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SMALL-STENCIL 3D SCHEMES FOR DIFFUSIVE FLOWS IN POROUS MEDIA
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Abstract. In this paper, we study some discretization schemes for diffusive flows in heterogeneous

anisotropic porous media. We first introduce the notion of gradient scheme, and show that several

existing schemes fall into this framework. Then, we construct two new gradient schemes which have

the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency

of the new schemes, compared to existing ones.
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1. Introduction

Underground engineering simulations often involve computations of the flow on meshes that are adapted to
the geological layers. This geology fitting is likely to produce a number of complex geometrical features, such as
faults, vanishing layers, slanted wells, highly heterogeneous permeability fields. . . The resulting grid cells may
feature non-planar faces and they are defined in most cases by 8 vertices; they can be locally defined by 7, 6 or
5 vertices for layers which are not present over the whole domain. These grid cells are often called generalised
hexahedra. For instance Figure 1 presents a typical near-well mesh used in reservoir engineering; the mesh on
the right features distorted cells, high contrasted sizes and non-conforming connections between the radial part
(on the left) and the Cartesian part.

Since most of the coupled phenomena which occur in underground flow involve diffusion terms, we focus in
this paper on the following simple diffusion problem posed on an open bounded subset Ω ⊂ R

3, with boundary
∂Ω = Ω \ Ω: {

−div(Λ(x)∇ū) = f in Ω,
ū = 0 on ∂Ω,

where ū is an unknown field (temperature, pressure, . . . ), Λ(x) is a linear operator which is usually self-adjoint,
and with eigenvalues belonging to [λ, λ], 0 < λ ≤ λ, and f ∈ L2(Ω) is a volumetric source term.

Keywords and phrases. Porous media, diffusion operator, anisotropy, non conforming meshes.
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3 LATP-CNRS UMR 6632, Aix-Marseille Université, 39 rue Joliot Curie, 13453 Marseille, France.
herbin@cmi.univ-mrs.fr, work supported by GNR MOMAS.

Article published by EDP Sciences c© EDP Sciences, SMAI 2011

http://dx.doi.org/10.1051/m2an/2011040
http://www.esaim-m2an.org
http://www.edpsciences.org


266 R. EYMARD ET AL.

Figure 1. Near-well grid: radial mesh without (left) and with transition zone (right).

Hence we wish to approximate the function ū solution of the weak form of the problem, that is:

ū ∈ H1
0 (Ω) and ∀v̄ ∈ H1

0 (Ω),

∫

Ω

Λ(x)∇ū(x) · ∇v̄(x)dx =

∫

Ω

f(x)v̄(x)dx. (1.1)

The discretization of Problem (1.1) by a finite volume method requires the approximation of the diffusion
flux ΦK,σ(ū) through any face σ of a control volume K, defined by ΦK,σ(ū) = −

∫
σ

Λ(x)∇ū(x) ·nK,σ(x)ds(x),
and nK,σ(x) is the outward unit normal vector to σ at the point x. An intense research activity has recently

been devoted to the numerical approximation ΦK,σ of ΦK,σ(ū), particularly in the oil engineering framework,
where such problems are of utmost importance; we refer for instance to the various schemes presented at the
FVCA5 and FVCA6 benchmarks [23,25].

In the case where Λ is a heterogeneous isotropic diffusion operator, if the mesh satisfies a standard orthogo-
nality condition, then the continuous flux ΦK,σ(ū) through the interface σ between the control volumes K and
L may be consistently approximated by the two points approximation ΦK,σ = τK,L(uK − uL), where uK and
uL are the approximate values of u at points xK and xL and where τK,L depends on the geometric properties
of the mesh and on Λ via the harmonic mean value of Λ between K and L. The standard orthogonality is
satisfied in the particular case of rectangular meshes (2D or 3D), or acute angle triangular meshes (note that
this does not generalise to 3D tetrahedra), Voronöı meshes (2D or 3D). An advantage of the above two point
approximation is that it provides monotonicity properties, under the form of a local maximum principle. The
mathematical properties of the resulting scheme are extensively studied in [19] for example.

Unfortunately, it is seldom possible to use a two point flux in the general case. Indeed, the natural diffusion
operators involved in underground flows are in general heterogeneous, accounting for the geological constitution
of the layers by sedimentation processes. Furthermore, the geometry of the grid cells resulting from the design
of the above depicted 3D mesh does not satisfy the aforementioned orthogonality condition needed for the
consistency of the two point approximated flux with ∇ū · nK,σ.

In order to obtain a consistent approximation in the general case, a first idea is to use more than two points
in the approximation of ΦK,σ(u), but in a careful way so as to keep a conservative flux. This has been the
object of several studies [19], Chapter 3, [1,12,24].

However these schemes usually fail to meet two properties which are of some interest in practice, namely
symmetry and positive-definiteness. Indeed, except in some particular cases, multi point schemes are not
symmetric; recall that the symmetry of the matrices allows for important savings in computing time; moreover,
except again in some particular cases, there is no evidence that the matrix obtained with these coefficients is
positive definite, and that convergence properties can be expected; in fact, there exist particular meshes on
which these methods lead to noninvertible linear systems.

In order to obtain a consistent approximation of the diffusion flux, a second idea is to use a gradient-type
scheme. The construction of such a scheme is based on a non-conformal approximation of the weak formulation
of the problem. In this sense, it relates to nonconforming finite element methods. Defining the set XD,0

of all families of discrete unknowns, for u ∈ XD,0, we denote by ∇Du ∈ L2(Ω)d a discrete gradient and by
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ΠDu ∈ L2(Ω) a reconstruction of a space function. Then Problem (1.1) is approximated by the scheme

u ∈ XD,0, ∀v ∈ XD,0,

∫

Ω

Λ(x)∇Du(x) · ∇Dv(x)dx =

∫

Ω

f(x)ΠDv(x)dx. (1.2)

In Section 2, we present the properties which are sufficient for the convergence of the scheme (1.2). We also
give examples of gradient schemes, among which the SUSHI scheme, whose discrete gradient is obtained using
the Stokes formula and relies on the use of auxiliary unknowns uσ located on the interfaces σ between control
volumes and a stabilisation in order to obtain a coercive scheme. A drawback of such schemes is the difficulty
to eliminate the auxiliary unknowns uσ algebraically, in order for the diffusion terms to be only expressed with
respect to the unknowns uK [5], leading to unacceptable computational costs in the engineering framework.
Therefore, the scheme can be modified, defining the auxiliary unknowns uσ as linear interpolations of the
unknowns uK meeting some properties with respect to the diffusion operator Λ(x) (see [21]). Then the scheme
becomes cell-centred, but the stencil of the corresponding term Bi,j,k becomes too wide.

This analysis leads us to the construction of two new 3D schemes: a hybrid vertex scheme and a cell centred
scheme, which we present in this paper. Both meet the advantages of multi point schemes (in particular, a
stencil with at most 27 points) and the symmetry and convergence properties of the SUSHI scheme.

The first one, detailed in Section 3, follows the idea proposed in [18] of introducing vertex unknowns, which
we adapt to general meshes using the discrete gradient introduced in [21]. Note that the same type of idea was
also used in [10]. It is applicable to any polyhedral mesh, whether the faces of the control volumes are planar
or not. Its main characteristics are the following:

(1) the discrete unknowns are the values uK at the centre of the control volumes and the values us at
the vertices, allowing to express the auxiliary unknowns uσ (used in the discrete gradient) as linear
interpolations of the unknowns us;

(2) after a local elimination of the cell unknowns, we get a small stencil on the interior vertices which is
27-point on structured hexahedral meshes;

(3) it provides the exact solution if Λ is piecewise constant in polygonal sub-domains and u is affine in each
of these sub-domains (this property is sought in the multi-point flux approximation schemes given for
instance in [3]);

(4) the scheme is always a gradient scheme in the sense developed in Section 2 and thus the scheme is well
posed, leads to a symmetric positive definite matrix, whatever the geometry and the diffusion operator,
and the approximate solutions converge to the exact solution of the problem as the grid size tends to 0,
for general heterogeneous anisotropic diffusion problems.

Even though this scheme yields a 27-point linear system on the vertex unknowns, it does not lead to a 27-point
linear system on the cell unknowns themselves, which is required in some situations. Hence a second scheme,
proposed in Section 4, extends to the 3D case the 2D scheme which was presented in [6]. Its implementation
presents a few new difficulties, which have to be overcome. As in the 2D case, the scheme is based on the so-
called harmonic averaging points, which allow for a consistent 2-point interpolation on an interface σ between
two neighbouring control volumes K and L, of any function u whose regularity properties are those of a solution
of the diffusion problem. This study is recalled in Section 4.1. Such an interpolation is then used to construct
a discrete gradient on the subcells which are delimited by a cell centre, a cell vertex and the two (in 2D) or
four (in 3D) harmonic average points of the edges (in 2D) or faces (in 3D) corresponding to the vertex. This
discrete gradient is the same (on the subcells) as the one which is used in the SUSHI scheme [21], and therefore,
the convergence analysis of the resulting scheme is analogous to that of the SUSHI scheme. However, thanks
to the use of the harmonic points and the subcells, its stencil is much smaller. The full scheme is presented in
Section 4.2. Its main characteristics are the following:

(1) it may be used on a large class of non-regular polyhedral meshes;
(2) it again provides the exact solution if Λ is piecewise constant in polygonal sub-domains and u is affine

in each of these sub-domains;
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(3) it leads to a 27-point scheme in the case of quadrilateral meshes which are not too distorted (in a sense
involving the diffusion matrix Λ);

(4) it is shown to be a gradient scheme.

Numerical results are provided in Section 5, followed by a short conclusion in Section 6.

2. Approximate gradient schemes

The approximate gradient schemes are written on the weak form of the diffusion problem. From the set of
discrete unknowns, a function and a discrete gradient are reconstructed: they are defined almost everywhere
and are expected to be an approximation of the unknown function of the problem and its gradient. In order
for the scheme to be consistent and convergent, the discrete gradient and the reconstruction operator must
be carefully chosen with respect to one another. We first give the definition and convergence properties of a
gradient scheme and then give some examples of existing schemes that can be seen as gradient schemes.

2.1. Definition and properties

Definition 2.1 (approximate gradient discretization and gradient scheme). Let Ω be a bounded open domain
of R

d, with d ∈ N
⋆. An approximate gradient discretization D is defined by D = (XD,0, hD, ΠD,∇D), where:

(1) the set of discrete unknowns XD,0 is a finite dimensional vector space on R;
(2) the space step hD ∈ (0, +∞) is a positive real number;
(3) the mapping ΠD : XD,0 → L2(Ω) is the reconstruction of the approximate function;
(4) the mapping ∇D : XD,0 → L2(Ω)d is the reconstruction of the gradient of the function; it must be

chosen such that ‖∇D · ‖L2(Ω)d is a norm on XD,0.

Then the coercivity of the discretization is measured through the norm CD of the linear mapping ΠD, defined
by

CD = max
v∈XD,0\{0}

‖ΠDv‖L2(Ω)

‖∇Dv‖L2(Ω)d

· (2.1)

Note that (2.1) yields the following “discrete Poincaré” inequality:

‖ΠDv‖L2(Ω) ≤ CD‖∇Dv‖L2(Ω)d , ∀v ∈ XD,0.

The strong consistency of the discretization is measured through the interpolation error function SD : H1
0

(Ω) → [0, +∞), defined by

SD(ϕ) = min
v∈XD,0

(
‖ΠDv − ϕ‖2

L2(Ω) + ‖∇Dv −∇ϕ‖2
L2(Ω)d

) 1

2

, ∀ϕ ∈ H1
0 (Ω). (2.2)

The dual consistency of the discretization is measured through the function WD: Hdiv(Ω) → [0, +∞), defined
by

WD(ϕ) = max
u∈XD,0\{0}

1

‖∇Du‖L2(Ω)d

∣∣∣∣
∫

Ω

(∇Du(x) · ϕ(x) + ΠDu(x)divϕ(x)) dx

∣∣∣∣ , ∀ϕ ∈ Hdiv(Ω). (2.3)

If D = (XD,0, hD, ΠD,∇D) is an approximate gradient discretization, we shall say that (1.2) is a gradient
scheme.

The following lemma may be seen as the so-called “Strang second lemma”, which was introduced in the
framework of non nonconforming finite element approximations [29]. We give its formulation in the present
setting (along with its proof, which is quite simple).



SMALL-STENCIL 3D SCHEMES FOR DIFFUSIVE FLOWS IN POROUS MEDIA 269

Lemma 2.2 (control of the approximation error). Let Ω be a bounded open domain of R
d, with d ∈ N

⋆, let
f ∈ L2(Ω) and let Λ be a measurable function from Ω to the set Md(R) of d × d matrices, such that for a.e.

x ∈ Ω, Λ(x) is symmetric, and such that the set of its eigenvalues is included in [λ, λ], where 0 < λ ≤ λ. Let
u ∈ H1

0 (Ω) be the solution of (1.1) (remark that since f ∈ L2(Ω), one has Λ∇u ∈ Hdiv(Ω)).
Let D be an approximate gradient discretization in the sense of Definition 2.1. Then there exists one and

only one uD ∈ XD,0, solution to the approximate gradient scheme (1.2), which moreover satisfies the following
inequalities:

‖∇u −∇DuD‖L2(Ω)d ≤ 1

λ
(WD(Λ∇u) + (λ + λ)SD(u)), (2.4)

and

‖u − ΠDuD‖L2(Ω) ≤
1

λ
(CDWD(Λ∇u) + (CDλ + λ)SD(u)). (2.5)

Proof. Assume that u ∈ XD,0 satisfies (1.2); taking v = u in (1.2) and using (2.1), we get

∫

Ω

Λ(x)∇Du(x) · ∇Du(x)dx =

∫

Ω

f(x)ΠDu(x)dx ≤ ‖f‖L2(Ω)CD‖∇Du‖L2(Ω)d . (2.6)

This leads, thanks to the hypotheses on Λ, to

λ‖∇Du‖L2(Ω)d ≤ ‖f‖L2(Ω)CD; (2.7)

hence, taking f = 0 yields ∇Du = 0. Thanks to the hypotheses on the approximate gradient, ‖∇D · ‖L2(Ω)d is
a norm on XD,0, we thus get u = 0. Remarking that the discrete system (1.2) leads to a square linear system,
we therefore obtain the existence and uniqueness of u ∈ XD,0 solution to (1.2).

Let us take in (2.3), ϕ = Λ∇u ∈ Hdiv(Ω). We then obtain, for a given v ∈ XD,0,

∣∣∣∣
∫

Ω

(∇Dv(x) · Λ(x)∇u(x) + ΠDv(x)div(Λ(x)∇u)(x))dx

∣∣∣∣ ≤ ‖∇Dv‖L2(Ω)d WD(Λ∇u),

which leads, since u is the solution to (1.1), to

∣∣∣∣
∫

Ω

(∇Dv(x) · Λ(x)∇u(x) − ΠDv(x)f(x))dx

∣∣∣∣ ≤ ‖∇Dv‖L2(Ω)d WD(Λ∇u).

Since uD is the unique solution to (1.2), we get

∣∣∣∣
∫

Ω

Λ∇Dv · (∇u −∇DuD)dx

∣∣∣∣ ≤ ‖∇Dv‖L2(Ω)d WD(Λ∇u).

Defining

PDu = arg min
v∈XD,0

(‖ΠDv − u‖2
L2(Ω) + ‖∇Dv −∇u‖2

L2(Ω)d),

and thanks to (2.2), we get

∣∣∣∣
∫

Ω

Λ∇Dv · (∇DPDu −∇DuD) dx

∣∣∣∣ ≤ ‖∇Dv‖L2(Ω)d WD(Λ∇u) +

∣∣∣∣
∫

Ω

Λ∇Dv · (∇DPDu −∇u)dx

∣∣∣∣
≤ ‖∇Dv‖L2(Ω)d

(
WD(Λ∇u) + λ‖∇DPDu −∇u‖L2(Ω)d

)

≤ ‖∇Dv‖L2(Ω)d

(
WD(Λ∇u) + λSD(u)

)
.
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Choosing v = PDu − uD yields

λ‖∇D(PDu − uD)‖L2(Ω)d ≤ WD(Λ∇u) + λSD(u).

Remarking that ‖∇u −∇DPDu‖L2(Ω)d ≤ SD(u), we obtain (2.4). Using (2.1), we get

λ‖ΠDPDu − ΠDuD‖L2(Ω) ≤ CD(WD(Λ∇u) + λSD(u)),

which yields (2.5), since ‖u − ΠDPDu‖L2(Ω)d ≤ SD(u). �

We deduce from (2.4) and (2.5) the following convergence result:

Corollary 2.3 (convergence). Under the assumptions of Lemma 2.2, let F be a family of gradient discretizations
in the sense of Definition 2.1, which satisfies the following assumptions:

(P1) there exists CP ∈ R such that CD ≤ CP for any D ∈ F ;
(P2) for all ϕ ∈ H1

0 (Ω), SD(ϕ) tends to 0 as hD → 0;
(P3) for all ϕ ∈ Hdiv(Ω), WD(ϕ) tends to 0 as hD → 0.

For D ∈ F , let uD ∈ XD,0 be the solution to the approximate gradient scheme (1.2), then ΠDuD converges to u
in L2(Ω) and ∇DuD converges to ∇u in L2(Ω)d as hD → 0.

Remark 2.4 (error estimate). In the case where u and Λ are sufficiently regular, we get for the SUSHI
scheme [21] and for the schemes presented in this paper, that WD(Λ∇u) ≤ ChD and SD(u) ≤ ChD, where
C > 0 only depends on the regularity of the mesh.

The following lemma can be used for the practical verification of the assumptions (P2) and (P3) of Corol-
lary 2.3.

Lemma 2.5. Let Ω be a bounded open domain of R
d, with d ∈ N

⋆. Let F be a family of approximate gradient
discretizations in the sense of Definition 2.1 Then, for any dense subspace R of H1

0 (Ω), the two properties:

lim
hD→0

SD(ϕ) = 0, ∀ϕ ∈ R, (2.8)

and

lim
hD→0

SD(u) = 0, ∀u ∈ H1
0 (Ω), (2.9)

are equivalent. Furthermore, if there exists CP > 0 such that the following uniform discrete Poincaré inequality
holds:

CD ≤ CP , ∀D ∈ F , (2.10)

then, for any dense subspace S of Hdiv(Ω), the two properties:

lim
hD→0

WD(ϕ) = 0, ∀ϕ ∈ S, (2.11)

and

lim
hD→0

WD(U) = 0, ∀U ∈ Hdiv(Ω), (2.12)

are equivalent.

Proof. Let us prove that if (2.8) is satisfied then limhD→0 SD(u) = 0 for all u ∈ H1
0 (Ω). Let ε > 0 and ϕ ∈ R,

such that ‖u − ϕ‖H1(Ω) ≤ ε. Thanks to (2.8), there exists η > 0 such that, for all D ∈ F with hD ≤ η, then

min
v∈XD,0

(‖ΠDv − ϕ‖2
L2(Ω) + ‖∇Dv −∇ϕ‖2

L2(Ω)d) ≤ ε2.
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Let us denote by
PDϕ = arg min

v∈XD,0

(‖ΠDv − ϕ‖2
L2(Ω) + ‖∇Dv −∇ϕ‖2

L2(Ω)d).

We then get
‖ΠDPDϕ − u‖2

L2(Ω) + ‖∇DPDϕ −∇u‖2
L2(Ω)d ≤ 4ε2.

This proves that SD(u) ≤ 2ε, hence showing limhD→0 SD(u) = 0, which proves the first equivalence.
Let us now prove that, under hypothesis (2.11), for all U ∈ Hdiv(Ω), limhD→0 WD(U) = 0. Let ϕ ∈ S such

that ‖U −ϕ‖Hdiv(Ω) ≤ ε, which means that ‖U −ϕ‖L2(Ω)d ≤ ε and ‖divU − divϕ‖L2(Ω) ≤ ε. Thanks to (2.11),
there exists η > 0 such that, for all D ∈ F with hD ≤ η, then, for all v ∈ XD,0,

∣∣∣∣
∫

Ω

(∇Dv(x) · ϕ(x) + ΠDv(x)divϕ(x))dx

∣∣∣∣ ≤ ε‖∇Dv‖L2(Ω)d .

Thanks to the triangle and Cauchy-Schwarz inequalities, we have:

∣∣∣∣
∫

Ω

(∇Dv(x) · U(x) + ΠDv(x)divU(x))dx

∣∣∣∣ ≤ ε‖∇Dv‖L2(Ω)d + ε‖∇Dv‖L2(Ω)d + ε‖ΠDv‖L2(Ω).

Thanks to Hypothesis (2.10), we get

∣∣∣∣
∫

Ω

(∇Dv(x) · U(x) + ΠDv(x)divU(x))dx

∣∣∣∣ ≤ (2 + CP )ε‖∇Dv‖L2(Ω)d .

Therefore WD(U) ≤ (2 + CP )ε, hence showing (2.12). �

2.2. Examples

Let us first notice that standard conforming finite element discretizations may be seen as approximate gradient
discretizations. Indeed, let Vh ⊂ H1

0 (Ω) be the usual finite element space spanned by the basis functions

ϕ1, . . . ϕN ; the space XD,0 is then R
N and for u = (u1, . . . , uN ) ∈ XD,0, ΠDu =

∑N
i=1 uiϕi, and ∇Du =∑N

i=1 ui∇ϕi = ∇ΠDu. Hence
WD(ϕ) = 0 for all ϕ ∈ Hdiv(Ω). (2.13)

Note that in fact, an approximate gradient discretization is conforming if and only if (2.13) holds.
Let us now turn to the case of the non conforming P1 finite element discretization on simplicial meshes.

In this case, the basis functions of the finite element space Vh are associated with the N internal faces of the
mesh, and Vh is spanned by the basis functions ϕ1, . . . , ϕN which are piecewise affine and continuous at the
centre of gravity of the faces. In this case, the space XD,0 is again R

N and for u = (u1, . . . , uN) ∈ XD,0,

ΠDu =
∑N

i=1 uiϕi, but ∇Du cannot be defined as in the conformal case; it is only piecewise defined as the
gradient of ΠDu. It is possible, under some geometrical conditions on the mesh (see e.g. [17]), to get from
classical results that for all ϕ ∈ (C1(Rd))d, WD(ϕ) ≤ hDCϕ.

The SUSHI scheme [21] is explicitly defined through the space XD,0, the reconstruction operator ΠD and
the discrete gradient ∇D. The fact that WD tends to 0 may be proved in a similar way to that of the proof of
Lemma 3.1 below. Note that the SUSHI scheme is also part of the mimetic mixed hybrid family [16]; however,
in the general form of mimetic schemes, we do not know how to include the stabilisation term (which is needed
for the coercivity of the scheme) in the gradient term in order to write the scheme under the form (1.2).

The DDFV scheme, see [9,15,26] for the two dimensional case and [7,8,11,13,14,27,28] for the three dimen-
sional case, may also be seen as a gradient scheme. Consider the case where the domain Ω is the union of
octahedra which are the so-called diamond cells (such a cell is depicted in Fig. 2). Octahedral meshes may be
obtained from general hexahedral meshes by introducing an internal point to each hexahedron. We show in
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Figure 2. Left: a generic octahedral cell for the DDFV scheme – right: an example of con-
struction of an octahedron from a locally refined face of a hexahedron

Figure 2 a locally refined face of hexahedral cell where we depict a octahedron constructed with an internal
point of the cell and the barycentre of the four points of a face. (Here and throughout the paper, unless oth-
erwise stated, “barycentre” will refer to a barycentre with equal weights). With such a construction, we can
easily take into account boundary conditions and heterogeneous media (each octahedron is homogeneous). The
unknown at the centre of the internal faces (point B in right side of Fig. 2), may be easily eliminated. Let us
define the space XD,0 as is XD,0 = {(us)s∈V}, where V denotes the set of vertices of the octahedral mesh M.
Referring to Figure 2, we define a discrete piecewise constant gradient by its value on the octahedron K:

∇Du(x) =
1

∆K

(
(uB − uA)

−−→
CD ×−−→

EF + (uD − uC)
−−→
EF ×−−→

AB + (uF − uE)
−−→
AB ×−−→

CD
)

, ∀x ∈ K, (2.14)

where ∆K = Det(
−−→
AB,

−−→
CD,

−−→
EF ). Let O be a well chosen point in K, for instance the barycentre of the six

vertices A, B, C, D, E and F . For the vertex F , we denote by σEF the union of the four triangles OAC, OCB,
OBD and ODA, and we denote by VK,F the subset of K of all points which are on the same side of σEF as F .
We proceed similarly for the five other vertices. The reconstruction operator is then defined for x ∈ K by:

ΠDu(x) =
1

3

(
uA1VK,A

(x) + uB1VK,B
(x) + uC1VK,C

(x) + uD1VK,D
(x) + uE1VK,E

(x) + uF 1VK,F
(x)

)

where 1V is the characteristic function of the set V . With these definitions, (1.2) is a DDFV scheme.

3. A small-stencil hybrid vertex scheme

As stated in the introduction, the general idea of the small-stencil hybrid vertex scheme is to introduce a
discrete gradient along the same line of thought as that of [20] (this discrete gradient depends on cell and faces
unknowns), and to use this discrete gradient to build a discrete bilinear form. The specific point here is to
express the face unknowns used in the discrete gradient as linear combinations of the vertex unknowns of the
cell. It is then possible to algebraically eliminate the cell unknowns to obtain a linear system involving the
vertex unknowns only.

3.1. Construction of the scheme

In this section, we provide a definition for all discrete quantities involved in Definition 2.1. We consider
generalised polyhedral meshes of Ω. Let M be the set of control volumes, that are disjoint open subsets of Ω
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such that
⋃

K∈M K = Ω. Let hD = maxK∈M hK , where hK denotes the diameter of the cell K. For all K in
M, xK denotes the so-called “centre” of the control volume K under the assumption that K is star-shaped
with respect to xK . Let F denote the set of faces of the mesh; we do not assume that these faces are planar,
hence the term “generalised polyhedral”. We denote by V the set of vertices of the mesh. Let VK , FK , Vσ

respectively denote the set of the vertices of K ∈ M, faces of K ∈ M, and vertices of σ ∈ F . For any face
σ ∈ FK , we have Vσ ⊂ VK .

We assume that Λ is constant on all K ∈ M, and we denote by ΛK its value in K.
We define the set XD as the set of all real families u = ((uK)K∈M, (us)s∈V), and XD,0 ⊂ XD as the set the

families u = ((uK)K∈M, (us)s∈V) such that us = 0 if s is a boundary vertex. Each face σ ∈ F with vertices
{s ∈ Vσ}, is decomposed into planar subfaces τ ; there are several ways to obtain such a decomposition, possibly
using auxiliary interior vertices which are then defined as barycentric combinations of the original vertices s ∈ Vσ

with non-negative weights; these auxiliary vertices are not in Vσ. Once these triangular subfaces are chosen,
the centre of gravity xτ of each subface τ can then be expressed by the following barycentric combination:

xτ =
∑

s∈Vσ

βτ,ss with
∑

s∈Vσ

βτ,s = 1,

where βτ,s ≥ 0 for all s ∈ Vσ. We then define βτ,s = 0 for all s ∈ V \ Vσ. Next, we reconstruct a value uτ at
the point xτ , by uτ =

∑
s∈Vσ

βτ,sus.
We denote by TK the set of all subfaces of the faces of K and by dK,τ the Euclidean distance between xK

and τ . The definition of a consistent expression for the approximation of the gradient, see [21], relies on the
following consequence of the Stokes formula

1

|K|
∑

τ∈TK

|τ |(xτ − xK)nt
K,τ = Id,

which implies ∑

s∈VK

bK,s(s − xK)t = Id, (3.1)

where

bK,s =
1

|K|
∑

τ∈TK

βτ,s|τ | nK,τ . (3.2)

The equality (3.1) suggests the following constant value as an approximation of the gradient on cell K.

∇Ku =
1

|K|
∑

τ∈TK

|τ | (uτ − uK)nK,τ =
∑

s∈VK

(us − uK)bK,s, ∀u ∈ XD.

However, it is readily seen that this approximate gradient will not yield a gradient scheme: the coefficient of uK

in the above expression is zero; moreover it may be equal to zero on all cells for a non constant set of unknowns
(us)s∈V (checker-board modes). In fact, on a regular grid, it resumes to the centred gradient.

Let (MK,s)s∈VK
be a partition of K such that |MK,s| = |K| /NK , where NK is the number of vertices of K

(there is no need to define this partition precisely). We first introduce the following consistency error:

RK,su = us − uK −∇Ku · (s − xK),

and we define, for a given γ > 0, the constant value ∇K,su in MK,s:

∇K,su = ∇Ku + γRK,su bK,s, ∀u ∈ XD. (3.3)

In the numerical implementation, γ was set to 5, after some sensitivity tests.
We now define a piecewise constant gradient by ∇Du(x) = ∇K,su for a.e. x ∈ MK,s.
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Let us then define the reconstruction operator ΠD. If we wish the scheme to be a finite volume scheme, we
choose the piecewise constant reconstruction operator defined by: Π0

Du(x) = uK for a.e. x ∈ K. In the case
where second order convergence is observed at the points xK , the piecewise affine reconstruction defined by
ΠDu(x) = uK + ∇Ku · (x − xK) for a.e. x ∈ K yields a better approximate solution. We shall only perform
the convergence analysis with this latter choice since the analysis for the former choice is simpler.

3.2. Implementation of the scheme

We remark that scheme (1.2) may also be written

find u ∈ XD,0, ∀v ∈ XD,0,
∑

K∈M

∑

s∈VK

|MK,s|ΛK∇K,su · ∇K,sv =
∑

K∈M

∫

K

(vK + ∇Kv · (x − xK)) f(x)dx.

From Section 3.1, we get that ∇K,su can be written under the form

∇K,su =
∑

s′∈VK

(us′ − uK)gs
′

K,s,

with

gs
′

K,s = bK,s′ − γbK,s(s − xK)tbK,s′ + γδs,s′bK,s. (3.4)

Defining

As,s′

K =
∑

s′′∈VK

|MK,s′′ |ΛKgs

K,s′′ · gs
′

K,s′′ ,

we get that

∑

K∈M

∑

s∈VK

|MK,s|ΛK∇K,su · ∇K,sv =
∑

K∈M

∑

s∈VK

∑

s′∈VK

As,s′

K (us − uK)(vs′ − vk).

Considering the test function v ∈ XD,0 such that the only non zero component of v is vK = 1, the above
expression leads to a linear equation which only depends on uK and us for s ∈ VK , hence allowing a local
elimination of uK . Then a linear system on all us, s ∈ V is obtained by the elimination of all the cell values
uK , resulting in a 27-point stencil on a hexahedral mesh.

3.3. Mathematical properties

Lemma 3.1 (gradient scheme properties of the vertex scheme). Let D = (XD,0, hD, ΠD,∇D) be a discretization
in the sense of Definition 2.1 with XD,0, hD, ΠD,∇D defined in Section 3.1, then, for a fixed γ, the scheme
(1.2) is a gradient scheme in the sense of Definition 2.1, and therefore there exists a unique solution to (1.2).
Furthermore, if F is a family of such discretizations for which there exists θ > 0 such that, for all D ∈ F :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ ≤ dK,τ

dL,τ

≤ 1/θ for all neighbouring cells K and L and for all τ ∈ TK ∩ TL,

dK,τ > θhK for all grid cells K ∈ M and τ ∈ TK ,

NK ≤ 1
θ
, for all grid cells K ∈ M,

hK |bK,s| ≥ θ, for all grid cells K ∈ M and s ∈ VK ,

(3.5)

the property (P1) of Corollary 2.3 is satisfied. Moreover,

SD(ϕ) ≤ CϕhD, ∀ϕ ∈ C2
0 (Ω), ∀D ∈ F , (3.6)
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where C2
0 (Ω) is the set of C2 functions which vanish on ∂Ω, and

WD(ϕ) ≤ CϕhD, ∀ϕ ∈ (C1(R
d
))d, ∀D ∈ F . (3.7)

Therefore properties (P2) and (P3) of Corollary 2.3 are satisfied: the scheme (1.2) is convergent and an error
estimate holds in the case of regular solutions.

Proof. We first need to prove that there exists CP not depending on the discretization D, such that

‖ΠDv‖L2(Ω) ≤ CP ‖∇Dv‖L2(Ω)d , ∀v ∈ XD,0,

which shows that CD remains bounded by CP .
From the discrete Sobolev embeddings proved in [21], Lemma 5.3, we have the following discrete Poincaré

inequality:

‖Π0
Dv‖L2(Ω) ≤ C1‖v‖1,D, ∀v ∈ XD,0, (3.8)

where Π0
Dv is the piecewise constant reconstruction of v defined by: Π0

Dv(x) = vK for x ∈ K, C1 ≥ 0 depends
on Ω and θ only and ‖ · ‖1,D is the discrete H1 norm defined by:

‖v‖2
1,D =

∑

K∈M

∑

τ∈TK

|τ |
dK,τ

(vτ − vK)2.

Let us then show that ‖v‖1,D ≤ C2‖∇Dv‖L2(Ω)d for any v ∈ XD,0, where C2 only depends on Ω, θ and γ.

Thanks to the fact that |MK,s| = |K|
NK

, we have

∫

Ω

|∇Dv|2 dx =
∑

K∈M

∑

s∈VK

|K|
NK

|∇Kv + γRK,sv bK,s|2 .

But, thanks to (3.1), we get:

∑

s∈VK

RK,sv bK,s =
∑

s∈VK

(vs − vK)bK,s −
∑

s∈VK

(s − xK)bt
K,s∇Kv = ∇Kv −∇Kv = 0, (3.9)

and therefore: ∫

Ω

|∇Dv|2 dx =
∑

K∈M

(
|K| |∇Kv|2 +

∑

s∈VK

|K|
NK

γ2(RK,sv)2|bK,s|2
)

.

Since for all a, b ∈ R, and µ > −1 we have ( a√
1+µ

− b
√

1 + µ)2 ≥ 0, we obtain (a − b)2 ≥ µ

1 + µ
a2 − µb2, and

therefore,

(RK,sv)2 ≥ µK,s

1 + µK,s

(vs − vK)2 − µK,s|∇Kv|2|s − xK |2,

for any µK,s > 0. Defining µK,s > 0 by

1 − µK,sγ
2|s − xK |2|bK,s|2 = 0,

we obtain ∫

Ω

|∇Dv(x)|2dx ≥ γ2 1

1 + maxK∈M

s∈VK

µK,s

∑

K∈M

∑

s∈VK

|K|
NK

(vs − vK)2

|s − xK |2 ,
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and therefore, thanks to the regularity assumption (3.5),

∫

Ω

|∇Dv(x)|2dx ≥ γ2 1

1 + C1

∑

K∈M

∑

s∈VK

|K|
NK

(vs − vK)2

|s − xK |2 , (3.10)

where C1 ∈ R+ depends only on θ and γ. Now, since we have

(vτ − vK)2 = (
∑

s∈VK

βτ,s(vs − vK))2 ≤ (
∑

s∈VK

βτ,s)(
∑

s∈VK

βτ,s(vs − vK)2) =
∑

s∈VK

βτ,s(vs − vK)2,

we get

‖v‖2
1,D =

∑

K∈M

∑

τ∈TK

|τ |
d(xK , τ)

(vτ − vK)2 ≤
∑

K∈M

∑

τ∈TK

|τ |
d(xK , τ)

∑

s∈VK

βτ,s(vs − vK)2,

and therefore

‖v‖2
1,D ≤

∑

K∈M

∑

s∈VK

CK,s(vs − vK)2 with CK,s =
∑

τ∈TK

βτ,s

|τ |
dK,τ

·

Again thanks to the regularity assumption (3.5), we have CK,s ≤ C2
|K|

NK |s−xK|2 where C2 ∈ R+ only depends

on θ. Together with (3.10), this yields that there exists C3 ∈ R+ only depending on Ω, θ and γ such that

‖v‖1,D ≤ C3‖∇Dv‖L2(Ω)d ,

and therefore, thanks to (3.8):
‖Π0

Dv‖L2(Ω) ≤ C1C2‖∇Dv‖L2(Ω)d .

Thanks to (3.9), we get that

∇Kv =
1

|K|

∫

K

∇Dv(x)dx, (3.11)

and therefore, by the triangle inequality:

‖ΠDv‖L2(Ω) ≤ ‖Π0
Dv‖L2(Ω) + hD‖∇Dv‖L2(Ω)d .

From the two above inequalities, we conclude the proof of (P1).
Property (P2) is a consequence of the Stokes formula, the proof is similar to that of [21], Lemma 4.3. Let us

now prove (P3). Let ϕ ∈ (C1(Rd))d be given, and let v ∈ XD,0. Let us compute

T1 =

∫

Ω

(∇Dv(x) · ϕ(x) + ΠDv(x)divϕ(x))dx.

Denoting by ϕK the average value of ϕ in K, ϕτ the average value of ϕ on τ and ϕK,s the average value of ϕ

in MK,s, we get T1 = T2 + T3 + T4 with

T2 =
∑

K∈M

∑

s∈VK

|MK,s|∇K,sv · ϕK,s, T3 =
∑

K∈M
vK

∑

τ∈TK

|τ |nK,τ · ϕτ

and T4 =
∑

K∈M

∫

K

∇Kv · (x − xK)divϕ(x)dx.

We have T2 = T21 + T22 with

T21 =
∑

K∈M

∑

s∈VK

|K|
NK

∇Kv · ϕK,s, and T22 =
∑

K∈M

∑

s∈VK

|K|
NK

γRK,svbK,s · ϕK,s.
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We get

T21 =
∑

K∈M
|K| ∇Kv · ϕK =

∑

K∈M

∑

τ∈TK

|τ | (vτ − vK)nK,τ · ϕK .

Remarking that if τ is on the boundary of Ω then vτ = 0 and that otherwise vτ appears in two opposite terms
from the two neighbouring cells sharing τ , we have

T3 =
∑

K∈M

∑

τ∈TK

(vK − vτ )|τ |nK,τ · ϕτ ,

we get

T21 + T3 =
∑

K∈M

∑

τ∈TK

(vK − vτ )|τ |nK,τ · (ϕτ − ϕK).

Hence, thanks to the Cauchy-Schwarz inequality

|T21 + T3| ≤
√
|Ω|‖v‖1,DhDCϕ. (3.12)

We then use (3.9), and we get

T22 =
∑

K∈M

∑

s∈VK

|K|
NK

γRK,sv bK,s · (ϕK,s − ϕK).

This leads to |T22| ≤ |T221| + |T222|, with

T221 =
∑

K∈M

∑

s∈VK

|K|
NK

γ(vs − vK)bK,s · (ϕK,s − ϕK),

and

T222 =
∑

K∈M

∑

s∈VK

|K|
NK

γ∇Ku · (s − xK)bK,s · (ϕK,s − ϕK).

Using the Cauchy–Schwarz inequality and (3.10), we conclude that

|T22| ≤ hDCϕ‖∇Dv‖L2(Ω)d . (3.13)

Turning now to T4 and using (3.11), we may write:

T4 ≤ hD‖∇Dv‖L2(Ω)d‖divϕ‖L2(Ω). (3.14)

From (3.12)–(3.14), we get (3.7), which concludes the proof. �

Let us now verify the following consistency property, that is useful to assess the precision of the scheme on
coarse meshes often used in the industrial setting: if the continuous problem admits an exact piecewise affine
solution, then its interpolate is the solution to the scheme. This property is automatically satisfied when using
a conforming approximation such as the P1 finite element scheme, but it must be checked for nonconforming
approximations.

Lemma 3.2 (exact solution on piecewise affine functions). Let ū = ((ūK)K∈M, (ūs)s∈V) ∈ XD such that for
all K ∈ M, there exists GK ∈ R

d with

ūs − ūK = (s − xK)t · GK , ∀K ∈ M, ∀s ∈ VK , (3.15)
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and, such that for any τ ∈ TK ∩ TL included in the interface between two neighbouring blocks K and L,

ΛKGK · nK,τ + ΛLGL · nL,τ = 0. (3.16)

Then ū is the unique solution of the discrete diffusion problem with non homogeneous Dirichlet boundary con-
ditions (existence and uniqueness follow from Lem. 3.1):

u ∈ XD,0 + ū, ∀v ∈ XD,0,

∫

Ω

Λ(x)∇Du(x) · ∇Dv(x)dx = 0. (3.17)

Proof. From the definition (3.4) of gs
′

K,s, we have:

∑

s∈VK

gs
′

K,s = NKbK,s′ − γbK,s′ + γbK,s′ = NKbK,s′ . (3.18)

We also have, thanks to (3.1) and (3.15),

∑

s′∈VK

(ūs′ − ūK)gs
′

K,s =
∑

s′∈VK

bK,s′(s′ − xK)tGK

− γ
∑

s′∈VK

bK,s(s − xK)tbK,s′(s′ − xK)tGK + γbK,s(s − xK)tGK = GK . (3.19)

Let us write the discrete operator associated to an interior vertex s:

Es =
∑

K∈M

∑

s′∈VK

As,s′

K (ūs′ − ūK) =
∑

K∈M

∑

s′∈VK

∑

s′′∈VK

|MK,s′′ |ΛKgs

K,s′′ · gs
′

K,s′′(ūs′ − ūK).

We then get, using (3.19), that

Es =
∑

K∈M

∑

s′′∈VK

|K|
NK

ΛKgs

K,s′′ · GK ,

and then, using (3.18),

Es =
∑

K∈M

|K|
NK

ΛKNKbK,s · GK .

Now we get, setting nK,τ = 0 if τ /∈ TK , defining T =
⋃

K∈M TK and using (3.2) and (3.16),

Es =
∑

K∈M
ΛK

∑

τ∈TK

βτ,s|τ | nK,τ · GK =
∑

τ∈T

βτ,s|τ |
∑

K∈M
ΛKnK,τ · GK = 0.

Hence the discrete operator applied to this particular solution and associated to an internal vertex is indeed
equal to 0.

Let us now check that the discrete operator applied to this particular solution and associated to a control
volume is also equal to 0.

EK = −
∑

s∈VK

∑

s′∈VK

As,s′

K (ūs′ − ūK) = −
∑

s∈VK

∑

s′∈VK

∑

s′′∈VK

|MK,s′′ |ΛKgs

K,s′′ · gs
′

K,s′′(ūs′ − ūK),

then, using (3.19),

EK = −
∑

s∈VK

∑

s′′∈VK

|K|
NK

ΛKgs

K,s′′ · GK ,
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which gives, using (3.18),

EK = −
∑

s∈VK

|K|
NK

ΛKNKbK,s · GK ,

and then, thanks to (3.2),

EK = −|K|ΛKGK ·
∑

s∈VK

bK,s = −ΛKGK ·
∑

τ∈TK

∑

s∈VK

βτ,s|τ | nK,τ ,

and finally

EK = −ΛKGK ·
∑

τ∈TK

|τ | nK,τ = 0. �

Remark 3.3. In the above proof, we showed in fact that WD(Λ∇û) = 0, where û ∈ H1(Ω) is the piecewise
affine solution of the non-homogeneous continuous problem. Furthermore, naturally extending the definition of
SD to H1(Ω), we also have SD(û) = 0.

4. A small-stencil cell-centred scheme

Because of the heterogeneity of Λ and the possible coupling with a transport equation, it is often not advisable
to apply the above hybrid vertex scheme to the dual cells whose vertices are the cell centres, which would seem
to be the simplest approach. Therefore our aim is to again define a scheme by (1.2) and suitable discrete
quantities (discrete space, discrete reconstruction, interpolation and gradient), under the constraint that the
scheme should be cell centred after the elimination of auxiliary unknowns.

Again, in order for the stencil to remain small (and in particular 27-points on hexahedral structured meshes),
the discrete gradient on one given cell should only depend on the values of the cell and its immediate neighbours.
Following the idea of the MPFA O-scheme, the most natural strategy is to build some subcells whose vertices
are the cell centre, a cell vertex, and some additional points, chosen thanks to suitable properties with respect
to the location of the discontinuities of Λ. This is the purpose of the definition of the so-called “harmonic
averaging points”.

Using the notations of Section 3.1, we furthermore assume that, for all s ∈ VK , there exist exactly three
faces in FK and three edges in EK having s as a vertex, and for all e ∈ EK , there exist exactly two faces in FK

having e as an edge.

4.1. Harmonic averaging points

In this section, we recall the construction of the so-called harmonic averaging points, presented in [6]. The
idea is to be able, as in the isotropic case, to express the value of u at some point of the interface between two
control volumes as a convex combination of the two values of u at the control volume centres. In the case of an
homogeneous medium, this point is simply the intersection between the segment formed by the two cell centres
and their interface, and the value of u is its linear interpolation. In the case of an heterogeneous isotropic
medium, this point is obtained by a harmonic averaging procedure, using (4.2) below, and the value of u is
also the harmonic average of the values of u at the two cell centres, using (4.4). Let us then see how we may
obtain such a point in the heterogeneous anisotropic case. Consider two domains K and L of R

3 with different
diffusion matrices (or permeabilities) ΛK and ΛL, separated by a planar interface σ as depicted in Figure 3,
and let xK ∈ K and xL ∈ L. Let dK,σ (resp. dL,σ) denote the orthogonal distance from xK (resp. xL) to σ.
We seek some point yσ in σ where there exists αK,σ > 0 and αL,σ > 0 with αK,σ + αL,σ = 1 such that the
relation u(yσ) = αK,σu(xK) + αL,σu(xL), holds for any function u such that:

(1) u is affine in both K and L;
(2) u is continuous on σ = ∂K ∩ ∂L;
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nKL

xL

xK
dK↪σ

dL↪σ

yK

yL

yσ

Figure 3. Construction of a particular point at the interface.

(3) the relation
ΛK∇u(xK) · nKL + ΛL∇u(xL) · nLK = 0, (4.1)

holds, where nKL denotes the unit vector, normal to σ, oriented from K to L.

Let Aσ,Λ denote the set of all functions which satisfy the three above properties; notice that any function
u ∈ Aσ,Λ is solution to a non homogeneous diffusion problem −div(Λ(x)∇u(x)) = 0 for a.e. x ∈ K ∪ L.

Therefore, the sought point yσ exists and is given by the following formula (see [6]):

yσ =
λLdK,σyL + λKdL,σyK + dK,σdL,σ(λσ

L − λσ
K)

λLdK,σ + λKdL,σ

, (4.2)

where, denoting by P(x, σ) the orthogonal projection on σ of any point x, we set

yK = P(xK , σ), λK = nKL · ΛKnKL, λσ
K = ΛKnKL − λKnKL,

yL = P(xL, σ), λL = nKL · ΛLnKL, λσ
L = ΛLnKL − λLnKL.

(4.3)

Then the following averaging formula holds:

u(yσ) =
λLdK,σu(xL) + λKdL,σu(xK)

λLdK,σ + λKdL,σ

, ∀u ∈ Aσ,Λ. (4.4)

The verification of this relation relies on the fact that the set of all functions u ∈ Aσ,Λ whose values at xK

and xL are imposed is an affine set of dimension 2; indeed, the degrees of freedom of such a function u are for
instance the two components of the gradient gσ of the restriction of u to σ. We can then show that

u(y) =
λLdK,σu(xL) + λKdL,σu(xK)

λLdK,σ + λKdL,σ

+ gσ · (y − yσ), ∀y ∈ σ,

which shows (4.4).
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xKe

yσ′
e

yσe
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xK
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s′

s

Figure 4. Construction of the submesh MK,s of a control volume.

4.2. Definition of the scheme

As in the case of the vertex scheme, we build a piecewise constant discrete gradient. Let us first define a
submesh (MK,s)K∈M,s∈VK

by the following steps:

(1) define harmonic averaging points in the faces σ ∈ F ;
(2) define the “centres” of the edges of the mesh (ye)e∈E ;
(3) define the subcells MK,s of the submesh.

Let us now describe in details each step, all of them referring to Figure 4.

4.2.1. Definition of harmonic averaging points on the faces

Since we do not assume the faces to be planar, the construction of the harmonic averaging points on the faces
are somewhat more tricky than in the 2D case. Let us denote xσ the barycentre of the vertices s ∈ Vσ, and nσ

an average unit vector normal to σ (it can be defined as the average of normal vectors to all triangles defined
by xσ and two consecutive vertices s, s′ of σ). Let σ ∈ F be an interface between the two control volumes K
and L. We consider the plane Pσ, containing the point xσ, orthogonal to nσ. We assume that the geometry of
the mesh is sufficiently regular, so that:

(1) the two points xK and xL are not on the same side of Pσ;
(2) the harmonic averaging point yσ ∈ Pσ, defined by (4.2), is such that, denoting by si, i = 1, . . . , Nσ the

ordered vertices of σ (setting j = i + 1 for i < Nσ and j = 1 for i = Nσ, the determinant of the three
vectors si − yσ, sj − yσ, nσ is strictly positive) the determinants of the three vectors si − yσ, sj − yσ

and xK − yσ have all the same sign, opposite to that of the determinants of the three vectors si − yσ,
sj − yσ and xL − yσ.

The second assumption may not be satisfied in practice in case of a large aspect ratio or large anisotropy ratio.
In this case, it is advisable to add a face unknown, as was done in the 2D case [6]. In Table 5 below, we show
the number of face unknowns (the so-called hybrid face unknowns) that were added during the implementation
the scheme.
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We then denote by αK,σ and αL,σ the two coefficients issued from (4.4):

αK,σ =
λKdL,σ

λLdK,σ + λKdL,σ

, αL,σ =
λLdK,σ

λLdK,σ + λKdL,σ

· (4.5)

4.2.2. Definition of the “edge centres”

For a given edge e ∈ E , we consider the subset Me of all K ∈ M, such that e ∈ EK . For any K ∈ Me, let σ
and σ′ be the two faces of K such that e is an edge of σ and σ′. Assuming that the points xK , yσ and yσ′ are
not aligned (this is the case for any reasonable mesh), we can consider the unique plane containing the three
points xK , yσ and yσ′ : its intersection with the straight line containing e is exactly equal to a unique point,
denoted yK,e. We denote by Ke an element of Me, such that the point yKe,e is the closest to the middle of e.
We then assume that yKe,e, denoted ye for simple and called the “centre” of e, belongs to e (see Fig. 4).

The corresponding faces σ and σ′ are then denoted σe and σ′
e, to which we associate two coefficients βe and

β′
e such that:

ye = xKe
+ βe(yσe

− xKe
) + β′

e(yσ′
e
− xKe

). (4.6)

4.2.3. Definition of the submesh

Let us now consider, for K ∈ M and s ∈ VK , the three faces σi, i = 1, 2, 3 and the three edges ei, i = 1, 2, 3
having s as a vertex. We assume that ei is a common edge to the faces σi and σj , where j = i + 1 for i = 1, 2
and j = 1 for i = 3. We then define MK,s as the polyhedron such that:

(1) its vertices are xK , s, yσi
and yei

, for i = 1, 2, 3;
(2) its “hybrid” faces (which will lead to the definition of hybrid unknowns in the sense of [21]) are the

triangles with vertices s, yσi
, yei

and s, yσj
, yei

, where j = i + 1 for i = 1, 2 and j = 1 for i = 3; the

set of these 6 triangular faces is denoted by F̂K,s; we then denote by yτ̂ the centre of gravity of such a
triangular face τ̂ ;

(3) its “barycentric” faces (which will lead to the definition of barycentric unknowns in the sense of [21])
are the triangles with vertices xK , yσi

, yei
and xK , yσj

, yei
, where j = i + 1 for i = 1, 2 and j = 1 for

i = 3; the set of these 6 triangular faces is denoted by F̃K,s; we then denote by yτ̃ the centre of gravity
of such a triangular face τ̃ .

It results from this definition that the volume MK,s has 8 vertices and 12 triangular faces. We finally define

the set FK,s = F̂K,s ∪ F̃K,s.

4.2.4. Definition of the discrete unknown space

Setting F̂ =
⋃

K∈M,s∈VK
F̂K,s and F̃ =

⋃
K∈M,s∈VK

F̃K,s, we define the set XD,0 as the set of all real

families u =
(
(uK)K∈M, (uσ)σ∈F , (ue)e∈E , (uτ̂ )

τ̂∈F̂ , (uτ̃ )
τ̃∈F̃

)
such that:

(1) for all exterior face σ ∈ F , uσ = 0, for all exterior face τ̂ ∈ F̂ , uτ̂ = 0, for all exterior edge e ∈ E , ue = 0;
(2) for all interior face σ ∈ F , interface between the two control volumes K and L, using (4.5),

uσ = αK,σuK + αL,σuL;

(3) for all interior edge e ∈ E , and Ke defined as in Section 4.2.2. Then, using (4.6),

ue = uKe
+ βe(uσe

− uKe
) + β′

e(uσ′
e
− uKe

);

(4) for all “barycentric” triangular face τ̃ ∈ F̃ with vertices xK , yσ, ye set

uτ̃ =
1

3
(uK + uσ + ue).
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Hence the degrees of freedom of XD,0 are the values uK , for K ∈ M, and the values uσ, for σ ∈ F̂int, which are

the interior faces of F̂ .

4.2.5. Definition of an approximate gradient and of a reconstruction operator

We first define, for all u ∈ XD,0, for all K ∈ M and s ∈ VK :

∇K,su =
1

|MK,s|
∑

τ∈FK,s

|τ |(uτ − uK)nτ
K,s, (4.7)

where nτ
K,s is the unit normal vector, outward to MK,s, to the triangular face τ . As in the vertex centred case,

this expression yields a consistent expression of the gradient. In order to enhance the stability of this gradient,
we define

Rτ
K,su = uτ − uK −∇K,su · (yτ − xK), ∀τ ∈ FK,s, (4.8)

and

∇τ
K,su = ∇K,su + γRτ

K,su
|τ |

|MK,s|
nτ

K,s, (4.9)

where γ > 0 is a positive coefficient, whose standard value is 1 in the numerical tests. We then denote by
(M τ

K,s)τ∈FK,s
a partition of MK,s such that |M τ

K,s| = |MK,s|/NK,s, where NK,s is the number of elements of
FK,s; note that again, this partition does not need to be defined precisely. We then define ∇Du by the constant
value ∇τ

K,su in M τ
K,s.

As in Section 3, the piecewise constant reconstruction Π0
Dv is defined as the function equal to vK in each K,

and the piecewise affine reconstruction is defined by ΠDu(x) = uK +∇K,su · (x−xK) for a.e. x ∈ MK,s for all
K ∈ M.

4.2.6. Definition and implementation of the scheme

Problem (1.1) is again approximated by (1.2), which can also be written in the framework of this scheme

find u ∈ XD,0, ∀v ∈ XD,0,∑

K∈M

∑

s∈VK

∑

τ∈FK,s

|M τ
K,s|ΛK∇τ

K,su · ∇τ
K,sv =

∑

K∈M

∑

s∈VK

∫

MK,s

(vK + ∇K,sv · (x − xK))f(x)dx. (4.10)

Let us now detail the equations resulting from scheme (4.10).

We first define the linear forms F τ
K,s, only depending on (uτ ′ − uK)

τ ′∈F̂K,s
, such that the relation

∑

s∈VK

∑

τ∈FK,s

|M τ
K,s|ΛK∇τ

K,su · ∇τ
K,sv =

∑

τ∈FK,s

F τ
K,su (vK − vτ ) (4.11)

holds for all real values (uτ ′ − uK)τ ′∈FK,s
and (vτ ′ − vK)τ ′∈FK,s

. Assume that τ̂ is a common face to MK,s and
ML,s. Then the equation, resulting from setting vτ̂ = 1 and all other degrees of freedom equal to 0, is

F τ̂
K,su + F τ̂

L,su = ρτ̂ (f), (4.12)

where

ρτ̂ (f) =
1

|MK,s|

∫

MK,s

|τ |nτ
K,s · (x − xK)f(x)dx +

1

|ML,s|

∫

ML,s

|τ |nτ
L,s · (x − xL)f(x)dx.

Note that if we use Π0
D instead of ΠD, ρτ̂ (f) = 0 and therefore the flux conservation of the external faces is

ensured. Since there are as many equations (4.12), as there are triangular faces having s as a vertex, it is
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possible to eliminate all the unknowns uτ̂ , expressing them with respect to all (uK)K∈Ms
, where Ms denotes,

for a given s ∈ V , the subset of all K ∈ M such that s ∈ VK . We indeed show in the next section that the
system (4.12) is invertible. Let us now study the stencil of the scheme. Using the definition of the space XD,0,
due to the definition of harmonic averaging values at the faces and due to the interpolation ue at the point ye,

we can write, for v ∈ XD,0 and for a given triangular face τ̃ ∈ F̃K,s,

vτ̃ =
∑

L∈Me

βτ̃ ,LvL, (4.13)

where e ∈ E is an edge such that ye is a vertex of τ̃ , and where we denote Me the set of all L ∈ M such that
e ∈ EL. Note that the condition ∑

L∈Me

βτ̃ ,L = 1

holds in the case where the control volume K has no vertex on the boundary of the domain. An important
consequence is that, if Ve = {s, s′} (see Fig. 4), then

Me ⊂ Ms ∩Ms′ .

We then set βτ̃ ,L = 0 for all L ∈ (Ms ∪Ms′)\Me.
It results from this relation that the equation, obtained by setting vK = 1 in (4.10) and all other degrees of

freedom equal to 0, reads

∑

s∈VK

⎛

⎝
∑

τ̂∈F̂K,s

F τ̂
K,su +

∑

τ̃∈F̃K,s

F τ̃
K,su −

∑

L∈Ms

∑

τ̃∈F̃L,s

βτ̃ ,KF τ̃
L,su

⎞

⎠ = ρK(f), (4.14)

where

ρK(f) =

∫

K

f(x)dx −
∑

s∈VK

∑

τ̂∈F̂K,s

1

|MK,s|

∫

MK,s

|τ |nτ
K,s · (x − xK)f(x)dx.

Note that if we use Π0
D instead of ΠD, we get ρK(f) =

∫
K

f(x)dx. From (4.14), we get that (4.10) is indeed a
symmetric 27-point stencil scheme in the case of a structured mesh.

4.3. Mathematical analysis

Lemma 4.1 (gradient scheme properties and invertibility of the local systems). Let D = (XD,0, hD, ΠD,∇D)
be defined in the present Section 4, then, for a fixed γ, the scheme (1.2) is a gradient scheme in the sense of
Definition 2.1, and therefore there exists a unique solution to (1.2). Furthermore, the local systems (4.12) are
invertible.

Proof. The proof of this lemma follows the first steps of the proof of Lemma 3.1. We first remark that, for any
u ∈ XD,0, ∫

Ω

|∇Du(x)|2dx =
∑

K∈M

∑

s∈VK

∑

τ∈FK,s

|MK,s|
NK,s

|∇τ
K,su|2.

The following property (which is similar to (3.9)) holds

∑

τ∈FK,s

Rτ
K,su

|τ |
|MK,s|

nτ
K,s =

∑

τ∈FK,s

(
(uτ − uK)

|τ |
|MK,s|

nτ
K,s − |τ |

|MK,s|
(yτ − xK)(nτ

K,s)
t∇K,su

)

= ∇K,su −∇K,su = 0.

(4.15)
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It implies
∑

τ∈FK,s

|MK,s|
NK,s

|∇τ
K,su|2 = |MK,s| |∇K,su|2 +

∑

τ∈FK,s

|MK,s|
NK,s

(
γ Rτ

K,su
|τ |

|MK,s|

)2

·

As in the proof of Lemma 3.1, we again have, for a value µτ
K,s chosen later, that

(Rτ
K,su)2 ≥

µτ
K,s

1 + µτ
K,s

(uτ − uK)2 − µτ
K,s|∇K,su|2|yτ − xK |2. (4.16)

We define µτ
K,s > 0 by

1 − µτ
K,sγ

2|yτ − xK |2
( |τ |
|MK,s|

)2

= 0, ∀K ∈ Ms.

This proves, introducing Cµ as the maximum value of all µτ
K,s,

∫

Ω

|∇Du(x)|2dx ≥ 1

1 + Cµ

‖u‖2
1,D, (4.17)

where:

‖u‖2
1,D =

∑

K∈M

∑

s∈VK

∑

τ∈FK,s

|MK,s|
NK,s

(uτ − uK)2

|yτ − xK |2 ·

A first consequence of (4.17) is that the local system of equations (4.12), written for all τ̂ ∈ ⋃
K∈Ms

F̂K,s, whose
unknowns are the values uτ̂ , is invertible. Indeed, assume that all uK = 0 for all K ∈ M and uτ = 0 for all

τ /∈ ⋃
K∈Ms

F̂K,s. We multiply (4.12) by −uτ̂ , and sum the resulting equation on τ̂ ∈ ⋃
K∈Ms

F̂K,s. We get

∑

K∈Ms

∑

τ̂∈F̂K,s

(0 − uτ̂ )F τ̂
K,su = 0.

For this particular choice of u ∈ XD,0, we get from (4.11) that

∑

K∈Ms

∑

τ̂∈F̂K,s

(0 − uτ̂ )F τ̂
K,su =

∫

Ω

Λ(x)∇Du(x) · ∇Du(x)dx.

From (4.17), we then prove that (uτ −uK) = 0 for all K ∈ M, s ∈ VK and τ ∈ FK,s. This implies in particular

that uτ̂ = 0 for all τ̂ ∈
⋃

K∈Ms

F̂K,s, thus proving the invertibility of system (4.12).
A second consequence of (4.17) is that ‖∇D · ‖L2(Ω)d is a norm on XD,0, which concludes the proof. �

This scheme may then be shown to be convergent and exact for piecewise affine solutions with the same tools
as those developed in Section 3, thanks to the fact that the barycentric extrapolations involved in the definition
of the scheme are all defined through the values taken within the closure of the same cell.

5. Numerical results

In this section, some test cases have been done in order to compare the exact solution and the approximate
solutions obtained with MPFA O and L schemes and the new gradient schemes which we denote by VAG for the
vertex approximate gradient scheme, and HAG for the harmonic approximate gradient scheme. Several tests
are taken from the FVCA Benchmark 3D [23]. Therein additional results on the VAG scheme are presented for
a larger family of numerical tests and for several criteria of comparison.



286 R. EYMARD ET AL.

Table 1. L2 norm of the error for Λ1 and randomly distorted Cartesian meshes.

Mesh 1 Mesh 2 Mesh 3 Mesh 4
VAG scheme 4.57e-02 1.23e-02 2.85e-03 7.18e-04
HAG scheme 7.58e-02 2.28e-02 7.29e-03 1.79e-03

O scheme 8.04e-02 2.30e-02 5.31e-03 1.38e-03
L scheme 2.76e-02 9.83e-03 2.53e-03 7.07e-04

Table 2. L2 norm of the error for Λ2 and randomly distorted Cartesian meshes.

Mesh 1 Mesh 2 Mesh 3 Mesh 4
VAG scheme 4.59e-02 1.24e-02 2.91e-03 7.39e-04
HAG scheme 7.81e-02 2.46e-02 9.76e-03 2.77e-03

O scheme 9.70e-01 1.85e-01 8.92e-01 9.02e-01
L scheme 2.40e-02 9.98e-03 4.01e-03 1.94e-03

(a) Λ1 (b) Λ2

Figure 5. L2 pressure error function of h – randomly distorted Cartesian meshes.

5.1. Randomly distorted Cartesian meshes

A family of uniform Cartesian meshes of the domain Ω = [0, 1]3 of step size h is considered. A displacement
of maximum length h

3 is applied in the xyz-directions to each node of the Cartesian meshes as exhibited in
Figure 6a.

Homogeneous case.. The right hand side f and the Dirichlet boundary condition are such that the exact solution
is u(x, y, z) = sin(πx)sin(πy)sin(πz). Two different diffusion tensors Λ1 =diag(1, 1, 100) and Λ2 =diag(1, 1,
1000) are considered. Tables 1 and 2 below exhibit the discrete L2 norm of the error between the exact solution
and the approximate solutions obtained with MPFA O and L schemes and the new gradient schemes.

In Figure 5 the L2 norm of the error is plotted as a function of h. Observe first that the smallest errors are
obtained with the L scheme or the VAG scheme. Comparing Figures 5a and 5b, we clearly see the failure of the
O scheme when the anisotropy increases while the L scheme, the VAG scheme and the HAG schemes remain
convergent. This is due to the loss of coercivity of the O scheme when a large anisotropic ratio is combined
with a distortion of the mesh. Note that for these tests, harmonic points were found for all the interfaces with
the HAG scheme, so that no additional hybrid unknown was required.
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(a) Homogeneous case. 3D view (b) Heterogeneous case. 2D yz-cut

Figure 6. Randomly distorted hexahedral mesh for h = 1
8 .

Heterogeneous case.. The test case presented here is described in [4]. We still consider a family of randomly
perturbed grids of the domain Ω = Ω1 ∪ Ω2 where Ω1 = [0, 1] × [0, 0.5]× [0, 1] and Ω2 = [0, 1] × [0.5, 1]× [0, 1].
Notice that the perturbation is applied in the xy-directions on each nodes except at y = 0.5 such that the
discontinuity is planar as shown in Figure 6b. The right hand side is f = 0 and the Dirichlet boundary
condition are given by the exact solution u(x, y, z) defined by

u(x, y, z) =

⎧
⎨
⎩

x + y + z in Ω1,

x − y

2
+ z +

3

4
in Ω2.

The following permeability tensors Λ1 and Λ2 are respectively assigned to the subdomains Ω1 and Ω2,

Λ1 = diag(1, 1, 1) and Λ2 =

⎛
⎝

2 1 1
1 2 1
1 1 2

⎞
⎠.

As expected, the VAG and HAG schemes provide the exact solution if Λ is piecewise constant in polygonal
sub-domains and u(x, y, z) is affine in each of these sub-domains.

5.2. Near-well meshes

As we mentioned in the introduction, in reservoir engineering, a proper well modelling requires an accurate
multiphase flow simulation which takes into account the singular pressure distribution in the well vicinity and
the large difference of scales between the wellbore radius and the reservoir dimension. In this example, we
consider the numerical simulation of a single-phase flow in near-well regions for a deviated well. The medium is
homogeneous, but anisotropic. An analytical solution of this problem is described in [2] for a diagonal diffusion
tensor in the xyz-coordinate system. Diagonal elements are denoted as Λx, Λy and Λz.

The near-well model proposed here is based on 3D meshes that are refined around the well as illustrated in
Figure 1. The first step of the discretization is to create a radial mesh that is exponentially refined down to the
well boundary. This radial local refinement requires a matching mesh between the radial grid and the reservoir
Cartesian (or “corner point geometry”) grid using hexaedra.

Given Λx = Λy = ηΛz , two anisotropy ratios η are tested, η = 5 and η = 20. The discrete equation is
solved as a Dirichlet problem, with the analytical solution imposes both on the wellbore boundary and the
outer boundary. Figure 7 exhibits the discrete solution. It can be noticed that the isobars shade into ellipses
away from the circular wellbore.
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Figure 7. Solution computed with the near-well mesh 4 and η = 5.

Table 3. L2 norm of the error for η = 5 and near-well meshes.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Mesh 7
VAG scheme 4.82e-03 2.02e-03 8.56e-04 5.54e-04 2.99e-04 1.47e-04 1.52e-04
HAG scheme 3.80e-03 1.90e-03 9.21e-04 5.46e-04 3.86e-04 2.70e-04 2.34e-04

O scheme 7.49e-03 3.00e-03 1.31e-03 7.88e-04 4.70e-04 2.94e-04 2.04e-04
L scheme 7.34e-03 2.95e-03 1.33e-03 8.03e-04 5.00e-04 3.44e-04 2.34e-04

Table 4. L2 norm of the error for η = 20 and near-well meshes.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Mesh 7
VAG scheme 5.50e-03 2.42e-03 1.04e-03 6.57e-04 3.22e-04 1.37e-04 1.25e-04
HAG scheme 4.82e-03 2.32e-03 1.17e-03 6.14e-04 3.94e-04 2.63e-04 2.01e-04

O scheme 9.25e-03 3.71e-03 1.63e-03 9.66e-04 5.69e-04 3.55e-04 2.44e-04
L scheme 9.03e-03 3.62e-03 1.65e-03 9.83e-04 6.07e-04 4.23e-04 2.84e-04

Table 5. Number of hybrid unknowns introduced by the HAG scheme with near-well meshes.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Mesh 7
♯ control volumes 890 2232 5016 11 220 23 210 42 633 74 679

♯ hybrid faces 0 32 0 0 24 40 44

Tables 3 and 4 below exhibit the error measured in L2 norm between the exact solution and the approximate
solutions obtained with the MPFA O and L schemes and the new gradient schemes.

The new gradient schemes are more accurate than the O and L schemes, particularly on coarse meshes. For
finer meshes, the non planarity of the faces diminishes, and therefore the behaviour of the schemes is more
uniform. On coarse meshes, the fact that the VAG and HAG schemes define subcells with triangular subfaces
makes them less sensitive to the non planarity problems than the O and L schemes.

In Figure 8, the L2 norm of the error is plotted as a function of h, where h is the diameter of the largest
cell in the radial part of meshes. Comparing the Figures 8a and 8b, we see that the gradient schemes are more
robust when the ratio of anisotropy increases especially on the finest mesh. The rate of convergence is h2 for
all schemes.

Table 5 below shows that the number of hybrid unknowns introduced by the HAG scheme is negligible
compared to the number of the cell-centred unknowns.
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(a) η = 5 (b) η = 20

Figure 8. L2 pressure error function of h – near-well meshes.

6. Conclusion

In this paper, a simple theoretical framework for the study of gradient schemes was shown to include some
classical schemes along with two new schemes which were specially designed to obtain small stencils. Thanks
to this theoretical framework, these two schemes are shown to be symmetric, coercive and convergent. A
numerical comparison with classical multi-point schemes on realistic industrial 3D cases allows to check the
numerical performance of the schemes.

The robustness of such schemes gives them a large advantage over schemes whose coercivity properties are
not shown nor numerically verified on some very heterogeneous anisotropic realistic cases. Their symmetry
properties allow the use of conjugate gradient methods, whereas BICGStab or GMRES methods are needed
in the case of non-symmetric methods. Moreover, their small stencil is adapted to domain decomposition
techniques and parallelization.

On going research includes the numerical study of the use of these new schemes for industrial composi-
tional/chemical multi-phase flows in porous media, which occur in reservoir engineering, CO2 storage studies
and environmental studies. Recently, we implemented the VAG scheme in the framework of multiphase flow [22]
with promising results. This implementation is based on exchange terms between vertices and cells, thus showing
that there is no need to identify a real control volume interface to compute the Darcy fluxes.
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comments and suggestions.
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