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In this paper, we study stochastic volatility models in regimes where
the maturity is small, but large compared to the mean-reversion time of
the stochastic volatility factor. The problem falls in the class of averag-
ing/homogenization problems for nonlinear HJB-type equations where the
“fast variable” lives in a noncompact space. We develop a general argument
based on viscosity solutions which we apply to the two regimes studied in
the paper. We derive a large deviation principle, and we deduce asymptotic
prices for out-of-the-money call and put options, and their corresponding im-
plied volatilities. The results of this paper generalize the ones obtained in
Feng, Forde and Fouque [SIAM J. Financial Math. 1 (2010) 126–141] by a
moment generating function computation in the particular case of the Heston
model.

1. Introduction. On one hand, the theory of large deviations has been re-
cently applied to local and stochastic volatility models [1, 2, 4, 5, 20] and has
given very interesting results on the behavior of implied volatilities near maturity.
(An implied volatility is the volatility parameter needed in the Black–Scholes for-
mula in order to match a call option price; it is common practice to quote prices in
volatility through this transformation.) In the context of stochastic volatility mod-
els, the rate function involved in the large deviation estimates is given in terms
of a distance function, which in general cannot be calculated in closed form. For
particular models, such as the SABR model [19, 21], approximations obtained by
expansion techniques have been proposed; see also [18, 22, 28]. Semi closed form
expressions for short time implied volatilities have been obtained in [15].

On the other hand, multi-factor stochastic volatility models have been studied
during the last ten years by many authors (see, e.g., [8, 16, 18, 27, 29]). They
are quite efficient in capturing the main features of implied volatilities known as
smiles and skews, but they are usually not simple to calibrate. In the presence of
separated time scales, an asymptotic theory has been proposed in [16, 17]. It has
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the advantage of capturing the main effects of stochastic volatility through a small
number of group parameters arising in the asymptotic. The fast time scale expan-
sion is related to the ergodic property of the corresponding fast mean-reverting
stochastic volatility factor.

It is natural to try to combine these two modeling aspects and limiting results, by
considering short maturity options computed with fast mean-reverting stochastic
volatility models, in such a way that maturity is of order ε � 1, and the mean-
reversion time, δ, of volatility is even smaller of order δ = ε2 (fast mean-reversion)
or δ = ε4 (ultra-fast mean-reversion).

In [12], the authors studied the particular case of the Heston model in the regime
δ = ε2 by an explicit computation of the moment generating function of the stock
price and its asymptotic analysis.

In this paper, we establish a large deviation principle for general stochastic
volatility models in the two regimes of fast and ulta-fast mean-reversion, and we
derive asymptotic smiles/skews. For such general dynamics, a moment generating
function approach is no longer available. Our problem falls in the class of homog-
enization/averaging problems for nonlinear HJB-type equations where the “fast
variable” lives in a noncompact space. We develop a general argument based on
viscosity solutions which we apply to the two regimes studied in the paper. Vis-
cosity solution techniques have been used in averaging of nonlinear HJB equations
over noncompact space in [3]. However, the techniques in [3] were proved for a
certain class of nonlinear HJB equations which does not include our case. In this
paper, we develop a method more general than [3]. In particular, it can be used to
treat the problems in [5], but not vice versa.

We start by considering the following stochastic differential equations model-
ing the evolution of the stock price (St ) under a risk-neutral pricing probability
measure, and with a stochastic volatility determined by a process (Yt ):

dSt = rSt dt + σ(Yt )St dW
(1)
t ,(1.1a)

dYt = 1

δ
(m − Yt ) dt + ν√

δ
Y

β
t dW

(2)
t ,(1.1b)

where m ∈ R, r, ν > 0, W(1) and W(2) are standard Brownian motions with
〈W(1),W(2)〉t = ρt , with |ρ| < 1 constant. The process (Yt ) is a fast mean-
reverting process with rate of mean reversion 1/δ (δ > 0). The parameters β and
σ(y) are chosen to satisfy the following.

ASSUMPTION 1.1. We assume that:

(1) β ∈ {0} ∪ [1
2 ,1);

(2) in the case of β = 1/2, we require m > ν2/2 and Y0 > 0 a.s., in the case of
1/2 < β < 1, we require m > 0 and Y0 > 0 a.s.;
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(3) σ(y) ∈ C(R;R+) satisfies

σ(y) ≤ C(1 + |y|σ )

for some constants C > 0 and σ with 0 ≤ σ < 1 − β .

These assumptions ensure existence and uniqueness of a strong solution of (1.1).
This can be seen as a combination of existence of martingale problem solution
(e.g., Theorem 5.3.10 in Ethier and Kurtz [9]) and the Yamada–Watanabe theory
for 1-D diffusions (e.g., Chapter 5, Karatzas and Shreve [23]). In particular, As-
sumption 1.1(2) ensures that, in the case β ∈ [1

2 ,1), Yt > 0 a.s. for all t ≥ 0 (see
Appendix A). In the case β = 0, Y is an Ornstein–Uhlenbeck (OU) process with a
natural state space (−∞,∞). In order to present both model cases using one sim-
ple set of notation, we denote the state space for Y as E0 with E0 := R if β = 0
and E0 := (0,∞) when β ∈ [1

2 ,1).
Note that the Heston model, for which β = 1/2 and σ(y) = √

y, does not satisfy
these assumptions, but it has been treated separately in [12] by explicit computa-
tion of the moment generating function.

The infinitesimal generator of the Y process, when δ = 1, can be identified with
the following differential operator on the class of smooth test functions vanishing
off compact sets:

B := (m − y)∂y + 1
2ν2|y|2β∂2

yy.(1.2)

Following the general theory of 1-D diffusion (e.g., Karlin and Taylor [24],
page 221), we introduce the so called scale and speed measure of the (Yt ) pro-
cess,

s(y) := exp
{
−

∫ y

1

2(m − z)

ν2|z|2β
dz

}
, m(y) := 1

ν2|y|2βs(y)
.

Denoting dS(y) := s(y) dy and dM(y) := m(y)dy, we then have

Bf (y) = 1

2

d

dM

[
df (y)

dS

]
.(1.3)

Under Assumption 1.1 there exists a unique probability measure

π(dy) := Z−1m(y)dy, Z :=
∫
E0

m(y)dy < ∞(1.4)

such that
∫

Bf dπ = 0 for all f ∈ C2
c (E0). See Appendix C.

By a change of variable Xt = logSt , we have

dXt = (
r − 1

2σ 2(Yt )
)
dt + σ(Yt ) dW

(1)
t .
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In order to study small time behavior of the system, we rescale time t �→ εt for
0 < ε � 1; denoting the rescaled processes by Xε,δ,t and Yε,δ,t , we have, in distri-
bution,

dXε,δ,t = ε

(
r − 1

2
σ 2(Yε,δ,t )

)
dt + √

εσ(Yε,δ,t ) dW
(1)
t ,(1.5a)

dYε,δ,t = ε

δ
(m − Yε,δ,t ) dt + ν

√
ε

δ
Y

β
ε,δ,t dW

(2)
t .(1.5b)

We are interested in understanding the two-scale ε, δ → 0 limit behavior of
option prices and its implication to implied volatility. In this paper, we restrict our
attention to the following two regimes:

δ = ε4 and δ = ε2.

In view of [12], to obtain a large deviation estimate of option prices, it is sufficient
to obtain a large deviation principle (LDP) for {Xε,δ,t : ε > 0}. By Bryc’s inverse
Varadhan lemma [7] (Theorem 4.4.2), we know that the key step is proving con-
vergence of the following functionals:

uε,δ(t, x, y) := ε logE
[
eε−1h(Xε,δ,t )|Xε,δ,0 = x,Yε,δ,0 = y

]
, h ∈ Cb(R),(1.6)

to some quantity independent of y. The rate function in the LDP is then given in
terms of a variational formula involving the limit of the functionals uε,δ .

For each h ∈ Cb(R), the function uε,δ satisfies a nonlinear partial differential
equation given in (3.4). In Section 3.2, we use heuristic arguments to obtain PDEs
that characterize the limit of these uε,δ . Proving this convergence rigorously, how-
ever, is nontrivial. Intuitively we know that, as Y has a mean reversion rate 1/δ

and δ � ε, the effect of the Y process should get averaged out. To be exact, the
form of nonlinear operator (3.5) indicates that convergence of uε,δ is an averaging
problem (over the fast y variable) for Hamilton–Jacobi equations. Such problems,
in the context of compact state space for the averaging variable, can be handled by
extending standard linear equation techniques using viscosity solution language.
The Y process in this article lies in E0, which is R in the case of β = 0 and (0,∞)

in other cases. E0 is a noncompact space, and therein lies an additional difficulty.
We adapt methods developed in Feng and Kurtz [13]. Indeed, an abstract

method for large deviation for sequence of Markov processes, based on conver-
gence of HJB equation, is developed fully in [13]. The two schemes treated in this
article are of the nature of Examples 1.8 and 1.9, introduced in Chapter 1, and
proved in detail in Chapter 11 of [13]. In this article, we not only present a direct
proof, but also introduce some argument to further simplify [13] in the setting of
multi-scale. This is possible in a large part due to the locally compact state space
and mean-reverting nature of the process Y .

In particular, modulo technical subtleties in verification of conditions, the setup
of Section 11.6 in [13] corresponds to the large deviation result in our case of
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δ = ε2. Since E0 is locally compact, and we only deal with PDEs instead of ab-
stract operator equations, great simplification of [13] can be achieved through the
use of a special class of test functions. See Conditions 4.1 and 4.2. The techniques
we introduce (Lemmas 4.1 and 4.2) are not limited to averaging problems, but are
also applicable to problems of homogenization, which we will not delve into in
this article. The rigorous justification of convergence of uε,δ is shown in Section 5.

The main results of the paper are stated in Section 2. Theorem 2.1 is a rare
event large deviation-type estimate corresponding to short time, out-of-the-money
option pricing. Corollary 2.1 and Theorem 2.2 give asymptotics of option price
and implied volatility, respectively, for such situations. The proofs are given in the
sections that follow, starting with heuristic proofs in Section 3.2 and finishing with
rigorous justifications in Sections 4 and 5. The technical results in Lemmas 4.1
and 4.2 may be of independent interest.

2. Main results. Observe that in the SDE (1.5), while the scaled log stock
price process runs on a time scale of order ε, the scaled Y process runs on a time
scale of order ε/δ. This is due to the extremely short mean-reversion time, δ = εr

(r = 2,4), of the Yε,δ,· process. Thus, as ε approaches zero, long-time behavior of
the unscaled Y process comes into play. This long-time behavior of the Y process
manifests itself in the large deviation principle (LDP) of the scaled log stock price
via the quantities σ 2 and H 0 defined below. Define

σ 2 :=
∫

σ 2(y)π(dy);(2.1)

the average of the volatility function σ 2(·) with respect to the invariant distribu-
tion of Y . Recall B , the generator of the Y process, defined in (1.2). Define the
perturbed generator

Bpg(y) = Bg(y) + ρσνyβp ∂yg(y), g ∈ C2
c (E0).(2.2)

Let Yp be the process corresponding to generator Bp , and define

H 0(p) := lim sup
T →+∞

sup
y∈E0

T −1 logE
[
e(1/2)|p|2 ∫ T

0 σ 2(Y
p
s ) ds |Yp

0 = y
]
.(2.3)

Yp has strong enough ergodic properties that the limit above does not depend
upon y even if we omitted the supy∈E0

; and, in fact, the lim supT →∞ can be re-
placed with limT →∞ in the above definition. We will justify this fact in the rigor-
ous derivations. By Girsanov’s transformation

H 0(p) = lim sup
T →+∞

T −1 logE[e
∫ T

0 ρpσ(Ys) dW(2)(s)+((1−ρ2)/2)|p|2 ∫ T
0 σ 2(Ys) ds],(2.4)

where Y is the process with generator B . From this expression, we see that H 0 is
convex and superlinear in p. H 0(p) is the scaled limit of the log moment gener-
ating function of a function of occupation measures of the process Yp . As such, it
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has an equivalent representation in terms of the rate function for the LDP of occu-
pation measures of Yp . This equivalent representation of H 0 is given in (5.12) in
Section 5.2.

Having defined these crucial terms, we proceed to the statement of our results.

THEOREM 2.1 (Large deviation). Assume Xε,εr ,0 = x0 and Yε,εr ,0 = y0 where
r = 2,4 and suppose that Assumption 1.1 holds. For x ∈ R, let

I4(x;x0, t) := |x0 − x|2
2σ 2t

,(2.5)

where σ is defined in (2.1) and

I2(x;x0, t) := tL0

(
x0 − x

t

)
,(2.6)

where L0 is the Legendre transform of H 0 defined in (2.3).
Then, for each regime r ∈ {2,4}, for every fixed t > 0 and x0 ∈ R, y0 ∈ E0,

a large deviation principle (LDP) holds for {Xε,εr ,t : ε > 0} with speed 1/ε and
good rate function Ir(x;x0, t). In particular,

lim
ε→0

ε logP(Xε,εr ,t > x) = −I (x;x0, t) when x > x0.(2.7)

Similarly, when x < x0, we have

lim
ε→0

ε logP(Xε,εr ,t < x) = −I (x;x0, t).(2.8)

REMARK 2.1. The rate functions Ir(x;x0, t), in both regimes, are convex,
continuous functions of x and Ir(x0;x0, t) = 0.

REMARK 2.2. In the case δ = ε4, observe that the rate function I4, in (2.5),
is the same as the rate function for the Black–Scholes model with constant volatil-
ity σ . In other words, in the ultra fast regime, to the leading order, it is the same as
averaging first and then taking the short maturity limit.

REMARK 2.3. In the case δ = ε2, no explicit formula for the rate function
is obtained. However, an explicit formula of the rate function is obtained for the
Heston model in [12] which corroborates the formula in (2.6). The Heston model
per se does not fall in the category of stochastic volatility models covered in this
paper, but direct computation of H 0, given by (2.3) and L0, its Legendre transform,
is possible for this model.

Let S0 > 0 be the initial value of stock price, and let Xε,εr ,0 = x0 = logS0. The
asymptotic behavior of the price of out-of-the-money European call option with
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strike price K and short maturity time T = εt is given in the following corollary.
We only consider out-of-the-money call options by taking

S0 < K or x0 < logK.(2.9)

The other case, S0 > K , is easily deduced by considering out-of-the-money Euro-
pean put options and using put-call parity.

COROLLARY 2.1 (Option price). For fixed t > 0,

lim
ε→0+ ε logE[e−rεt (Sε,εr ,t − K)+] = −Ir(logK;x0, t)

for r = 2,4.

Denote the Black–Scholes implied volatility for out-of the-money European call
option, with strike price K , by σr,ε(t, logK,x0), where r = 2,4 correspond to the
two regimes. By the same argument used in [12], we get an asymptotic formula
for implied volatility:

THEOREM 2.2 (Implied volatilities).

lim
ε→0+ σ 2

r,ε(t, logK,x0) = (logK − x0)
2

2Ir(logK;x0, t)t
.

REMARK 2.4. In the case δ = ε4, the implied volatility is σ , which is obtained
by averaging the volatility term σ 2(y) with respect to the equilibrium measure
for Y . It is likely that more features of the Y process, beyond its equilibrium, will
be manifested in higher order terms of implied volatility. Studying the next order
term of implied volatility is a topic for future research.

REMARK 2.5. The limit of at-the-money implied volatility, that is,
limε→0 σ 2

r,ε(t, x0, x0), is obtained as in [12], Lemma 2.6. However, the continu-
ity of the limiting implied volatility at logK = x0 is not obvious in the r = 2 case.
We discuss this at the end of Section 6.3.

3. Preliminaries. The process (Xε,δ, Yε,δ) is Markovian, and can be identified
through a martingale problem given by generator

Aε,δf (x, y) = ε

((
r − 1

2
σ 2(y)

)
∂xf (x, y) + 1

2
σ 2(y) ∂2

xxf (x, y)

)
(3.1)

+ ε

δ
Bf (x, y) + ε√

δ
ρσ(y)νyβ ∂2

xyf (x, y),

where f ∈ C2
c (R × E0). Recall that B is given by (1.2). Let g ∈ Cb(R) and define

vε,δ(t, x, y) := E[g(Xε,δ,t )|Xε,δ,0 = x,Yε,δ,0 = y].(3.2)
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In general, vε,δ ∈ Cb([0, T ] × R × E0). If, moreover, vε,δ ∈ C1,2([0, T ] × R × R),
then it solves the following Cauchy problem in classical sense:

∂tv = Aε,δv in (0, T ] × R × E0;(3.3a)

v(0, x, y) = g(x), (x, y) ∈ R × E0.(3.3b)

3.1. Logarithmic transformation method. Recall the definition of uε,δ in (1.6).
That is, uε,δ := ε logvε,δ when g(x) = eε−1h(x), h ∈ Cb(R), in (3.2). By (3.3) and
some calculus, at least informally, (3.4) below is satisfied. This is the logarithmic
transform method by Fleming and Sheu. See Chapters VI and VII in [14]. In gen-
eral, in the absence of knowledge on smoothness of vε,δ , we can only conclude
that uε,δ solves the Cauchy problem (3.4) in the sense of viscosity solution (Def-
inition 4.1). In addition to Fleming and Soner [14], such arguments can also be
found in Section 5 of Feng [11].

LEMMA 3.1. For h ∈ Cb(R), uε,δ defined as in (1.6), is a bounded continuous
function satisfying the following nonlinear Cauchy problem in viscosity solution
sense:

∂tu = Hε,δu in (0, T ] × R × E0;(3.4a)

u(0, x, y) = h(x), (x, y) ∈ R × E0.(3.4b)

In the above,

Hε,δu(t, x, y) = εe−ε−1uAε,δe
ε−1u(t, x, y)

= ε

((
r − 1

2
σ 2(y)

)
∂xu + 1

2
σ 2(y) ∂2

xxu

)
(3.5)

+ 1

2
|σ(y) ∂xu|2 + ε2

δ
e−ε−1uBeε−1u

+ ρσ(y)νyβ

(
ε√
δ

∂2
xyu + 1√

δ
∂xu∂yu

)
,

where

ε2

δ
e−ε−1uBeε−1u = ε

δ
Bu + δ−1 1

2
|νyβ ∂yu|2.

Note that Hε,δ only operates on the spatial variables x and y.

3.2. Heuristic expansion. By Bryc’s inverse Varadhan lemma (e.g., Theo-
rem 4.4.2 of [7]), we know that convergence of uε,δ is a necessary condition to
obtain the LDP for {Xε,δ,t : ε > 0}. In this section, we describe heuristically PDEs
characterizing uε,δ in the limit and the nature of convergence itself.
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Henceforth, for notational simplicity, we will drop the subscript δ and write
uε and Hε for uε,δ and Hε,δ , respectively. We begin by the following heuristic
expansion of uε in integer powers of ε:

uε = u0 + εu1 + ε2u2 + ε3u3 + ε4u4 + · · ·(3.6)

in both regimes. The ui, i = 0,1, . . . , are functions of t, x, y. In this heuristic sec-
tion, we make reasonable choices of ui which a posteriori, following a rigorous
proof of the convergence of uε in Section 5, are shown to be the right choice.

3.2.1. The case of δ = ε4. Computation of Hεuε [see (3.5)] reveals that, in
this scale, the fast process Y oscillates so fast that averaging occurs up to terms of
order ε2. Namely, u0 = u0(t, x), u1 = u1(t, x) and u2 = u2(t, x) will not depend
on y. To see this, we equate coefficients of powers of ε in ∂tuε = Hεuε .

Terms of O( 1
ε4 ) satisfy

0 = 1
2ν2y2β(∂yu0)

2,

so we choose u0 independent of y. With this choice of u0 the equation for the
coefficients of the next order terms, which is of O( 1

ε2 ), reduces to

0 = Bu1 + 1
2ν2y2β(∂yu1)

2.

This equation is satisfied by choosing u1 independent of y. With this choice of u1,
the equation for coefficients of the next order terms, of O(1

ε
), becomes

0 = Bu2.

By choosing u2 independent of y the last equation is satisfied.
Thus, by these choices of u0, u1 and u2 independent of y, it follows that

Hεuε(x, y) = 1
2 |σ(y) ∂xu0|2 + Bu3

+ ε
(
σ 2(y) ∂xu0 ∂xu1 + 1

2σ 2(y) ∂xxu0

+ (
r − 1

2σ 2(y)
)
∂xu0 + νρσ(y)yβ ∂xu0 ∂yu3 + Bu4

)
+ o(ε).

The ε0 order terms then satisfy

∂tu0(t, x) = 1
2 |∂xu0(t, x)|2σ 2(y) + Bu3(t, x, y),

that is,

Bu3(t, x, y) = ∂tu0(t, x) − 1
2 |∂xu0(t, x)|2σ 2(y).

The above is a Poisson equation for u3 with respect to the operator B in the y

variable. We impose the condition that the right-hand side is centered with respect
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to the invariant distribution π [given in (1.4)]. This ensures a solution to the Pois-
son equation, which is unique up to a constant in y. See Appendix B for growth
estimates of the solution. Therefore we get

∂tu0(t, x) = 1
2 |σ ∂xu0(t, x)|2;

where

σ 2 =
∫

σ 2(y)π(dy).

Thus the leading order term in the heuristic expansion satisfies

∂tu0 = H 0u0(x), t > 0;(3.7a)

u0(0, x) = h(x),(3.7b)

where

H 0u0(x) := 1
2 |σ ∂xu0(x)|2.

3.2.2. The case of δ = ε2. When δ goes to zero at a slower rate ε2, limits
become very different and more features in the Y process (rather than just its
equilibrium) is retained. We observe that while u0 is independent of y as in the
faster scaling regime, u1 may now depend on y. Equating coefficients of O(ε−2)

in ∂tuε = Hεuε we get

0 = 1
2ν2y2β(∂yu0)

2,

and so we choose u0 = u0(t, x) independent of y. Then Hεuε reduces to

Hεuε(t, x, y) = 1
2 |σ(y) ∂xu0|2 + ρσ(y)νyβ ∂xu0 ∂yu1 + e−u1Beu1

+ ε
(
σ 2(y) ∂xu0 ∂xu1 + 1

2σ 2(y) ∂xxu0 + (
r − 1

2σ 2(y)
)
∂xu0

+ Bu2 + νy2β ∂yu1 ∂yu2 + ρσ(y)νyβ ∂xyu1

+ ρσ(y)νyβ ∂xu1 ∂yu1 + ρσ(y)νyβ ∂xu0 ∂yu2
)

+ o(ε).

The leading order terms should satisfy

∂tu0(t, x) = 1
2 |∂xu0(t, x)|2σ 2(y) + ρνσ(y)yβ ∂xu0(t, x) ∂yu1(t, x, y)

(3.8)
+ e−u1Beu1(t, x, y).

We will rewrite the above equation as an eigenvalue problem. Recall B , the gen-
erator of the Y process defined in (1.2) and the perturbed generator Bp defined
in (2.2). Then

e−u1Beu1 + ρσ(y)νyβ ∂xu0 ∂yu1 = e−u1B∂xu0(t,x)eu1 .(3.9)
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Fix t and x, and rewrite (3.8) in terms of the perturbed generator (3.9).

e−u1B∂xu0(t,x)eu1(t, x, y) + 1
2 |∂xu0(t, x)|2σ 2(y) = ∂tu0(t, x).

Multiplying the above equation by eu1 , we get the eigenvalue problem

(B∂xu0 + V )g(y) = λg(y),(3.10)

where V (·) = 1
2 |∂xu0(t, x)|2σ 2(·) is a multiplicative potential operator, g(·) =

eu1(t,x,·) and λ(t, x) = ∂tu0(t, x). Choose u1 such that (λ, g) is the solution to
the principal (positive) eigenvalue problem (3.10). Note that the dependence of
the eigenvalue, λ, on t and x is only through ∂xu0. If (3.10) can be solved with a
nice g, then we have

λ(t, x) = H 0(∂xu0),(3.11)

where H 0 is defined as (2.3). The leading order terms then satisfy

∂tu0(t, x) = H 0(∂xu0(t, x)).(3.12)

Constructing a classical solution for (3.10) is a considerably hard problem, even
in the 1-D situation. If (3.10) can be solved with a nice g, then (2.3) always holds
with the H 0 given by (3.11). The converse is not always true. Especially, (2.3) says
nothing about the eigenfunction g. However, we only need the definition in (2.3)
in rigorous treatment of the problem. We will show (in Section 5.2) that (3.12) is
the limit equation where H 0 is given by (2.3) irrespective of whether a solution to
the eigenvalue problem (3.10) exists or does not.

To summarize,

∂tu0(t, x) = H 0(∂xu0(t, x)), t > 0;(3.13a)

u0(0, x) = h(x),(3.13b)

where H 0 is given by (2.3) or (2.4).

4. Convergence of HJB equations. The results of this section can be inde-
pendently read from the rest of the article.

We reformulate and simplify some techniques, regarding multi-scale conver-
gence of HJB equations, introduced in [13]. Compared with [13], the simplifica-
tion makes ideas more transparent and readily applicable. These are made possible
because we are dealing with Euclidean state spaces which are locally compact. All
these results are generalizations of Barles–Perthame’s half-relaxed limit argument
first introduced in single scale, compact state space setting.

Let E ⊂ R
m, E0 ⊂ R

n and E′ := E × E0 ⊂ R
d where d = m + n. A typical

element in E is denoted as x, and a typical element in E′ is denoted as z = (x, y)

with x ∈ E and y ∈ E0. We denote a class of compact sets in E′

Q := {K × K̃: compact K ⊂⊂ E, compact K̃ ⊂⊂ E0}.
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We specify a family of differential operators next. Let � be an index set and

Hi(x,p,P ;α) :E × R
m × Mm×m × � �→ R, i = 0,1;

Hε(z,p,P ) :E′ × R
d × Md×d �→ R

be continuous. For each f ∈ C2(Rd), let ∇f (x) ∈ R
d and D2f (x) ∈ Md×d , re-

spectively, denote gradient and Hessian matrix evaluated at x. We consider a se-
quence of differential operators

Hεf (z) := Hε(z,∇f (z),D2f (z))

for f belongs to the following two domains:

Dε,+ := {f :f ∈ C2(E′), f has compact finite level sets};
Dε,− := −Dε,+ := {−f :f ∈ C2(E′), f has compact finite level sets}.

We will separately consider these two domains depending on the situation of sub-
or super-solution. We also define domains D+,D− similarly replacing E′ by E.

We will give conditions where uε(t, z) = uε(t, x, y) solving

∂tuε(t, z) = Hε(z,∇uε(t, z),D
2uε(t, z))(4.1)

converging to u(t, x) which is a sub-solution to

∂tu(t, x) ≤ inf
α∈�

H0(x,∇u(t, x),D2u(t, x);α)(4.2)

and a super-solution to

∂tu(t, x) ≥ sup
α∈�

H1(x,∇u(t, x),D2u(t, x);α).(4.3)

The meaning of sub- super-solutions is defined as follows (as, e.g., in Fleming and
Soner [14]).

DEFINITION 4.1 (Viscosity sub- super-solutions). We call a bounded measur-
able function u a viscosity sub-solution to (4.2) [resp., super-solution to (4.3)], if
u is upper semicontinuous (resp., lower semicontinuous), and for each

u0(t, x) = φ(t) + f0(x), φ ∈ C1(R+), f0 ∈ D+,

and each x0 ∈ E satisfying u − u0 has a local maximum [resp., each

u1(t, x) = φ(t) + f1(x), φ ∈ C1(R+), f1 ∈ D−,

and each x0 ∈ E satisfying u − u1 has a local minimum] at x0, we have

∂tu0(t0, x0) − inf
α∈�

H0(x0,∇u0(t0, x0),D
2u0(t0, x0);α) ≤ 0,

respectively,

∂tu1(t0, x0) − sup
α∈�

H1(x0,∇u1(t0, x0),D
2u1(t0, x0);α) ≥ 0.

If a function is both a sub- as well as a super-solution, then it is a solution.
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We will assume the following two conditions.

CONDITION 4.1 (limsup convergence of operators). For each f0 ∈ D+ and
each α ∈ �, there exists f0,ε ∈ Dε,+ (may depend on α) such that:

(1) for each c > 0, there exists K × K̃ ∈ Q satisfying

{(x, y) :Hεf0,ε(x, y) ≥ −c} ∩ {(x, y) :f0,ε(x, y) ≤ c} ⊂ K × K̃;
(2) for each K × K̃ ∈ Q,

lim
ε→0

sup
(x,y)∈K×K̃

|f0,ε(x, y) − f0(x)| = 0;(4.4)

(3) whenever (xε, yε) ∈ K × K̃ ∈ Q satisfies xε → x,

lim sup
ε→0

Hεf0,ε(xε, yε) ≤ H0(x,∇f0(x),D2f0(x);α).(4.5)

CONDITION 4.2 (liminf convergence of operators). For each f1 ∈ D− and
each α ∈ �, there exists f1,ε ∈ Dε,− (may depend on α) such that:

(1) for each c > 0, there exists K × K̃ ∈ Q satisfying

{(x, y) :Hεf1,ε(x, y) ≤ c} ∩ {(x, y) :f1,ε(x, y) ≥ −c} ⊂ K × K̃;
(2) for each K × K̃ ∈ Q,

lim
ε→0

sup
(x,y)∈K×K̃

|f1(x) − f1,ε(x, y)| = 0;

(3) whenever (xε, yε) ∈ K × K̃ ∈ Q, and xε → x,

lim inf
ε→0

Hεf1,ε(xε, yε) ≥ H1(x,∇f1(x),D2f1(x);α).

Let uε be the viscosity solutions to (4.1); we define

u3(t, x) := sup
{
lim sup
ε→0+

uε(tε, xε, yε) :∃(tε, xε, yε) ∈ [0, T ] × K × K̃,

(tε, xε) → (t, x),K × K̃ ∈ Q
}
,

u4(t, x) := inf
{
lim inf
ε→0+ uε(tε, xε, yε) :∃(tε, xε, yε) ∈ [0, T ] × K × K̃,

(tε, xε) → (t, x),K × K̃ ∈ Q
}
,

and u = u∗
3 the upper semicontinuous regularization of u3 and u = (u4)∗ the lower

semicontinuous regularization of u4.

LEMMA 4.1. Suppose that supε>0 ‖uε‖∞ < ∞. Then:
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(1) under Condition 4.1, u is a sub-solution to (4.2);
(2) under Condition 4.2, u is a super-solution to (4.3).

PROOF. Let u0(t, x) = φ(t)+f0(x) for a fixed φ ∈ C1(R+) and f0 ∈ D+. Let
(t0, x0) be a local maximum of u−u0, t0 > 0. We can modify f0 and φ if necessary
so that (t0, x0) is a strict global maximum, for instance, by taking f̃0(x) = f0(x)+
k|x − x0|4 and φ̃(t) = φ(t) + k|t − t0|2 for k > 0 large enough. Note that such
modification has the property that

lim
ε→0+ sup

|x−x0|<ε

|∇f̃0(x) − ∇f0(x0)| + |D2f̃0(x) − D2f0(x0)| = 0.

Let ũ0 = φ̃ + f̃0.
Let α ∈ � be given. We now take u0,ε(t, z) = φ̃(t) + f0,ε(z) where f0,ε is the

approximate of f̃0 in Condition 4.1. Since uε is bounded, and u0,ε has compact
level sets, there exists (tε, zε) ∈ [0, T ] × E′ such that

(uε − u0,ε)(tε, zε) ≥ (uε − u0,ε)(t, z) for (t, z) ∈ [0, T ] × E′(4.6)

and

∂t φ̃(tε) − Hεf0,ε(zε) ≤ 0.(4.7)

The above implies infε Hεf0,ε(zε) > −∞. We verify next that f0,ε(zε) < c < ∞.
Then by Condition 4.1(1), there exists K ×K̃ ∈ Q such that zε = (xε, yε) ∈ K ×K̃ .

Take a (t̂ , x̂) such that ũ0(t̂ , x̂) < ∞. Take ẑ = (x̂, ŷ) for some ŷ ∈ E0. Then

u0,ε(t̂ , ẑ) = φ̃(t̂) + f0,ε(ẑ) → φ̃(t̂) + f0(x̂) = ũ0(t̂ , x̂) < ∞.

Combined with (4.6),

u0,ε(tε, zε) ≤ 2 sup
ε>0

‖uε‖∞ + sup
ε>0

u0,ε(t̂ , ẑ) < ∞,

and supε>0 f0,ε(zε) < ∞ follows.
Since K × K̃ is compact in E′, there exists a subsequence of {(tε, zε)} (to sim-

plify, we still use the ε to index it) and a (t̃0, x̃0) ∈ [0, T ]×E such that tε → t̃0 and
xε → x̃0. Such (t̃0, x̃0) has to be the unique global maximizer (t0, x0) for u − ũ0
that appeared earlier. This is because, by using xε → x̃0 and zε = (xε, yε), the
definition of u and (4.4), from (4.6) we have

(u − u0)(t̃0, x̃0) ≥ (u − u0)(t, x) ∀(t, x).(4.8)

Now, from (4.7) and (4.5), we also have

∂tu0(t0, x0) ≤ H0(x0,∇f0(x0),D
2f0(x0);α).

Note that t0, x0 and u0 are all chosen prior to, and independent of, α. We can take
infα∈� on both sides to get

∂tu0(t0, x0) − inf
α∈�

H0(x0,∇u0(t0, x0),D
2u0(t0, x0);α) ≤ 0.
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The proof that u is a super-solution of (4.3) under Condition 4.2 follows simi-
larly. �

LEMMA 4.2. Suppose that the conditions in Lemma 4.1 hold and that there
exists h ∈ Cb(E) such that

lim
ε→0

sup
(x,y)∈K×K̃

|h(x) − uε(0, x, y)| = 0 ∀K × K̃ ∈ Q.

Further suppose that for any sub-solution u0(t, x) of (4.2) with u0(0, x) = h(x)

and super-solution u1 of (4.3) with u1(0, x) = h(x), we have

u0(t, x) ≤ u1(t, x), (t, x) ∈ [0, T ] × E.

That is, a comparison principle holds for sub-solutions of (4.2) and super-solutions
of (4.3) with initial data h.

Then u = u = u and

lim
ε→0

sup
t∈[0,T ]

sup
(x,y)∈K×K̃

|u(t, x) − uε(t, x, y)| = 0 ∀K × K̃ ∈ Q.

5. Rigorous justification of expansions. To rigorously prove the conver-
gence of operators Hε given by (3.5) to operators H 0 obtained by heuristic ar-
guments in Section 3.2, we rely on and extend results developed in [13]. An expo-
sition of the relevant results from [13] was laid out in Section 4. In this section we
verify Conditions 4.1 and 4.2 and prove the comparison principle in Lemma 4.2.
We will adhere to the notation used in Section 4.

Conditions 4.1 and 4.2 require us to carefully choose a class of perturbed test
functions with an index set � and a family of operators {H0(·;α),H1(·;α);α ∈ �}
to obtain viscosity sub- and super-solution estimates of u0, the limit of uε . This
technique was first introduced in [13] and illustrated through examples in Chap-
ter 11 of that book. Our presentation simplifies the technique in the context of
application here. We will make the sub-solution estimate given by H0(·, α) tight,
by inf-ing over α, hence introducing yet another operator H0. Similarly, we sup
over α to tighten up the super-solution type estimate provided by H1(·, α) which
introduces operator H1.

Let

ζ(y) := |y − m|ζ ,(5.1)

where ζ > 0 is any number satisfying 2σ < ζ < 2(1 −β) with σ and β given as in
Assumption 1.1. Throughout the two regimes (δ = ε4, ε2), we take the index set

� := {α = (ξ, θ) : ξ ∈ C2
c (E0),0 < θ < 1};

and define two domains

D+ := {f :f (x) = ϕ(x) + γ log(1 + |x|2);ϕ ∈ C2
c (R), γ > 0}
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and

D− := {f : f (x) = ϕ(x) − γ log(1 + |x|2);ϕ ∈ C2
c (R), γ > 0}.

A collection of compact sets in R × E0 is defined by

Q := {K × K̃: compact K ⊂⊂ R, K̃ ⊂⊂ E0}.
5.1. Case δ = ε4. For each f = f (x) ∈ D+, and each α = (ξ, θ) ∈ �, we let

g(y) := ξ(y) + θζ(y)

and define perturbed test function

fε(x, y) := f (x) + ε3g(y) = f (x) + ε3ξ(y) + ε3θζ(y).

Note that ‖∂xf ‖∞ + ‖∂2
xxf ‖∞ < ∞. Then

Hεfε(x, y) = ε
[(

r − 1
2σ 2(y)

)
∂xf + 1

2σ 2(y) ∂2
xxf

] + 1
2σ 2(y)|∂xf |2

+ Bξ(y) + θBζ(y) + 1
2ε2ν2y2β |∂yξ(y) + θ ∂yζ(y)|2

+ ερσ(y)νyβ ∂xf
(
∂yξ(y) + ∂yζ(y)

)
.

The choice of the number ζ in definition of the function ζ(y) in (5.1) guarantees
that Bζ(y) ≤ −Cζ(y). Moreover, with the earlier assumption that 0 ≤ σ < 1 − β ,
the growth of ζ(y) as |y| → ∞ dominates the growth in y of all other terms
in Hεfε . Therefore, there exist constants c0, c1 > 0 with

Hεfε(x, y) ≤ 1
2 |σ(y) ∂xf (x)|2 + Bξ(y) − θc0ζ(y) + εc1.

In addition,

fε(x, y) = f (x) + ε3g(y) ≥ f (x) − ε3‖ξ‖∞.

Furthermore, for each c > 0, we can find K × K̃ ∈ Q, such that

{(x, y) :Hεfε(x, y) ≥ −c} ∩ {(x, y) :fε(x, y) ≤ c} ⊂ K × K̃(5.2)

verifying Condition 4.1(1). The rest of Condition 4.1 can be verified by taking

H0(x,p; ξ, θ) = sup
y∈E0

(
1

2
|σ(y)p|2 + Bξ(y) − θc0ζ(y)

)
.

We define

H0f (x) := inf
α∈�

H0(x, ∂xf (x);α)

= inf
0<θ<1

inf
ξ∈C2

c (E0)
sup
y∈E0

(
1

2
|σ(y) ∂xf (x)|2 + Bξ(y) − θc0ζ(y)

)
.

Similarly, for f ∈ D−, α = (ξ, θ) ∈ �, we can choose

fε(x, y) = f (x) + ε3ξ(y) − ε3θζ(y).
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Then Condition 4.2 holds for the choice of

H1(x,p; ξ, θ) = inf
y∈R

(
1

2
|σ(y)p|2 + Bξ(y) + θc0ζ(y)

)
.

We define

H1f (x) := sup
α∈�

H1(x, ∂xf (x);α)

= sup
0<θ<1

sup
ξ∈C2

c (E0)

inf
y∈E0

(
1

2
|σ(y) ∂xf (x)|2 + Bξ(y) + θc0ζ(y)

)
.

Next, to verify Lemma 4.2, we estimate H0f from above and H1f from below
using some simple quantity.

LEMMA 5.1.

H0f (x) ≤ 1
2 |σ ∂xf (x)|2, f ∈ D+;

H1f (x) ≥ 1
2 |σ ∂xf (x)|2, f ∈ D−.

We note that H0,H1 have different domains D+ and D−, respectively, D+ ∩D− =
∅.

PROOF. The key to obtaining the estimates in the statement of the lemma is
the Poisson equation,

Bχ(y) = 1
2 |p|2(

σ 2 − σ 2(y)
)
,(5.3)

where B is the differential operator (generator of Y ) defined in (1.2). We will
need growth estimates for χ . In the case of β = 0 (i.e., Y is an O–U process),
Section 5.2.2 of Fouque, Papanicolaou and Sircar [16] contains such estimates.
Specifically, if σ(y) is bounded, |χ(y)| ≤ C(1+ log(1+|y|)); if σ(y) has polyno-
mial growth, χ has polynomial growth estimates of the same order. The following
growth estimates for the situation 1

2 ≤ β < 1 are derived in Appendix B:

|χ ′(y)| ≤ C1y
2σ−1 as y → ∞, for some positive constant C1.(5.4)

Therefore |χ(y)| ≤ C(1 + log(1 + |y|)) if σ(y) is bounded and |χ(y)| ≤ C̃(1 +
y2σ ) when 0 < σ < 1 − β .

We will make use of χ as a test function in the expressions for H0f and H1f .
However, χ does not have compact support. We choose a cut-off function ϕ to
approximate it using localization arguments. Let nonnegative ϕ(y) ∈ C∞(E0) be
such that ϕ(y) = 1 when |y| ≤ 1 and 0 when |y| > 2. We take a sequence of
ξn(y) = ϕ(

y
n
)χ(y), which are truncated versions of χ . Then

Bξn(y) = ϕ

(
y

n

)
Bχ(y) + (m − y)χ(y)n−1ϕ′

(
y

n

)

+ 1

2
ν2y2βχ(y)n−2ϕ′′

(
y

n

)
+ ν2y2βχ ′(y)n−1ϕ′

(
y

n

)
.
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Suppose σ > 0. Noting that |ϕ(y)|, |ϕ′(y)| and |ϕ′′(y)| are uniformly bounded and
are 0 when |y| > 2, and using the growth estimates (5.4) for χ and χ ′, we get

|Bξn(y)| ≤ cy2σ

(
1 + (m − y)

n
+

(
y

n

)2β

n2β−2 + yβ−1
(

y

n

)β

nβ−1
)

1{y/n≤2}

≤ cy2σ for all n.

In the above, we used the fact that y
n

≤ 2 and β − 1 < 0. Similarly, if σ(y) is
bounded, that is, σ = 0, we get |Bξn(y)| is uniformly bounded for all n. Therefore,
for large y, ζ(y) dominates Bξn(y) uniformly in n in the following sense: there
exists a sub-linear function ψ : R �→ R+ such that

sup
n=1,2,...

|Bξn(y)| ≤ ψ(ζ(y)).

With the above estimate, we have

H0f (x) ≤ lim sup
n→∞

inf
0<θ<1

sup
y∈E0

(
1

2
|σ(y) ∂xf (x)|2 + Bξn(y) − θc0ζ(y)

)

≤ 1

2
|σ ∂xf (x)|2.

Similarly, one can prove the case for H1f . �

By standard viscosity solution theory (e.g., [6]), the comparison principle holds
for sub-solutions and super-solutions of

∂tu0 = 1
2 |σ ∂xu0|2, t > 0;

u0(0, x) = h(x),

and the solution is uniquely given by the Lax formula (see [10]),

u0(t, x) = sup
x′∈R

{
h(x′) − |x − x′|2

2σ 2t

}
.(5.5)

Putting together the above result and Lemmas 4.1 and 4.2, we get:

LEMMA 5.2.

lim
ε→0+ sup

|t |+|x|+|y|<c

|uε(t, x, y) − u0(t, x)| = 0 ∀c > 0,

where u0 is the solution of (3.7) and is given by (5.5).
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5.2. Case δ = ε2. For each f = f (x) ∈ D+ and α = (ξ, θ) ∈ �, we choose
our perturbed test function as

fε(x, y) := f (x) + εg(y),

where g(y) = (1 − θ)ξ(y) + θζ(y); ζ(y) is defined as before in (5.1). Then

Hεfε(x, y) = ε
[(

r − 1
2σ 2(y)

)
∂xf + 1

2σ 2(y) ∂2
xxf

] + 1
2σ 2(y)|∂xf |2

+ e−g(y)B∂xf (x)eg(y)

≤ ε
[(

r − 1
2σ 2(y)

)
∂xf + 1

2σ 2(y) ∂2
xxf

] + 1
2σ 2(y)|∂xf |2

+ (1 − θ)e−ξB∂xf eξ (y) + θe−ζB∂xf eζ (y),

where B∂xf (x) is the perturbed generator defined in (2.2). Recall that ‖∂xf ‖∞ +
‖∂2

xxf ‖∞ < ∞ by the choice of domain D+. We can thus find a constant c0 > 0
such that

Hεfε(x, y) ≤ 1
2 |σ(y)∂xf (x)|2 + (1 − θ)e−ξB∂xf eξ (y) + θe−ζB∂xf eζ (y) + εc0.

Note that

e−ζB∂xf (x)eζ (y) = Bζ(y) + ρσ(y)νyβ ∂xf (x) ∂yζ(y) + 1
2ν2y2β |∂yζ(y)|2,

where

Bζ(y) = −ζ · |y − m|ζ + 1
2ν2y2βζ(ζ − 1)|y − m|ζ−2.(5.6)

The term −ζ(y) in Bζ(y) dominates growth in y from all other terms in Hεfε as
|y| → ∞. Since ζ(y) → ∞ as |y| → ∞, Hεfε(x, y) → −∞ as |y| → ∞. We also
have fε(x, y) = f (x)+εg(y) ≥ f (x)−ε‖ξ‖∞. Therefore, for each c > 0, we can
find K × K̃ ∈ Q, such that

{(x, y) :Hεfε(x, y) ≥ −c} ∩ {(x, y) :fε(x, y) ≤ c} ⊂ K × K̃(5.7)

verifying Condition 4.1(1).
The super-solution case follows similarly, where we define the perturbed

test function as fε(x, y) = f (x) + ε(1 + θ)ξ(y) − εθζ(y), for each f ∈ D− and
(ξ, θ) ∈ �.

Take

H0(x,p; ξ, θ) := sup
y∈E0

(
1

2
|σ(y)p|2 + (1 − θ)e−ξBpeξ (y) + θe−ζBpeζ (y)

)
,

H1(x,p; ξ, θ) := inf
y∈E0

(
1

2
|σ(y)p|2 + (1 + θ)e−ξBpeξ (y) − θe−ζBpeζ (y)

)

and

H0f (x) := inf
0<θ<1

inf
ξ∈C∞

c (E0)
H0(x, ∂xf ; ξ, θ),

H1f (x) := sup
0<θ<1

sup
ξ∈C∞

c (E0)

H1(x, ∂xf ; ξ, θ).
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Conditions 4.1 and 4.2 are satisfied by these choices of H0 and H1. Note that, al-
though 1

2 |σ(y)p|2 is not bounded in y, its growth is at most |y|2σ and is dominated
by the growth of ζ(y) for |y| large enough.

To verify Lemma 4.2, we develop useful sharp estimates for H0 and H1 next.
Denote

T (t)g(y) := E[g(Yt )|Y(0) = y], g ∈ Cb(E0),

and let B be the weak infinitesimal generator for semigroup {T (t) : t ≥ 0} in
Cb(E0) (see page 244 of [13] for a definition of a weak infinitesimal generator).
Let D++(B) denote the domain of B with functions strictly bounded from below
by a positive constant. Similarly define notations for B

p , the weak infinitesimal
generator corresponding to the process Yp introduced in Section 3.2.2. For each
g ∈ D++(Bp) ⊂ Cb(E0), since ζ > 2σ , there exists compact K ⊂⊂ E0 with

sup
y∈E0

(
1

2
|σ(y)p|2 + (1 − θ)

B
pg

g
(y) + θe−ζBpeζ (y)

)

= sup
y∈K

(
1

2
|σ(y)p|2 + (1 − θ)

B
pg

g
(y) + θe−ζBpeζ (y)

)
.

For each ε > 0, by truncating and mollifying g, we can find a ξ := ξε ∈ C∞
c (E0)

such that

H0(x,p; ξ, θ) ≤ ε + sup
y∈K

(
1

2
|σ(y)p|2 + (1 − θ)

B
pg

g
(y) + θe−ζBpeζ (y)

)
.

Denote p = ∂xf (x). Then

H0f (x) ≤ inf
0<θ<1

inf
g∈D++(Bp)

sup
y∈E0

(
1

2
|σ(y)p|2 + (1 − θ)

B
pg

g
(y)

(5.8)

+ θe−ζBpeζ (y)

)
.

Similarly, we have

H1f (x) ≥ sup
0<θ<1

sup
g∈D++(Bp)

inf
y∈E0

(
1

2
|σ(y)p|2 + (1 + θ)

B
pg

g
(y)

(5.9)

− θe−ζBpeζ (y)

)
.

We define IB(·;p) : P(E0) �→ R ∪ {+∞} by

IB(μ;p) := − inf
g∈D++(Bp)

∫
E0

B
pg

g
dμ ∧

∫
E0

e−ζ(y)Bpeζ(y) dμ(y).
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However, we can find a sequence {gn} ⊂ D++(Bp) [take, e.g., gn := eζn where
ζn ∈ C2

c (E0) are some smooth truncations of ζ ], such that∫
E0

e−ζ(y)Bpeζ(y) dμ(y) ≥ lim sup
n→∞

∫
E0

B
pgn

gn

dμ.

Therefore we have

IB(μ;p) = − inf
g∈D++(Bp)

∫
E0

B
pg

g
dμ.(5.10)

Recall that Yp denotes the process corresponding to generator Bp (or, equiva-
lently, B

p). It can be directly verified that Yp has a unique stationary distribution
πp and that Yp is reversible with respect to it (see Appendix C of this article). Let

E p(f, g) := −
∫

f B
pg dπp

be the Dirichlet form for Yp . By the material in Section 7 of Stroock [30] (particu-
larly Theorem 7.44; note that the diffusion generated by Bp has transition density
with respect to Lebesgue measure, e.g., Theorem 4.3.5 of Knight [25]), we get

IB(μ;p) = E p

(√
dμ

dπp
,

√
dμ

dπp

)
= ν2

2

∫ ∞
0

y2β

∣∣∣∣∣∂y

√
dμ

dπp
(y)

∣∣∣∣∣
2

πp(dy);(5.11)

see Appendix C.3 for the last equality above. If μ in IB(μ;p) is not absolutely
continuous with respect to πp , then the right-hand quantity in (5.11) is viewed as
+∞. Again through Theorem 7.44 of [30], we also get that H 0, defined in (2.3),
can be expressed as

H 0(p) = sup
μ∈P(R+)

( |p|2
2

∫
R+

σ 2 dμ − IB(μ;p)

)

= sup
h∈L2(πp),‖h‖

L2(πp)
=1

( |p|2
2

∫
R+

σ 2(y)h2(y)πp(dy)(5.12)

− ν2

2

∫ ∞
0

y2β |∂h(y)|2πp(dy)

)
.

As in Lemma 11.35 of [13],

inf
0<θ<1

inf
g∈D++(Bp)

sup
y∈E0

(
1

2
|σ(y)p|2 + (1 − θ)

B
pg

g
(y) + θe−ζBpeζ (y)

)
= H 0(p).

Using (5.8), this immediately gives

H0f (x) ≤ H 0(∂f (x)), f ∈ D+.

We will prove a similar inequality estimate for H1, hence giving the following:
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LEMMA 5.3.

H1f (x) ≥ H 0(∂f (x)), f ∈ D−,

H0f (x) ≤ H 0(∂f (x)), f ∈ D+.

It remains to prove the estimate for H1. By the proof of Lemma B.10 of [13],

sup
0<θ<1

sup
g∈D++(Bp)

inf
y∈R+

(
1

2
|σ(y)p|2 + (1 + θ)

B
pg

g
(y) − θe−ζBpeζ (y)

)
(5.13)

≥ inf
ν∈P(R+),〈ζ,ν〉<+∞ lim inf

t→∞ t−1 logEν[
e(1/2)|p|2 ∫ t

0 σ 2(Y
p
s ) ds].

We show that:

LEMMA 5.4.

lim inf
t→+∞ t−1 logE

[
e(1/2)|p|2 ∫ t

0 σ 2(Y
p
s ) ds |Yp

0 = y
] ≥ H 0(p).(5.14)

PROOF. The proof of (5.14) follows essentially the same argument used in
Example B.14 in the Appendix of [13], which we will outline. Two ingredients
need to be emphasized. First, for each μ with IB(μ;p) < ∞, by a mollification

and truncation argument, we can find a sequence μn(dy) = ehn(y)∫
ehn dπp dπp(y) with

hn +cn ∈ C∞
c (E0) for some constant cn, such that limn→∞ IB(μn;p) = IB(μ;p).

Second, for every y ∈ E0 and every h ∈ C∞
c (E0), the following ergodic theorem

holds:

lim
t→∞

1

t
E

[∫ t

0
σ 2(Ỹ h

s ) ds|Ỹ h
0 = y

]
=

∫ ∞
−∞

σ 2(z) dπ̃h(z),(5.15)

where

dỸ h
s = (

(m − Ỹ h
s ) + ρpσ(Ỹ h

s )ν(Ỹ h
s )β + ν2(Ỹ h

s )2β ∂h(Ỹ h
s )

)
ds + ν(Ỹ h

s )β dW 2
s ,

and where π̃h is the unique stationary distribution of Ỹ h. We will prove (5.15) in
Lemma 5.5.

The process Ỹ h is Yp under the Girsanov transformation of measures

dP h

dP

∣∣∣∣
Ft

= exp
{
h(Yt ) − h(Y0) −

∫ t

0
e−hBpeh(Ys) ds

}
,

where P and P h refer to the probability measures of the processes Yp and Ỹ h,
respectively. The invariant distribution of Ỹ h is then

dπ̃h = e2h dπp∫
e2h dπp

.
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We can write

lim inf
t→+∞

1

t
logEP

[
exp

{
1

2
|p|2

∫ t

0
σ 2(Yp

s ) ds

}∣∣∣Yp
0 = y

]

= lim
t→∞

1

t
logEP h

[
exp

{
1

2
|p|2

∫ t

0
σ 2(Ỹ h

s ) ds

−
(
h(Ỹ h

t ) − h(Ỹ h
0 )

−
∫ t

0
e−hBpeh(Ỹ h

s ) ds

)}∣∣∣Ỹ h
0 = y

]

≥ lim
t→∞

1

t
EP h

[
1

2
|p|2

∫ t

0
σ 2(Ỹ h

s ) ds

−
(
h(Ỹ h

t ) − h(Ỹ h
0 )

−
∫ t

0
e−hBpeh(Ỹ h

s ) ds

)∣∣∣Ỹ h
0 = y

]

(by Jensen’s inequality)

= 1

2
|p|2

∫ ∞
−∞

σ 2(z) dπ̃h(z)

+
∫ ∞
−∞

e−hBpeh(z) dπ̃h(z) (by ergodicity of Ỹ h)

= 1

2
|p|2

∫ ∞
−∞

σ 2(z) dπ̃h(z) − E p

(√
dπ̃h

dπp
,

√
dπ̃h

dπp

)

= 1

2
|p|2

∫ ∞
−∞

σ 2(z) dπ̃h(z) − I (π̃h;p).

By arbitrariness of h, (5.14) follows. To complete the proof, we finally check that:

LEMMA 5.5. Equation (5.15) holds.

PROOF. By Itô’s formula,

E[ζ(Ỹ h
t )] = E[ζ(Ỹ h

0 )] + E

[∫ t

0
B̃hζ(Ỹ h

s )

]
ds,

where B̃hζ(y) = (m − y + ρpσ(y)νyβ + ν2y2β ∂yh(y))ζ ′(y) + 1
2ν2y2βζ ′′(y). As

in (5.6), −ζ(y) is the dominating growth term in B̃hζ(y). Therefore, defining a
family of mean occupation measure,

π̃h(t, y,A) := E

[
t−1

∫ t

0
1{Ỹ h

s ∈A} ds
∣∣∣Ỹ h

0 = y

]
,
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we have that

sup
t>0

∫
z
ζ(z)π̃h(t, y, dz) = sup

t>0
t−1E

[∫ t

0
ζ(Ỹ h

s ) ds
∣∣∣Ỹ h

0 = y

]
≤ C(y;h(·)) < ∞.

Hence {π̃h(t, y, ·) : t > 0} is tight and along convergent subsequences and corre-
sponding limiting point π̃h, we have

E

[
t−1

∫ t

0
ϕ(Ỹ h

s ) ds
∣∣∣Ỹ h

0 = y

]
→

∫
z
ϕ dπ̃h, ϕ ∈ Cb(E0).(5.16)

Such π̃h is necessarily a stationary distribution satisfying
∫

B̃hψdπ̃h = 0 for all
ψ ∈ C2

c (E0). Uniqueness of such probability measure can be proved by an argu-
ment similar to the one in Appendix C. We thus conclude that there is only one
such π̃h and that convergence (5.16) occurs along the whole sequence, not just
subsequences. Furthermore, the growth of σ 2 is dominated by ζ , and so by uni-
form integrability argument, (5.15) holds. �

Now (5.9), (5.13) and (5.14) together give us the estimate for H1 in Lemma 5.3.
From (2.4), we see that H 0(p) is convex in p ∈ R. Let us denote its Legendre

transform as L0, then we have the following.

LEMMA 5.6. The unique viscosity solution to (3.13) is

u0(t, x) := sup
x′∈R

{
h(x′) − tL0

(
x − x′

t

)}
.(5.17)

Moreover, uε converges uniformly over compact sets in [0, T ] × R × E0 to u0.

PROOF. We know that u0, defined by (5.17), solves (3.13) by the Lax formula.
That u0 is the unique solution follows from standard viscosity comparison princi-
ple with convex Hamiltonians. The convergence result follows from multi-scale
viscosity convergence results developed in Section 4, Lemmas 4.1 and 4.2. �

6. Large deviation, asymptotic for option prices and implied volatilities.
We finish the proof of Theorem 2.1, Corollary 2.1 and Theorem 2.2.

6.1. A large deviation theorem.

PROOF OF THEOREM 2.1. From the previous section we have uε(t, x, y) →
u0(t, x) as ε → 0 for each fixed (t, x, y) ∈ [0, T ] × R × E0. All we need is expo-
nential tightness of {Xε,δ,t } to apply Bryc’s lemma and to conclude our proof. This
is obtained as follows.

Let f (x) = log(1 + x2) and ζ(y) be defined as in (5.1). Take

fε(x, y) =
{

f (x) + ε3ζ(y), for the case δ = ε4,
f (x) + εζ(y), for the case δ = ε2.
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Note that f (x) is an increasing function of |x| and ζ(·) ≥ 0; therefore, for
any c > 0 there exists a compact set Kc ⊂ R such that fε(x, y) > c when
x /∈ Kc. We next compute Hεfε(x, y) [see (3.5)]. Observe that since ‖∂xf ‖∞ +
‖∂2

xxf ‖∞ < ∞, by our choice of ζ(·), Hεfε(x, y) → −∞ as |y| → ∞. Therefore
supx∈R,y∈R Hεfε(x, y) = C < ∞. For simplicity, we denote Xε,δ,t by Xε,t . The P

and E below denote probability and expectation conditioned on (X,Y ) starting at
(x, y).

P(Xε,t /∈ Kc)e
(c−fε(x,y)−tC)/ε

≤ E

[
exp

{
fε(Xε,t , Yε,t )

ε
− fε(x, y)

ε

−
∫ t

0
e−fε(Xε,s ,Yε,s )/εAεe

fε(Xε,s ,Yε,s )/ε ds

}]

≤ 1.

In the above inequalities, the term within expectation in the second line is a non-
negative local martingale (and hence a supermartingale); see [9], Lemma 4.3.2. We
apply the optional sampling theorem to get the last inequality above. Therefore

ε logP(Xε,t /∈ Kc) ≤ tC + fε(x, y) − c ≤ const − c

giving us exponential tightness of Xε,t .
Let u

h,r
0 denote the limit of uε,δ when uε,δ(0, x, y) = h(x) and δ = εr , r = 2,4.

Applying Bryc’s lemma we get, {Xε,εr ,t } for r = 2,4 satisfies a LDP with speed
1/ε and rate function

Ir(x;x0, t) := sup
h∈Cb(R)

{h(x) − u
h,r
0 (t, x0)}.(6.1)

In Appendix D we check that I2(x;x0, t) = tL0(
x0−x

t
) where L is the Legendre

transform of H 0 defined in (2.3), and I4 = |x0−x|2
2σ 2t

. �

6.2. Option prices.

PROOF OF COROLLARY 2.1. We follow the proof of Corollary 1.3 in [12]
and show that limε→0+ ε logE[(Sε,t − K)+] is bounded above and below by
−Ir(logK;x0, t).

Recall that we are considering out-of-the-money call options and hence x0 <

logK [see (2.9)]. Since our rate functions Ir(x;x0, t), for both r = 2,4, are non-
negative, convex functions with Ir(x0;x0, t) = 0, they are consequently monoton-
ically increasing functions of x when x ≥ x0. Using this fact and the continuity of
the rate functions, the proof of the lower bound follows verbatim from the proof
in [12]. We refer the reader to [12] for details.
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The upper bound follows from [12] once we justify the following limit: for any
p > 1,

lim
ε→0+ ε logE[Sp

ε,δ,t ] = 0 for both δ = ε4 and δ = ε2.(6.2)

Recall the operator Aε,δ defined at the beginning of Section 3. By a slight abuse of
notation, we can use Aε,δ to denote the operator acting on the unbounded function
epx given below:

Aε,δe
px = ε

((
r − 1

2σ 2(y)
)
pepx + 1

2σ 2(y)p2epx)
.

Let

Mt := exp
{
pXε,δ,t − pXε,δ,0 −

∫ t

0
e−pXε,δ,sAε,δe

pXε,δ,s ds

}
.

Then Mt is a nonnegative local martingale (supermartingale); this follows from the
proof of [9], Lemma 4.3.2. By the optional sampling theorem,

EMt ≤ 1.

Recall that Xε,δ,t = logSε,δ,t , then

E[Sp/2
ε,δ,t ] = E[ep/2Xε,δ,t ]

≤ (EMt)
1/2

(
E

[
exp

{
pXε,δ,0 +

∫ t

0
e−pXε,δ,sAε,δe

pXε,δ,s ds

}])1/2

(6.3)
(by Hölder’s inequality)

≤ 1 · epx0/2
(
E

[
exp

{∫ t

0
e−pXε,δ,sAε,δe

pXε,δ,s ds

}])1/2

.

We simplify and bound the right-hand side of the above inequality:

E

[
exp

{∫ t

0
e−pXε,δ,sAε,δe

pXε,δ,s ds

}]

= E

[
exp

{∫ t

0
ε

((
r − 1

2
σ 2(Yε,δ,s)

)
p + 1

2
σ 2(Yε,δ,s)p

2
)

ds

}]

= eεrptE

[
exp

{
δ(p2 − p)

∫ εt/δ

0
σ 2(Yε,δ,(δ/ε)u) du

}]
(

by change of variable u = ε

δ
s; recall that δ = ε2 or ε4

)

= eεrptE

[
exp

{
δ(p2 − p)

∫ εt/δ

0
σ 2(Yu) du

}]
,
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where Yu is the process with generator B given in (1.2). By convexity of exponen-
tial functions we get

E

[
exp

{∫ t

0
e−pXε,δ,sAε,δe

pXε,δ,s ds

}]
(6.4)

≤ eεrptE

[
δ

tε

∫ εt/δ

0
exp{tε(p2 − p)σ 2(Yu)}du

]
.

Since δ = ε2 or ε4, ε/δ → ∞ as ε → 0. Therefore, by the ergodicity of Y and
exp{t (p2 − p)σ 2(y)} ∈ L1(dπ) [this follows from an argument similar to proof
of Lemma 5.5; note that σ < 1 − β by Assumption 1.1(3)], the right-hand side of
the above inequality (6.4) is uniformly bounded for all ε > 0. Putting this together
with (6.3), we get (6.2). �

6.3. Implied volatilities.

PROOF OF THEOREM 2.2. Recall that Xε,t = logSε,t and x0 = logS0. Note
that we have dropped the subscript δ in the notation and the dependence on δ = ε4

or ε2 should be understood by context. Our first step is to show that

lim
ε→0+ σε(t, logK,x0)

√
εt = 0.(6.5)

Once we have shown this, the rest of the proof is identical to that of Corollary 1.4
in [12].

By the definition of implied volatility,

E[(Sε,t − K)+] = erεtS0�

(
x0 − logK + rεt + σ 2

ε εt/2

σε

√
εt

)
(6.6)

− K�

(
x0 − logK + rεt − σ 2

ε εt/2

σε

√
εt

)
,

where � is the Gaussian cumulative distribution function. Let l ≥ 0 be the limit of
σε

√
εt along a converging subsequence. If limε→0+ of the left-hand side of (6.6)

is 0, then l satisfies

S0�

(
x0 − logK

l
+ l

2

)
− K�

(
x0 − logK

l
− l

2

)
= 0.

The only solution of the above equation is l = 0, and thus we get (6.5).
We therefore need to prove

lim
ε→0+ E[(Sε,t − K)+] = 0.(6.7)

By (1.5a) we have

Sε,t − K = S0 − K + ε

∫ t

0
rSε,t dt + √

ε

∫ t

0
Sε,tσ (Yε,t ) dW

(1)
t .
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It can be verified that E[(Sε,t − K) − (S0 − K)]2 → 0, as ε → 0, for both cases
δ = ε4 and δ = ε2. Therefore

lim
ε→0+ E[(Sε,t − K)+] = E[(S0 − K)+] = 0

as S0 < K (this is an out-of-the-money call option).
The same formula is obtained when S0 > K by considering out-of-the-money

put options. We finally turn our attention to at-the-money implied volatility. The
asymptotic limit of at-the-money (ATM) volatility can be shown to be σ 2, that is,

lim
ε→0

σ 2
r,ε(t, logK,x0) = σ 2 when x0 = logK; r = 2,4,

by a similar argument as in [12], Lemma 2.6. The continuity, at-the-money, of the
limiting implied volatility, that is,

lim|logK−x0|→0

(logK − x0)
2

2Ir(logK,x0, t)t
= σ 2

is obvious in the r = 4 regime, but is more involved in the r = 2 regime. We
conjecture that it is true, that is,

lim
z→0

z2

2t2L0(z/t)
= σ 2,(6.8)

and we briefly indicate an outline of the proof. Let

�T (p) := T −1 logE
[
e

∫ T
0 ρpσ(Ys) dW

(2)
s +((1−ρ2)/2)|p|2 ∫ T

0 σ 2(Ys) ds],
so that H 0(p) = limT →∞ �(p). The result (6.8) follows if H 0(p) is twice differ-
entiable in a neighborhood of p = 0 and H ′′

0 (0) = σ 2

2 . It can easily be checked that

limT →∞ �′′
T (0) = σ 2

2 . The main difficulty is to get a uniform bound on �′′′
T (p) for

all T and in a neighborhood of p = 0. Obtaining such a uniform bound on �′′′
T (p)

involves tedious calculations but should follow from the multiplicative ergodic
properties of the Y process (see [26]). �

In the following Appendix, we collect some material regarding 1-D diffusions
Y and technical but elementary estimates.

APPENDIX A: POSITIVITY OF THE Y PROCESS

In this section we prove positivity of the Y process when 1
2 < β < 1 in (1.1b).

Assume m > 0 and Y0 > 0. Recall the scale function s(y) defined in the Introduc-
tion, and let S(y) = ∫ y

1 s(y) dy. By Lemma 6.1(ii) in Karlin and Taylor [24], to
prove that Yt remains positive a.s. for all t ≥ 0, it is sufficient to show that

lim
ε→0+ S(ε) = −∞.
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For 0 < ε � 1,

−S(ε) =
∫ 1

ε
s(y) dy =

∫ 1

ε
exp

{
−

∫ y

1

2(m − z)

ν2|z|2β
dz

}
dy

= C

∫ 1

ε
exp

{
2m

ν2(2β − 1)y2β−1 + y2−2β

ν2(1 − β)

}
dy

(where C is a positive constant and 2β − 1,1 − β > 0)

=
∫ 1

2ε
(positive integrand) dy

+ C

∫ 2ε

ε
exp

{
2m

ν2(2β − 1)y2β−1 + y2−2β

ν2(1 − β)

}
dy

≥ Cε exp
{

2m

ν2(2β − 1)(2ε)2β−1

}
→ +∞

as ε → 0+, provided m > 0. Therefore limε→0+ S(ε) = −∞.

APPENDIX B: GROWTH ESTIMATES FOR SOLUTIONS TO
POISSON EQUATIONS

Assume χ satisfies the Poisson equation

Bχ(y) = 1
2 |p|2(

σ 2 − σ 2(y)
)
,

where σ 2, defined in (2.1), is the average of σ 2(y) with respect to the invariant
distribution π(dy), given in (1.4), of the Y process. In this section we find growth
estimates for χ .

The right-hand side of the above Poisson equation is centered with respect to
the invariant distribution π(dy) = m(y)

Z
dy [given in (1.4)], and so∫ ∞

0
m(z)

(
σ 2 − σ 2(z)

)
dz = 0,(B.1)

where

m(y) = 1

ν2y2β
exp

{∫ y

1

2(m − z)

ν2z2β
dz

}
.

By (1.3),

χ(y) :=
∫

dS(y)

∫ y

0
|p|2(

σ 2 − σ 2(z)
)
dM(z)

=
∫ 1

y2βm(y)

[∫ y |p|2m(z)(σ 2 − σ 2(z))

ν2 dz

]
dy
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is a solution up to a constant, and so

χ ′(y) = |p|2
ν2y2βm(y)

[∫ y

0
m(z)

(
σ 2 − σ 2(z)

)
dz

]

= − |p|2
ν2y2βm(y)

[∫ ∞
y

m(z)
(
σ 2 − σ 2(z)

)
dz

]
.

The last equality is by the centering condition (B.1). Given the bounds on σ(y)

in Assumption 1.1(3), we can compute the following bounds where the constants,
denoted by c, are positive and vary from line to line:

|χ ′(y)| ≤ c|p|2
ν2y2βm(y)

∫ ∞
y

z2σm(z) dz

= c|p|2eαy1−2β

ν2e−(y2−2β)/(ν2(1−β))

∫ ∞
y

z2σ−2βe−αz1−2β

e−(z2−2β)/(ν2(1−β)) dz,

where α = 2m
ν2(2β−1)

> 0. Bounding e−αz1−2β
above by 1 we get

|χ ′(y)| ≤ c|p|2eαy1−2β

ν2e−(y2−2β)/(ν2(1−β))

∫ ∞
y

z2σ−2βe−(z2−2β)/(ν2(1−β)) dz

= c|p|2eαy1−2β

ν2e−(y2−2β)/(ν2(1−β))

∫ ∞
y2−2β

u(2σ−1)/(2−2β) exp
{
− u

ν2(1 − β)

}
du

(by change of variable u = z2−2β )

≤ c|p|2eαy1−2β

ν2e−(y2−2β)/(ν2(1−β))

[
y2σ−1 exp

{
− y2−2β

ν2(1 − β)

}]
.

In the last inequality we used
∫ ∞
a [u(2σ−1)/(2−2β)e−u/(ν2(1−β))]du ≤ ν2(1 −

β)a(2σ−1)/(2−2β)e−a/(ν2(1−β)) (since 2σ−1
2−2β

< 0). Therefore

|χ ′(y)| ≤ c|p|2eαy1−2β

ν2 y2σ−1 ∼ c|p|2y2σ−1 as y → ∞,

since eαy1−2β ∼ O(1) as y → ∞.

APPENDIX C: Yp PROCESS

Fix p ∈ R. Denote μp(y) := (m − y) + ρpσ(y)νyβ , and let Yp be the process
with generator

Bpg = μp(y) ∂yg + 1
2ν2y2β ∂2

yyg, g ∈ C2
c (E0).

In this section we calculate the unique stationary distribution and Dirichlet form
of the process Yp , and we show that it is a reversible process. To this end, we first
compute the scale function and speed measure.
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The scale function and speed measure for the Yp process are given by

sp(y) = exp
{
−

∫ y

1

2μp(z)

ν2z2β

}
and mp(y) = 2

ν2y2βsp(y)
.

Evaluating the integral in sp(y) we get (the C below denotes a positive constant
that varies from line to line)

sp(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C exp
{
−2m logy

ν2 + y2−2β

ν2(1 − β)
− 2ρp

ν
J

}
, if β = 1

2
,

C exp
{

2m

ν2(2β − 1)y2β−1 + y2−2β

ν2(1 − β)
− 2ρp

ν
J

}
,

if β ∈ 0 ∪
(

1

2
,1

)
,

where

J (y) =
∫ y σ (z)

zβ
dz.

Due to bounds on σ given in Assumption 1.1(3), there exist C1,C2 > 0 such that

C1y
1−β ≤ J (y) ≤ C2y

1−β+σ ,

where {
0 < 1 − β ≤ 1 − β + σ ≤ 1, if 1

2 ≤ β < 1,
1 = 1 − β ≤ 1 − β + σ < 2, if β = 0.

Therefore ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

sp(y)
→ 0 when y → 0 or y → ∞, if

1

2
≤ β < 1,

1

sp(y)
→ 0 when |y| → ∞, if β = 0.

(C.1)

Define for y ∈ E0,

Sp(y) :=
∫ y

1
sp(z) dz.

Observe that Sp(y) → −∞ as y approaches the left endpoint of E0 and Sp(y) →
+∞ as y → ∞.

C.1. Stationary distribution. Let πp be an invariant distribution of the pro-
cess Yp . Suppose it has density function �(y), that is, dπp(y) = �(y)dy, then �

is uniquely determined as the solution of

1

2

∂2

∂y2 (ν2y2β�(y)) − ∂

∂y
(μp(y)�(y)) = 0
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satisfying �(y) ≥ 0 for all y and
∫
E0

�(y)dy = 1. Solving the above differen-
tial equation, we get �(y) = mp(y)[C1Sp(y) + C2]. Since � is nonnegative, and
Sp(y) → −∞ as y approaches the left boundary of E0, we take C1 = 0. The other
constant C2 is uniquely determined by the condition

∫
E0

�(y)dy = 1. Therefore
πp is the unique invariant distribution of Yp and is given by

dπp(y) = �(y)dy = mp(y)

Z1
dy = 2

Z1ν2y2βsp(y)
dy for y ∈ E0,(C.2)

where Z1 = ∫
E0

mp(y)dy.

C.2. Reversibility. Let ϕ,ψ ∈ C2
c (E0), then∫

E0

ψBpϕ dπp = 1

Z1

∫
E0

ψ

[
1

2
ν2y2βϕ′′ + μp(y)ϕ′

]
2

ν2y2βsp(y)
dy

= 1

Z1

∫
E0

ψ

[
ϕ′′e

∫ y 2μp(y)/(ν2y2β) + 2μp

ν2y2β
ϕ′e

∫ y 2μp(y)/(ν2y2β)

]
dy

= 1

Z1

∫
E0

ψ
d

dy

(
ϕ′

sp(y)

)
dy.

Integrating by parts twice and using the boundary conditions (C.1), we get∫
E0

ψBpϕ dπp = 1

Z1

∫
E0

ϕ
d

dy

(
ψ ′

sp(y)

)
dy =

∫
E0

ϕBpψ dπp.

C.3. Dirichlet form. By similar calculations as before, when proving re-
versibility, we get, for f,g ∈ L2(πp),

E p(f, g) := −
∫
E0

f Bpg dπp

= − 1

Z1

∫
E0

f (y)
d

dy

(
g′(y)

sp(y)

)
dy

= 1

Z1

∫
E0

f ′(y)g′(y)
1

sp(y)
dy

= ν2

2

∫
E0

y2βf ′(y)g′(y) dπp(y),

where we integrated by parts once and used (C.1) in the second last line.

APPENDIX D: RATE FUNCTION FORMULAS

Recall the following characterization of the rate functions given in (6.1):

Ir(x;x0, t) = sup
h∈Cb(R)

{h(x) − u
h,r
0 (t, x0)},
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where r = 2,4 correspond to the two regimes δ = ε2 and δ = ε4, respectively. The
u

h,r
0 are given in (5.17) and (5.5), respectively, as

u
h,2
0 (t, x0) = sup

x′∈R

{
h(x′) − tL

(
x0 − x′

t

)}
,

u
h,4
0 (t, x0) = sup

x′∈R

{
h(x′) −

( |x0 − x′|2
2σ 2t

)}
.

For notational convenience, we will drop the subscript r in Ir , and, in the case

r = 4, we will denote the term (
|x0−x′|2

2σ 2t
) by tL(

x0−x′
t

). The rate functions can then
be rewritten as

I (x;x0, t) = sup
h∈Cb(R)

inf
x′∈R

{
h(x) − h(x′) + tL

(
x0 − x′

t

)}

for both regimes r = 2 and r = 4.

LEMMA D.1.

I (x;x0, t) = tL

(
x0 − x

t

)
.

PROOF. Note that for both cases r = 2,4, L0 is convex, L0(0) = 0 and L0 is
a nonnegative function. This is obvious for the case r = 4. We can deduce this in
the r = 2 case since H 0(p) [defined in (2.3)] is convex and H 0(0) = 0.

Re-write

I (x;x0, t) = tL0

(
x0 − x

t

)

+ sup
h∈Cb(R)

inf
x′∈R

{
h(x) − h(x′) + tL0

(
x0 − x′

t

)
− tL0

(
x0 − x

t

)}

= tL0

(
x0 − x

t

)
+ J,

where J = suph∈Cb(R) Jh and Jh = infx′∈R{h(x) − h(x′) + tL0(
x0−x′

t
) − t ×

L0(
x0−x

t
)}. Taking x′ = x in the inf we get Jh ≤ 0 and therefore

J ≤ 0.(D.1)

Note that x0 and x are fixed. Define a function h∗ ∈ Cb(R) as follows:

h∗(x′) = tL0

(
x0 − x′

t

)
∧ tL0

(
x0 − x

t

)
.

Then

Jh∗ = 0
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and consequently

J ≥ 0.(D.2)

By (D.1) and (D.2), J = 0 and we get

I (x;x0, t) = tL0

(
x0 − x

t

)
. �
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