is a left
child, representing a lower quadrant. Also, in both cases the slope of the slanted edge
of T is negative, so in case (b) the slanted edge moves “away” from o, making the
lower base of T longer than its upper base.

Recall that we have drawn a “global” random sample R of P . For each node v of
each secondary tree Tu, we put Ru,v := R∩σu,v and ru,v = |Ru,v|. We next construct
a family Mu,v of maximal anchored Ru,v-empty regions, with the property that each
anchored Ru,v-empty region T (triangle or trapezoid within the right portion T ′, as
above), is covered by at most two regions in Mu,v. (Below we will add more regions
to Mu,v, to handle other heavy subparts of T0.) Each region in Mu,v is either (a) an
anchored Ru,v-empty right triangle whose hypotenuse touches two points of Ru,v (that
is, it supports an edge of the convex hull of Ru,v), or (b) an anchored Ru,v-empty
right-angle trapezoid whose slanted side (has negative slope and) touches two points
of Ru,v, and whose unanchored (lower) horizontal base passes through a point of Ru,v

(which might coincide with one of the two points lying on the slanted edge, i.e., be
a vertex of the region), or else lies on the bottom side of the “quadrant” σu,v. In
each of these cases, the region is clipped within σu,v (when the actual rectangle σu,v

is delimited by more than two splitters). See Figure 7.

In case (a), we also include in Mu,v two axis-parallel rectangles M1,M2 anchored
at o, so that (i) the right edge of M1 passes through the leftmost point of Ru,v and
its top edge lies on the top side of σu,v if it exists (otherwise M1 extends to ∞),
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ℓu′

σu,v

M1

M2 ℓu,v′

ℓu′

ℓu,v′

M1

M2

σu,v

ℓu′

M ′

M

ℓu,v′

e
σu,v

(a) (b) (c)

Fig. 8. Anchored maximal Ru,v-empty rectangles (a) for upper right quadrants and (b) for
lower right quadrants. (c) The larger right trapezoid M ′ cannot be empty if it shares its slanted edge
e with M .

and (ii) the top edge of M2 passes through the bottommost point of Ru,v and its
right edge lies on the right side of σu,v if it exists (otherwise M2 extends to ∞).
See Figure 8(a). In case (b), we also include in Mu,v axis-parallel rectangles of the
following two types: (i) rectangles that are anchored at o, with both right and bottom
sides passing through a point of Ru,v; (ii) rectangles whose left and right sides lie,
respectively, on the left and right sides of σu,v (if the right side exists), and whose top
and bottom sides pass through two respective points of Ru,v, necessarily consecutive
in the y-order (including two extreme rectangles, above the highest point and below
the lowest point). See Figure 8(b). Finally, if Ru,v is empty, then Mu,v consists of
the single region σu,v.

We next claim that |Mu,v| = O(ru,v+1). This is trivial when Ru,v = ∅, so assume
that Ru,v is nonempty. The claim is then obvious for regions of type (a), because their
number is at most two plus the number of edges of the lower left convex hull of Ru,v.
To bound the number of regions of type (b), sort the points of Ru,v in decreasing
y-order, and let the sorted sequence be (q1, q2, . . . , qru,v

). Put R(j) = {q1, . . . , qj−1}
for j = 1, . . . , ru,v. Let M be a region of type (b) whose lower horizontal base passes
through qj so that qj is not a vertex of M . Then its slanted edge must contain an
edge e of the (lower left) convex hull of R(j). Moreover, if such an M exists, then
there cannot exist another region M ′ whose slanted edge contains e and whose lower
base passes through any point qk with k > j; see Figure 8(c). If qj is the lower
right vertex of M , the other point lying on the slanted edge belongs to R(j) and is
uniquely determined. Hence the number of regions of type (b) (ignoring the extreme
rectangular regions) is upper bounded by ru,v plus the overall number of distinct
edges of the “incremental” convex hulls of R(1), . . . , R(ru,v). The latter number is
O(ru,v) because every newly added point qj generates one new edge of the modified
hull, possibly deleting several other edges from the hull. (Note that this is exactly the
analysis of the classical “Graham scan” convex hull algorithm.) There are only two
extreme rectangular ranges of type (a) in Mu,v. The number of extreme rectangular
ranges of type (b) is easily seen to be O(ru,v + 1), using a variant of the analysis in
section 2.

The collection M of canonical covering regions (as in section 3) includes so far the
union of all the sets Mu,v, over all primary nodes u and all nodes v of the respective
secondary trees Tu, for a total of |M| = O(|R| log2 r + r log r) regions.

We also have the following promised property: Let T be the remaining portion of
an initial triangle T0, and let u and v be the respective primary and secondary nodes
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q′

σu,v

T

ℓu,v′

ℓu′

q

q′′

ℓu′

σu,v

q

q′

T

ℓu,v′

(a) (b)

Fig. 9. The dotted edges are those of the original triangle or trapezoid T . The dashed edges
are the slanted edges of appropriate expansions of the original T . Each such expansion is contained
in the union of a pair of regions of Mu,v.

T ′

T

T0 T0

T ′

T

T ′

T

T0

(a) (b) (c)

Fig. 10. (a) T is an anchored trapezoid. (b) The apex of the tertiary quadrant, depicted by the
lightly shaded dot, hits the triangle T . (c) T is a truncated axis-parallel rectangle.

for which T is an anchored triangle or trapezoid within σu,v, as constructed above.
Then, if T is Ru,v-empty, it is contained in the union of at most two regions of Mu,v.

Indeed, we may assume thatRu,v �= ∅. Suppose first that T is a triangle. Translate
the hypotenuse of T away from the apex o of σu,v, until it passes through a point q of
Ru,v (necessarily a hull vertex). Then rotate the new hypotenuse about q clockwise
(resp., counterclockwise) until it meets a second point q′ (resp., q′′) of Ru,v or becomes
vertical (resp., horizontal). The two resulting triangles (or rectangles in the extreme
cases) belong to Mu,v, and their union covers T . See Figure 9(a).

Suppose next that T is a trapezoid. Expand T downward by sliding its bottom
edge parallel to itself, while keeping the remaining bounding lines fixed, until its
bottom edge hits some point q = qj of Ru,v (that is, in the above notation, q is the
jth highest point of Ru,v) or else reaches the lower boundary of σu,v. Then translate
the slanted edge of the new trapezoid to the right until it hits a point q′ of Ru,v

(more precisely, of R(j)). Finally, rotate the new slanted edge about q′ clockwise and
counterclockwise until it meets a second point of R(j) or becomes vertical or horizontal;
the clockwise rotation may end when it hits q = qj . This yields two trapezoids (or
rectangles) of Mu,v whose union covers T . See Figure 9(b). (Note that in both cases,
the expansion of T may fall outside σu,v. This, however, does not violate our analysis,
since in this case T is still contained in the union of at most two regions of Mu,v,
possibly clipped within σu,v.)

T ′ is the left portion of T0. We next consider the more involved case where T ′ is
the left portion of T0.
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First consider the case where T is the top portion of T ′. Then T is a right-angle
trapezoid, its bases are vertical, its bottom side is horizontal, and its upper side is
a portion of the hypotenuse of T0. Moreover, in this case T has o as its bottom
right vertex and is thus anchored at o; see Figure 10(a). Hence, the current setting
is a reflected rotation (by 90 degrees) of the scenario presented in the previous case
(for lower right quadrants), and T can be covered by at most two maximal R-empty
regions of a similar kind as those presented above, whose overall number is only linear
in the size of Ru,v within the quadrant σu,v. We add the new covering regions to our
collection Mu,v.

If T is a triangle, then it is no longer anchored at o. In this case, we extend the
construction of the range-tree decomposition T to include a third level, so that each
tertiary tree Tu,v associated with a node v of a secondary tree Tu stores the points
of Pu,v by their x-order. We construct each of these levels of T down to nodes for
which the size of their associated subset is n/r. Let w be the highest node in the
tertiary tree Tu,v under consideration whose associated vertical line crosses T . This
last step guarantees that each of the two resulting portions of T is now anchored at the
apex o′ of the respective new subquadrant σu,v,w, and the heavier of the two portions
contains at least 5.5n/r points of P . See Figure 10(b). We thus face a scenario similar
to the preceding case (where now the scene is reflected and rotated by 90 degrees),
where we need to proceed with either an anchored triangle or an anchored trapezoid.
Extending the definition of the regions placed so far in M in an appropriate manner,
we can conclude that T is covered by at most two maximal R-empty regions of the
new kind, or, rather, Ru,v,w-empty regions, where Ru,v,w = R∩ σu,v,w. We add these
new covering regions (for the two subcases where T is a triangle or a trapezoid) to
M and note that the size of M increases by a log r-factor to O(|R| log3 r + r log2 r).

The more subtle case is when T is the bottom portion of T ′. If o lies in T0, then
T is a heavy axis-parallel rectangle (anchored at o) and is therefore stabbed by the
initial net N1, so we may disregard this case.

Consider then the case where o misses T0. Then T is a truncated axis-parallel
rectangle obtained from an axis-parallel rectangle (anchored at o) by removing a right-
angle triangle, whose right angle is at o and which shares its hypotenuse with that
of T0; see Figure 10(c). We first trim T into a right-angle triangle with two vertices
lying on the boundary of σu,v. For this we remove from T at most two axis-parallel
rectangles, as illustrated in Figure 11(a), and recall that by our assumption neither of
them contains more than n/r points of P , so the trimmed portion, which we continue
to denote as T , is still heavy, containing at least 9n/r points.

Let β+, β− denote the two rays emanating from o into σu,v and forming angles of,
say, 40◦, with the top and right sides of σu,v, respectively. These rays partition σu,v

into three “sectors,” denoted, in their counterclockwise order around o, as σ+
u,v, σ

0
u,v,

and σ−
u,v. The angle (40◦) is chosen so as to guarantee the following two properties.

(a) The right-angle vertex of T lies in σ0
u,v. (b) Let a and b denote the respective

intersection points of β+ with the hypotenuse and the left side of T , and let c and d
denote the respective intersection points of β− with the hypotenuse and the bottom
side of T . Then c lies above b and a lies to the right of d, as follows by simple
trigonometric analysis. See Figure 11(b). This “monotonicity” property is crucial for
the analysis—see below.5

The partition of σu,v induces a partition of T into three corresponding portions,

5This is the only part of the analysis where we use the fact that the slope of the hypotenuse is
close to −1.
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σu,v

T

T0

T ′

σ+
u,v

σ−
u,v

T

σ0
u,v

d

β+

β−

b

a

c

(a) (b)

Fig. 11. (a) The trimmed triangle T is depicted by the shaded region. (b) The partition of σu,v

into three sectors.

referred to as its top, middle, and right portions. Since T is heavy, at least one of
these portions contains at least 3n/r points. We consider only the cases where the
heavy portion is the top or the middle portion. The right portion is handled by a
symmetric argument.

A top heavy portion. So assume first that the heavy portion is T+ = T ∩σ+
u,v , and

refer to Figure 12(a). Translate the “hypotenuse” of T+ (the edge contained in the
hypotenuse of T0) toward o, while keeping its endpoints lying on the top boundary
γ of σu,v and on β+, respectively, until it hits a point p ∈ R. Then rotate its top
portion clockwise around p and its bottom portion counterclockwise around p, until
each of them hits a second point of R, which we denote, respectively, as p+ and p−,
or becomes vertical or horizontal, respectively.6

Assume that both p+ and p− exist; the other cases are treated similarly and are, in
fact, simpler. Let T ∗ be the region bounded by the left edge of T , by β+, by a portion
of the top side of σu,v, and by the two segments e+ = pz+, e− = pz−, extending
from p through p+ and p− to the top boundary of σu,v and to β+, respectively; see
Figure 12(a). Clearly, T ∗ contains T+.

We cover T ∗ by two regions, both R-empty. The top region ∆+ is a right trapezoid
whose bases lie on the top edge of σu,v and on the horizontal line through p, whose
slanted edge is e+ and whose vertical edge passes through a point of R (or extends all
the way to the left edge of σu,v if it exists). The bottom region ∆− is a quadrangle
bounded by the horizontal line through p, by e−, by β+, and by a fourth left vertical
edge passing through a point of R (or else it extends all the way to the left edge of
σu,v); see Figure 12(b).

It is easily checked that ∆+ and ∆− are uniquely determined by e+ and e−,
respectively, for a fixed choice of R and for a fixed quadrant σu,v. We add all these
regions to our canonical collection Mu,v (and eventually to M).

We next argue that the number of these R-empty (or rather Ru,v-empty) regions,
within σu,v, is linear in |Ru,v|. That is, we claim that the number of edges e+, e−

that can arise in such a construction is linear in |Ru,v|. Indeed, consider, say, the edge
e+, defined by the pair p, p+ ∈ Ru,v. We claim that a fixed point p+ can participate

6Note that rotating only the top and bottom portions separately guarantees that the point p−

at which the counterclockwise rotation stops cannot lie to the left of T .
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p
T+

p+

a

p−

β+

β−

σ+
u,v

z+

z−
p

z−T+

p+∆+

∆−

p−

β+

β−

σ+
u,v

z+

(a) (b)

p+

T+

τ+(p′p+)

β+

β−

σ+
u,v

p p′

τ+(pp+)

σ+
u,v

τ−(pp−)

τ−(p(p′)−)

β+

β−

T+

p

p−

(p′)−

(c) (d)

Fig. 12. (a) T ∗, depicted by the bold polygon, contains T+. (b) The union of the two R-empty
regions ∆+, ∆− covers T ∗. (c) Illustrating the argument that a given p+ can be coupled with at
most one point p. (d) Illustrating the argument that a given p can be coupled with at most one point
p−.

in at most one such pair. Indeed, consider the triangle τ+(pp+), bounded by the line
containing e+, by β+, and by the vertical line through p+; see Figure 12(c). The
construction guarantees that this triangle is Ru,v-empty. Hence, if p+ participated in
another edge (e′)+, with another lower point p′ ∈ Ru,v which lies counterclockwise
to p (about p+), then p would have to lie in the corresponding triangle τ+(p′p+),
contradicting the fact that this triangle is Ru,v-empty; see Figure 12(c). Similarly, a
fixed point p can participate in at most one pair p, p−. Indeed, consider the triangle
τ−(pp−), bounded by the line containing e−, by β+, and by the vertical line through
p; see Figure 12(d). The construction guarantees that this triangle is Ru,v-empty.
Hence, if p participated in another edge (e′)−, with another lower point (p′)− ∈ Ru,v

which lies counterclockwise to p−, then p− would have to lie in the corresponding
triangle τ−(p(p′)−), contradicting the fact that this triangle is Ru,v-empty.

A middle heavy portion. Assume next that the heavy portion is T 0 = T ∩ σ0
u,v,

which is a pentagon bounded by portions of β+, β−, the left and bottom edges of T ,
and its hypotenuse.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SMALL-SIZE ε-NETS 3271

σ0
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T 0
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p−p

d
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b

σ0
u,v

z+

z−

p+

p−p

T 0

∆+

β−

β+ ∆−

d

b

a

c

(a) (b)

Fig. 13. (a) T ∗, depicted by the bold polygon, contains T 0. (b) The union of the regions ∆+,
∆−, depicted by the two respective bold polygons, covers T ∗, except possibly for an axis-parallel
rectangle, drawn lightly shaded.

Refer to Figure 13, and translate the “hypotenuse” of T 0 (the edge lying on the
hypotenuse of T0) toward o, while keeping its endpoints on β+ and on β−, respectively,
until it hits a point p ∈ R. Then rotate its top portion clockwise around p and its
bottom portion counterclockwise around p, until each of them hits a second point of
R, which we denote, respectively, as p+ and p−, or becomes vertical or horizontal,
respectively.

Assume that both p+ and p− exist; as above, the other cases are treated similarly
and are in fact simpler. Let T ∗ be the region bounded by (portions of) β+, β−, the
left and bottom edges of T , and the two segments e+ = pz+, e− = pz−, extending,
respectively, from p through p+ and p− to β+ and to β−; see Figure 13(a). Clearly,
T ∗ contains T 0.

We next argue that the number of edges e+, e− that can arise in the above
construction is linear in |Ru,v|. The argument more or less follows that given above
for T+. That is, consider, say, the edge e+, defined by the pair p, p+ ∈ R, and observe,
as above, that a fixed point p+ can participate in at most one such pair. Similarly, a
fixed point p can participate in at most one pair p, p−.

We cover T ∗ by the following two R-empty regions, plus an axis-parallel rectangle.
We first observe that, due to the monotonicity property stated above, c lies above b,
and a lies to the right of d, and it is thus guaranteed that p, p+, p− lie above b and
to the right of d. Let E+ (resp., E−) denote the segment between β+ and β− passing
through p and p+ (resp., through p and p−). By construction, E+ lies fully to the
right of a and thus also to the right of d. Let ∆+ be the Ru,v-empty quadrangle
bounded by β+, β−, E+, and a left vertical edge which passes through a point of
Ru,v (or else extending all the way to the left side of σu,v). Similarly, E− lies fully
above c and thus also above b. Let ∆− be the Ru,v-empty quadrangle bounded by
β+, β−, E−, and a bottom horizontal edge which passes through a point of Ru,v (or
else extending all the way to the bottom side of σu,v). Note that ∆+ (resp., ∆−) is
uniquely determined by E+ (resp., by E−).

Either ∆+ ∪∆− fully cover T 0, or else they leave out an axis-parallel rectangle,
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whose top edge lies below b and whose right edge lies to the left of d. By assumption,
this rectangle contains fewer than n/r points of P , and since T 0 contains at least
3n/r points, it follows that each of ∆+, ∆− must contain at least n/r points of P .
See Figure 13(b). We add these regions to our collection Mu,v (and, consequently, to
M).

Applying Theorem 3.2. The preceding analysis fits the abstract framework of
Theorem 3.2. The set R1 is the collection of all the covering regions that we have
used in the various subcases, including triangle, trapezoids, rectangles, and the regions
constructed in the second part of the analysis (in which T ′ is the left portion of T0),
without the requirement that they be R-empty and maximal. We note that each of
these regions is defined by at most three points of P . For a given random sample
R, the set R′

1 is the corresponding set M that we have used above. The set R0

is the collection consisting of all the portions T (of original fat triangles T0) of the
various kinds considered above, clipped to within the respective regions, which are
either quadrants σu,v, over all pairs u, v, portions of lower left quadrants delimited by
the corresponding rays β+, β−, or portions of upper left secondary quadrants split
by a tertiary vertical line. The preceding analysis shows that each εn/3-heavy and
R-empty triangle of F (recall that in the canonization step each original triangle has
been covered by three semicanonical triangles) contains a (3n/r)-heavy range of R0,
and each range of R0 is covered by at most two regions of M (and possibly by a
third axis-parallel rectangle). We recall that the size of M is O(|R| log3 r + r log2 r),
so its expected value is O(s log3 r). Hence, we are within the abstract framework of
section 3, so we can conclude the following.

Theorem 6.1. For any set P of n points in the plane, any fixed constant param-
eter α > 0, and a parameter ε > 0, there exists an ε-net of P , for α-fat triangles, of
size O

(

1
ε log log

1
ε

)

, where the constant of proportionality depends on α.

Constructing the ε-net. We construct an ε-net of this size using an easy variant of
the algorithms presented in sections 2 and 4. For each of the O(1/α3) semicanonical
families, we apply an affine transformation to the plane and to P , which turns the two
fixed edge directions into the coordinate directions; by a slight abuse of notation we
continue to refer to the transformed set as P . Consider one such family. We construct
the two-level range tree T over the points of P , using O(n logn) time and storage.
For the first case of the analysis, where T ′ is the right portion of T0, we enumerate the
maximal anchored Ru,v-empty regions M in each canonical quadrant σu,v by tracking
the edges appearing on the “incremental” convex hull of the points in Ru,v for lower
right quadrants, or by just enumerating the edges of the lower left hull of Ru,v for
upper right quadrants. We can produce these regions in time O(ru,v log ru,v), although
we still need to test which of them are Ru,v-empty. For simplicity, we perform this
step by brute force. This takes a total of O(1+r2u,v) time per node, so the overall cost
of producing these canonical empty regions is O(s2), as is easily checked (in this case
the time bounds constitute a geometric sequence over the various levels of the tree);
we assume s to be sufficiently small (specifically, s = o(n1/2)) to make this bound
at most linear in n. Finding the degenerate canonical empty rectangles can be done
by applying enumeration algorithms similar to those in section 2. For the latter case
of the analysis (where T ′ is the left portion of T0), we use a construction similar to
that used above for the case where T is the top portion of T ′, with an appropriate
reflection and rotation, applying it at the tertiary level of the tree. When T is the
bottom portion of T ′, we partition each quadrant at the secondary level into three
sectors as above, and in each of them we generate the maximal empty regions ∆+,
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∆− in a brute-force manner. That is, for each point p1 in, say, σ+
u,v, we search in

linear time for the first point p2 of Ru,v in that sector which lies counterclockwise
about p1 to the downward vertical ray emanating from p1. For each such pair of
points (p1, p2), we compute the regions ∆+, ∆− that they induce (where the bottom
edge of ∆1 passes through p2 and the top edge of ∆2 passes through p1) in a brute-
force manner, by examining each of the remaining points of Ru,v as the potential left
delimiter of either region. We use similar constructions to produce the corresponding
regions in σ0

u,v, σ
−
u,v. As above, since the number of such regions in a fixed sector is

only linear in the number of points, the overall running time, over all sectors and all
nodes in the tree, is O(s2).

We next compute the weight factor tM of each of the O(s log3 r) maximal empty
regionsM ∈ M. For this, we prepare an appropriate version of a triangle range count-
ing structure in the plane, which uses linear storage and O(n logn) preprocessing time
and answers queries in time O(n1/2 polylogn) [Mat92a]. The overall cost of answering
O(s log3 r) queries, including preprocessing, is thus O(n logn+sn1/2 log3 r polylogn),
which is only O(n log n), for s = O(n1/2/ logc n), for a suitably large absolute constant
c > 0. We then proceed in a similar manner as that described for the previous algo-
rithms in sections 2 and 4. Omitting any further details, we obtain that the overall
expected running time of the algorithm is O(n log n), with a constant of proportion-
ality that depends on α (for s = O(n1/2/ logc n), for some a suitably large positive
absolute constant c).

7. Improved bounds for ε-nets for dual range spaces. In this section we
observe that the technique developed in this paper can be adapted to the scenarios
considered by Clarkson and Varadarajan [CV07] and yields improved bounds for the
size of ε-nets in many of the cases considered there.

Rephrasing the notation used in the introduction, we consider the dual range
space Ξ = (C,Q), where the ground set C is a collection of geometric regions in R

d,
and each range in Q is of the form Qx = {C ∈ C | x ∈ C} for some x ∈ R

d. Let
us consider a finite subcollection C′ of any m regions of C, and let W ′ denote the
complement of their union. We assume that W ′ can be decomposed into cells of some
simple shape. That is, each cell M in the decomposition is a (possibly unbounded)
portion of W ′ that is defined by a set D(M) of O(1) regions of C′, in the sense
that it appears in the decomposition of the complement of the union of just those
O(1) regions (in particular, the cells of the decomposition do not necessarily have
the same shape as the regions of C). In the terminology used in the probabilistic
framework of Clarkson and Shor [CS89], we call D(M) the defining set of M . We
also associate with M a killing set K(M), consisting of all regions in C′ that intersect
M . In many geometric range spaces of this kind, the cells are those generated by
the vertical decomposition of the complement of the union [SA95], although there
exist other types of decompositions for various special classes of regions; see, e.g.,
[AMS98, Cla87, CS89] for a description of this (standard) set-up.

Clarkson and Varadarajan [CV07] further assume that the number of cells M
in the complement of the union is at most mϕ(m), where ϕ(m) is some slowly in-
creasing sublinear function (recall the definitions in section 3). Under these assump-
tions, Clarkson and Varadarajan show that the range space Ξ admits ε-nets of size
O
(

1
εϕ

(

1
ε

))

. Thus, if ϕ(m) = o(logm), the resulting nets are smaller than the stan-

dard bound O
(

1
ε log

1
ε

)

of [HW87].
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In this section we obtain the following improvement.7

Theorem 7.1. Under the assumptions made above, the range space Ξ admits an
ε-net of size O

(

1
ε logϕ

(

1
ε

))

for any 0 < ε ≤ 1.
Remarks. (1) The bound in the theorem improves upon the general bound

O
(

1
ε log

1
ε

)

when ϕ(m) = 2o(logm), thus extending the applicability of this technique
beyond the “effective range” ϕ(m) = o(logm), where the original technique of [CV07]
yields an improvement.

(2) The probabilistic model that we choose (similarly to the model in section 2)
yields a considerably simpler analysis than that in [CV07].

Proof. We follow some of the ideas of the general approach of section 3 and adapt
them to the current scenario. Here we have a finite subcollection of n elements of C,
which, for simplicity, we continue to denote by C. We put r := 1/ε, s := cr logϕ(r),
and π := s/n, where c > 1 is a constant. We draw a random sample R of regions
of C, picking each region, independently, with probability π. We form the union U
of R and decompose its complement into at most |R|ϕ(|R|) simply shaped regions,
each determined by O(1) sets of R; as above, we refer to the regions which form the
decomposition as “cells.” We define the weight factor tM of a cell M to be s|CM |/n,
where CM is the subcollection of those regions of C which meet M . By the standard
ε-net theory [HW87], or, alternatively, by the Clarkson–Shor technique [Cla87, CS89],
it follows that, with high probability, we have8 |CM | = O

(

n
s log s

)

for each cell M ,
and, in an informal and imprecise sense, the expected size of CM , for a cell M , is only
O(n/s).

As above, we take each “heavy” cellM , with tM ≥ c logϕ(r), and use the standard
theory of ε-nets to deduce that there exists a (1/tM )-net NM for CM , whose size is
O(tM log tM ). We output the union of R with all the sets NM , over all heavy cells
M , as the desired (1/r)-net (that is, ε-net) N .

Adapting the argument in section 3, it is straightforward to verify that N is
indeed an ε-net. Recall that in this dual context an ε-net is a subset of regions
covering all points that are contained in at least an ε-fraction of the regions. To
bound the expected size of N , we follow the same analysis as in section 3. That is, we
apply the Exponential Decay Lemma in this context, where the defining and killing
sets of a cell M are defined as above. In essentially all cases considered in [CV07] and
below, the axioms assumed in [AMS98], or their simplified version used in section 3,
hold. We denote by CT(R) the set of all cells appearing in the decomposition of the
complement of the union of a subset R of C, and by CTt(R) the subset of CT(R)
consisting of those cells with weight factor at least t.

It thus follows that the Exponential Decay Lemma is applicable in this scenario
as well. The rest of the analysis is essentially identical to that in Theorem 3.2. We
thus conclude that the overall expected size of the subsamples “within” each heavy
cell of the complement of the union is sublinear in r, so the expected size of N is
dominated by that of R; thus it is O(r logϕ(r)).

Several special cases. Theorem 7.1 immediately implies improved bounds on the
size of ε-nets for dual range spaces of several classes of regions and points, for which the
union complexity (or, rather, the complexity of the decomposition of its complement)

7Of course, it is an improvement only when ϕ is ω(1); otherwise, the bound is O(1/ε), as already
follows from [CV07].

8Normally, for these bounds to hold, one needs to consider only those regions of C which cross
(i.e., intersect but do not fully contain) M . However, in our case we do not need this distinction:
Since each cell M is disjoint from all regions of R, the above analysis also applies to regions of C that
fully contain M .
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is known to be nearly linear. We first present some of the standard families with
this property and state their union complexity. Since these are families of planar
regions, the following bounds also apply, with some care, for the complexity of the
decomposition of the complement of their union. (We consider only families for which
the known bound is superlinear; there is no improvement when the union complexity
is linear.)

α-fat triangles (Figure 14(a)). Recall that a triangle is α-fat if each of its angles
is at least α. The complexity of the union of n such triangles is O(n log logn), where
the constant of proportionality depends on the fatness factor α [MPSSW94, PT02].

Locally γ-fat objects (Figure 14(b)). These objects were recently introduced by
de Berg [dB08, dB10]. Given a parameter 0 < γ ≤ 1, an object o is locally γ-fat if, for
any disk D whose center lies in o, such that D does not fully contain o in its interior,
we have area(D ⊓ o) ≥ γ · area(D), where D ⊓ o is the connected component of D ∩ o
that contains the center of D. We also assume that the boundary of each of the given
objects has only O(1) locally x-extreme points, and that the boundaries of any pair
of objects intersect in at most s points, for some constant s. Both conditions, for
example, are satisfied if we assume that each γ-fat object has constant description
complexity. It is then shown in [dB10] that the combinatorial complexity of the
union of n such objects is O(λs+2(n) log n), with a constant of proportionality that
depends on γ, where λt(q) is the nearly linear maximum length of Davenport–Schinzel
sequences of order t on q symbols (see [SA95]). When the objects have roughly
the same size (i.e., the ratio of the diameters of any pair of objects is bounded by
some constant), the complexity of the union decreases to O(λs+2(n)). Locally γ-fat
objects are a generalization of several other previously studied classes of “fat” objects
[Ef05, EK99, ES00].

Semiunbounded pseudotrapezoids (Figure 14(c)). Here each object is a region of
one of the forms

τ−x1,x2,f
=

{

(x, y) | x1 ≤ x ≤ x2, y ≤ f(x)
}

or

τ+x1,x2,f
=

{

(x, y) | x1 ≤ x ≤ x2, y ≥ f(x)
}

,

where f is a continuous function. We assume that the graphs of any pair of these
functions intersect in at most s points for some constant s. In this case the complexity
of the union of any n such objects is O(λs+2(n)); see, e.g., [SA95]. If the objects are
pseudohalfplanes, that is, x1 = −∞ and x2 = +∞ for each object, the bound on the
union complexity slightly improves to O(λs(n)).

Jordan arcs with three intersections per pair (Figure 14(d)). Each object is
bounded by some Jordan arc which starts and ends on the x-axis but otherwise lies
above it, and by the portion of the x-axis between these endpoints, and each pair of
the bounding Jordan arcs intersect at most three times. In this case the complexity of
the union of any n such objects is O(λ3(n)) = O(nα(n)), where α(·) is the (extremely
slowly growing) inverse Ackermann function; see [EGH*89]. We also assume that the
boundary of each object has only O(1) locally x-extreme points.

Recall that the actual condition is about the complexity of a decomposition of
the complement of the union, rather than just the complexity of the union itself.
However, since we are dealing with planar objects of the above kind, the standard
vertical decomposition technique (see, e.g., [SA95]) yields a decomposition whose
complexity is proportional to that of the union, so the above bounds hold for the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3276 BORIS ARANOV, ESTHER EZRA, AND MICHA SHARIR

(a) (b) (c) (d)

Fig. 14. The types of regions considered in this section: (a) An α-fat triangle; (b) a locally
γ-fat region; (c) semiunbounded pseudotrapezoids; and (d) regions bounded by Jordan arcs with three
intersections per pair.

decomposition as well.9

As noted by Clarkson and Varadarajan [CV07], their general approach implies
that any dual range space of α-fat triangles and points admits an ε-net of size
O
(

1
ε log log

1
ε

)

. Similarly, any dual range space of locally γ-fat objects and points,
where the objects have roughly the same size, and each pair of object boundaries in-
tersect in at most s points, admits an ε-net of size10 O

(

λs+2

(

1
ε

))

. When the objects
are bounded by Jordan arcs with three intersections per pair, as defined above, the
size of the net becomes O

(

1
εα

(

1
ε

))

.

Using Theorem 7.1 we can improve each of these bounds of [CV07], and also
extend the bound for the case of locally γ-fat objects of arbitrary sizes (a case that
cannot be treated by the original technique of [CV07]). That is, we have the following
corollary.

Corollary 7.2. (a) Any dual range space of α-fat triangles and points in the
plane admits an ε-net of size O

(

1
ε log log log

1
ε

)

for any 0 < ε ≤ 1.

(b) Consider a dual range space of locally γ-fat objects of arbitrary sizes in the
plane and points, so that the boundary of each of the given objects has only O(1)
locally x-extreme points, and any pair of these boundaries meets in at most s points
for s constant. Then any such dual range space admits an ε-net of size O

(

1
ε log log

1
ε

)

for any 0 < ε ≤ 1. When these objects have roughly the same size, the bound improves
to O

(

1
ε log βs+2

(

1
ε

))

, where βt(1/ε) = ελt(1/ε).

(c) Consider a dual range space of semiunbounded pseudotrapezoids and points in
the plane, where, for any pair of trapezoids, the graphs of their bounding functions
intersect in at most s points for some constant s. Then any such dual range space ad-
mits an ε-net of size O

(

1
ε log βs+2

(

1
ε

))

for any 0 < ε ≤ 1. When the pseudotrapezoids

are pseudohalfplanes, the bound improves to O
(

1
ε log βs

(

1
ε

))

.

(d) Consider a dual range space of objects and points, where each object is bounded
by a Jordan arc which starts and ends on the x-axis and by the portion of the x-axis
between these endpoints. Each bounding Jordan arc has only O(1) locally x-extreme
points, and each pair of these arcs intersects at most three times. Then any such dual
range space admits an ε-net of size O

(

1
ε logα

(

1
ε

))

for any 0 < ε ≤ 1.

Remark. Applying the known upper bounds on the quantities βs(n) (see [ASS89,

9This is why we need to assume that no object boundary “wiggles” too much.
10In fact, Clarkson and Varadarajan [CV07] applied their technique to the more restricted class

of (α, β)-covered objects of roughly equal size (see [Ef05] for the definition and the union complexity
bound) and obtained a similar bound; the same technique applies to the more general class of locally
γ-fat objects.
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Niv09]), we have

log βs(n) =

{

O
(

α⌊(s−2)/2⌋(n)
)

, s ≥ 2 even,

O
(

α⌊(s−2)/2⌋(n) logα(n)
)

, s ≥ 3 odd,

while β1(·) and β2(·) are constants.
In closing, we note that, although the technique, as laid out at the beginning of

this section, can be applied in principle to dual range spaces in any dimension, we
have managed to apply it only to planar dual range spaces. The reason is the scarcity
of classes of regions in higher dimensions with linear or, rather, near-linear bounds
on the complexity of the decomposition of the complement of their union. It would
of course be interesting to find such classes, and to apply our new technique to them.

8. Improved approximation factors for geometric SET COVER and

HITTING SET problems. In this section we plug the improved bounds on the
size of ε-nets, as derived in the preceding sections, into the machinery of Even, Rawitz,
and Shahar [ERS05] to obtain improved approximation factors for the corresponding
set cover or hitting set problems.

We first briefly recall this technique. For simplicity, we only review the hitting
set variant. We are given a range space (P,R), and the goal is to find a small subset
H of P which meets every range in R. The technique of Even, Rawitz, and Shahar
[ERS05] is based on LP-relaxation, and can be interpreted as a simplification for the
preceding technique of Brönnimann and Goodrich [BG95]. The technique assumes
the availability of two black-box routines: (i) a routine for approximately solving a
linear program of an instance of the “fractional hitting set problem” (see below);
(ii) an ε-net finder, which is a procedure that, given any positive weight function w
on X and ε > 0, constructs a weighted ε-net N for (X,R) in the sense that N hits
each range whose weight is at least εw(X), with the weight of a subset of X being
the sum of weights of its elements.

We now proceed as follows. Put P = {p1, . . . , pn} and R = {R1, . . . , Rm}. We
first solve the fractional hitting set problem defined by the following LP-system:

min

n
∑

i=1

xi

s.t.
∑

pi∈Rj

xi ≥ 1, j = 1, . . . ,m,

xi ≥ 0, i = 1, . . . , n.

Let Opt be the value achieved at the minimum. We then normalize the above LP-
system. Putting zi =

xi

Opt for each i = 1, . . . , n and ε = 1
Opt , we obtain the system

(1)

max ε

s.t.

n
∑

i=1

zi = 1,

∑

pi∈Rj

zi ≥ ε, j = 1, . . . ,m,

zi ≥ 0, i = 1, . . . , n.

The algorithm then consists of the following two steps: (i) Solve (1). Let Z∗ :=
{z∗1 , . . . , z

∗
n} be the resulting weights and ε∗ the corresponding value of ε. (ii) Invoke



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3278 BORIS ARANOV, ESTHER EZRA, AND MICHA SHARIR

a net-finder for the set system (P,R) with respect to the weights given by Z∗ and
the parameter ε∗, which outputs a weighted ε∗-net H . The key observation of Even,
Rawitz, and Shahar [ERS05] is that H is the actual hitting set that we seek. Indeed,
since the sum of the weights of the points in each range exceeds ε∗, it follows by
definition that each range has to be stabbed by H .

Even, Rawitz, and Shahar [ERS05] proposed several polynomial-time algorithms
to solve step (i) (some of which rely on approximations, as the algorithms of Young
[You95] and Plotkin, Shmoys, and Tardos [PST95]; see [ERS05] for details).

We next apply this technique to our three main (primal) range spaces, consisting
of points and axis-parallel rectangles in the plane, of points and axis-parallel boxes
in R

3, and of points and α-fat triangles in the plane. We have presented in sections
2, 4, and 6 algorithms that construct an ε-net for these cases in nearly linear time,
and it is straightforward to generalize these algorithms to the weighted case within
the same asymptotic time bound (using, e.g., the rounding technique of Matoušek
[Mat95]). We thus obtain the following corollary.

Corollary 8.1. There exists a randomized, expected polynomial-time algorithm
that, given a set Q of m axis-parallel rectangles and a set P of n points in the plane
that hit Q, computes a subset H ⊆ P of O(Opt log logOpt) points that hit Q, where
Opt is the size of the smallest such set. The algorithm can be extended to the case
of axis-parallel boxes and points in 3-space, and α-fat triangles and planar point sets,
yielding similar approximation factors in both cases.

Using the above machinery, we also obtain polynomial-time approximation algo-
rithms for the set cover problems associated with the dual range spaces considered
in section 7. As shown in [CV07, Theorem 2.3], the ε-net can be constructed in time
that is polynomial in the size of the ground set and in 1/ε. (In cases (b)–(d) below we
also assume that several basic operations on a constant number of the input regions
can be performed in constant time; these include finding the intersection points of the
boundaries of a pair of objects and testing whether a given point lies in an object.)

Corollary 8.2. (a) There exists a randomized, expected polynomial-time algo-
rithm that, given a set P of n points in the plane and a set T of α-fat triangles that
cover P , computes a set cover T ′ ⊆ T for P of size O(Opt log log logOpt), where
Opt is the size of the smallest such set.

(b) There exists a randomized, expected polynomial-time algorithm that, given a
set P of n points in the plane and a set T of locally γ-fat objects of arbitrary sizes
that cover P , so that the boundary of each of the given objects has only O(1) locally
x-extreme points, and each pair of these boundaries intersects in at most s points for
some constant s and computes a set cover T ′ ⊆ T for P of size O(Opt log logOpt),
where Opt is the size of the smallest such set. When the elements of T are roughly
the same size (i.e., with diameters differing by at most a constant factor), the size of
the set cover improves to O (Opt log βs+2(Opt)).

(c) There exists a randomized, expected polynomial-time algorithm that, given a
set P of n points in the plane and a set T of semiunbounded pseudotrapezoids that
cover P , bounded by x-monotone curves, each pair of which meet at most s times,
computes a set cover T ′ ⊆ T for P of size O (Opt log βs+2(Opt)), where Opt is
the size of the smallest such set; the bound slightly improves to O (Opt log βs(Opt)),
when the input regions are pseudohalfplanes.

(d) There exists a randomized, expected polynomial-time algorithm that, given a
set P of n points in the plane and a set T of objects that cover P , each of which is
bounded by some Jordan arc which starts and ends on the x-axis and by the portion
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of the x-axis between these endpoints, so that each bounding Jordan arc has only O(1)
locally x-extreme points, and each pair of these arcs intersects at most three times,
computes a set cover T ′ ⊆ T for P of size O (Opt logα(Opt)), where Opt is the size
of the smallest such set.

The results of this section are summarized in Tables 1–2.

9. Concluding remarks and open problems. In this paper we achieved sig-
nificant progress on the problem of bounding the size of ε-nets for several set systems,
both in the primal and the dual (geometric) settings. We believe that the oversam-
pling approach presented in this paper is of independent interest, and that it will find
additional applications on related problems. Very recently, Chekuri, Clarkson, and
Har-Peled [CCH09] have used this approach to improve the approximation factors on
the set multicover problem for points in the plane and each of the families of planar
regions considered in section 7. In problems of this kind, we wish to find a minimum
cardinality subset of the given regions such that each input point p is covered by at
least d(p) regions, where d(p) is a integer demand (requirement) for p. In this case
Chekuri, Clarkson, and Har-Peled achieve in polynomial time approximation factors
similar to those stated in Corollary 8.2 for the original set cover problem (that is,
with unit demands).

We conclude the paper by stating several open problems raised by our study
(several other open problems are mentioned throughout the paper).

(i) One may consider the dual version of the main problem that we have studied.
Namely, we are given a collection C of n axis-parallel rectangles, and each range is
the subset of C stabbed by some point in the plane. Here too the goal is to show
the existence of a small-size ε-net, which is a small-size subset C′ ⊆ C whose union
contains all the “deep” points (i.e., points contained in at least εn rectangles of C).
So far we do not know how to apply our method to this dual set-up. We note that
Brönnimann and Lenchner, in their conference paper [BL04], claim, without a proof,
the existence of ε-nets for this dual range space, of size O

(

1
ε log log

1
ε

)

.
(ii) Another challenging open problem is to extend our machinery for axis-parallel

boxes to dimensions d ≥ 4. The anchoring trick used for d = 3 fails, because the
number of maximal R-empty orthants in d-space can be Θ

(

|R|⌊d/2⌋
)

in the worst
case [KRSV08], and the challenge is to prune away most of these orthants and remain
only with a nearly linear number of them. The more modest goal of constructing a
weak ε-net in this setting (a weak ε-net is defined analogously to a (strong) ε-net that
was considered in this paper, except that its elements are not constrained to be taken
from the input set) was recently met in a follow-up study [Ezr09], where the bound
is shown to be O

(

1
ε log log

1
ε

)

in any dimension d (with a constant of proportionality

that depends on d). Another goal is to construct weak ε-nets of size o
(

1
ε log log

1
ε

)

for
the (primal) range spaces that we have studied in this paper, most notably for points
and axis-parallel rectangles. In fact, it would also be interesting to find a simpler
construction that yields weak ε-nets of size O

(

1
ε log log

1
ε

)

.
(iii) Last, but not least, there is the problem of showing the existence of small-

size ε-nets for the primal range spaces whose duals were considered in section 7,
such as those involving planar point sets and locally γ-fat objects, or semiunbounded
pseudotrapezoids, with the properties assumed in section 7. (We did achieve this goal
for α-fat triangles.)
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Appendix. Proof of the Exponential Decay Lemma.

Proof of Lemma 2.1. For a fixed level i, let T denote the collection of all axis-
parallel rectangles which are anchored at the entry side of some strip σv at that level,
and each of their three other sides contains a point of Pv (or extends all the way to the
strip boundary or to ±∞, as appropriate). Let Tt denote the subset of T consisting
of all rectangles with weight factor at least t. We have

Exp
{

|CTt(R)|
}

=
∑

M∈Tt

Prob
{

M ∈ CT(R)
}

,(2)

Exp
{

|CT(R′)|
}

=
∑

M∈T

Prob
{

M ∈ CT(R′)
}

≥
∑

M∈Tt

Prob
{

M ∈ CT(R′)
}

.(3)

In view of (2) and (3), it suffices to show that, for each M ∈ Tt,

Prob
{

M ∈ CT(R)
}

= O
(

2−t
)

·Prob
{

M ∈ CT(R′)
}

.

Let AM be the event that D(M) ⊂ R and K(M) ∩ R = ∅, and let A′
M be the

event that D(M) ⊂ R′ and K(M)∩R′ = ∅. In our set-up, the event AM is exactly the
event M ∈ CT(R), and the event A′

M is exactly the event M ∈ CT(R′). Moreover,
putting δ := |D(M)| ≤ 3 and w := |K(M)|, we have Prob{AM} = πδ(1 − π)w and
Prob

{

A′
M

}

= (π′)δ(1 − π′)w. Hence

Prob
{

M ∈ CT(R)
}

Prob
{

M ∈ CT(R′)
} =

Prob
{

AM

}

Prob
{

A′
M

} =
πδ(1− π)w

(π′)δ(1− π′)w
= tδ

(

1− π

1− π′

)w

.

Substituting π = s/n, π′ = π/t, and w ≥ t · n/s, the latter expression becomes
O (2−t), which completes the proof of the lemma.
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[Mat92b] J. Matoušek, Reporting points in halfspaces, Comput. Geom. Theory Appl., 2
(1992), pp. 169–186.
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