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In this paper, we study stochastic volatility models in regimes where
the maturity is small, but large compared to the mean-reversion time of
the stochastic volatility factor. The problem falls in the class of averag-
ing/homogenization problems for nonlinear HIB-type equations where the
“fast variable” lives in a noncompact space. We develop a general argument
based on viscosity solutions which we apply to the two regimes studied in
the paper. We derive a large deviation principle, and we deduce asymptotic
prices for out-of-the-money call and put options, and their corresponding im-
plied volatilities. The results of this paper generalize the ones obtained in
Feng, Forde and Fouque [SIAM J. Financial Math. 1 (2010) 126-141] by a
moment generating function computation in the particular case of the Heston
model.

1. Introduction. On one hand, the theory of large deviations has been re-
cently applied to local and stochastic volatility models [1, 2, 4, 5, 20] and has
given very interesting results on the behavior of implied volatilities near maturity.
(An implied volatility is the volatility parameter needed in the Black—Scholes for-
mula in order to match a call option price; it is common practice to quote prices in
volatility through this transformation.) In the context of stochastic volatility mod-
els, the rate function involved in the large deviation estimates is given in terms
of a distance function, which in general cannot be calculated in closed form. For
particular models, such as the SABR model [19, 21], approximations obtained by
expansion techniques have been proposed; see also [18, 22, 28]. Semi closed form
expressions for short time implied volatilities have been obtained in [15].

On the other hand, multi-factor stochastic volatility models have been studied
during the last ten years by many authors (see, e.g., [8, 16, 18, 27, 29]). They
are quite efficient in capturing the main features of implied volatilities known as
smiles and skews, but they are usually not simple to calibrate. In the presence of
separated time scales, an asymptotic theory has been proposed in [16, 17]. It has
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the advantage of capturing the main effects of stochastic volatility through a small
number of group parameters arising in the asymptotic. The fast time scale expan-
sion is related to the ergodic property of the corresponding fast mean-reverting
stochastic volatility factor.

It is natural to try to combine these two modeling aspects and limiting results, by
considering short maturity options computed with fast mean-reverting stochastic
volatility models, in such a way that maturity is of order ¢ < 1, and the mean-
reversion time, 4, of volatility is even smaller of order § = &2 (fast mean-reversion)
or § = &* (ultra-fast mean-reversion).

In [12], the authors studied the particular case of the Heston model in the regime
8 = &2 by an explicit computation of the moment generating function of the stock
price and its asymptotic analysis.

In this paper, we establish a large deviation principle for general stochastic
volatility models in the two regimes of fast and ulta-fast mean-reversion, and we
derive asymptotic smiles/skews. For such general dynamics, a moment generating
function approach is no longer available. Our problem falls in the class of homog-
enization/averaging problems for nonlinear HIB-type equations where the “fast
variable” lives in a noncompact space. We develop a general argument based on
viscosity solutions which we apply to the two regimes studied in the paper. Vis-
cosity solution techniques have been used in averaging of nonlinear HJB equations
over noncompact space in [3]. However, the techniques in [3] were proved for a
certain class of nonlinear HIB equations which does not include our case. In this
paper, we develop a method more general than [3]. In particular, it can be used to
treat the problems in [5], but not vice versa.

We start by considering the following stochastic differential equations model-
ing the evolution of the stock price (S;) under a risk-neutral pricing probability
measure, and with a stochastic volatility determined by a process (Y;):

(1.1a) ds, =rS,dt +o(¥)S, dw,
1 v 2
(1.1b) dYtzg(m—Y,)dt+%Y,’3dW,( ),

where m € R,r,v > 0, W and W@ are standard Brownian motions with
(WD w@y, = pr, with |p| < 1 constant. The process (Y;) is a fast mean-
reverting process with rate of mean reversion 1/§ (§ > 0). The parameters 8 and
o (y) are chosen to satisfy the following.

ASSUMPTION 1.1. We assume that:

(1) Be(0}U[5, 1
(2) in the case of B = 1/2, we require m > v>/2 and Yy > 0 a.s., in the case of
1/2 < B <1, werequire m > 0and Yy > 0 a.s.;
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3) o(y) € C(R; R,) satisfies
o(y) <CU+1y|?)

for some constants C >0 and o with0 <o <1 — 8.

These assumptions ensure existence and uniqueness of a strong solution of (1.1).
This can be seen as a combination of existence of martingale problem solution
(e.g., Theorem 5.3.10 in Ethier and Kurtz [9]) and the Yamada—Watanabe theory
for 1-D diffusions (e.g., Chapter 5, Karatzas and Shreve [23]). In particular, As-
sumption 1.1(2) ensures that, in the case 8 € [%, 1), Y; >0 as. for all > 0 (see
Appendix A). In the case § =0, Y is an Ornstein—Uhlenbeck (OU) process with a
natural state space (—oo, 00). In order to present both model cases using one sim-
ple set of notation, we denote the state space for ¥ as Ep with Eg:=R if =0
and E := (0, 00) when B € [}, 1).

Note that the Heston model, for which 8 =1/2 and o (y) = ,/y, does not satisfy
these assumptions, but it has been treated separately in [12] by explicit computa-
tion of the moment generating function.

The infinitesimal generator of the Y process, when § = 1, can be identified with
the following differential operator on the class of smooth test functions vanishing
off compact sets:

1.2) B := (m — y)dy + 3v*|y[*’3;,.

Following the general theory of 1-D diffusion (e.g., Karlin and Taylor [24],
page 221), we introduce the so called scale and speed measure of the (Y;) pro-
cess,

y2 —
s(y) :=6Xp{—/1 %M}, m(y)

T VPR
Denoting dS(y) :=s(y)dy and dM (y) :=m(y) dy, we then have
_1.d1df(y
(1.3) B3 =35 7| oo

Under Assumption 1.1 there exists a unique probability measure
(1.4) w(dy) := Z_lm(y)dy, Z:=/ m(y)dy < oo
Eo

such that [ Bf dm =0 forall f € CCZ(EO). See Appendix C.
By a change of variable X, =log S;, we have

dX; = (r — L2 (¥)di + o (¥) dw .
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In order to study small time behavior of the system, we rescale time ¢ +— &t for
0 < ¢ K 1; denoting the rescaled processes by X, s5.; and Y, 5 ;, we have, in distri-
bution,

1
(150 dXeps=e(r= 30 Ves) ) dr+ VEa (Ves ) dW,".

& &
(1.5b) dYe5. = 5(m—Yep)di + v\/nga,t dw®.

We are interested in understanding the two-scale ,8 — 0 limit behavior of
option prices and its implication to implied volatility. In this paper, we restrict our
attention to the following two regimes:

§=¢* and §=2¢.

In view of [12], to obtain a large deviation estimate of option prices, it is sufficient
to obtain a large deviation principle (LDP) for {X, 5 ,:& > 0}. By Bryc’s inverse
Varadhan lemma [7] (Theorem 4.4.2), we know that the key step is proving con-
vergence of the following functionals:

(1.6) ues(t.x,y) :=elogE[¢f "Xesd|X, s0=x,Yos0=y]., heCyR),

to some quantity independent of y. The rate function in the LDP is then given in
terms of a variational formula involving the limit of the functionals u, 5.

For each h € Cp(R), the function u, s satisfies a nonlinear partial differential
equation given in (3.4). In Section 3.2, we use heuristic arguments to obtain PDEs
that characterize the limit of these u, ;5. Proving this convergence rigorously, how-
ever, is nontrivial. Intuitively we know that, as Y has a mean reversion rate 1/§
and § < ¢, the effect of the Y process should get averaged out. To be exact, the
form of nonlinear operator (3.5) indicates that convergence of u, s is an averaging
problem (over the fast y variable) for Hamilton—Jacobi equations. Such problems,
in the context of compact state space for the averaging variable, can be handled by
extending standard linear equation techniques using viscosity solution language.
The Y process in this article lies in Eg, which is R in the case of 8 = 0 and (0, 00)
in other cases. Eg is a noncompact space, and therein lies an additional difficulty.

We adapt methods developed in Feng and Kurtz [13]. Indeed, an abstract
method for large deviation for sequence of Markov processes, based on conver-
gence of HIB equation, is developed fully in [13]. The two schemes treated in this
article are of the nature of Examples 1.8 and 1.9, introduced in Chapter 1, and
proved in detail in Chapter 11 of [13]. In this article, we not only present a direct
proof, but also introduce some argument to further simplify [13] in the setting of
multi-scale. This is possible in a large part due to the locally compact state space
and mean-reverting nature of the process Y.

In particular, modulo technical subtleties in verification of conditions, the setup
of Section 11.6 in [13] corresponds to the large deviation result in our case of
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8 = ¢2. Since E is locally compact, and we only deal with PDEs instead of ab-
stract operator equations, great simplification of [13] can be achieved through the
use of a special class of test functions. See Conditions 4.1 and 4.2. The techniques
we introduce (Lemmas 4.1 and 4.2) are not limited to averaging problems, but are
also applicable to problems of homogenization, which we will not delve into in
this article. The rigorous justification of convergence of u, s is shown in Section 5.

The main results of the paper are stated in Section 2. Theorem 2.1 is a rare
event large deviation-type estimate corresponding to short time, out-of-the-money
option pricing. Corollary 2.1 and Theorem 2.2 give asymptotics of option price
and implied volatility, respectively, for such situations. The proofs are given in the
sections that follow, starting with heuristic proofs in Section 3.2 and finishing with
rigorous justifications in Sections 4 and 5. The technical results in Lemmas 4.1
and 4.2 may be of independent interest.

2. Main results. Observe that in the SDE (1.5), while the scaled log stock
price process runs on a time scale of order ¢, the scaled Y process runs on a time
scale of order /6. This is due to the extremely short mean-reversion time, § = &"
(r =2,4), of the Y, 5.. process. Thus, as ¢ approaches zero, long-time behavior of
the unscaled Y process comes into play. This long-time behavior of the Y process
manifests itself in the large deviation principle (LDP) of the scaled log stock price
via the quantities 32 and H defined below. Define

@.1) 52 = / o2 (dy):;

the average of the volatility function o%(-) with respect to the invariant distribu-
tion of Y. Recall B, the generator of the Y process, defined in (1.2). Define the
perturbed generator

(2.2) BPg(y)=Bg(y) +povyPpisg(y),  geC3(Ep).

Let Y? be the process corresponding to generator B”, and define

(2.3)  Ho(p) :=limsup sup T~ 'log E[e(1/2)|p|2j0T “2(y°'p)dS|Y(‘)u =y].

T—-+o00 yeEy
Y? has strong enough ergodic properties that the limit above does not depend
upon y even if we omitted the sup,cg,; and, in fact, the limsupy_, ,, can be re-
placed with lim7_, o, in the above definition. We will justify this fact in the rigor-
ous derivations. By Girsanov’s transformation

24)  Ho(p)=limsup T~ log E[eld /X dWOOHU=pD/DIpl ] o (X ds
T—+o0

where Y is the process with generator B. From this expression, we see that Hy is
convex and superlinear in p. Hg(p) is the scaled limit of the log moment gener-
ating function of a function of occupation measures of the process Y”. As such, it
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has an equivalent representation in terms of the rate function for the LDP of occu-
pation measures of Y. This equivalent representation of H is given in (5.12) in
Section 5.2.

Having defined these crucial terms, we proceed to the statement of our results.

THEOREM 2.1 (Large deviation). Assume X ¢r 0 = X0 and Y ¢r 0 = yo where
r = 2,4 and suppose that Assumption 1.1 holds. For x € R, let

|lxo — x|
2.5 Li(x; xg, 1) i:= ———,
(2.5) 4(x; x0, 1) o7,
where @ is defined in (2.1) and
2.6) Bixo.0) =1L,

where Ly is the Legendre transform of H defined in (2.3).

Then, for each regime r € {2,4}, for every fixed t > 0 and xo € R, yy € Ey,
a large deviation principle (LDP) holds for {X¢ ¢ ;:€ > 0} with speed 1/¢ and
good rate function I,.(x; xg, t). In particular,

2.7 lin%)s log P(X¢er s >x)=—1(x;x0,1) when x > xg.
E—>

Similarly, when x < xg, we have

(2.8) lim elog P(X¢er s <x)=—1(x;x0,1).
e—0

REMARK 2.1. The rate functions I,(x; xo, t), in both regimes, are convex,
continuous functions of x and I, (xg; xg, 1) = 0.

REMARK 2.2. In the case 8§ = &, observe that the rate function Iy, in (2.5),
is the same as the rate function for the Black—Scholes model with constant volatil-
ity o. In other words, in the ultra fast regime, to the leading order, it is the same as
averaging first and then taking the short maturity limit.

REMARK 2.3. In the case § = &2, no explicit formula for the rate function
is obtained. However, an explicit formula of the rate function is obtained for the
Heston model in [12] which corroborates the formula in (2.6). The Heston model
per se does not fall in the category of stochastic volatility models covered in this
paper, but direct computation of Hy, given by (2.3) and Ly, its Legendre transform,
is possible for this model.

Let Sp > O be the initial value of stock price, and let X, ¢+ o = xo = log Sp. The
asymptotic behavior of the price of out-of-the-money European call option with
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strike price K and short maturity time 7 = et is given in the following corollary.
We only consider out-of-the-money call options by taking
2.9) So<K or x9<logKk.

The other case, Sp > K, is easily deduced by considering out-of-the-money Euro-
pean put options and using put-call parity.

COROLLARY 2.1 (Option price). For fixedt > 0,
lim elog E[e™" (Se.er s — K)T]1=—1,(log K; x0, 1)

e—07F

forr =2,4.

Denote the Black—Scholes implied volatility for out-of the-money European call
option, with strike price K, by o, (¢, log K, x¢), where r = 2, 4 correspond to the
two regimes. By the same argument used in [12], we get an asymptotic formula
for implied volatility:

THEOREM 2.2 (Implied volatilities).

(log K — x0)*
21,(log K; xq, 1)t

lim, 07 (1, log K, x0) =
E—>

REMARK 2.4. Inthecase § = ¢*, the implied volatility is &, which is obtained
by averaging the volatility term o2(y) with respect to the equilibrium measure
for Y. It is likely that more features of the Y process, beyond its equilibrium, will
be manifested in higher order terms of implied volatility. Studying the next order
term of implied volatility is a topic for future research.

REMARK 2.5. The limit of at-the-money implied volatility, that is,
lim,_, ¢ orz,g (t, x0, X0), is obtained as in [12], Lemma 2.6. However, the continu-
ity of the limiting implied volatility at log K = x¢ is not obvious in the r = 2 case.
We discuss this at the end of Section 6.3.

3. Preliminaries. The process (X, s, Y s) is Markovian, and can be identified
through a martingale problem given by generator

1 1
Aoty =e((r=30°0) 0 s @ + 30202 )
(3.1 . .
+ S Bf(x,y) + %po(ymﬂ 03, f(x, ),
where f € CCZ(R X Ep). Recall that B is given by (1.2). Let g € Cp(R) and define

(3.2) Us,S(t7 x,y) = E[g(Xs,S,t)|Xs,8,O =X, Ye,8,0 =yl.
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In general, ve s € Cp([0, T] x R x Ep). If, moreover, v, 5 € C12([0, T] x R x R),
then it solves the following Cauchy problem in classical sense:

(3.3a) 0rv = Ag 5V in (0, T] xR x Ep;

(3.3b) v(0, x,y)=g(x), (x,y) e R x Ey.

3.1. Logarithmic transformation method. Recall the definition of u, s in (1.6).
That is, us s := & log ve.s when g(x) = ¢ '@ e C»(R), in (3.2). By (3.3) and
some calculus, at least informally, (3.4) below is satisfied. This is the logarithmic
transform method by Fleming and Sheu. See Chapters VI and VII in [14]. In gen-
eral, in the absence of knowledge on smoothness of v, 5, we can only conclude
that u, s solves the Cauchy problem (3.4) in the sense of viscosity solution (Def-
inition 4.1). In addition to Fleming and Soner [14], such arguments can also be
found in Section 5 of Feng [11].

LEMMA 3.1. Forh € Cp(R), u 5 defined as in (1.6), is a bounded continuous
function satisfying the following nonlinear Cauchy problem in viscosity solution
sense:

(3.4a) ou = H; su in (0,T] xR x Ey;
(3.4b) u(0, x,y) =h(x), (x,y) € R x Eyp.
In the above,

-1 -1
Hesu(t,x,y)=ce ® "Agse® "“(t,x,y)

_ 1, 1, 0 >
_8<<r 2(7 (y)) 8xu+20 (y) oy, u

3.5
1 2 82 —e 1y e~y
+ Zlo(y) dyul” + —e Be
2 é
g € 2 1
+ po (y)vy % 8xyu + % Oxut dyu |,
where
g2 -1 -1

£ 1
?e_s “Be® ”:gBu+8_1§|vy’38yu|2.

Note that H. 5 only operates on the spatial variables x and y.

3.2. Heuristic expansion. By Bryc’s inverse Varadhan lemma (e.g., Theo-
rem 4.4.2 of [7]), we know that convergence of u, s is a necessary condition to
obtain the LDP for {X, 5, : & > 0}. In this section, we describe heuristically PDEs
characterizing u. s in the limit and the nature of convergence itself.
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Henceforth, for notational simplicity, we will drop the subscript § and write
ue and H, for u. s and H, s, respectively. We begin by the following heuristic
expansion of u. in integer powers of ¢:

3.6) u8=uo+£u1+£2u2+s3u3 +84u4+---

in both regimes. The u;,i =0, 1, ..., are functions of ¢, x, y. In this heuristic sec-
tion, we make reasonable choices of u; which a posteriori, following a rigorous
proof of the convergence of u, in Section 5, are shown to be the right choice.

3.2.1. The case of § = et Computation of H.u, [see (3.5)] reveals that, in
this scale, the fast process Y oscillates so fast that averaging occurs up to terms of
order &2. Namely, ug = ug(t, x), uy = u1(t, x) and up = u» (¢, x) will not depend
on y. To see this, we equate coefficients of powers of ¢ in d;u, = Hu,.

Terms of 0(8%) satisfy

0= 517y (dyu0)?,

so we choose u( independent of y. With this choice of ug the equation for the
coefficients of the next order terms, which is of O (Siz), reduces to

0= Bui + $v2y*P (3yu1)?.

This equation is satisfied by choosing u independent of y. With this choice of u1,
the equation for coefficients of the next order terms, of O (é), becomes

0= Bus.

By choosing u> independent of y the last equation is satisfied.
Thus, by these choices of ug, #; and u; independent of y, it follows that

Heup (x,y) = 310 () duol® + Bus
+8(07 () Dt Dot + 507 () daxto
+(r— %az(y)) dyuto + vpo (y)yP deug dyuz + Buy)
+ o(e).
The €° order terms then satisfy
duuo(t, x) = 310 (t, ¥) P (v) + Bus(t, x, y),
that 1s,
Bus(t,x,y) = duo(t, x) — 3|9:uo(t, ©)|*0*(y).

The above is a Poisson equation for u3 with respect to the operator B in the y
variable. We impose the condition that the right-hand side is centered with respect
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to the invariant distribution 7 [given in (1.4)]. This ensures a solution to the Pois-
son equation, which is unique up to a constant in y. See Appendix B for growth
estimates of the solution. Therefore we get

1= 2.
duo(t, x) = 5|0 dxuo(t, x)|%;
where

52 = / o2 () (dy).

Thus the leading order term in the heuristic expansion satisfies

(3.7a) duo = Houo(x), t>0;
(3.7b) up(0,x) =h(x),
where

Houo(x) = 313 dxuo(x)|>.

3.2.2. The case of § = &2, When § goes to zero at a slower rate €2, limits
become very different and more features in the Y process (rather than just its
equilibrium) is retained. We observe that while uq is independent of y as in the
faster scaling regime, 1| may now depend on y. Equating coefficients of O (g~2)
in oju, = Houe we get

0= 50y (3yup)’,
and so we choose ug = ug(¢, x) independent of y. Then H.u. reduces to
Houg(t,x,y) = %la(y) dyuol® + po (Mvy? deug dyui +e "1 Be'!
+e(0% () dxuo ettt + 30°(v) Bt + (r — 30%(y)) Buutg
+ Bus 4+ vy* dyu1 dyus 4 po (y)vy? dyyu;
+ pa (V)vyP deur dyur 4 po (y)vyP dyug dyua)
+ o(e).
The leading order terms should satisfy

58 g (t, x) = S19.uo(t, x)[*02(y) + pvo () yP deuo(t, x) dyui (¢, x, y)
‘ +e "B (t, x, y).

We will rewrite the above equation as an eigenvalue problem. Recall B, the gen-
erator of the Y process defined in (1.2) and the perturbed generator B? defined
in (2.2). Then

(3.9 e Be" + po(y)vy? dug dyup =e " Boxuot0) gtt1
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Fix ¢ and x, and rewrite (3.8) in terms of the perturbed generator (3.9).
e BRI (1 x, y) + 310xuo (1, X) P07 () = druo(t, x).
Multiplying the above equation by e*!, we get the eigenvalue problem

(3.10) (B™ + V)g(y) = Ag(),

where V() = %|axu0(z,x)|202(-) is a multiplicative potential operator, g(-) =
10X and A(z, x) = d;uo(t, x). Choose u; such that (A, g) is the solution to
the principal (positive) eigenvalue problem (3.10). Note that the dependence of
the eigenvalue, A, on ¢ and x is only through d,u¢. If (3.10) can be solved with a
nice g, then we have

(3.11) A(t, x) = Ho(dxu0),
where H ) is defined as (2.3). The leading order terms then satisfy
(3.12) druo(, x) = Ho(dxuo(t, x)).

Constructing a classical solution for (3.10) is a considerably hard problem, even
in the 1-D situation. If (3.10) can be solved with a nice g, then (2.3) always holds
with the H( given by (3.11). The converse is not always true. Especially, (2.3) says
nothing about the eigenfunction g. However, we only need the definition in (2.3)
in rigorous treatment of the problem. We will show (in Section 5.2) that (3.12) is
the limit equation where H| is given by (2.3) irrespective of whether a solution to
the eigenvalue problem (3.10) exists or does not.

To summarize,

(3.13a) duo(t, x) = Ho(deuo(t, x)), t>0;
(3.13b) uo(0, x) = h(x),
where H is given by (2.3) or (2.4).

4. Convergence of HJB equations. The results of this section can be inde-
pendently read from the rest of the article.

We reformulate and simplify some techniques, regarding multi-scale conver-
gence of HIB equations, introduced in [13]. Compared with [13], the simplifica-
tion makes ideas more transparent and readily applicable. These are made possible
because we are dealing with Euclidean state spaces which are locally compact. All
these results are generalizations of Barles—Perthame’s half-relaxed limit argument
first introduced in single scale, compact state space setting.

Let ECR™, EyCR" and E' := E x Eg C RY where d =m + n. A typical
element in E is denoted as x, and a typical element in E’ is denoted as z = (x, y)
with x € E and y € Eo. We denote a class of compact sets in E’

Q:={K x K: compact K CC E, compact K CC Ep}.
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We specify a family of differential operators next. Let A be an index set and
Hi(x,p, P;a): E XxR"™ X My,xm X A R, i=0,1;
Hy(z, p, P): E' xR x Mgyq— R

be continuous. For each f € C*(RY), let V f(x) € R? and D?f(x) € Mgxq, re-
spectively, denote gradient and Hessian matrix evaluated at x. We consider a se-
quence of differential operators

He f(2) = He(z, V f(2), D* £ (2))
for f belongs to the following two domains:
D.+:={f:f¢€ CZ(E/), f has compact finite level sets};
De_:=—D; 4 ={—f:f¢€ CZ(E’), f has compact finite level sets}.

We will separately consider these two domains depending on the situation of sub-
or super-solution. We also define domains D, D_ similarly replacing E’ by E.
We will give conditions where u (¢, 7) = us(¢t, x, y) solving

@.1) dru (t,2) = He (2, Vue(t, 2), D?us(t, 2))
converging to u(t, x) which is a sub-solution to

“4.2) ou(t,x) < ing Ho(x, Vu(t, x), Dzu(t,x); o)
[04S]

and a super-solution to
(4.3) du(t, x) > sup Hy(x, Vu(t, x), D*u(t, x); a).

aEA

The meaning of sub- super-solutions is defined as follows (as, e.g., in Fleming and
Soner [14]).

DEFINITION 4.1 (Viscosity sub- super-solutions). We call a bounded measur-
able function u a viscosity sub-solution to (4.2) [resp., super-solution to (4.3)], if
u is upper semicontinuous (resp., lower semicontinuous), and for each

uo(t,x) =) + fox), ¢ €C'Ry), foe Dy,
and each xg € E satisfying u — ug has a local maximum [resp., each

wi(t,x) =¢0 + fix),  peC'Ry), fieD-,
and each xg € E satisfying u — u; has a local minimum] at xg, we have

0o (to, X0) — in:f\ Ho(xo, Vuo(to, x0), D*uo(to, x0); a) <0,
(1S

respectively,

d,u1 (10, x0) — sup Hy(xo, Vuy(to, x0), D*uy (0, x0); @) = 0.
aeA

If a function is both a sub- as well as a super-solution, then it is a solution.
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We will assume the following two conditions.

CONDITION 4.1 (limsup convergence of operators). For each fy € Dy and
each a € A, there exists fy . € D¢ + (may depend on «) such that:

(1) for each ¢ > 0, there exists K x K € Q satisfying
(0, )2 He fo.e(x, y) = =c} N {(x, 9): foe(x, ) < ¢} CK x K;
(2) for each K x K €O,

(4.4) lim  sup |[foe(x,y) — fo(x)|=0;
£20 Vyek xK

(3) whenever (x¢, y.) € K X K € Q satisfies Xe — X,

(4.5) limsup He fo.¢ (Xe, ye) < Ho(x, V fo(x), D? fo(x); ).

e—>0

CONDITION 4.2 (liminf convergence of operators). For each f| € D_ and
each o € A, there exists f1 € D, — (may depend on «) such that:

(1) for each ¢ > 0, there exists K x K € Q satisfying
(G, 3)  He f1e(x, y) S} N{(x, 3) 2 fre(x,y) = —c} C K x K;
(2) foreach K x K € Q,

Iim  sup |fi(x) — f1e(x,y)|=0;
£=0 (x,y)erI%

(3) whenever (x., y.) € K x K € Q,and x, — x,

liminf H fi ¢ (xe, ye) = Hi(x, Vfi(x), D? f1(x); ).

Let u, be the viscosity solutions to (4.1); we define

us(t, x) = sup{lim?)upug(tg,xg, Ve):3(te, X, ¥e) €10, T] x K x I?,
e—>0+

(té‘?xé‘) - (ta-x)a K X I% S Q]’
uq(t, x) = inf{lgrg(i)rifug(te,xg, Ve):3A(te, X6, ¥e) €10, T] X K % K,

(texs) = (1.x), K x K € Q},

and u = uj the upper semicontinuous regularization of u3 and u = (u4) the lower
semicontinuous regularization of u4.

LEMMA 4.1.  Suppose that sup,.  |us|lco < 00. Then:



1554 J. FENG, J.-P. FOUQUE AND R. KUMAR

(1) under Condition 4.1, u is a sub-solution to (4.2);
(2) under Condition 4.2, u is a super-solution to (4.3).

PROOF. Letug(t,x) = ¢(t)+ fo(x) forafixed ¢ € C'(Ry) and fy € D, Let
(0, x0) be alocal maximum of u —ug, typ > 0. We can modify fy and ¢ if necessary
so that (79, xg) is a strict global maximum, for instance, by taking fo x)= fox)+
klx — xo|* and ¢(r) = ¢ (1) + k|t — 19|? for k > 0 large enough. Note that such
modification has the property that

lim  sup |V fo(x) = V foxo)| + |D*fo(x) — D? fo(xo)| = 0.

e—>04 |x—xo|<e

Let iig=¢ + fo.

Let o € A be given. We now take ug (¢, 2) = <Z>(t) + fo.¢(z) where fy . is the
approximate of ﬁ) in Condition 4.1. Since u, is bounded, and u¢  has compact
level sets, there exists (fg, z¢) € [0, T] x E’ such that

(4.6) (g —uo,e)(te, 2e) > (g —ug,e)(t, 2) for (1,z) €[0,T] x E’
and

4.7) 3id(te) — He foe(ze) < 0.

The above implies inf, He fo ¢ (z¢) > —00. }Ve verify next that fp ((z:) <c < 0.
Then by C()Andition 4.1(1), theAre exists K x K € Qsuchthatz, = (x¢, y.) € K X K.
Take a (¢, x) such that iio(z, X) < 0o. Take Z = (x, y) for some y € Eq. Then
uo,e(,2) = (@) + fo.e(2) = ¢ + fo(}) = ito(7, £) < oo.

Combined with (4.6),

uoe(te, 2¢) < 2sup fluglloo + sup ug,e (7, Z) < 00,
e>0 e>0

and sup,. o f0.¢(ze) < oo follows.

Since K x K is compact in E’, there exists a subsequence of {(f, z¢)} (to sim-
plify, we still use the ¢ to index it) and a (7, Xo) € [0, T'] x E such that t, — #; and
x¢ — Xo. Such (#y, Xo) has to be the unique global maximizer (o, xo) for # — iig
that appeared earlier. This is because, by using x, — X¢ and z, = (x¢, y¢), the
definition of u and (4.4), from (4.6) we have
(4.8) (@ — uo)(f0, ¥0) = (@ —uo)(t,x)  V(t,x).

Now, from (4.7) and (4.5), we also have

dyuo(t, x0) < Ho(x0, V fo(x0), D? fo(x0); @).

Note that 79, xo and ug are all chosen prior to, and independent of, «. We can take
infye on both sides to get

diuo(to, x0) — in/f\ Ho(xo, Vuo(to, x0), D*uo (1o, x0); @) < 0.
ae
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The proof that u is a super-solution of (4.3) under Condition 4.2 follows simi-
larly. [

LEMMA 4.2. Suppose that the conditions in Lemma 4.1 hold and that there
exists h € Cp(E) such that

lim  sup |h(x) —us(0,x,y)|]=0 VK x K € Q.
&= (x,y)eK><1€

Further suppose that for any sub-solution uo(t, x) of (4.2) with ug(0,x) = h(x)
and super-solution uy of (4.3) with u1(0, x) = h(x), we have

up(t,x) <uy(t, x), (t,x)e[0,T] x E.

That is, a comparison principle holds for sub-solutions of (4.2) and super-solutions
of (4.3) with initial data h.
Then u =u = u and

lim sup sup  |u(t,x) —ug(t,x,y)|=0 VK x K € Q.
£>01e[0,7] (x,y)eK xK

5. Rigorous justification of expansions. To rigorously prove the conver-
gence of operators H, given by (3.5) to operators H( obtained by heuristic ar-
guments in Section 3.2, we rely on and extend results developed in [13]. An expo-
sition of the relevant results from [13] was laid out in Section 4. In this section we
verify Conditions 4.1 and 4.2 and prove the comparison principle in Lemma 4.2.
We will adhere to the notation used in Section 4.

Conditions 4.1 and 4.2 require us to carefully choose a class of perturbed test
functions with an index set A and a family of operators { Hy(-; o), Hi(-; @); @ € A}
to obtain viscosity sub- and super-solution estimates of ug, the limit of u.. This
technique was first introduced in [13] and illustrated through examples in Chap-
ter 11 of that book. Our presentation simplifies the technique in the context of
application here. We will make the sub-solution estimate given by Hy(-, o) tight,
by inf-ing over «, hence introducing yet another operator Hy. Similarly, we sup
over « to tighten up the super-solution type estimate provided by Hj (-, ) which
introduces operator Hj.

Let

(5.1) ¢(y) =1y —m|*,

where ¢ > 0 is any number satisfying 20 < ¢ < 2(1 — ) with o and g given as in
Assumption 1.1. Throughout the two regimes (8 = £, £2), we take the index set

A:={a=(£0):5€C2(E).0<6 <1};
and define two domains

Dii={f:f(x)=¢x)+ylog(l+|x[*);p € CXR),y >0}
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and
D_:={f:f(x)=gx)—ylog(l+|x[*);¢ € CZ(R),y > 0}.
A collection of compact sets in R x E is defined by

Q. ={K x K: compact K CC R, K cc Ey}.

5.1. Case 8 =¢*. For each f=fkx)eDs,andeacha = (§,0) € A, we let
g(y):=8&(y)+6¢(y)
and define perturbed test function
fee,y) =) +6°2(0) = f(xX) +£E() +£°00().
Note that |3y f1lco + 1182, floo < 00. Then
He fo(x,y) = &[(r — 30°(9) 0 f + 30°(0) 07, ]+ 307 Wox f 1

+ BE(Y) +0BL(y) + 5670y [0,E(3) + 6 0,0 (0
+epo (»)vyP By £ (3yE () + 8,0 ().

The choice of the number ¢ in definition of the function ¢(y) in (5.1) guarantees
that B¢ (y) < —C¢(y). Moreover, with the earlier assumption that 0 <o <1 — 8,
the growth of ¢(y) as |y| — oo dominates the growth in y of all other terms
in H, f,. Therefore, there exist constants cg, ¢; > 0 with

Hy fo(x,y) < 3|0 (y) 0 f (0)* + BE(y) — et (y) + eci.
In addition,
[, ) =F) +6°200) = f(x) = )| oo
Furthermore, for each ¢ > 0, we can find K x K € Q, such that
(52) ()i Hefe(x,y) = =} N{(x,y): felx,y) Sc} CK x K
verifying Condition 4.1(1). The rest of Condition 4.1 can be verified by taking

1
Ho(x, p: £,6) = sup (—|a<y)p|2 4 BE(Y) — ecoc<y>>-
yEEy

We define
Ho f (x) := inf Hp(x, 0y f(x); o)
aeA
. , 1
= inf inf sup(—|a(y> axf<x>|2+Bs<y)—9coz<y>).
0<8<1£eC2(Eg) yeEg \ 2

Similarly, for f € D_, @ = (£, 60) € A, we can choose

fox,y) = f(0) +36(y) — 20 ().



ASYMPTOTICS FOR STOCHASTIC VOLATILITY MODELS 1557
Then Condition 4.2 holds for the choice of
. 1
Hix. pi£.6) = inf (5|a<y>p|2 + BE(Y) + 9co;<y)).

We define
Hi f(x) := sup Hi(x, 0y f (x); @)

aeA

) 1
= sup sup inf (S0 SO + BEG) +6as(y) ).
0<0<1£eC2(Eg) Y<E0 2
Next, to verify Lemma 4.2, we estimate Hy f from above and H; f from below
using some simple quantity.

LEMMA 5.1.
Hof(x) < 3[@a f0)*,  feDy;

H f(x) =35 f0?  feD-.

We note that Hy, Hy have different domains D and D_, respectively, Dy N D_ =
J.

PROOF. The key to obtaining the estimates in the statement of the lemma is
the Poisson equation,

(5.3) Bx(y) = %Ipl*(@* — o*(»)).

where B is the differential operator (generator of Y) defined in (1.2). We will
need growth estimates for x. In the case of 8 =0 (i.e., Y is an O-U process),
Section 5.2.2 of Fouque, Papanicolaou and Sircar [16] contains such estimates.
Specifically, if o (y) is bounded, |x (y)| < C(1 +1log(1+ |y])); if o (y) has polyno-
mial growth, x has polynomial growth estimates of the same order. The following

growth estimates for the situation % < B < 1 are derived in Appendix B:

G4 X<y ! as y — oo, for some positive constant Cy.

Therefore |x (y)| < C(1 + log(1 + |y])) if o(y) is bounded and |x (y)| < C‘(l +
y2°)y when0 <o <1 — 8.

We will make use of x as a test function in the expressions for Hy f and H; f.
However, x does not have compact support. We choose a cut-off function ¢ to
approximate it using localization arguments. Let nonnegative ¢(y) € C*°(Ep) be
such that ¢(y) =1 when |y| <1 and 0 when |y| > 2. We take a sequence of
& ()= (p(%) x (¥), which are truncated versions of y. Then

B, (y) = @(%)Bx(y) +m— y)X(y)n—l(p/<%>

1 _ y _ y
+ Evzyzﬂx(y)n 290//(;) + 2y (y)n W(r—l)-
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Suppose o > 0. Noting that |¢(y)|, |¢’(y)| and |¢” (y)| are uniformly bounded and
are 0 when |y| > 2, and using the growth estimates (5.4) for x and x’, we get

m—y) (W 4 N s
IBE W < ey (14+ —+ (=) o243 =) 0P )1y m<n
n n n

20

<cy for all n.

In the above, we used the fact that % <2 and B — 1 < 0. Similarly, if o(y) is
bounded, that is, 0 = 0, we get | B, (y)| is uniformly bounded for all n. Therefore,
for large y, ¢(y) dominates B&,(y) uniformly in # in the following sense: there
exists a sub-linear function ¥ : R — R such that

sup  |BE,(Y)| =¥ (E(y).

n=1,2,...

With the above estimate, we have

Hy f(x) <limsup inf1 sup (

n—oo 0<b< yeEy

1
S0 ()30 f (O + BE () - ecoc<y))

< ! o0 2
—EIG  fO]7

Similarly, one can prove the case for H; f. [

By standard viscosity solution theory (e.g., [6]), the comparison principle holds
for sub-solutions and super-solutions of

duo = 30 dxuol®, 1> 0;

up(0, x) = h(x),

and the solution is uniquely given by the Lax formula (see [10]),

(5.5) (t,%) {h( 6 "“_x/'z}
) uo(t,x) = su x)y————1.
0 x/e% 26t

Putting together the above result and Lemmas 4.1 and 4.2, we get:

LEMMA 5.2.

lim sup lug(t, x,y) —uo(t,x)| =0 Ve >0,
£ 04 |t |+ +|y| <c

where uy is the solution of (3.7) and is given by (5.5).
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5.2. Case § = ¢%. For each f=fkx)e Dy and @ = (£,0) € A, we choose
our perturbed test function as

fe(x,y) = f(x) +eg(y).
where g(y) = (1 — 0)&(y) + 0¢(y); ¢(y) is defined as before in (5.1). Then
H, fo(x,y) =¢[(r — 307() dc f + 3020 05, f] + 302 (M0: £
+ e 80 BT g8(y)
<&[(r =307 0 f + 507N 35 f1+ 507l f 1P
+ (1 —0)e " B™/ ¢" (y) +0e* B*/ &4 (),

where B%/() ig the perturbed generator defined in (2.2). Recall that ||dx f|lco +
||8§x flloo < 00 by the choice of domain D, . We can thus find a constant ¢y > 0
such that

He fe(x,y) < 5lo (e f ) + (1 —0)e B &5 (y) + 0 B/ ¢ (y) + eco.
Note that

e BMT e (y) = BL(y) + po (y)vy 0 £ (x) 9,0 () + 37y 19,6 ()P,
where
(5.6) Be(y)=—¢ - ly—ml* + 3032 — Dy —m| 2%
The term —¢(y) in B¢ (y) dominates growth in y from all other terms in H; f. as
|y] = oo. Since ¢(y) — oo as |y| — oo, He fe(x, y) = —o0 as |y| = co. We also
have fg(x,Ny) = f(x)+eg(y) > f(x) —¢€|& |l 0. Therefore, for each ¢ > 0, we can
find K x K € Q, such that

(5.7) (e, )t He fo(x,y) = =} N {(x, »): fo(x,y) <c} CK x K

verifying Condition 4.1(1).
The super-solution case follows similarly, where we define the perturbed
test function as fy(x,y) = f(x) +e(1 +60)E(y) —eb¢(y), for each f € D_ and

(§,0) € A.
Take
. — 1 2 _ —€pp§ —{pp,y<
Hoy(x, p;§,0) := sup 2Id(y)pl + (I —0)e "B e (y) +0e °>Ble(y) ),
Y€Ey

Hi(x, p;€,0) := inf <%|G(y)p|2 +(14+60)e  BPe’ (y) — Oe S BPES (y))
y

ekEy

and

H = inf  inf  Hy(x, oy f; &, 0),
of(x) 0<13<1$€C1§10(E0) o(x,0xf:&,0)

Hif(x):= sup sup  Hi(x, 0, f;&,0).
0<6<1£€CX(Eg)
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Conditions 4.1 and 4.2 are satisfied by these choices of Hy and H;. Note that, al-
though %la(y) p|2 is not bounded in y, its growth is at most |y |2 and is dominated
by the growth of ¢(y) for |y| large enough.

To verify Lemma 4.2, we develop useful sharp estimates for Hy and H| next.
Denote

T (1)g(y) :== E[g(Y)|Y(0) =y], g € Cy(Eo),

and let B be the weak infinitesimal generator for semigroup {7'(¢):¢ > 0} in
Cp(Ep) (see page 244 of [13] for a definition of a weak infinitesimal generator).
Let DT (B) denote the domain of B with functions strictly bounded from below
by a positive constant. Similarly define notations for B?, the weak infinitesimal
generator corresponding to the process Y? introduced in Section 3.2.2. For each
g € DT (BP) C Cp(Ey), since ¢ > 20, there exists compact K CC E( with

1 BPg _
sup (510 PP+ (1 =)= E(3) +0e B (7))
yeEy 8

1 BP
- sup(5|o—(y>p|2 + -0+ ee—fBPe%y)).
yekK 8

For each ¢ > 0, by truncating and mollifying g, we can find a & := &, € C2°(E)y)
such that

! 2 BPg ~C Pt
Ho(x,p;s,e>55+sup(§|o<y>p| HA=0)= () 4007 B (y)).
yekK

Denote p = 9, f(x). Then

Hyf(x) < o inf inf sup (

Lompl+ -0 28 )
_O" J— —_
<0<1geDt*+(BP) yeE, P 8 g

2
(5.8)

+0e S BPet (y)).
Similarly, we have

1 BP
Hif(r)> sup  sup mf(—|o(y>p|2+<1+e>—g<y>
59 0<f<1geD++BryYEEO\2 8

— Qe S BPe (y)).
We define Ig(-; p): P(Eg) = R U {400} by

Ig(u; p):=— inf /—du/\/ e S BPEW) du(y).
8
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However, we can find a sequence {g,} C DTT(BP) [take, e.g., g, := €% where
theC Lz.(Eo) are some smooth truncations of ¢], such that

B?
/ e SV BPLEW qi(y) > limsup/ &n du.
) Eo

n—o00 &n
Therefore we have

5.10 1 i p)=— inf /—d.
(5.10) B(u; p) L %

Recall that Y? denotes the process corresponding to generator B? (or, equiva-

lently, B?). It can be directly verified that Y? has a unique stationary distribution
P and that Y? is reversible with respect to it (see Appendix C of this article). Let

EP(f.g) = — / FBPgdr?

be the Dirichlet form for Y?. By the material in Section 7 of Stroock [30] (particu-
larly Theorem 7.44; note that the diffusion generated by B? has transition density
with respect to Lebesgue measure, e.g., Theorem 4.3.5 of Knight [25]), we get

du du p2 oo 2 du
511 Igu;p)=EP( -, |- ) == / Bly. |
( ) Iswip) ( dm? drrf’> 2 Jo Y Y dTl’p(y)

see Appendix C.3 for the last equality above. If i in Ip(u; p) is not absolutely
continuous with respect to 7, then the right-hand quantity in (5.11) is viewed as
+00. Again through Theorem 7.44 of [30], we also get that H, defined in (2.3),
can be expressed as

2
7P (dy);

— IpI?
Ho(p) = sup (—/ o?du — Ip(u; p)>
ueP(Ry) R4

Ip?
(5.12) - sup 3 / 2R ()P (dy)
heL2(xP), 7] 12 )= Ry

Voo 2
e AR nl’(dy)).
0
As in Lemma 11.35 of [13],
1

inf inf
in in sup (2

lo (W) pl* + (1 — H)B—pg(y) +0e CBPeE (y)) = Ho(p)
0<6<1geD++(B) yeE, g '

Using (5.8), this immediately gives
Ho f (x) < Ho(3f (x)), f€Dy.

We will prove a similar inequality estimate for Hy, hence giving the following:
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LEMMA 5.3.

Hi f(x) = Ho(3f (x)), feD-,
Ho f(x) < Ho(3f (x)), feDy.

It remains to prove the estimate for H;. By the proof of Lemma B.10 of [13],

. 1 s BPg ¢ ¢
sup  sup inf (—|o—<y>p| +(1+6)2-2 (y) — B BPe <y>)
0<f<1geD++(Br) YR+ \2 8
(5.13)
> inf liminf ¢~ log EV[e/?1PF o> 0 ds,
T vePR4),(¢,v)<+o0 100

We show that:

LEMMA 5.4.

(5.14) liminf:~" log E[e/2WPP KoV ds yP — 3] > FHy(p).

PROOF. The proof of (5.14) follows essentially the same argument used in
Example B.14 in the Appendix of [13], which we will outline. Two ingredients
need to be emphasized. First, for each u with Ip(u; p) < oo, by a mollification

hin (y) .
m dJTp(y) with

hp+cp € CZ°(Ep) for some constant ¢,,, such that lim,,—, oo 15 (in; p) = Ip(1; p).
Second, for every y € E¢ and every h € C2°(Ey), the following ergodic theorem
holds:

1 " 2sh o h
(5.15) lim —E f o2(YMyds|V} =y =/
>0t 0 §

and truncation argument, we can find a sequence u,(dy) =

T 022 dih ),

where
dY" = (m — Y + ppo (Y Yv (¥ 02 (Y2 on(Y ) ds + v(Y )P aw?,
and where 77" is the unique stationary distribution of Y. We will prove (5.15) in

Lemma 5.5.
The process Y” is ¥ under the Girsanov transformation of measures

dph
dP

— exp{h(Y,) — h(Yp) — /Z e_theh(Ys)ds},
T 0

where P and P" refer to the probability measures of the processes Y7 and Yh,
respectively. The invariant distribution of Y is then

e2h dmp

~h_
dn" = —erh T
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We can write

1 1 !
liminf—logEP[eXp{Elmz/ UZ(Ysp)dsHY(fj:y}
0

t—4o00 t
. ph Voo 1 2pn
= lim —logE [exp{—|p| /O’ (Yy)ds
t—>00 t 2 0
AR
t ~ ~
—f e_theh(Ysh)ds)}‘Yé’zy}
0
S ) I B L )
> lim —F [—|p| /o (Y ds
t—00 2 0
- (e~ nip)
t ~ ~
—/ e_theh(Yf')ds>’Yéi=yi|
0
(by Jensen’s inequality)
Lo [ o o oh
=3IpP [ P@dit
2 —o0

w ~
+ / e "BPeM(2)d" (2) (by ergodicity of Y)
—0oQ0

1o, [ 5 ldah  |drh
= — d &P —_— —_—
2|P| /;ooa (Z) d (Z) 5 ( dJTp’ dn?

1 o0 . -
=P [ P@di@ - 16" p).
—00
By arbitrariness of 4, (5.14) follows. To complete the proof, we finally check that:
LEMMA 5.5. Equation (5.15) holds.

PROOF. By It6’s formula,
~ ~ ro_ ~
Elc(F")] = E[¢ (FI)] + E[ /0 B%(Yﬂ)} ds,
where B¢ (y) = (m — y + ppo (»)vy? + 12y 3,h(»))¢'(») + 302y L7 (). As

in (5.6), —¢(y) is the dominating growth term in B"¢(y). Therefore, defining a
family of mean occupation measure,

! ~



1564 J. FENG, J.-P. FOUQUE AND R. KUMAR

we have that

t ~ ~

sup [ ¢()F"(1,y.dz) = supt“E[/ () ds| 7 = y} < C(y:h(-)) < 0.
>0z >0 0

Hence {7"(t,y,-):t > 0} is tight and along convergent subsequences and corre-

sponding limiting point 7", we have

t ~ ~
(5.16) E[t‘lfo <p(Ysh)ds’Y(§’=y]—>fgodﬁh, @ € Cp(Ep).
Z

Such 7" is necessarily a stationary distribution satisfying [ B"yda" =0 for all
Y e CCZ(EO). Uniqueness of such probability measure can be proved by an argu-
ment similar to the one in Appendix C. We thus conclude that there is only one
such 7" and that convergence (5.16) occurs along the whole sequence, not just
subsequences. Furthermore, the growth of o2 is dominated by ¢, and so by uni-
form integrability argument, (5.15) holds. [

Now (5.9), (5.13) and (5.14) together give us the estimate for H; in Lemma 5.3.
From (2.4), we see that Ho(p) is convex in p € R. Let us denote its Legendre

transform as L, then we have the following.

LEMMA 5.6. The unique viscosity solution to (3.13) is

— (x—Xx
(5.17) uo(t, x) 1= sup{h(x’) — tLo( ; )}

x’eR

Moreover, u, converges uniformly over compact sets in [0, T] x R x Eg to uo.

PROOF. We know that ug, defined by (5.17), solves (3.13) by the Lax formula.
That ug is the unique solution follows from standard viscosity comparison princi-
ple with convex Hamiltonians. The convergence result follows from multi-scale
viscosity convergence results developed in Section 4, Lemmas 4.1 and 4.2. [J

6. Large deviation, asymptotic for option prices and implied volatilities.
We finish the proof of Theorem 2.1, Corollary 2.1 and Theorem 2.2.

6.1. A large deviation theorem.

PROOF OF THEOREM 2.1. From the previous section we have u. (¢, x, y) —
ug(t, x) as ¢ — 0 for each fixed (¢, x, y) € [0, T] x R x Ep. All we need is expo-
nential tightness of {X s ;} to apply Bryc’s lemma and to conclude our proof. This
is obtained as follows.

Let f(x) =log(l + x?) and Z(y) be defined as in (5.1). Take

_ [ fe) +3, for the case § = &%,
fs{x’y)_{f(x)-i-eg(y), for the case § = £2.
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Note that f(x) is an increasing function of |x| and ¢(-) > O; therefore, for
any ¢ > 0 there exists a compact set K. C R such that f:(x,y) > ¢ when
x ¢ K.. We next compute H; f;(x, y) [see (3.5)]. Observe that since [|dy f|loo +
||8§xf||00 < 00, by our choice of ¢(-), H, fe(x,y) = —o0 as |y| — oo. Therefore
SUPyeR, yeR H; fe(x,y) = C < oo. For simplicity, we denote X, s ; by X ;. The P
and E below denote probability and expectation conditioned on (X, Y) starting at
(x, y).

P(Xe: ¢ Kc)e(cffs(xs}')*tC)/e

< E[exp{ Je(Xers Yer) _ Je(x,y)
& &
_ f Lo FeXes Yen)fe 4o feXes Ye)/e ds”
0
<1.

In the above inequalities, the term within expectation in the second line is a non-
negative local martingale (and hence a supermartingale); see [9], Lemma 4.3.2. We
apply the optional sampling theorem to get the last inequality above. Therefore

elogP(X.; ¢ K.) <tC+ fe(x,y) —c <const—c

giving us exponential tightness of X, ;.

Let ug’r denote the limit of u, s when u, 5(0,x,y) =h(x) and § =¢", r =2,4.
Applying Bryc’s lemma we get, {X, . ;} for r =2, 4 satisfies a LDP with speed
1/¢ and rate function

(6.1) L(x;x0,0):= sup {h(x) —up” (¢, x0)}.
heCp(R)

In Appendix D we check that I>(x; xo, 1) = tLo(*%~*) where L is the Legendre

transform of Ho defined in (2.3), and Iy = % D

6.2. Option prices.

PROOF OF COROLLARY 2.1. We follow the proof of Corollary 1.3 in [12]
and show that lim,_, g+ elog E[(Se,; — K )*] is bounded above and below by
—I,(logK; xq, t).

Recall that we are considering out-of-the-money call options and hence xy <
log K [see (2.9)]. Since our rate functions I, (x; xg, t), for both r = 2, 4, are non-
negative, convex functions with I, (xo; xo, t) = 0, they are consequently monoton-
ically increasing functions of x when x > xg. Using this fact and the continuity of
the rate functions, the proof of the lower bound follows verbatim from the proof
in [12]. We refer the reader to [12] for details.
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The upper bound follows from [12] once we justify the following limit: for any
p>1,

(6.2) 8£n8+ ¢log E[Sgs’,] =0 for both § = ¢* and § = &°.

Recall the operator A, s defined at the beginning of Section 3. By a slight abuse of
notation, we can use A s to denote the operator acting on the unbounded function
eP* given below:

Agsel* =e((r — %az(y))pepx + %az(y)pzepx).
Let

t
M, = exp{pX&(g’, —pXes5.0 —/ eprS'S'SAg,gerE"S'S ds}.
0

Then M, is a nonnegative local martingale (supermartingale); this follows from the
proof of [9], Lemma 4.3.2. By the optional sampling theorem,

EM,; <1.
Recall that X, 5 ; =log S¢ 5.+, then

E[Szé?,] — E[eP/?Xes1]

t 12
< (EMI)‘/Z(E[exp{st,a,o + [[lemren, per¥ios ds”)

(by Holder’s inequality)

t 172
<1 .ero/Z (E[exp{/ e_pXS,é,sA&BerS,(S.s ds”) ]
0

We simplify and bound the right-hand side of the above inequality:

t
E[CXP{/ e_PXE,S,sA&(sePXS,S,x dS}:|
0
! 1, 1, 2
= E[exp{/o 8(<r — 30 (Yg,,;,s)>p + 7° (Yes,5)p )ds}]

et/§
= e”p’E[exp{S(Pz - p)f UQ(Ye,a,w/s)u)dM”
0

(6.3)

e
<by change of variable u = ES; recall that § = &2 or 84)

= explor? ~ p) [ " w21 aul |
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where Y, is the process with generator B given in (1.2). By convexity of exponen-
tial functions we get

t
E[exp{/ e_pXS"“Ag,(ger&‘s’s ds”
0

(6.4)
S et/d
< e”PfE[; [ exptrer? - p)oZ(m}du].

Since § = &2 or &%, £/8 — oo as € — 0. Therefore, by the ergodicity of ¥ and
exp{t(p2 — p)oz(y)} € L'(dm) [this follows from an argument similar to proof
of Lemma 5.5; note that o < 1 — 8 by Assumption 1.1(3)], the right-hand side of
the above inequality (6.4) is uniformly bounded for all ¢ > 0. Putting this together
with (6.3), we get (6.2). [

6.3. Implied volatilities.

PROOF OF THEOREM 2.2. Recall that X, ; =log S¢; and xo = log Sp. Note
that we have dropped the subscript & in the notation and the dependence on § = &*
or &% should be understood by context. Our first step is to show that

(6.5) 1irg+ oe(t,log K, xo)/et = 0.
e—

Once we have shown this, the rest of the proof is identical to that of Corollary 1.4
in [12].
By the definition of implied volatility,

—logK t+o2et)2
E[(Sg’,—K)+]=er”Sod>(x0 ogK +ret+oset/ )

oe/et
B K<D<x0 —logK +ret — oezst/Z)’
oe/et

where @ is the Gaussian cumulative distribution function. Let / > 0 be the limit of
o¢+/¢t along a converging subsequence. If lim,_, o+ of the left-hand side of (6.6)
is 0, then [ satisfies

xo —log K l) (xo—logK l>
| ————+ )| - K| —————— =) =0.
% ( 2 I 2

The only solution of the above equation is / = 0, and thus we get (6.5).
We therefore need to prove

(6.7) lim E[(S., — K)T]=0.
e—0F

(6.6)

By (1.5a) we have

t t
Ser—K=8)— K+ s/ rSerdt + ﬁ/ Se.r0 (Ye)dW,,
0 0
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It can be verified that E[(S;; — K) — (So — K)J? — 0, as ¢ — 0, for both cases
§ = ¢&* and § = £2. Therefore

lim E[(Se; — K)T1=E[(So— K)*]=0
e—07F
as Sp < K (this is an out-of-the-money call option).
The same formula is obtained when Sg > K by considering out-of-the-money

put options. We finally turn our attention to at-the-money implied volatility. The
asymptotic limit of at-the-money (ATM) volatility can be shown to be &2, that is,

Slgrz)afg(t,logK,xo) =572 when xg =log K;r =2, 4,

by a similar argument as in [12], Lemma 2.6. The continuity, at-the-money, of the
limiting implied volatility, that is,

(log K — xo)2 )
im =0
[log K —xo|—0 21, (log K, x0, 1)t
is obvious in the r = 4 regime, but is more involved in the r = 2 regime. We
conjecture that it is true, that is,
2

(6.8) lim ——— =52
—02t2Lo(z/1)
and we briefly indicate an outline of the proof. Let

Ar(p) =T 'log E[eli pro (X)W +(=p/2IpP Jf o> (V) ds]

so that Ho(p) = lim7_ o0 A(p). The result (6.8) follows if Ho(p) is twice differ-
entiable in a neighborhood of p =0 and H;(0) = %2 It can easily be checked that
lim7_, o0 A7(0) = %2 The main difficulty is to get a uniform bound on A7 (p) for
all 7 and in a neighborhood of p = 0. Obtaining such a uniform bound on A%/ (p)

involves tedious calculations but should follow from the multiplicative ergodic
properties of the Y process (see [26]). [

In the following Appendix, we collect some material regarding 1-D diffusions
Y and technical but elementary estimates.

APPENDIX A: POSITIVITY OF THE Y PROCESS

In this section we prove positivity of the ¥ process when % < B < 1lin (1.1b).
Assume m > 0 and Yy > 0. Recall the scale function s(y) defined in the Introduc-
tion, and let S(y) = /, ly s(y)dy. By Lemma 6.1(ii) in Karlin and Taylor [24], to
prove that Y; remains positive a.s. for all ¢+ > 0, it is sufficient to show that

Iim S(e) = —o0.
e—0t
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ForO0<e k1,

1 1 Y 2(m — z)
_S(8)=f£ s(y)dyzfs exp{—f1 7v2|z|2/3 dz}dy

—Cfl { 2m Ly }d
— ) TP -y T wa—py Y

(where C is a positive constant and 28 — 1,1 — 8 > 0)

1
= [ (positive integrand) dy
2¢

2 om 228

+ Cfg exp { 2B —Dy#1 TR B) } dy
2m

V2(2B — 1)(26)2F ]

zCeexp{ }—>+oo

as ¢ — 0T, provided m > 0. Therefore lim,_, g+ S(¢) = —oo0.

APPENDIX B: GROWTH ESTIMATES FOR SOLUTIONS TO
POISSON EQUATIONS

Assume x satisfies the Poisson equation
Bx(y) = 3lpl* (@ — o).

where 2, defined in (2.1), is the average of az(y) with respect to the invariant
distribution 7 (dy), given in (1.4), of the Y process. In this section we find growth
estimates for yx.

The right-hand side of the above Poisson equation is centered with respect to
the invariant distribution 7 (dy) = # dy [given in (1.4)], and so

(B.1) /Ooom(z)(a2 —02(2))dz =0,
where
1 y2(m —2z)
By (1.3),

X = / ds(y) /0 pPE2 - 02(2) dM(2)

B 1 Y pPPm(2)@* — 0%(2))
= / ) |:/ 2 dz} dy
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is a solution up to a constant, and so

x'(y) = Lzy[/oym(z)(?2 - Uz(z))dz]

I T
= vzyzﬁm(y)[/y m(z)(o J(Z))dz]

The last equality is by the centering condition (B.1). Given the bounds on o (y)
in Assumption 1.1(3), we can compute the following bounds where the constants,
denoted by c, are positive and vary from line to line:

Ix/(y)IS% ¥ 29m(2)dz
v2y2Bm(y) Jy
clpReey' ™

o0
_ 2028 ,~az' 7 —@7H)/ A=) 4
vze—<y2—2ﬁ)/<v2<1—ﬁ))fy © e ¢ ©

where o = #}’;ﬁl) > 0. Bounding e above by 1 we get
2 ozy'_zﬂ 00
, clple / 20-2p ,—(272F) /(v (1-p))
< d
|X ()’)| = vze_(y2—2ﬂ)/(v2(1_ﬂ)) y Z e Z
2 1-28
clpl-e®” /O" u2o=0/C=28) oy _L}du
V26— /02 (1-B)) Jy2-26 v2(1 = B)

(by change of variable u = z7>~2f)

9 ayl—28
clpl“e®”

2-28

= 2e— 0T GI=F) [yzg_l p{_m }

In the last inequality we used faoo[u(2"_1)/(2_2/3)[”/(”2(1_/3))]du <31 —
,B)a(z"_1)/(2_2’3)e_“/(”2(1_ﬁ)) (since % < 0). Therefore

2 gyl—28
c|pl=e®” 2%

X ] < =5y ~clplPy*!
Vv

as y — 00,
. 1-2p
since e*Y ~O0(l)asy— oo.

APPENDIX C: Y? PROCESS

Fix p € R. Denote p,(y) :=(m —y) + ppo (y)vyP, and let Y? be the process
with generator

BPg=p,(y)dyg+3°y* 955, g e Cl(Ey).
In this section we calculate the unique stationary distribution and Dirichlet form

of the process Y7, and we show that it is a reversible process. To this end, we first
compute the scale function and speed measure.
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The scale function and speed measure for the Y ?” process are given by

Y 21 ,(2)
sp(y):exp{—/l v222ﬁ } and mp(y)zm

Evaluating the integral in s, (y) we get (the C below denotes a positive constant
that varies from line to line)

Cexp{_zmlogy y2—2p _2ppJ} if,B:l
p2 v2(1 —B) v ’ 2’
2m y2 2P 2pp
s =1c { _ }
’ P2y A v
1
ifBeOU| =1},
ip <2 )

where
Yo (2)
J(y) = / B dz.
Z
Due to bounds on o given in Assumption 1.1(3), there exist Cj, C2 > 0 such that

Ciy' P < J(y) < Cry'FHe,

where
0<l-p<l-B+o<l, ifi<p<l,
I=1-8<1-8+40<2, if 6 =0.
Therefore
1
— O when y - 0 or y — o0, if-<pB<l1,
Sp(y) 2
(C.1)
— 0 when |y| — o0, if 8=0.
Sp(Y)

Define for y € Ej,

Sp(y) == /ly sp(z)dz.

Observe that §,,(y) — —oo as y approaches the left endpoint of Ep and S, (y) —
400 as y — oo.

C.1. Stationary distribution. Let 7” be an invariant distribution of the pro-
cess YP. Suppose it has density function W (y), that is, d7?(y) = WV (y) dy, then W
is uniquely determined as the solution of

L0 22800y — L, (W) =0
2 3y vy y dy Uply y)) =
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satisfying W(y) > 0 for all y and [ £, Y(»)dy = 1. Solving the above differen-
tial equation, we get W(y) =m,(y)[C1S,(y) + C2]. Since W is nonnegative, and
Sp(y) — —o0 as y approaches the left boundary of Ey, we take C1 = 0. The other
constant C; is uniquely determined by the condition || £, Y (»)dy = 1. Therefore
7P is the unique invariant distribution of Y ? and is given by

mp(y) 2

C2 dnP =V¥(y)dy = dy—= ——~
( ) /g ()’) ()’) y Zl y Zleyz'BSp(y)

dy for y € Ey,
where Zy = [, mp(y)dy.

C.2. Reversibility. Letp, ¢ € CCZ(EO), then

2
Y BPodn? = — / [ 2y 9" + (y)w/]idy
./ Z1 P v2y28s,(y)

— Zi/ w[(p//ef“" 2up 0/ Py*) | —Zz'u;ﬁ gel” ZMP(Y)/(”zyzﬂ)} dy
1 vey

= zil |, f—y(s,f’&) -

Integrating by parts twice and using the boundary conditions (C.1), we get

Jpmean =g e ()= L ey

C.3. Dirichlet form. By similar calculations as before, when proving re-
versibility, we get, for f, g € L*(?),

EP(f.g) = — fE FBPgdn?
0

1 gy
— — d
2 )Y ( ,,<y)>
d
sp<y> Y

2
v
=2 [ g mdnr o),
Eo
where we integrated by parts once and used (C.1) in the second last line.

APPENDIX D: RATE FUNCTION FORMULAS

Recall the following characterization of the rate functions given in (6.1):

L(x;xo,0)= sup {h(x) —up’ (1, x0)},
heCp(R)
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where r = 2, 4 correspond to the two regimes § = &2 and § = &*, respectively. The

ug’r are given in (5.17) and (5.5), respectively, as

ug’z(t,xo) = sup {h(x') — tf(xo t—x )},

x'eR
h4 , |x0 —x/|2>}
uy (t,x9) = sup1h(x’) — | ———— | }.
0 ( O) x’e%{ ( ) < 2621‘

For notational convenience, we will drop the subscript » in I, and, in the case

/12 — s .
|xg€xt| ) by £ L(*=). The rate functions can then

r =4, we will denote the term (
be rewritten as

. , —(x0—x'
I(x;x0,t)= sup inf{h(x) —h(x")+1tL
heCp(R) x'eR t

for both regimes r =2 and r =4.

LEMMA D.1.

—(x0— X
I(x;xo,t)th< ; )

PROOF. Note that for both cases r = 2,4, Ly is convex, Lo(0) =0 and Ly is
a nonnegative function. This is obvious for the case r = 4. We can deduce this in
the r =2 case since Ho(p) [defined in (2.3)] is convex and H(0) = 0.

Re-write

I(x;x0,t)= tZ()(th_x)

— _ —
4+ sup inf {h(x) — h(x) +zZo<x° a > —tL()(xO x)}
her(R)x/eR t t

— (X0—X
=tLo< ; >+J,

where J = supjcc, ) Ja and Jy = infyerih(x) — h(x)) + (Lo(%) — 1 x
Zo(g)}. Taking x” = x in the inf we get J; < 0 and therefore
(D.1) J<0.

Note that x¢ and x are fixed. Define a function 2* € Cp(R) as follows:
s _ —
h*(x") =tfo(x0 p al ) AtL()(th x).

Jp+=0

Then
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and consequently
(D.2) J =>0.
By (D.1) and (D.2), J =0 and we get

— [(xX0—X
I(x;x0,t)=tLg ; . 0
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