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Having concerned ourselves with boundedness properties of algebraic data structure
specifications in the sense of the ADJ Group (see [4, 6, 7]) before now—see {17, which is in
a sense a follow-up of [3] of Bergstra and Tucker—we show in this paper that data
structures of cardinality>n can be specified by means of a bounded number of equations,
not depending on n, which are each of length @(n) only.
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INTRODUCTION

In [3] has been shown that a particular data structure A, with |A,,|
=ack(n,n)+1 which is »n if n is large, can be specified (in the sense of
the ADJ Group see [4,6,7]) using only a bounded number N of
equations, not depending on n, which are each of length ®(n). Now the
question arises whether or rfot such a specification can also be given for a
data stricture ¥"=(D,,Z) with IDV|g f(n) where f is an arbitrary
recursive function w—w.

We shall prove that this can be done: first, ‘in section two, we shall
show that it can be done easily when using conditional equations,
resulting in the following

THEOREM If f is a recursive function w—w then there exists for each n a
finite algebraic data structure ¥, such that V", can be specified by means
of a conditional specification (Z,E,y with |E|<N, llel| ¢ n for each e€E,,
and |V |>f(n), where N and c are certain fixed natural numbers not
depending on n;
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306 J. A. BERGSTRA AND J.-J. Ch. MEYER

next, in section three, we shall show that it can also be done by means of
(ordinary) equations, resulting in the

THEOREM If f is a recursive function w—w-then there exists for each n a
finite algebraic data structure W, such that W, can be specified by means
of an ordinary equational specification (',E,» with |E;|<N, |l¢]|Sc n for
each eeE,, and I“/l/" ,,|> f(n), where N and ¢ are certain fixed natural
numbers not depending on n.

But before all this we shall recapitulate the main definitions and notions
for specification of data structures in general.

1. SEMANTICS AND SPECIFICATIONS OF
DATA STRUCTURES

An algebra ¥~ of signature X is a structure {Dy,Z, in which Dy is a set
of elements called the domain of ¥ and X is a set of names of functions
defined on D, and names of special elements of Dy (the individual
constants of ¥°). It is said that ¥ names the constants of V.

An algebra ¥ is called finite, if it has a finite domain.

The following facts are easy to establish:

Let ¥ and % be algebras of signature X both finitely generated by
their constants.

Then:

1) any Z-homomorphism ¢: ¥ —#" is surjective.

2) if @, y: ¥"—# are T-homomorphisms then ¢ =1y.

3} if there are T-homomorphisms ¢: ¥"—>#" and y: # - then ¥ =W
(by either ¢ or V).

Let X be a signature. Then T(X) denotes the Z-algebra of all terms over
¥ and T[Xi,...X,] denotes the algebra of polynomials in the
indeterminates Xi,..., X,

If ¥ is a T-algebra then we mean by term evaluation in ¥~ a map val,:
T(Z)—7" which evaluates each term te T(Z) by substituting the constants
of ¥ for their names in t.

val, can be uniquely defined as an epimorphism TE)-7.

Clearly, the following holds: if @: ¥ —~%" is a homomorphism between
S-algebras, then the following diagram commutes:

TZ)
val, / ¢ \ valy
Vo W

We define polynomial evaluation in ¥ as the substitution of some a
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=(ay,...,a,)€ Dy for indeterminates X = (X,,...,X,) and of the constants
of ¥ for their names into polynomial ¢(X)e T[X,,...,X,], followed by
the evaluation of t(a) in ¥".

An (ordinary) equation is a pair (t(X),t'(X)) of polynomials from some
T[X4,...X,], written as t(X)=t'(X), whereat it must be noted that ¢(X)
and ¢'(X) need not have any indeterminate in common.

A conditional equation is a formula of the form

1 (X)=t (X)) Ave A (X)) =1(X) = t(X)=1"(X).

The length of an equation e, notated as ||ef} is the length of e thought of
as a string over signature T and the alphabet

( h=na-01

where {0,1} is used to represent indeterminates by means of the binary
representations of their natural number indices.

If E is a set of formulae over = and A4 is a Z-algebra such that AFE, we
say that A is an E-algebra.

We define ALG(Z,E) as the class of all E-algebras and T'(Z,E) as the
initial algebra for ALG(Z,E), constructed from T(Z); T, E)=TZ)/ =
where =, denotes the smallest congruence on T(X) that identifies terms
of T (£) by means of the equations of E.

Finally we define: an algebra ¥ =(Dy,Z,) has a finite (ordinary or
conditional) equational specification (L,E) if Z,=%, E is a finite set of
(ordinary or conditional respectively) equations over X, and T(Z,E)=7".

We shall leave it at that as far as basic concepts are concerned; more
details can be obtained from [2,4,6,7].

2. SMALL SPECIFICATIONS OF LARGE FINITE DATA
STRUCTURES BY MEANS OF CONDITIONAL EQUATIONS

If S is a set we shall use the notation |S| for the cardinality of S (i.e. the
number of elements in S); if ¥ is an algebra we shall mean by |#| the
cardinality of the domain of ¥". Now we can state our

THEOREM 2.1 Let [ be a recursive function w—w. Then there exists for
each n a finite algebraic data structure ¥, such that ¥, can be specified by
means of a conditional specification (Z,E,) with |E.| =5, ||e|| S cn for each
ecE,, and |V ,,|> f(n), where ¢ is a certain fixed natural number not
depending on n.

Proof To prove our theorem we shall make use of the Diophantine
Theorem of ¥, Matijacevi¢ which we shall state explicitly first: let P, stand

JCM—C
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for the set of polynomials in m indeterminates over Z, constructed from
the usual addition +, subtraction — and multiplication - on Z.

A set Qco® is said to be diophantine if there exists a polynomial
re Py, such that

(xg,e-0x,)EQ  iff

e w€WSL F(Xq,. o X V1,.-0 9,) =0,

Obviously, the condition for a set to be diophantine is equivalent to the
condition that there exists polynomials p, ge P, constructed from + and
- only, such that (x,,...,x,)eQ iff

ayla"'iylew s.t. p(xlﬁ"')xkﬂyl’""yl)=(I(x1>"'9xkayla"'ayl)'

In this form we shall use the concept of diophantine.

Now the Diophantine Theorem states that every recursively enumerable
set is diophantine. (See [5] for a proof of this.)

As f is a recursive function, graph (f)={(x,y)|y=f{(x)}cw® is a
recursively enumerable set, and thus by the Diophantine Theorem to be
written as ‘

{(x,y)ew*|3z,,..,zie @ s.t.
(X V21,00 2)=q(X, ), 21,..,2)} for some polynomials p,qeP,.,
constructed using + and - only,
For notational convenience sake we shall abbreviate z,,...,z, as z in
future.
So now we have that
Vx,yew:y=f(x) iff dzs.t
p(x, y,2)=4q(x, y,2). *)
or equivalently:
Vxew:3z s.t, px,f(x),z)=q(x,f(x),2) (**)
Let t,=puew[3z s.t.

u=p(n,f(n), z) =Q(n:f(n)’ z)],

in which uu[®u] stands for the least number u such that ®u holds.
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Notice that t,< oo, for by (**) such a u exists.
We shall need the following

LEMMA 2.2 t,2f(n).

Proof Take a u such that u=p(n,f (n),20)=q(nf (n),z,) for some z,.
Suppose that both polynomials p(n,f(n),2o) and q(n,f(n), %) contain no
terms with f(n). Then it holds: u=p(mn,y,2)=q(n,y.%) for any yew,
which implies that Vyew:y=f(n). But this contradicts the functionality of

So either p(n,f(n),zo) or g(n,f(n),Z,) contains a term with f (n), suppose
p(n,f(n),2o). But p(nf(n)zo) is a composition of only+and-, so u
=p(n,f(n),zy) must be= f(n).

This argumentation holds for every u=p(n, f(n)zo)=qn.f(n),2,) for
some Zg.

So alSO Ln = ,uu[u = p(naf (n)a ZO) ={q (naf (n )5 z())] g f(n) D

Now we define & as the signature {S,,:,0} and E, as the set
equations over X:

X+0=X )

X Y)=S(X+7Y
+8(Y)=5(X 1Y) forming together E*, and

X -0=0 the equation:

X S()=(X-Y)+X ]

p(S"(0), Y, 2)=4(8"(0), ¥, Z)~p(S"(0), Y, Z) =S (p(S" (Q), ¥, Z))-

in which p and g are built like p and ¢ respectively but with -+ and:
instead of 4+ and - respectively.

Notice that ¥n:|E,|=S5, and that Vn VeeE,:|ef| <c - for some fixed c.

Now we shall consider T'(Z,E,). First we prove the following

LEMMA 23 Let peP, be constructed using + and -only and let
plag,...a)=a.

Then it holds that

T(Z,E,)Fp(8*(Q),..., 5*(@)= 5 Q).
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Proof Suppose p(ai,...a,)=a. Then also <a) S, 4,2, 0)kFp(8°(0), ..
S%(0)) == $%(0Q) in which S names s(x)=x+1
+ names addition on w, and
- names multiplication on w.
But it is easy to see that

(0,8, +,-,0)= T(S, E*).

So also T(Z,E*)Fp(S™(Q),...,8%(0))=25%(0), and as T(%,E,) is a
homomorphic image of T(Z,E*), it also holds that T(Z,E,)kp(S™
©),....5%Q)=5"(©0). O -
Let 7, now be the algebra {({0,1,...,1,},2) in which

Z names s, (x) =min(x+1,t,) by S,

= min (x+ y,t,) by +,

g(x,y)=min (x-y,t,) by -,
and Oew by 0.
(+ and-are the usual addition and multiplication on w again). Then we
can state the

PROPOSITION 2.4
TZ,E)=9

Proof First we notice that 7 ,FE,, because it is clear that J ,FE* and
furthermore it holds that

p(S,"(O) »z)= CI(S:,,(O) ¥ )_)p(st,,(o) y,2)= St,,(p(stn( ) ¥, 2)),

for if p(si, (0), y,2)=q(s], (0), y,z) for some y and z, then p(n, y,2)=q(n’, ,7)
with n' —min (t,,n) and so by (*¥) y=f(n'). Now there are two possibilities:
i) n'=t, and then, as p and g are constructed by means of + and - only,
p(',y,2)=q(',y,z)=t,, if either p or g has a term with n'. If neither p
nor g has a term with »’, then we can infer analogously to the proof
of lemma 2.2 that f is a constant function. So in that case we have y
=f(n")=f(n), and thus p(n,f (n),2)=p(n',y,2)=q (@', y,2)=q(n.f (n), z).
ii) n'=n, and then we also have p(n,f (n),z)=q(n,f (n),z). So we always
have that either p(n,y,z)=q(n,y,z)=t, which implies that
St,,(p(S;ln (0), y,2))= St, (p(n',y,2))= St,,(tn) =t,=p(,),z) =P(Sf',, 0), y,2), or
P(”,f (n): z)=Q(n:f(n)= Z)é Ly
But this last formula implies p(n,f(n)z)=q(n,f(n),z)=t, too,
because if p=g were <t,, then there would be a u<t, such that u=p
=g, and this contradicts the minimality of ¢,.
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So in any case we have that s, (p(sf,(0), y,2))=p(s  (0), y, z). From
the fact that 4 ,FE,, we can infer that Vi,je{0,...,t,} Sl 0)=5 5 0)=
=j, for §(0)= E, S’(O) implies that E,-S'(0)= S’(O) and thus 9' FSt (O)
=§(0), ie. valy (S’(O)) valg, (SJ(O)), ie. i=j, (and the converse is
tr1v1al) Next it is not difficult to prove that Vee T(Z) holds that ¢

£, 5"(0) for some O=u =i,

The proof is given by induction on the complexity of terms in T(X):
the basis is obvious and the induction step follows from the

LEMMA 25 If d;=558"(Q) for some 0Su,<t, and AeZ, then A(d)
=, S"(0) where A is the m-ary function named by L in ¥ and d
=(dy,..ndy) and u=(Uy, ..., u,).

Proof
i) A=8;4=s,,
First, as t,=p(n.f (n),70)=q(n.f (n),20) for some zo, we know by
lemma 2.3 that

T(Z, E")F Stn (Q) =B(Sn (_) Sf(n) Szo(_)) q(S" (_), Sf(n) (.J g% L))

in which
SZO(_Q) (S(zoh( ) S(ZO)kL))
Thus
E, +S"(0) =P_(S" 0)- S/ (0), S*(0)) =g_(S" (0), grm (0), $(0)
and so also
E,+$"(0)=p(5"(0), (), §(0)) =S (p(5"(0), S (0), S*(©)
=SS1"(_Q)=SI"+1(_Q). (***)

Therefore

St Q) (0)= ST(Q) i u=t,
EnI_S(S”(,Q))=Su+1(Q) {SS[ (u)(()) if u<t

il) A=+;4=f
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E,FS" Q)+ §°(0)=5" (0)+ (52~ (0))
=S($"(Q)+571(0) = $*(5"(0) + §72(0))
= ... =8§"(8"(0) % 5°(0)) = 5"2(S" (0) + 0) = §*2(5" (0)

S"‘(_Q) (by (W«)) =Sf(u1.u2)v(g) if Uy +u, >t,

=Su1+u2 0)=
(_) {Sj(m,uz)(g) if u1+u2§t,,

i) A=-;A=g

E,FS™ (0):8"(0) =5 (0):8(5"1 (@) =(5(0): 5" (0)) 4 § (0) =
=(5"(0:8° @)+ 5" O .. +5"(©)

LY
u, times

=0+ 5*(Q)+ 5" Q) +...+5(Q)

;__Y______J

. uy—1 times

S"Q)(by (***))=S87-22(Q) if  uyu,>t,

— Quiu2 —
SHr2(0) {Sg(m,m(g) if wu,<t,. O

From the preceding we can easily conclude that the function ¢ defined
by @(i)=%y,(5'(0)), the =, -equivalence class of S'(0) is a bijective
homomorphism & ,—T(Z, E,). Therefore T(X,E, )= T
(A more extensive treatment of an argumentation of this kind can be
found in [1,2,3].)

With this our theorem has been proved. Q.E.D.

3. SMALL SPECIFICATIONS OF LARGE FINITE DATA
STRUCTURES BY MEANS OF ORDINARY EQUATIONS.

THEOREM 3.1 Let f be a recursive function w—w. Then there exists for
each n a finite algebraic structure W', such that #, can be specified by
means of an ordinary equational specification (X',E,) with |E;|=18, |||
Zc'n for each ecE,, and |W ,|>f(n), where ¢ is a certain fixed natural
number not depending on n.

Proof By the Diophantine Theorem again we have that

Vx,yew:y=f(x) iff 3zs.t.
P(x,y’1)=f1(x,)’sz)(*)
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and
Vxew:3z s.t.
p(x,f(x), Z) - q(x,f(x): Z) (** )

for some p, g€ Py, , constructed by means of + and - only.
Again, let t,=uuew[3z st. u=p(n, fn),z)=qn,f(n),z)]. Then again it
holds that

f)£t, <o (by lemma 2.2).

Now we define X' as the signature {S, +,:, H,MAX,0} and E, as
E, U {e,} where E, is the set of equations:

> which was the E* of section 2.

MAX(X,0)=X

MAX(S(X), S(Y))=S(MAX(X, Y))
MAX(X, Y)=MAX(Y, X)

H@0,0,X)=X
H(S(X),S(X),Y)=H(X,X,Y)
H(X,Y,Z)=H(Y,X,Z)
HX,LHU,V,W)=H(U,V,HX,L,W))
HX,LHX,Y,Z)=H(X,Y,Z)
H(H(X,Y,Z),U,N=H(Z UHX, V)
S(H(X,Y,Z))=H(X, Y, 5(2))

H(X,Y,Z)+U=H(X,%,Z+U)
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HX,Y,Z):U=H(X,Y,Z:U)
MAX (H(X, Y, Z),U)=H(X, ¥, MAX (Z,U))
and e, is the equation
H(p(5™(0), ¥, Z),4(5"(0), ¥, Z), p(S"(0), ¥, Z))
=H(p(5"(Q), ¥, Z),q(S"(0), , Z), S(p(5"(Q), Y, Z)))

in which p and g are built like p and g respectively but with + and -
instead of + and - respectively.
Notice that ¥n:|E,|=18, and VnVeeE,: || <c - n for some fixed n.
Before looking closer at T(X', E,) we shall first prove the

LEMMA 32 If peP, is constructed by means of + and - only and
(@, a)=a, then T'(Z, E,)kp($*(0),. .., S*(0)) = $%(0).

Proof X play,...a)=a we can prove analogously to the proof of
Lemma 2.3 that T(X', E*)Ep(S°*(Q),..., $%(0))=5°(0) and as T(Z,E,) is a
homomorphic image of T(X,E*) we also have T(X,E;,)Fp(S*(0),
> 8%(0)=50). O

Let 7, be the set {0.1,...,1,} and o, be the set of two element subsets of
7, Now consider the following algebraic structures of signature T';
L, =V, S, +, -, HL MAX, 0> in which

V=II{o,) % t,, where
II(o) stands for the power set of ¢,
S names the operation
S(4,i)= (A4, min(z,,i+1))
+ names the operation @ on V
defined by (4, i)® (B,j)= (A U B, min (tysi+7))
-~ names the operation ® on V
defined by (4,i)O(B,j)=(4 UB, min (tsij))

H names the operation
h((4,1), (B,j),C, k))

=(AVBUCU{ijLk) if i#j

(AU BUC, k) otherwise
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MAX names the operation

m((4,1),(B.j))=(4 U B, max(i,j))
and Q names (§,0)e V.
(min, max, +, - have their usual meaning as operations on ).

and 4, is the homomorphic image of &, in which all elements (4,i)e V
with A0 havé been identified.
We can now prove the following

PROPOSITION 3.3
i) There exists an epimorphism ¢: & ,—T (X', E}).
ii) There exists an epimorphism y: T(Z',E})— 4%,

Proof (i) Just as in section 2 we can say that
E1§(0) = p(S"(0), S (0), 5°(0)) = ¢(S"(0) - (0, (0))
for certain z,. and so

E,+S"(0)=H (0,0, S"(0))
=H(5(0), S(0), S"(0))
=,..=H(S"(Q), $"(0), $"(0))
=H (p(8"(0), $/*(0), $*(0)),

4(5"(Q), 7" (0), $°(0)), p(S"(0), S/ (0), §°(0)))
=H(p(s"(0), S’ (0), §*°@Q),

4(8"(0), $/(0), 5%(0)), Sp(S"(Q), /*(0), S*(O)),
=H(S"(0), (0), $"*1(0))
=...=H(S(0), 5(0), s"**(0))
=H(0,0,8""*(0))=5"*1(0).

As thus E'+S*(0)=S"*1(0), it holds that T(Z',E,)FE ,u {S"(Q)=S"*"
(0)}, so that T(X',E,) is the homomorphic image of TX',E, v {S"(0)
=S§"*1(0)}), which is =/, as we shall see now:
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LEMMA 3.4 T(Z,E, U {S"(0)=S"" ()} =,
Proof For convenience we shall name the equation $*(0)=S"*1(0) by
&,. Notice first that o, FE, U {g,}.
Now define y: &,— T(X', E,;) by
Crooen(S'Q) if A=
WA D)=< Crop, (H(S™(0), S (0), H(5(0), $*(0),

H(. 570, S0, S'@). ) I A={{ay, by} (@, b)),

For convenience we shall omit the index E, U {¢,} of ¥ and write
H(5"(0), $*(0), H(8(Q),. .., $*(0), $(0))...)
as
H( 5 H (2,0 H(, b)),

Then
a) y is a function, because (A, )= (A,/)=(4=B) A (i=j)=>y(4,1)=x(B,)).
b) x is injective, because y(A4,i)=yx(B,j)=>(A=B=0v (A#0 A B+0))

because of the fact that something of the form S'(0) can never be

=E, U {5} something of the form
H(MH(...m")...) where a,#by,
and
A=B=0=%(5'(0)=%(5'(0)=50)= F(Q)=E, L {&,}} 5(0)
=8/0)=o/,§'(0) = §'(Q)=val,, (§'(0))=val,,(§(0)=(®,1)
=(D,/)=(4,1)=(B,))

and

(A%Q /\Bﬁég)’_ﬁA:{{alsbl}""’{am’bm}}
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for some a,# b, and B={{a},b}},....{a, b.}} for some a, +#b;

=@(H (b H(2, 2 (.. 0 ), =@ H (... 7). L)
E,U{eFrHE .Y )=H(, .. 0)..)
S FHE ) =H val, (H... ) =val, (H(*...%)
=h((®,a,), @,b,),h((@,a,)... @ b,), B.)...)
=h((@,a1), @, b1),.., B.))... )=

(0 tobna)=( U tabins) ie ai=cei

Thus anyhow X(Aa l) = X(B,])=>(A, l) = (B).])

¢) ¢ is surjective, because for every te T(X) it holds that t=,, (n")Si((_))
for some i ot t=g,,,H ("2 H(...o7)...) for some a,#b,. This
is proved by induction on term complex1ty ‘the basis is clear (0=S°
(0)), and the induction step follows from the following ’

LEMMA 3.5 If d,=5%0) or dy=H(®,™ H®,% H(.. %,"™) ) for
some €7, and Gy, F b (Y1), {Ge biw} F {G, b} (Y1, 17") and AeX' names
M-ary operation A, then A(d) is = with a formula of one of the two forms
too. (d=dy,...,dy).

Proof We shall only consider the following possibilities for A ( and
leave the rest to the reader):

o) A=38;A=s. As we know that Eleg,

Sw(Q) if wu=t,;n

LG Su ut 10
E,FS§'(0)=8""(0)= {Su@) with v<t, otherwise

and
EFSHE L H(. ™ )=H (" SH(.. ). )=
=H M H(.."YY.)=H(", bUH(...Y)...) with vEd,.

B) A=H;A=h. For convenience we take as an example d; = §*(0),

d,=H(5"(0), $*(0), $(9)
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and
d3=H(5"(0), $°(0), S°(0)).
Then

E.FH(5"(0), H(S(0), 5*(0), $(Q)), H(S"(Q), S*(0), H*(0)))
_H(H(a b a)’ ",I:[(u be )=I‘I a, ",H(", b,H(u’b’c)))'

In general we can always get a form with a, % b, (Vr),
{a,,b,} #{a,,b,}(Vr,#') and uet,.

d) x is a homomorphism: Ax(4,i)=yx(A(4,i)). This can be seen by
looking more precisely at the formula=A(d) in lemma 3.5: for
example: for A=S and A4={{a,,...,h,}} then Sx(4,1)
=SH(",...,"H...)

HE Lty of =t !
={IIE‘“,...,”"',"+)1) if i<r,}=xs(A’l)'

By a), b), c¢) and d) we know that T(X,E, U {g,}) =, so lemmd 34
has been proved. [

Therefore it is also clear that T(Z',E.) is the homomorphic image of
&, the proof of proposition 3.3 i) is complete. [

In order to prove ii) we consider the followmg It is a routine matfer to
check that #,FE,, but also it holds that 4, Fe

H’

valg (H(p( ).g( ).p( )

- =valg (HP( )q( ), Sp( ) ie.
hpa( ).qa( )pa( N=hda( )gal )spa( )

where pg and g, are the operations on 4, correspondlng to p and ¢
respectwely, constructed from @ and @ instead of + and -
This is so because
1) If pa( ) and gg( ) are both (§,i) for some iez,, then i must be
=p( )=q( ) and so i=r, (Otherwise the minimality of z, is
contradicted.)
So

h(pa( ) qa( )pal( )

=’1((Q),t"),(Q,ln),(Q,t,,))“—‘(Q,t") and h(pﬂ( ),an( ):Sp.%‘( ))
=h((®,1,), @, 1,), @ min(t,,t,+1)))= @,1,) too.
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2) If pa( ) and gg( ) are not both (@,i) for certain iew,, then
h(pa( »da( ) Pal ))=(4,j) for certain A+@ and jez,, and
h(pa( )y da( ) spa( ))=(4, min(t,j+1)) and thus they are
identical in 4, by definition.

So we know that 4,kE., which implies that 3 epimorphism i:
T(X',E,)—~%,, which had to be proved. []

COROLLARY 3.6
fn)<|T(E,E)| < .

Proof By Proposition 3.3 i):
T, E.)=0p(s,) for a certain homomorphism .
So
T, E)|<||=17]

=[Te)} [ =29, + 1)

=¥tnlts— 1), (t" + 1)< 00
because ¢, < co, and on the other hand by Proposition 3.3 ii):

B,=Y(T(Z,E)) for a certain homomorphism . So |T(, E;)| 2|4,

As «%’%<,U {@, 1)} v {({0,1},0)}, E’>

1ET
n

if £, 21 and %, < U @, i)},2’>

lE‘L‘"

if t,=0, where ' names the same functions as in =7, is
IT(E,E)|z|#|zt+12f M) +1>f(). O

Hence T (X', E) satisfies all the requirements to be #/, in Proposition
3.1. So take #,=T(Z, E,). QE.D.
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