
Small space analogues of Valiant’s classes and the
limitations of skew formula

Meena Mahajan
The Institute of Mathematical Sciences,

Chennai, India

meena@imsc.res.in

B. V. Raghavendra Rao∗

Universität des Saarlandes, Informatik

66041 Saarbrücken, Germany

bvrr@cs.uni-sb.de

December 22, 2009

Abstract

In the uniform circuit model of computation, the width of a boolean circuit ex-
actly characterises the “space” complexity of the computed function. Looking for a
similar relationship in Valiant’s algebraic model of computation, we propose width of
an arithmetic circuit as a possible measure of space. We introduce the class VL as an
algebraic variant of deterministic log-space L. In the uniform setting, we show that our
definition coincides with that of VPSPACE at polynomial width.

Further, to define algebraic variants of non-deterministic space-bounded classes,
we introduce the notion of “read-once” certificates for arithmetic circuits. We show
that polynomial-size algebraic branching programs can be expressed as a read-once
exponential sum over polynomials in VL, i.e. VBP ∈ ΣR · VL. We also show that
ΣR · VBP = VBP, i.e. VBPs are stable under read-once exponential sums. Further,
we show that read-once exponential sums over a restricted class of constant-width
arithmetic circuits are within VQP, and this is the largest known such subclass of
poly-log-width circuits with this property.

We also study the power of skew formulas and show that exponential sums of a
skew formula cannot represent the determinant polynomial.

1 Introduction

Apart from characterizing algebraic computations, an interesting task in algebraic complexity
theory is to define algebraic complexity classes analogous to the ones of boolean complexity
theory. The classes VP,VNP, VNC, VSC, VsSC and VBP have P,NP, NC, SC, sSC and
BP respectively as their boolean counterparts. Perhaps, the prominent boolean complexity
classes that do not have algebraic analogues are the space complexity classes.

∗This work was done when this author was at the Institute of Mathematical Sciences.

1

Dagstuhl Seminar Proceedings 09421
Algebraic Methods in Computational Complexity
http://drops.dagstuhl.de/opus/volltexte/2010/2412

The main obstacle in this direction is defining a “right” measure for space. Two obvious
choices are: 1) the number of arithmetic “cells” or registers used during the course of compu-
tation (i.e., the unit-space model), and 2) the size of a succinct description of the polynomials
computed at each cell. A third choice is the complexity of computing the coefficient function
for polynomials in the family. All three of these space measures have been studied in the
literature, [Val76, NW95, Mic89, dN06, KP07b, KP07a], with varying degrees of success. In
particular, the models of [Mic89, KP07b, KP07a] when adapted to logarithmic space are too
powerful to give meaningful insights into small-space classes, whereas the model of [dN06]
as defined for log-space is too weak.

The main purpose of this paper is to propose yet another model for describing space-
bounded computations of families of polynomials. Our model is based on the width of
arithmetic circuits, and captures both succinctness of coefficients and ease of evaluating the
polynomials. We show that our notion of space VSPACE(s) coincides with that of [KP07b,
KP07a] at polynomial space with uniformity (Theorem 7), and so far avoids the pitfalls of
being too powerful or too weak at logarithmic space.

Continuing along this approach, we propose a way of describing non-deterministic space-
bounded computation in this context. The specific motivation for this is to obtain an alge-
braic analogue of the class non-deterministic log-space NL as well as an analogue of the result
that VNP = Σ · VP. Again, there is a well-known model for NL that easily carries over to
the arithmetic setting, namely polynomial-size branching programs BP. But we are unable
to compare VBP even with our version of VL. Our model here for NL is based on read-once
certificates, which also provide the correct description of NL in terms of L in the Boolean
world. We show that the arithmetization of this model, ΣR · VL, does contain arithmetic
branching programs (Theorem 14).

Surprisingly, we are unable to show the converse. In fact, we are unable to show a good
upper bound on the complexity of read-once certified log-space polynomial families. This
raises the question: Is the read-once certification procedure inherently too powerful? We
show that this is not always the case; for branching programs, read-once-certification adds
no power at all (Theorem 18). Similarly, for polylog-width circuits where the syntactic
degree is bounded by a polynomial, read-once certification does not take us beyond VQP
(Theorem 21). Further, if the circuit is multiplicatively disjoint and of constant width, then
read-once certification does not take us beyond VP.

We also study the class of polynomial size skew formulas, denoted SkewF. The motivation
for this study arises from Valiant’s characterisations of the classes VP and VNP (see [Val79]).
Valiant proved that every polynomial p(X) ∈ VNPK (where K is an arbitrary ring), and
in particular every polynomial in VPK, can be written as p(X) =

∑
e∈{0,1}m φ(X, e), where

the polynomial φ has an arithmetic formula of polynomial size. We know that the class of
“Permanent” (see e.g.[Bür00]) polynomials is complete for VNP. It is also known [Tod91]
that the class “Determinant” is equivalent to skew circuits of polynomial size. The question
we ask is: can we prove a similar equivalence in the case of skew circuits? That is, can we
write polynomials computed by skew circuits as an exponential sum of polynomials computed
by skew formulae? We show that this is not possible, by showing that any polynomial which

2

is expressible as an exponential sum of a skew formula can again be represented by a skew
formula.

The rest of the paper is organized as follows: Section 3 gives a detailed account of
existing notions of space for algebraic computation and introduces circuit width as a possible
measure of space. In section 4 we introduce the notion of read- once certificates and read-
once exponential sums. Section 5 contains upper bounds for read-once exponential sums of
some restricted circuit classes. In section 6 we present the limitations of skew formulas.

2 Preliminaries

We use standard definitions for complexity classes such as polynomial space PSPACE, NC,
L, NL and LogCFL (see e.g. [Vol99],[AB09]).

An arithmetic circuit over a ring 〈K,+,×, 0, 1〉 is a directed acyclic graph C, where
vertices with non-zero in-degree are labelled from {+,×}, and vertices of zero-in-degree
(called leaf nodes) are labelled from X ∪ K, where X = {x1 . . . , xn} is the set of variable
inputs to the circuit. An output node of C is a node of zero out-degree, and it computes a
polynomial in K[X]. (A circuit can have more than one output node, thus computing a set
of polynomials.)

The following definitions apply to both arithmetic and boolean circuits, hence we simply
use the term circuit. The depth of a circuit is the length of a longest path from a leaf node
to an output node, its size is the number of nodes and edges in it, and its width, if it is a
layered circuit, is the maximum number of nodes at any particular layer. We assume that
all output nodes appear at the last layer.

Polynomial size poly-log depth Boolean circuits form the class NC; NC1 is the subclass
of log-depth circuits and is known to be contained in L. Polynomial size poly-log width
boolean circuits form the class SC; SC0 is the subclass of constant-width circuits and SC1 is
the subclass of log-width circuits. It is known that SC0 equals NC1 ([Bar89]) and uniform
SC1 equals L.

An arithmetic (resp. Boolean) circuit C is said to be skew if for every multiplication gate
f = g × h (resp. ∧ gate f = g ∧ h), either h or g is in X ∪K. C is said to be weakly skew if
for every f = g×h, either the edge (g, f) or (h, f) is a bridge in the circuit, i.e removing the
edge disconnects its end-points in the resulting the circuit. Poly-size Boolean skew circuits
are known to characterise NL ([Ven92]).

An algebraic branching program (BP for short) over a ring K is a layered directed acyclic
graph, where edges are labelled from {x1, . . . , xn} ∪ K. There are two designated nodes, s
and t, where s has zero in-degree and t has zero out-degree. The size of a BP is the number
of nodes and edges in it and the width is the maximum number of nodes at any layer. The
length of a BP is the number of layers in it. The depth of a BP B equals 1 + length(B). The
polynomial P computed by a BP is the sum of weights of all s-t paths in P , where weight
of a path is the product of all edge labels in the path. We will also consider multi output
BPs, where the above is generalised in the obvious way to several nodes t1, t2, . . . , tm existing
at the last level. Note that BPs can be simulated by skew circuits and vice versa with a

3

constant blow up in the width.
VP denotes the class of families of polynomials (fn)n≥0 such that ∀n ≥ 0

• fn ∈ K[x1, . . . , xu(n)], where u ≤ poly(n)

• deg(fn) ≤ poly(n)

• fn can be computed by a polynomial size arithmetic circuit.

VPe is the sub-class of VP corresponding to poly-size arithmetic formula (i.e. circuits with
out-degree at most 1, also called expressions). If fn can be computed by arithmetic circuits
with the resource bounds the same as NC1 or SC1 or SC1, then we say the family is in VNC1

or VSC0 or VSC1 respectively. It is known that VPe is the same as VNC1. If the circuits
computing fn have quasipolynomial size 2logc n, we say that {fn} is in the class VQP.

A polynomial family (fn)n≥0 is in VNP if there exists a family (g`)n≥0 in VP such that
fn(X) =

∑
e∈{0,1}m gn(X, e), where m is bounded by poly(n).

We let VBP and VBWBP stand for classes corresponding to poly-size BPs of poly and
constant width, respectively. Without loss of generality, we can treat these classes as skew
circuits. ([MP06])

Let C be a complexity class defined in terms of Turing machines. A circuit family (Bn)n≥0

is said to be C-uniform, if the direct connection language for Bn can be decided in C. (see
[Vol99])

3 Notion of space for arithmetic computations?

In the case of boolean computations, the notion of “width” of a circuit captures the notion
of space in the Turing machine model (under certain uniformity assumptions). In the case
of arithmetic computations, defining a notion of “space bounded computation” seems to be
a a hard task.

3.1 Previously studied notions

One possible measure for space is the number of arithmetic “cells” or registers used in the
course of computation (i.e., the unit-space model). This measure of space was considered
by Valiant way back in 1976 and later by Nisan and Wigderson ([Val76, NW95]). This was
in the context of time-space trade-offs for arithmetic straight-line programs. Subsequently,
Michaux [Mic89] showed that with this notion of space, any language that is decided by
a machine in the Blum-Shub-Smale model of computation (a general model for algebraic
computation capturing the idea of computation over reals, [BCSS97]; see also [Bür00]) can
also be computed using O(1) registers. Hence there is no space-hierarchy theorem under this
space measure.

Another possible measure is the size of a succinct description of the polynomials com-
puted at each cell. In [dN06], Naurois introduced a notion of weak space in the Blum-
Shub-Smale model, and introduced the corresponding log space classes LOGSPACEWand

4

PSPACEW . This is in fact a way of measuring the complexity of succinctly describing the
polynomials computed by or represented at each “real” cell. Though this is a very natural
notion of “succinctness” of describing a polynomial, this definition has a few drawbacks:

1. LOGSPACEW seems to be too weak to contain even NC1 over R, which is in contrast
to the situation in the Boolean world.

2. The polynomials representable at every cell have to be “sparse”, i.e., the number of
monomials with non-zero coefficients should be bounded by some polynomial in the
number of variables.

The second condition above makes the notion of weak space very restrictive if we adapt the
definition to the Valiant’s algebraic computation model. This is because the corresponding
log-space class in this model will be computing only sparse polynomials, but in the non-
uniform setting sparse polynomials are known to be contained in a highly restrictive class
called skew formula (see Section 6), which is in fact a proper subclass of constant depth
arithmetic circuits (i.e., VAC0).

Koiran and Perifel ([KP07b, KP07a]) suggested another notion of polynomial space for
Valiant’s ([Val79, Bür00]) classes. The main purpose of their definition was to prove a
transfer theorem over R and C. Under their definition Uniform-VPSPACE (the non-uniform
counterpart can be defined similarly) is defined as the set of families (fn) of multivariate
polynomials fn ∈ F [x1, . . . , xu(n)] with integer coefficients such that

• u(n) is bounded by a polynomial in n.

• Size of coefficients of fn is bounded by 2poly(n).

• Degree of fn is bounded by 2poly(n).

• Every bit of the coefficient function of fn is computable in PSPACE.

In [KP07b], it was observed that the class VPSPACE is equivalent to the class of poly-
nomials computed by arithmetic circuits of polynomial depth and exponential size. Such
Boolean circuits compute exactly PSPACE, hence the name VPSPACE. Thus one approach
to get reasonable smaller space complexity classes is to generalize this definition. We can
consider VSPACE(s(n)) to consist of families (fn)n≥1 of polynomials satisfying the following:

• f ∈ Z[x1, . . . , xu(n)], where u(n), the number of variables in fn, is bounded by some
polynomial in n.

• Degree of fn is bounded by 2s(n).

• The number of bits required to represent each of the coefficients of fn is bounded by
2s(n), i.e. the coefficients of fn are in the range [−22s(n)

, 22s(n)
]

• Given n in unary, an index i ∈ [1, 2s(n)], and a monomial M , the ith bit of the coefficient
of M in fn is computable in DSPACE(s(n)).

5

It is easy to see that with this definition, even the permanent function PERMn is in
log-space. Thus VSPACE(log n) would be too big a class to be an arithmetic version of
log-space. The reason here is that this definition, unlike that of [dN06], goes to the other
extreme of considering only the complexity of coefficient functions and ignores the resource
needed to compute and add the monomials with non-zero coefficients. The relationship
between the complexity of coefficient functions and the polynomials themselves is explored
more thoroughly in [Mal07].

3.2 Defining VPSPACE in terms of circuit width

In this section we propose width of a (layered) circuit, with additional conditions on the
number of variables, the degree and the coefficient size, as a possible measure of space for
arithmetic computations.

Definition 1 Let VWIDTH(S) (with S = S(n)) be the class of polynomial families (fn)n≥0

with the following properties,

• The number of variables u(n) in fn is bounded by poly(n)

• fn ∈ Z[x1, . . . , xu(n)], i.e fn has only integer coefficients

• deg(f) ≤ max{2S(n), poly(n)}.

• The coefficients of fn are representable using max{2S(n), poly(n)} many bits.

• fn is computable by an arithmetic circuit of width S(n) and size max{2S(n), poly(n)}.

Further, if the arithmetic circuits in the last condition are DSPACE(S)-uniform, we call the
family Uniform-VWIDTH(S).

Remark 2 For i ≥ 2 VWIDTH(logi n) is very close to VSCi though they are different for
the following reasons:

• Polynomials in VWIDTH(logi n) can have degree O(2logi n), whereas degree of polyno-
mials in VSCi is bounded by poly(n).

• Coefficients of VWIDTH(logi n) are integers and their size is bounded by O(2logi n),
whereas VSCi can have arbitrary coefficients.

However, when i = 0, 1 they coincide, if we restrict the polynomials in VSC0 and VSC1 to
have only integer coefficients. Also, it is easy to see that VWIDTH(logi n) and VsSCi are
different. Apart from the above two, another major difference between them is:

• The circuits in VWIDTH(logi n) can have super-polynomial syntactic degree.

We show in Theorem 7 below that with this definition, uniform VWIDTH(poly) coincides
with uniform VPSPACE as defined in [KP07b]; thus polynomial width indeed corresponds to
polynomial space. Motivated by this equivalence, we define the following complexity classes:

6

Definition 3 VSPACE(S(n)) = VWIDTH(S(n))
Uniform-VSPACE(S(n))= Uniform-VWIDTH(S(n))

We denote the log-space class by VL; thus VL = VWIDTH(log n) = VSC1.
The following containments and equalities follow directly from known results (from

[CMTV98] and [LMR07]) about width-constrained arithmetic circuits.

Lemma 4 VBWBP = VNC1 = VPe ⊆ VSPACE(O(1)) = VSC0 ⊆ VL = VSC1 ⊆ VP

Remark 5 In the above equivalence, we need to extend VWIDTH(S(n)) to include arbitrary
constants from K. In this case we omit the bound on the size of the coefficients in definition 1.

Thus VL according to this definition is in VP and avoids the trivially “too-powerful” trap;
also, it contains VNC1 and thus avoids the “too weak” trap.

The following closure property is easy to see.

Lemma 6 For every S(n) > log n, the classes VSPACE(S(n)) are closed under polynomially
bounded summations and constant many products.

3.3 Comparing VPSPACE and VWIDTH(poly)

This subsection is devoted to proving the following equivalence,

Theorem 7 The class Uniform-VPSPACE as defined in [KP07b] coincides with Uniform-
VWIDTH(poly).

We use the following easy fact:

Fact 8 A d degree polynomial over t variables has at most
(
d+t
t

)
monomials.

Now, Theorem 7 follows from the two lemmas below.

Lemma 9 Uniform-VPSPACE ⊆ Uniform-VWIDTH(poly).

Proof: Let (fn)n≥0 be a family of polynomials in VPSPACE. Then by definition, the bits of
the coefficients of fn can be computed in PSPACE and hence by exponential size polynomial
width circuits. The (exponentially many) bits can be put together with appropriate weights
to obtain a circuit computing the coefficient itself. The exponential-degree monomials can
each be computed by an exponential-size constant-width circuit. Thus we can use the naive
method of computing fn: expand fn into individual monomials, compute each coefficient and
each monomial, and add them up sequentially. By Fact 8, there are only exponentially many
distinct monomials. Thus we get a polynomial width exponential-size circuit computing fn.

The converse direction is a little more tedious, but essentially follows from the Lagrange
interpolation formula for multivariate polynomials.

7

Lemma 10 Uniform-VWIDTH(poly) ⊆ Uniform-VPSPACE.

Proof: Let (fn)n≥0 be a family of polynomials in VWIDTH(poly(n)). Let N = u(n) be the
number of variables in fn, and let q(n) be a polynomial such that 2q(n) is an upper bound
on both d = deg(fn) and on the number of bits required to represent each coefficient. Let
w(n) = poly(n) and s(n) ∈ 2O(nc) respectively be the width and size of a witnessing circuit
C.

To show that fn ∈ VPSPACE, we need to give a PSPACE algorithm, which computes
coefficient of the monomial

∏N
k=1 x

ik
k , given 1n and 〈i1, . . . , iN〉 as input.

We use the following notation: S = {0, 1, . . . , d}, T = SN , x̃ = 〈x1, . . . , xN〉, and for

ĩ = 〈i1, . . . , iN〉 ∈ T , the monomial m(̃i) =
∏N

k=1 x
ik
k is denoted x̃ĩ. We drop the subscript n

for convenience.
Using Lagrangian interpolation for multivariate polynomials we have

f(x̃) =
∑
ĩ∈T

f (̃i)Equal(x̃, ĩ) =
∑
ĩ∈T

f (̃i)
N∏
k=1

Equal(xk, ik)

where Equal(x, i) =
∏

a∈S\{i}

(
x− a
i− a

)
=

∏
a∈S\{i}(x− a)

i!(d− i)!(−1)d−i

Thus for any t̃ ∈ T , the coefficient of the monomial m(t̃) is given by

coeff(m(t̃)) =
∑
ĩ∈T

f (̃i)
N∏
k=1

coeff of xtkk in
∏

a∈S\{ik}(xk − a)

ik!(d− ik)!(−1)d−ik

But we have a nice form for the inner numerator:

coeff of xtkk in
∏

a∈S\{i}(xk − a) equals (−1)d−tkSd,tk(0, 1, . . . , ik − 1, ik + 1, . . . , d)

where Sd,tk denotes the elementary symmetric polynomial of degree tk in d variables.
To compute the desired coefficient in PSPACE, we use the Chinese Remaindering tech-

nique; See [CDL01] for more details. Since symmetric polynomials are easy to compute (e.g.
[SW99] or Th 2.5.4 in [Tza08]), and since f (̃i) is computable by a polynomial-width circuit by
assumption, a PSPACE algorithm can compute the coefficient modulo a prime p, for any prime
p that has an O(d) bit representation. (The algorithm will require O(w(n) log p + log s(n))
space to evaluate f (̃i) mod p). Reconstructing the coefficient from its residues modulo all
such primes can also be performed in PSPACE.

Lemma 10 requires that the VWIDTH family be uniform (with a direct-connection unifor-
mity condition). If the VWIDTH family is non-uniform, this problem cannot be circumvented
with polynomial advice, since the circuit has exponential size.

8

4 Read-Once certificates

In general, non-deterministic complexity classes can be defined via existential quantifiers.
e.g. , NP = ∃·P. In the algebraic setting, we know that the class VNP (algebraic counterpart
of NP) is defined as an “exponential” sum of values of a polynomial size arithmetic circuit.
i.e. , VNP = Σ · P. It is also known that VNP = Σ · VPe = Σ · VNC1 (see [Bür00]).

If we consider smaller classes, NL is the natural non-deterministic version of L. However
to capture it via existential quantifiers, we need to restrict the use of the certificate, since
otherwise ∃ · L = NP. It is known that with the notion of “read once” certificates (see, e.g. ,
[AB09], Chapter 4) one can express NL as an existential quantification over L. Analogously,
we propose a notion of “read-once” certificates in the context of arithmetic circuits so that
we can get meaningful classes by taking exponential sums over classes that are below VP.

Definition 11 Let C be a layered arithmetic circuit with ` layers. Let X = {x1, . . . , xn}
and Y = {y1, . . . , ym} be the input variables of C. C is said to be “read-once certified” in
Y if the layers of C can be partitioned into m blocks, such that each block reads exactly one
variable from Y . That is, C satisfies the following:

• There is a fixed permutation π ∈ Sm such that the variables of Y appear in the order
yπ(1), . . . , yπ(m) along any leaf-to-root path.

• There exist indices 0 = i1 ≤ . . . ≤ im ≤ im+1 = ` such that the variable yπ(j) appears
only from layers ij + 1 to ij+1.

We henceforth without loss of generality, assume that π is the identity permutation.
Now we define the the exponential sum over read-once certified circuits.

Definition 12 Let C be any arithmetic circuit complexity class. A polynomial family (fn)n≥0

is said to be in the class ΣR · C, if there is a family (gm(n))n≥0 such that m(n) = n+m′(n),
m′(n) ≤ poly(n), fn(X) =

∑
Y ∈{0,1}m′(n) gm(n)(X, Y) and gm(n) can be computed by a circuit

of type C that is read-once certified in Y .

We also use the term “read once exponential sum” over C to denote ΣR · C.
For circuits of width polynomial or more, the restriction to read-once certification is

immaterial: the circuit can read a variable once and carry its value forward to any desired
layer via internal gates. This is equivalent to saying that for a P machine, read-once input
is the same as two-way-readable input. Thus

Lemma 13 ΣR · VP = Σ · VP = VNP

Having seen that the read-once certificate definition is general enough for the case of large
width circuits, we turn our focus on circuits of smaller width. Once the width of the circuit
is substantially smaller than the number of bits in the certificate, the read-once property
becomes a real restriction. If this restriction correctly captures non-determinism, we would
expect that in analogy to BP = NL = ΣR · L, we should be able to show that VBP equals
ΣR · VL. In a partial answer, we show in the following theorem one direction: read-once
exponential sums over VL are indeed powerful enough to contain VBP.

9

Theorem 14 VBP ⊆ ΣR · VL.

In order to prove the above theorem, we consider a problem that is complete for VBP.
We need the following definition:

Definition 15 A polynomial f ∈ K[X1, . . . , Xn] is called a projection of g (denoted f ≤ g
), if

f(X1, . . . , Xn) = g(a1, . . . , am)

where each ai ∈ K ∪ {X1, . . . , Xn}.
Let f = (fn)n≥0 and g = (gm)m≥0 be two polynomial families. f is said to be projection

reducible to g if
∃n0,∀n ≥ n0, fn ≤ gm(n)

where m(n) ≤ poly(n).

Let (Gn) = (Vn, En) (with |Vn| = m = poly(n)) be a family of directed acyclic graphs
and let s = 1 and t = n denote two special nodes in Gn. We assume without loss of
generality that the graph is topologically sorted; edges are from i to j only when i < j. Let
A = (ai,j)i,j∈{1,...,m} be an m×m matrix with variable entries, representing edge weights in
Gn. For any directed s− t path P = 〈v0, v1, . . . , v`, v`+1〉 in Gn, let MP denote the monomial
that is the product of the variables corresponding to edges in P . Let PATHn

G =
∑

P MP ,
where P ranges over all the s− t paths in Gn.

Definition 16

PATH =

(PATHn
G)n≥0 |

G=(Gn)n≥0 is a family of layered complete di-
rected acyclic graphs with edges of Gn labeled from
{x1, . . . , xn}


It is easy to see the following:

Proposition 17 (folklore) PATH is complete for VBP under projections.

We prove theorem 14 by showing that PATHn
G ∈ ΣR · VL for any layered directed acyclic

graph family G = (Gn)n≥0.
Proof:[of theorem 14] Here onwards we drop the index n from Gn.

We define function hG(Y, Z) : {0, 1}dlogme × {0, 1}m2 → {0, 1} as follows. Assume that
the variables in Y = {y1, . . . , yk} and Z = {z1,1, . . . , zm,m} take only values from {0, 1}.
hG(Y, Z) = 1 if and only if Z = z1,1, . . . , zm,m represents a directed s-t path in G of length
exactly `, where ` written in binary is y1 . . . yk.Note that s-t paths P in G are in one-to-one
correspondence with assignments to Y, Z such that hG(Y, Z) = 1. Hence

PATHn
G =

∑
P

MP =
∑
Y,Z

hG(Y, Z) [weight of path specified by Y, Z]

=
∑
Y,Z

hG(Y, Z)
∏
i,j

(ai,jzi,j + (1− zi,j))

10

There is a deterministic log-space algorithm A which computes hG(Y, Z) when Y, Z is given
on a “read once” input tape (see [AB09]). Let C be the corresponding O(log n) width boolean
circuit. (without loss of generality, assume that all negation gates in C are at the leaves.)
Let D the natural arithmetization of C. Since Y and Z are on a read-once input tape, it
is easy to see that C, and hence D, are read-once certified in the variables from Y and Z.
We can attach, parallel to D, constant-width circuitry that collects factors of the product∏

i,j (ai,jzi,j + (1− zi,j)) as and when the zi,j variables are read, and finally multiplies this
with hG(Y, Z). The resulting circuit remains O(log n)-width, and remains read-once certified
on Y, Z.

While we are unable to show the converse, we are also unable to show a reasonable upper
bound on ΣR·VL. It is not even clear if ΣR·VL is contained in VP. One possible interpretation
is that the ΣR operator is too powerful and can lift up small classes unreasonably. We show
that this is not the case in general; in particular, it does not lift up VBP and VBWBP.

Theorem 18 1. ΣR · VBP = VBP

2. ΣR · VBWBP = VBWBP

This theorem follows from Lemma 20. We need the following notation:

Definition 19 For f ∈ K[X, Y] with X = {x1, . . . , xn} and Y = {y1, . . . , ym}, EY (f)
denotes the exponential sum of f(X, Y) over all Boolean settings of Y . That is,

EY (f)(X) =
∑

e⊆{0,1}m
f(X, e)

Lemma 20 Let C be a layered skew arithmetic circuit on variables X ∪ Y . Suppose C is
read-once certified in Y . Let w = width(C), s = size(C) and ` = the number of layers in
C. Let f1, . . . , fw denote the output gates (also the polynomials computed by them) of C.
There exists a weakly skew circuit C ′, of size O(mw4s) and width 4w, that computes all the
exponential sums EY (f1), . . . , EY (fw).

Proof: We proceed by induction on m = |Y |. In the base case when m = 1, EY (fj)(X) =
fj(X, 0) + fj(X, 1). Putting two copies of C next to each other, one with y = 0 and the
other with y = 1 hardwired, and adding corresponding outputs we get a circuit C ′ which
computes the required function. Clearly width(C ′) ≤ 2w and size(C ′) ≤ 3s+ w.

Assume now that the lemma is true for all skew circuits with m′ = |Y | < m. Let C be a
given circuit where |Y | = m. Let Y ′ denote Y \{ym} = {y1, . . . , ym−1}. As per definition 11,
the layers of C can be partitioned into m blocks, with the kth block reading only yk from
Y . Let 0 = i1 ≤ i2 ≤ . . . ≤ im ≤ ` be the layer indices such that yk is read between layers
ik + 1 and ik+1. Let f1, . . . , fw be the output gates of C.

We slice C into two parts: the bottom m − 1 blocks of the partition together form the
circuit D, and the top block forms the circuit Cm. Let g1, . . . , gw be the output gates of D.
These are also the inputs to Cm; we symbolically relabel the non-leaf inputs at level 0 and

11

the outputs of Cm as Z1, . . . Zw and h1, . . . , hw. Clearly, Cm and D are both skew circuits
of width w. Further, each hj depends on X, ym and Z; that is, h1, . . . , hw ∈ R[Z1, . . . , Zw]
where R = K[X, ym]. Similarly, each gj depends on X and Y ′; g1, . . . , gw ∈ K[X, Y ′]. The
values computed by C can be expressed as fj(X, Y) = hj (X, ym, g1(X, Y

′), . . . , gw(X, Y ′)).
Since C and Cm are skew circuits, and since the variables Zj represent non-leaf gates of

C, Cm must be linear in these variables. Hence each hj can be written as hj(X, ym, Z) =
cj+
∑w

k=1 cj,kZk, where the coefficients cj, cj,k ∈ K[X, ym]. Combining this with the expression
for fj, we have

fj(X, Y) = hj (X, ym, g1(X, Y
′), . . . , gw(X, Y ′))

= cj(X, ym) +
w∑
k=1

cj,k(X, ym)gk(X, Y
′) and hence

∑
e∈{0,1}m

fj(X, e) =
∑

e∈{0,1}m

[
cj(X, em) +

w∑
k=1

cj,k(X, em)gk(X, e
′)

]

= 2m−1

1∑
em=0

cj(X, em) +
w∑
k=1

∑
e∈{0,1}m

cj,k(X, em)gk(X, e
′)

= 2m−1

1∑
em=0

cj(X, em) +
w∑
k=1

 ∑
em∈{0,1}

cj,k(X, em)

 ∑
e′∈{0,1}m−1

gk(X, e
′)



Thus EY (fj)(X) = 2m−1Eym(cj)(X) +
w∑
k=1

Eym(cj,k)(X)EY ′(gk)(X)

By induction, we know that there is a weakly skew circuit D′ of width 4w and size
O((m− 1)w4s) computing EY ′(gk)(X) for all k simultaneously.

To compute Eym(cj)(X), note that a copy of Cm with all leaves labeled Zk replaced by
0 computes exactly cj(X, ym). So the sum can be computed as in the base case, in width
w + 1 and size 3(size(Cm) + 1). Multiplying this by 2m−1 in the standard way adds nothing
to width and 2 to size, so overall width is w + 1 and size is at most 2s+ 4.

To compute Eym(cj,k)(X), we modify Cm as follows: replace leaves labeled Zk by the
constant 1, replace leaves labeled Zk′ for k′ 6= k by 0, leave the rest of the circuit unchanged,
and let hj be the output gate. This circuit computes cj(X, ym) + cj,k(X, ym). Subtracting
cj(X, ym) (as computed above) from this gives cj,k(X, ym). Now, the sum can be computed
as in the base case. Again, to compute Eym(cj,k)(X), we use two copies of the difference
circuit with ym = 0 and ym = 1 hardwired, and add their outputs. It is easy to see that this
circuit has width w + 2 and size at most 4(w + 2)size(Cm) ≤ 4(w + 2)s.

12

Putting together these circuits naively may increase width too much. So we position D′

at the bottom, and carry w wires upwards from it corresponding to its w outputs. Alongside
these wires, we position circuitry to accumulate the terms for each fj and to carry forward
already-computed fk’s. The width in this part is w for the wires carrying the outputs of D′,
w for wires carrying the values EY (fj), w + 2 for computing the terms in the sum above
(they are computed sequentially so the width does not add up), and 2 for computing partial
sums in this process, overall at most 3w + 4. Thus the resulting circuit has width at most
max{width(D′), 3w + 4} ≤ 4w.

To bound the size of the circuit, we bound its depth in the part above D′ by d; then
size is at most size(D′) + width × d. The circuit has w modules to compute the EY (fj)s.
The depth of each module can be bounded by the depth to compute Eym(cj) plus w times
the depth to compute any one Eym(cj,k), that is, at most (2s + 4) + w × 4(w + 2)s. So
d ≤ w(2s+ 4 + 4sw(w + 2)) = θ(w3s), and the size bound follows.

Now we prove Theorem 18:
Proof:[of Theorem 18]

(1) Since weakly skew circuits can be transformed into skew circuits ([MP06]) with a
constant blowup in the size([Jan08]), the equivalence follows.

(2) From [JR09], we know that when width of the weakly skew circuit is a constant,
width of the resulting skew circuit will again be a constant. i.e. the resulting circuit now
will have width O(w2) and size O(w24wmw4s).

5 Read-Once exponential sums of some restricted cir-

cuits

In this section, we explore how far the result of Theorem 18 can be pushed to larger classes
within VP. In effect, we ask whether the technique of Lemma 20 is applicable to larger
classes of circuits. Such a question is relevant because we do not have any bound (better
than VNP) even for ΣR · VSC0 and ΣR · VL.

One generalization we consider is multiplicative disjointness. An arithmetic circuit C is
said to be multiplicatively disjoint (md) if every multiplication gate operates on sub-circuits
which are not connected to each other.

A further generalization we consider is polynomial syntactic degree bounded arithmetic
circuits.

Examining the proof of Lemma 20, we see that the main barrier in extending it to these
larger classes is that when we slice C into D and Cm, Cm is no longer linear in the “slice
variables” Z. However, for md-circuits, Cm is multilinear in Z. As far as computing the
coefficients cj,α goes, where α describes a multilinear monomial, this is not a problem; it can
be shown that for such circuits the coefficient function can be computed efficiently. There is
a cost to pay in size because the number of multilinear monomials is much larger. To handle
this, we modify the inductive step, slicing C not at the last block but at a level that halves

13

the number of Y variables read above and below it. This works out fine for constant-width,
but results in quasi- polynomial blow-up in size for larger widths.

We show the following:

Theorem 21 1. ΣR ·md-VSC0 ⊆ VP.

2. ΣR ·md-VSC ⊆ VQP.

3. For all i ≥ 0, ΣR · VsSCi ⊆ VQP.

Proof strategy for Theorem 21.

1. Break the circuit by a horizontal cut into two parts A and B, so that each part contains
approximately m/2 variables from Y i.e YA, YB ≤ dm/2e and YA∪YB = Y , YA∩YB = ∅.
Let A be the upper part.

2. Now express the polynomials in A as sums of monomials where the variables stand for
the output gates of B and the coefficients come from K[X, YA].

3. Inductively compute the EY ’s for the coefficients of A and the monomials in terms of
the output gates of B.

4. Apply equation 1 below to obtain the required EY (fj)s.

This strategy is spelt out in detail for the case of multiplicative disjoint circuits in
Lemma 23. For syntactic degree bounded by a polynomial, Step 3 above needs special
treatment, spelt out in Lemma 25.

We need the following observation (which is already used implicitly in the proof of
Lemma 20):

Observation 22 1. If f = g + h, then EY (f) = EY (g) + EY (h).

2. If f = g × h, and if the variables of Y can be partitioned into Yg and Yh such that g
depends only on X ∪ Yg and h depends only on X ∪ Yh, then

EY (f) = EYg(g)× EYh(h) (1)

Lemma 23 Let C be a layered multiplicatively disjoint circuit of width w and size s on
variables X ∪ Y . Let ` be the number of layers in C. Suppose C is read-once certified in Y .
Let f1 . . . , fw be the output gates of C. Then, there is an arithmetic circuit C ′ of size smO(w)

which computes EY (f1), . . . , EY (fw).

Proof: The proof is by induction on m = |Y |. The base case when m = 1 is trivial. Now
assume that the statement holds for all circuits with |Y | < m.

Let 0 = i1 ≤ i2 ≤ . . . ≤ im ≤ ` be the level indices of C as guaranteed by definition 11.
Consider level `′ = idm/2e. Let g1, . . . , gw be the gates at level `′.

14

We slice C at level `′; the circuit above this level is A and the circuit below it is called
B. In particular, A is obtained from C by re-labeling the gates g1, . . . , gw with new variables
Z1, . . . , Zw and removing all gates below level `′. Let h1, . . . , hw denote the output gates of
A. (Note that these are just relabellings of f1, . . . , fw.) Similarly, B is obtained from C by
removing all nodes above layer `′ and making g1, . . . , gw the output gates. Let sA and sB
respectively denote their sizes. Let YA ⊆ Y (resp YB) be the set of variables from Y that
appear in A (resp. B). The circuits A and B have the following properties:

1. A and B are multiplicatively disjoint and are of width w.

2. A is syntactically multilinear in the variables Z = {Z1, . . . , Zw}: at every × gate
f = g × h, each variable in Z has a path to g or to h or to neither, but not to both.

3. YA ∩ YB = ∅, YA ∪ YB = Y , |YA| = bm/2c and |YB| = dm/2e.

4. For 1 ≤ j ≤ w, gj ∈ K[X, YB] and hj ∈ R[Z], where R = K[X, YA].

5. Let v = v1×v2 be a multiplication gate in A. If there is a path from Zi to v1 and there
is a path from Zj (i 6= j) to v2, then the sub-circuits of C (and hence of B) rooted at
gi and gj are disjoint.

Since A is syntactically multilinear in Z and C is md, the monomials in hj ∈ R[Z] can
be described by subsets of Z, where Zi and Zk can belong to a subset corresponding to a
monomial only if the sub-circuits rooted at gi and gk are disjoint. Let S denote the subsets
that can possibly correspond to monomials:

S =

{
R ⊆ Z

∣∣ ∀Zi, Zk ∈ R with i 6= k, the sub-circuits
rooted at gi and gk are disjoint

}
Generally, we treat S as a set of characteristic vectors instead of actual subsets; the usage
will be understood from the context.

We can express the polynomials computed by A and C as follows:

fj = hj(g1, . . . , gw); hj =
∑
α∈S

cj,αZ
α

where Zα =
w∏
i=1

Zαi
i and cj,α ∈ K[X, YA]

Hence fj(X, Y) =
∑
α∈S

cj,α(X, YA)gα(X, YB) where gα(X, YB) =
∏
i

gαii (X, YB)

Now using Observation 22 we have,

EY (fj) =
∑
α∈S

EY (cj,αg
α) =

∑
α∈S

EYA(cj,α)EYB(gα) (2)

We need the following claim:

15

Claim 24 For 1 ≤ j ≤ w, and for α ∈ S, the polynomial cj,α(X, YA) can be computed by a
multiplicatively disjoint circuit of size w.sA and width w.

Proof: The proof is by induction on the structure of the circuit. Let α = α1α2 . . . αw,
where αi ∈ {0, 1}. The base case is when the sub-circuit rooted at gj is a variable Zi or
a ∈ K ∪X ∪ YA. Then, [cj,α] is set accordingly:

If gj = Zi then

[cj,α] =

{
1 for αi = 1, αk = 0, i 6= k

0 otherwise

If gj = a ∈ K ∪X ∪ YA then,

[cj,α] =

{
a if αi = 0, ∀i
0 otherwise

Induction step: case 1: gj = h1 + h2, then [cj,α] = [h1,α] + [h2,α].
case 2: gj = h1 × h2 then [cj,α] = [h1,α′] + [h2,α′′].
Where α′ (respectively α′′) is α restricted to the Z-variables that appear at the sub-circuit

rooted at h1 (respectively h2). We set [cj,α] to 0 if α′ and α′′ do not form a partition of α.
Note that, [h1,α], [h2,α], [h1,α′] and [h2,α′′] are the corresponding coefficients available from
inductive hypothesis.

The size of [cj,α] thus obtained can blow up by factor of at most w and width remains
unchanged.

Let [cj,α] denote the circuit obtained in the above claim.
If α ∈ S, then gα can be computed by an md-circuit of width w and size sB + w. Let

[gα] denote this circuit. (It is an addition sub-circuit sitting on top of the relevant output
gates of B.)

By the induction hypothesis, the polynomials EYA(cj,α) for 1 ≤ j ≤ w and α ∈ S
can be computed by arithmetic circuits of size T (w, bm/2c, wsA). Also, by induction, the
polynomials EYB(gα) can be computed by arithmetic circuits of size T (w, dm/2e, sB + w).
Now, using the expression 2, EY (fj) for each 1 ≤ j ≤ w can be computed by arithmetic
circuits that compute all the EYA(cj,α) and all the EYB(gα), and then put them together; such
a circuit has size T (w,m, s) = w×|S|×T (w, bm/2c, wsA)+ |S|×T (w, dm/2e, sB+w)+2|S|.
As |S| ≤ 2w, we have,

T (w,m, s) ≤ w2wT
(
w,
⌊m

2

⌋
, wsA

)
+ 2wT

(
w,
⌈m

2

⌉
, sB + w

)
+ 2w+1

s = sA + sB

By solving the recurrence we get the desired bound :
T (w,m, s) = 22(w+2) logmw2 logms+ 2w+1 logm = smO(w).

16

For VsSC circuits, the “upper half” circuit is not even multilinear. So we need to explicitly
account for each monomial up to the overall degree, and compute the coefficient of each. We
show that this is possible, if a quasi polynomial blow-up in size is allowed. Formally,

Lemma 25 Let C be a layered arithmetic circuit size s on the variables X ∪Y ∪Z. Let d be
the syntactic degree bound on C and w be its width. Let f ∈ R[Z] be a polynomial computed
by C, where R = K[X, Y]. Let t = 〈t1, . . . , tw〉 be a degree sequence for variables from Z.
Then coefff (Z

t) can be computed by a circuit of width w + 2 and size O(s(d + 1)2w), where
Zt =

∏w
k=1 Z

tk .

Proof: From the proof of Lemma 10, we have

coefff (Z
t) =

∑
i1,...,iw∈{0,...,d}

f(i1, . . . , iw)
w∏
k=1

G(xk, ik)

where

G(xk, ik) =
(−1)d−tkSd,tk(0, 1, . . . , ik − 1, ik + 1, . . . , d)

ik!(d− ik)!(−1)(d−ik)

The number of terms in the above sum is bounded by (d + 1)w. We know that each
Sd,tk can be computed by a depth-3 arithmetic circuit of polynomial size poly(d); let p(d)
be the size upper bound on such a circuit. This circuit can easily be transformed into a
width-3 circuit of the same size. Now, to compute coefff (Z

t), we compute each term in the
above expression sequentially and accumulate the sum in an internal gate along the way.
To compute a term, we need to evaluate f at a certain point i1 . . . , iw and then multiply it
by G(xk, ik). First we compute f(i1, . . . , iw) by using a copy of C, and then compute the
product by serially computing the corresponding symmetric polynomials and multiplying by
the inverse of the denominator (note that this value only depends on d and ik’s hence can
be hardwired). Thus a term can be computed within a width of max{w, 5}. To compute the
overall sum, we need an extra gate to carry the partial sum. Thus the total width needed
can be bounded by max{w+1, 5}. The number of copies of C needed is bounded by (d+1)w

and the total number of circuits for Sd,tk is bounded by (d + 1)ww. Hence the overall size
can be bounded by (d + 1)w × s + 2× (d + 1)w × w × p(d). By [SW99], p(d) = O(d2); thus
for w ≥ 2 this is bounded by O(s(d+ 1)(2w)).

Proof:[of theorem 21] The first two statements follow directly from Lemma 23 For the
third statement, let C be an arithmetic circuit of width w, size s and syntactic degree
d. Now applying the strategy and using Lemma 25 for step 3, we can construct the re-
quired circuit C ′ through induction. Let T (w, d,m) denote the size of the required circuit,
then T (w, d,m) ≤ 2ws(d + 1)2wT (w, d,m/2). Solving the recurrence, it is easy to see that
T (w, d,m) = O(2w logmslogm(d+ 1)2w logm) which gives the required result.

17

6 Skew formula

In this section we consider the expressive power of exponential sums of polynomials computed
by skew formula. Firstly, let us define exponential sum:

Definition 26 Let C be an algebraic complexity class in Valiants’ model.
∑
·C is the set of

families of polynomials (fn)n≥0 such that there exists a polynomial family (gm)m≥0 in C with
fn(X) =

∑
e∈{0,1}m′ gm′+n(X, e), where m′ ≤ poly(n). In this notation, VNP =

∑
·VP.

It is well known that the complexity class NP is equivalent to ∃·P and in fact even to ∃·F.
A similar result holds in the case of Valiant’s algebraic complexity classes too. Valiant has
shown that VNP =

∑
·VF (see [Bür00, BCS97]), and thus the polynomial g in the expression

above can be assumed to be computable by a formula of polynomial size and polynomial
degree.

Noting that VNP is the class of polynomials which are projection equivalent to the “per-
manent” polynomial, a natural question arises about the polynomials which are equivalent
to the determinant polynomial. Since the determinant exactly characterizes the class of
polynomials which are computable by skew arithmetic circuits ([Tod91]), the question one
could ask is: can the determinant be written as an exponential sum of partial instantiations
of a polynomial that can be computed by skew formula of poly size, VSkewF? Recall that a
circuit is said to be skew if every × (or ∧ in the boolean case) gate has at most one child
that is not a circuit input. Skew circuits are essentially equivalent to branching programs.
Thus one could ask the related question: since VP ⊆

∑
·VP =

∑
·VPe, can we show that

VPskew ⊆
∑
·VSkewF?

We show that this is not possible. We first give an equivalent characterization of VSkewF
in terms of “sparse polynomials” (Lemma 27) placing it inside VAC0, and then use it to show
that

∑
·VSkewF is in fact contained in VSkewF (Theorem 29).

6.1 A characterization of VSkewF

Lemma 27 Let f ∈ K[X] be computed by a skew formula Φ of size s. Then the degree and
number of monomials in f are bounded by s.
Conversely, if f ∈ K[X] is a degree d polynomial, where at most t monomials have non-zero
coefficients, then f can be computed by a skew formula Φ of size O(td).

Proof: Let F be a skew formula of size s. Consider a sub-tree T of F such that root of F is
in T and for any gate g in T , if g is a + gate then exactly one child of g is in T and if g is a ×
gate then both children of g are present in T . We call such a subtree T a “proving subtree”
of F . Since F is skew, T looks like a path, with edges hanging out at nodes labeled ×. But
in a tree, the number of root to leaf paths is bounded by the number of leaves in the tree.
Thus the number of distinct proving subtrees of F is upper bounded by s. Let pF ∈ K[X]
be the polynomial computed by the formula F , where X is the set of input variables of F .
It is easy to see that a proving subtree in F corresponds to a monomial in pF (monomial
with some value from K as coefficient). Thus the number of non-zero monomials in pF is

18

bounded by s. Since the degree of the monomial contributed by such a path is at most the
length of the path, the degree of pF is at most s.

On the other hand, if a polynomial p ∈ K[X] has t non-zero monomials m1, . . . ,mt, then
we can explicitly multiply variables to get each monomial mi and finally get the sum

∑
i cimi,

where ci ∈ K is the coefficient of mi in p. This formula computes p in size O(td).

Corollary 28 VSAC0 ⊂ VSkewF ⊂ VAC0.

Proof: The containments follow directly from Lemma 27. To see why they are proper:
(1) Even over the Boolean setting, the function ⊕logn

i=1 xi is in SkewF but not in SAC0. Any
Boolean function sensitive to only O(log n) of its n inputs is in SkewF. Functions computed
by a VSAC0 circuit have O(1) degree, and so cannot equal the class of poly-degree poly-
support polynomials VSkewF. (2) The function

∏n
i=1(xi + yi) is in VAC0 but not in VSkewF

because it has too many monomials.

6.2 An upper bound for
∑
.VSkewF

Theorem 29 Let f ∈ K[X] be expressible as f(X) =
∑

e∈{0,1}m φ(X, e), where φ has a poly

size skew formula and m ≤ poly(n). Then f ∈ VSkewF.
In other words,

∑
·VSkewF ⊆ VSkewF.

Proof: Since φ(X, Y) (where X = X1, . . . , Xn and Y = Y1, . . . , Ym) has a poly size skew
formula, by Lemma 27 we know that the number of non-zero monomials in φ is bounded
by some polynomial q(n,m). Hence the number of non-zero monomials in φ(X, Y)|X (i.e. ,
monomials in X with coefficients from Z[Y]) and hence in f(X), is also bounded by q(n,m).

For any α ∈ Nn, consider the monomial Xα =
∏

αi
Xαi
i , and define the set Sα as

Sα = {β ∈ {0, 1}m | XαY β has a non-zero coefficient aα,β in φ}

Clearly, for each α, we have |Sα| ≤ q(n,m).
Since φ(X, Y) is evaluated only at Boolean settings of Y , we can assume, without loss of

generality, that it is multilinear in Y . So it can be written as

φ(X, Y) =
∑
α∈Nn

∑
β∈{0,1}m

aα,βX
αY β

Hence we have the following:

f(X) =
∑

e∈{0,1}m

∑
α∈Nn

∑
β∈{0,1}m

aα,βX
αeβ

=
∑
α∈Nn

Xα
∑
β∈Sα

aα,β ∑
e∈{0,1}m

eβ


19

Therefore,

f(X) =
∑
α∈Nn

(
Xα

∑
β∈Sα

aα,β2m−lβ

)

where lβ = number of 1’s in the bit vector β ∈ {0, 1}m.

Then the coefficient cα of Xα in f(X) is given by
∑

β∈Sα aα,β2m−lβ . Now by hardwiring
these coefficients along with Xαs (note that there are only polynomially many such αs) it is
easy to see that f(X) can be computed by a skew formula.

Thus, it is not possible to express the determinant polynomial in
∑
.VSkewF since it has

exponentially many monomials.

6.3 Multilinear Versions

Here we consider the multilinear versions of the skew formula. From Lemma 27, we know that
VSkewF is characterized by polynomials with polynomial many coefficients. The construction
yields, for any multilinear polynomial computed by a skew formula, an equivalent skew
formula which is syntactic multilinear. Hence the notion of multilinearity and syntactic
multilinearity are the same for skew formula.

Since any multilinear polynomial that can be computed by a VSAC0 circuit has a small
number of monomials, the containments and separations of corollary 28 hold in the syntactic
multilinear case too. Also, note that the polynomial

∏
i(xi + yi) is multilinear, and can be

computed by a sm-AC0 circuit.

Corollary 30 sm-SAC0 ⊂ sm-VSkewF ⊂ sm-AC0

Conclusion and Open questions

We proposed a notion of “small space” for algebraic computations in terms of the circuit
width. VL was defined as class of polynomials computed by log width circuits with cer-
tain degree and constraints on coefficients. However it is easy to see that our definition of
VWIDTH(S(n)) can be extended to polynomials with arbitrary coefficients from K. Only
Theorem 7 does not work under this definition as VPSPACE contains only polynomials with
integer coefficients.

Having a reasonable upper bound for VL seems to be a hard task: as VBP can be seen
as a natural arithmetic version of NL, we would like to have VL contained inside VBP.

Later on we introduced the notion of read-once certificates and read-once exponential
sums of arithmetic circuits. It is shown that with this definition, the classes behave on the
expected lines: 1) ABPs are closed under taking read once exponential sums. 2) Applying
read once exponential sum to VP yields exactly the class VNP. However, in the case of VsSCi

we could prove only an upper bound of VQP, i.e. ΣR · V sSCi ⊆ VQP (Theorem 21). For

20

the case of ΣR · VL the best upper bound one could give is only VNP which is obvious from
definition itself.

Are VNC1 and VsSC0 separate? The study of read once exponential sums throws in
this doubt: Is VsSC0 really more powerful than VNC1? Since we don’t have a nice definition
of read once certificates for depth bounded circuits, we use the equivalence VBWBP = VNC1

for this purpose. From Theorem 18, we have ΣR · VBWBP = VBWBP, hence we can say
that ΣR · VNC1 = VNC1. On the other hand the best known upper bound for ΣR · VsSC0 is
VQP. Thus on the one hand showing VNC1 = VsSC0 will bring ΣR · VsSC0 all the way down
to VNC1 and showing a super-polynomial formula size lower bound for VsSC0 could separate
VsSC0 from VNC1. However the second one is going to be much harder.

We conclude with the following questions:

• Is VL contained in VBP? i.e. do the class of all log width poly degree and size circuits
have equivalent poly size algebraic branching programs?

• Is ΣR ·VL ⊆ VP? Even in the case of VSC0, it will be interesting to see an upper bound
of VP, i.e, is ΣR · VSC0 ⊆ VP?

• Is there any natural family of polynomials complete for VL?

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, New York, NY, USA, 2009.

[Bar89] David.A.Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. Journal of Computer and System
Sciences, 38(1):150–164, 1989.

[BCS97] P Bürgisser, M. Clausen, and M.A. Shokrollahi. Algebraic Complexity Theory.
Springer-Verlag, 1997.

[BCSS97] Lenore Blum, Felipe Cucker, Mike Shub, and Steve Smale. Complexity and Real
Computation. Springer, 1997.

[Bür00] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory.
Algorithms and Computation in Mathematics. Springer-Verlag, 2000.

[CDL01] A Chiu, G Davida, and B Litow. Division in logspace-uniform NC1. RAIRO
Theoretical Informatics and Applications, 35:259–276, 2001.

[CMTV98] Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer. Non-
deterministic NC1 computation. Journal of Computer and System Sciences,
57:200–212, 1998.

21

[dN06] Paulin Jacobé de Naurois. A Measure of Space for Computing over the Reals.
In CiE, pages 231–240, 2006.

[Jan08] Maurice J. Jansen. Lower bounds for syntactically multilinear algebraic branch-
ing programs. In MFCS, pages 407–418, 2008.

[JR09] Maurice J. Jansen and B. V. Raghavendra Rao. Simulation of arithmetical
circuits by branching programs with preservation of constant width and syntactic
multilinearity. In CSR, pages 179–190, 2009.

[KP07a] Pascal Koiran and Sylvain Perifel. VPSPACE and a Transfer Theorem over the
Complex Field. In MFCS, pages 359–370, 2007.

[KP07b] Pascal Koiran and Sylvain Perifel. VPSPACE and a Transfer Theorem over the
Reals. In Wolfgang Thomas and Pascal Weil, editors, STACS, volume 4393 of
Lecture Notes in Computer Science, pages 417–428. Springer, 2007.

[LMR07] Nutan Limaye, Meena Mahajan, and B V Raghavendra Rao. Arithmetizing
classes around NC1 and l. In Patrice Enjalbert, Alain Finkel, and Klaus W.
Wagner, editors, STACS, volume 665 of Lecture Notes in Computer Science,
pages 477–488. Springer, 2007.

[Mal07] Guillaume Malod. The complexity of polynomials and their coefficient functions.
In IEEE Conference on Computational Complexity, pages 193–204, 2007.

[Mic89] Christian Michaux. Une remarque à propos des machines sur R introduites par
Blum, Shub et Smale. Comptes Rendus de l’Académie des Sciences de Paris,
309(7):435–437, 1989.

[MP06] Guillaume Malod and Natacha Portier. Characterizing Valiant’s algebraic com-
plexity classes. In MFCS, pages 704–716, 2006.

[NW95] Noam Nisan and Avi Wigderson. On the complexity of bilinear forms. In STOC
’95: Proceedings of the twenty-seventh annual ACM symposium on Theory of
computing, pages 723–732, New York, NY, USA, 1995. ACM.

[SW99] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic formulae over fields of
characteristic zero. In IEEE Conference on Computational Complexity, pages
87–, 1999.

[Tod91] Seinosuke Toda. Counting problems computationally equivalent to the determi-
nant. Technical Report CSIM 91-07, Dept. Comp. Sci. and Inf. Math., Univ. of
Electro-Communications, Tokyo, 1991.

[Tza08] Iddo Tzamaret. Studies in Algebraic and Propositional Proof Complexity. PhD
thesis, Tel Aviv University, 2008.

22

[Val76] Leslie G. Valiant. Graph-theoretic properties in computational complexity. Jour-
nal of Computer and System Sciences, 13:278–285, 1976.

[Val79] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput.
Sci., 8:189–201, 1979.

[Ven92] H. Venkateswaran. Circuit definitions of nondeterministic complexity classes.
SIAM Journal on Computing, 21:655–670, 1992.

[Vol99] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-
Verlag New York Inc., 1999.

7 Appendix

7.1 Blum Shub Smale (BSS) model of computation

In this section we briefly describe the model of computation over reals proposed by Blum,Shub
and Smale. For more details reader is referred to [BCSS97]. The BSS model is defined for
computation over the field R of real numbers. We present the version used in [dN06].

A BSS machine M has an input tape output tape and a work tape, where each cell stores
a value from R and a set of parameters A = {A1, . . . , Ak}, where Ai ∈ R. In a single step,
M can perform one of the following operations:

• Input: reads a value from the input tape into its work tape.

• Computation: Performs an arithmetic operation over values in the work tape (The
number of operands is some fixed constant).

• Output: Writes a value on the output tape.

• Constant: Writes a constant Ai ∈ R.

• Branch: Compares two real values and branches accordingly

Naturally we can associate a function φM : R∗ → R with M . We say that a real set
L ⊆ R∗ is decided by M if the characteristic function of L, χL equals φM . We can make
the machine M above non-deterministic by allowing non-deterministic choices at every step.
PR is the set of all languages from R∗ that are decidable by polynomial time bounded BSS
machines. Also, NPR is the class of languages that are computable by non-deterministic
polynomial time bounded BSS machines.

In the unit space model, we count a the number of work tape cells used by the machine
as the space used. Michaux ([Mic89]) showed the following:

Proposition 31 ([Mic89]) Let L ⊆ R be a language computed by a machine M in time t.
Then there is machine M ′ and a constant k such that M ′ computes L in unit space k.

23

