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Abstract

We characterize the small-time asymptotic behavior of the exit probability of a Lévy process out of a two-
sided interval and of the law of its overshoot, conditionally on the terminal value of the process. The asymptotic
expansions are given in the form of a first order term and a precise computable error bound. As an important
application of these formulas, we develop a novel adaptive discretization scheme for the Monte Carlo computation
of functionals of killed Lévy processes with controlled bias. The considered functionals appear in several domains
of mathematical finance (e.g. structural credit risk models, pricing of barrier options, and contingent convertible
bonds) as well as in natural sciences. The proposed algorithm works by adding discretization points sampled from
the Lévy bridge density to the skeleton of the process until the overall error for a given trajectory becomes smaller
than the maximum tolerance given by the user.
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1 Introduction

Small-time asymptotics for the distributions of Lévy processes and related Markov processes have a long history going
back to the seminal work of Léandre [30], who obtained the leading order term of the transition density of a Markov
process solving a stochastic differential equation with jumps. In the case of a Lévy process, the main result of [30]
reads

lim
t→0

1

t
ft(x) = s(x), (x 6= 0), (1.1)

where ft(x) := d
dxP(Xt ≤ x) is the marginal density of the Lévy process X and s is the Lévy density of X, whose

existence and smoothness need to be assumed. Léandre’s approach was to consider separately the small jumps (say,
those with sizes smaller than an ε > 0) and the large jumps of the underlying Lévy process, and to condition on the
number of large jumps by time t. A similar approach has been applied during the last decade to obtain high-order
asymptotic expansions for the transition distributions and densities of Lévy processes and other Markov processes with
jumps (see [38], [19], [20], and [21]). These small-time asymptotic results have found a wide scope of applications
ranging from estimation methods based on high-frequency sampling observations of the process (see, e.g., [17], [11],
[37], and references therein) to asymptotic results for option prices and Black-Scholes volatilities in short-time (c.f.
[43], [18], [19]).

In the present paper, we adopt Leandre’s approach to study the asymptotic behavior of the generalized moments
of the Lévy process stopped at the time it exits a two-sided interval (a, b), conditionally on the terminal value of the
process. Specifically, for a Lévy process (Xt)t≥0 with Lévy density s that is smooth outside any neighborhood of the
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origin and for a bounded Lipschitz function ϕ, we prove that

E (ϕ(Xτ )1τ≤t|Xt = y) =
t

2

∫
(a,b)c

ϕ(v)
s(v)s(y − v)

s(y)
dv + o(t), (t→ 0, y ∈ (a, b)\{0}), (1.2)

where τ := inf{u ≥ 0 : Xu /∈ (a, b)} with −∞ ≤ a < 0 < b ≤ ∞. In the case ϕ ≡ 1, (1.2) can be written as follows:

P (∃u ∈ [0, t] : Xu /∈ (a, b)|Xt = y) =
t

2

∫
(a,b)c

s(v)s(y − v)

s(y)
dv + o(t), (t→ 0), (1.3)

for y ∈ (a, b)\{0}. As in the case of the small-time asymptotics for the marginal distributions of the process, the main
intuition can be drawn from considering the pure-jump case with finite jump activity. Intuitively, formulas (1.2)-(1.3)
tell us that if, within a small time period, a Lévy process goes out of the interval (a, b) and then comes back to the
point y ∈ (a, b), this essentially happens with two large jumps: the first jump takes the process out of (a, b), while the
second jump brings it back to y.

Our study of the short-time behavior of (1.2) and (1.3) is motivated by applications in the Monte Carlo evaluation
of functionals of the form

E[F (XT )1τ>T ], τ = inf{t ≥ 0 : Xt /∈ (a, b)}. (1.4)

In financial mathematics, such functionals arise in structural credit risk models based on Lévy processes [16] and in
the pricing of barrier options (cf. [27], [7]), which is one of the most popular classes of exotic options. Very recently,
a renewed interest to these problems has emerged in relation to the so-called contingent convertible bonds, where the
conversion is triggered by a passage across a level and which exhibit a high sensitivity to jump risk [13]. In natural
sciences, Lévy processes (under the name of Lévy flights) are used as models for certain diffusion-like phenomena in
physics and chemistry (so-called anomalous or super-diffusion) [32, 41, 3] as well as to describe movement patterns
of foraging animals [44, 5], and there is considerable interest towards the study of Lévy flights in bounded domains
and related first passage problems giving rise to functionals of type (1.4) [10, 8, 22]. In all these settings, closed-form
expressions are rarely available and Monte Carlo is often the method of choice.

The simplest procedure to evaluate the functional (1.4) by Monte Carlo consists in simulating the process (Xt)t≥0

at evenly spaced times tnk := khn, with hn := T/n and k = 0, . . . , n, over the interval [0, T ], and approximating the
exit time τ by

τ̃n := inf{tnk : Xtnk
/∈ (a, b)}.

This simple method introduces two types of errors: the statistical error and the discretization error. The latter is
known to be quite significant (cf. [2] and Example 2 in Section 5 below); [31] reports errors of up to 10% in the context
of barrier options for a time discretization of one point per day.

In the context of continuous diffusions, short-time asymptotics have been successfully employed to alleviate the
bias due to the discretization error. One of the earliest procedures of this type, due to Baldi [2], is based on an
approximation of the probability, p(x, y, t), that the process X has gone out of a domain (a, b) during the small time
interval [s, s+ t] conditioning on Xs = x and Xs+t = y; i.e.,

p(x, y, t) := P (∃u ∈ [s, s+ t] : Xu /∈ (a, b)|Xs = x,Xs+t = y) . (1.5)

Given such an approximation p̃(x, y, t) of the functional p(x, y, t), the procedure simulates iteratively Xtnk+1
at each

step k = 0, . . . , n−1, and if Xtnk+1
∈ (a, b), it proceeds to kill the process with probability p̃(Xtnk

, Xtnk+1
, hn) and choose

tnk+1 = (k + 1)hn as an approximation of the exit time τ . A similar idea was used in [33] to price barrier options with
payoff ϕ(Sτ , τ) by Monte Carlo.

In the context of Lévy processes, an attempt to apply a similar methodology has been made in [45, 36]. The authors
remarked that the discretization bias can be reduced by using the identity

E
(
F (XT )1{τ<T}

)
= E

(
F (XT )

(
1−

n−1∏
k=0

{
1− p(Xtnk

, Xtnk+1
, hn)

}))
(1.6)
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and replacing the exact exit probability p(x, y, t) with a suitable small-time approximation p̃(x, y, t). However, these
papers propose no general formula for p̃(x, y, t) and, as shown in [4], the Monte Carlo method proposed in [45, 36]
could lead to a large discretization bias. On the other hand, in the specific case of the parametric variance gamma
model, there exist discretization algorithms (cf. [1]) allowing to simulate the running minimum and maximum with
error bounds. Let us also remark the recent work of [28] where a method for the joint simulation of the running
maximum and the position of a Lévy process is introduced based on the Wiener-Hopf decomposition of the process.

Our short-time asymptotic result (1.3) provides an approximation of the exit probability (1.5) via the formula

p̃(x, y, t) :=
t

2

∫
(a−x,b−x)c

s(v)s(y − x− v)

s(y − x)
dv =

t

2

∫
(a,b)c

s(u− x)s(y − u)

s(y − x)
du, (x 6= y), (1.7)

which is valid under mild regularity conditions on the Lévy process X (see Section 2 for details). The first order
approximation (1.7), together with an appropriate error bound for it, enable us to develop a general adaptive Monte
Carlo method for evaluating the functional (1.4) with a given precision. Given a target error level γ, the idea is to
generate a “random skeleton” {(Tk, XTk)}Nk=1 of the process X such that the error in each subinterval [Tk, Tk+1], i.e.

e := p(XTk , XTk+1
, Tk+1 − Tk)− p̃(XTk , XTk+1

, Tk+1 − Tk), (1.8)

satisfies |e| ≤ Tk+1−Tk
T γ. The functional (1.4) is then approximated as follows:

E[F (XT )1τ>T ] ≈ E

(
F (XT )

N−1∏
k=0

{
1− p̃(XTk , XTk+1

, Tk+1 − Tk)
})

, (1.9)

and it is shown that the total bias of this computation will be less then γ. As a result of this adaptiveness, the algorithm
generates more frequent points when the process X is close to the boundary, and takes large time steps (thus saving
computational time) when the process is far from the boundary. Let us remark that, unlike the formula (1.6), where
the sampling times {tnk} are deterministic and fixed, the decomposition (1.9) for random skeletons X := {(Tk, XTk)}Nk=0

requires precise (and also novel to the best of our knowledge) conditions under which this formula holds (see Section
4 for the details).

The proposed adaptive algorithm works as follows. First, the endpoint XT is generated and added to the skeleton.
Next, if the error (1.8) is too large for a given subinterval [Tk, Tk+1], the procedure splits the interval into two and
generates the midpoint XT̄k with T̄k := (Tk + Tk+1)/2 from the bridge distribution. This is repeated iteratively until
the desired error bound is satisfied for every subinterval [Tk, Tk+1] of the sampling times 0 = T0 < · · · < TN = T .
Such retrospective sampling (starting from the endpoint) has a number of advantages over the classical uniform
discretization, especially in the context of rare event simulation, where it enables one to easily implement variance
reduction by importance sampling. Indeed, the process can be directed to the region of interest by modifying the
distribution of the terminal value, while keeping unchanged the rest of the algorithm. On the other hand, this method
requires fast simulation from the bridge distribution of Xt/2 conditioned to Xt = y. To this end, as another contribution
of particular interest on its own, we also propose a new method to simulate from this Lévy bridge distribution based
on the classical rejection method.

As previously explained, in order to implement the above adaptive algorithm, precise computable bounds for the
approximation errors in (1.2)-(1.3) are also needed. We obtain such bounds by developing explicit inequalities for the
tail probabilities and transition densities of a Lévy process whose Lévy density has a small compact support. This type
of concentration inequalities in turn allows us to estimate the different components of the error, which, as explained
above, originate from conditioning the desired functional on the number of big jumps by time t (see Section 3 for the
details). The resulting error bounds are given in terms of the Lipschitz and L∞ norms of ϕ as well as several computable
quantities related to the Lévy density s such as sup|x|≥ε s(x), sup|x|≥ε |s′(x)|,

∫
|x|≥ε s(x)dx, and

∫
|x|≤ε x

2s(x)dx.

Let us also remark that an adaptive simulation method similar to the one introduced in the present paper was
proposed in [15] to compute a functional of the form Eϕ(Xτ , τ) for a homogeneous diffusion process X without jumps.
Adaptive numerical methods for finding weak approximation of diffusions without jumps and with finite intensity jumps
(but with the adaptiveness only concerning the diffusion part) have also been proposed in [42] and [34], respectively.
As in our paper, the idea therein is to sample from inside of a subinterval [tnk , t

n
k+1] whenever the approximation error

in that subinterval has not reached a desired low level, specified by the user.
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The paper is organized as follows. In Section 2, we obtain the leading term of the functional E (ϕ(Xτ )1τ≤t|Xt = y)
when t→ 0. The explicit estimate of the approximation error is given in Section 3. The development of the adaptive
discretization schemes for the Monte Carlo computation of the functional E[F (XT )1τ>T ] as well as the algorithm to
simulate random observations from the Lévy bridge distribution are given in Section 4. Our methods are illustrated
numerically in Section 5 for Cauchy process. Finally, the proofs of the technical results are deferred to the appendix.

2 Small-time asymptotics for Lévy bridges

Let X be a real-valued Lévy process on a probability space (Ω,F ,P) with Lévy triplet (σ2, ν, µ) with respect to
truncation function h(x) = 1|x|≤1. Throughout, (Ft)t≥0 denotes the natural filtration generated by the process X and
augmented by the null sets of F so that it satisfies the usual conditions (see, e.g., Chapter I.4 in [35]). The following
standing assumptions are imposed throughout the paper:

• The Lévy measure ν admits a continuously differentiable density s : R\{0} → (0,∞), with respect to the Lebesgue
measure (hereafter denoted by L), which satisfies

sup
|x|≥ε

s(x) <∞, sup
|x|≥ε

|s′(x)| <∞, (2.1)

for any ε > 0.

• The distribution of Xt admits a density ft for all t > 0. Since ν is already assumed to admit a density, for this
assumption to hold, it suffices to additionally require that ν(R) =∞ or σ > 0 (see Theorem 27.7 in Sato [40]).

• The density of Xt satisfies ft(x) > 0 for all x ∈ R and t > 0 (see Theorem 24.10 in Sato [40] for mild sufficient
conditions for this property to hold).

As it is usually done with Lévy processes, we shall decompose X into a compound Poisson process and a process
with bounded jumps. More specifically, for any ε ∈ (0, 1), we select a function cε ∈ C∞(R), which is decreasing on
(−∞, 0) and increasing on (0,∞) and such that 1|x|≥ε ≤ cε(x) ≤ 1|x|≥ε/2. Next, we define the truncated Lévy densities

sε(x) := cε(x)s(x) and s̄ε(x) := c̄ε(x)s(x),

with c̄ε(x) := 1− cε(x). Let Zε be a compound Poisson process with Lévy measure sε(x)dx and Xε be a Lévy process,
independent from Zε, with characteristic triplet (σ2, s̄ε(x)dx, µε), where

µε := µ−
∫
|x|≤1

xcε(x)s(x)dx. (2.2)

It is clear that Xε + Zε has the same law as X and that the intensity and probability density of the jumps of Zε are
λε :=

∫
sε(x)dx and sε(x)/λε, respectively. Throughout the paper, we let (Nε

t )t≥0 be the jump counting process of

Zε and (Y εk )k≥1 be the jump sizes of Zε. Thus, Zεt =
∑Nεt
k=1 Y

ε
k . Note that the distribution of Xε

t is also absolutely
continuous since σ > 0 or

∫
s̄ε(x)dx =∞, for any ε > 0. For future reference, let us remark that

E (Xε
t ) = t

(
µε +

∫
|x|≥1

xs̄ε(x)dx

)
= tµε, Var (Xε

t ) = t

(
σ2 +

∫
x2s̄ε(x)dx

)
=: tσ2

ε , (2.3)

since ε ∈ (0, 1) (see, e.g., Example 25.12 in [40] for the mean and variance formulas of a Lévy process).

The following Lemma will be needed in what follows (c.f. Propositions I.4 and III.2 in [30]). See also Sections
3.1-3.2 below for explicit expressions for the constants Cp(η, ε) and cp(η, ε).

Lemma 2.1. Let fεt be the transition density of the small-jump component process (Xε
t )t≥0. Then, for any fixed positive

real η and positive integer p, there exist an ε0(η, p) > 0 and positive constants t0(η, ε), cp(η, ε), and Cp(η, ε) < ∞ for
any ε < ε0 such that

(i) P
(

sup
0≤s≤t

|Xε
s | ≥ η

)
< Cp(η, ε)t

p, (ii) sup
|x|≥η

fεt (x) < cp(η, ε)t
p, (2.4)

for all 0 < t ≤ t0 and 0 < ε ≤ ε0.
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The following result provides the key tool for establishing the small-time asymptotics of the moments of the Lévy
bridge “stopped” at the exit time from an interval (a, b). Its proof is presented in Appendix A.

Theorem 2.2. For fixed constants a ∈ [−∞, 0) and b ∈ (0,∞], define

τ := inf {u ≥ 0 : Xu /∈ (a, b)} .

Let ϕ : R→ R be bounded and Lipschitz on R and let δ0 ∈
(
0, b−a2

)
. Then, for any y ∈ (a+ δ0, b− δ0) and 0 < δ < δ0,

E
(
ϕ(Xτ )1{τ≤t,Xt∈(y−δ,y+δ)}

)
=

∫ y+δ

y−δ

(
t2

2

∫
(a,b)c

ϕ(v)s(v)s(u− v)dv +Rt(u)t2

)
du, (2.5)

where the remainder term Rt(u) is such that

lim
t→0

ess sup
u∈(a+δ0,b−δ0)

|Rt(u)| = 0. (2.6)

Remark 2.3. By the definition of conditional expectation,

E
(
ϕ(Xτ )1{τ≤t,Xt∈(y−δ,y+δ)}

)
= E

(
E
(
ϕ(Xτ )1{τ≤t}

∣∣Xt

)
1{Xt∈(y−δ,y+δ)}

)
=

∫ y+δ

y−δ
E
(
ϕ(Xτ )1{τ≤t}

∣∣Xt = u
)
ft(u)du, (2.7)

where ft(u) is the density of Xt and, as usual, Φ(u) := E
(
ϕ(Xτ )1{τ≤t}

∣∣Xt = u
)

is such that Φ(Xt) is a version of

E
(
ϕ(Xτ )1{τ≤t}

∣∣Xt

)
. Comparing (2.7) and (2.5), it then follows that, for L-a.e. y ∈ (a, b),

E
(
ϕ(Xτ )1{τ≤t}

∣∣Xt = y
)

=

t2

2

∫
(a,b)c

ϕ(v)s(v)s(y − v)dv

ft(y)
+
Rt(y)t2

ft(y)
. (2.8)

If, in addition, the transition density ft satisfies the asymptotic formula (1.1)1 then, for L-a.e. y ∈ (a, b)\{0},

E
(
ϕ(Xτ )1{τ≤t}

∣∣Xt = y
)

= t

∫
(a,b)c

ϕ(v)s(v)s(y − v)dv

2s(y)
+ o(t). (2.9)

Formulas (2.5) and (2.8) can be interpreted as large deviation results for the trajectories of Lévy processes in small
time. When ϕ(x) ≡ 1, (2.9) gives the following small-time approximation for the exit probability of the Lévy bridge:

P (τ ≤ t|Xt = y) = t

∫
(a,b)c

s(v)s(y − v)dv

2s(y)
+ o(t). (2.10)

We conclude this section with a simpler result for the case when Xt is outside the interval. Its proof is outlined in
Appendix A.

Proposition 2.4. Let ϕ : R→ R be bounded and Lipschitz on R, and let δ0 > 0. Then, under the same notation and
conditions as in Theorem 2.2, for any y ∈ (a− δ0, b+ δ0)c and δ < δ0,

E
(
ϕ(Xτ )1{Xt∈(y−δ,y+δ)}

)
=

∫ y+δ

y−δ
(tϕ(u)s(u) +Rt(u)t) du, (2.11)

where the remainder term Rt(u) is such that

lim
t→0

ess sup
u∈(a−δ0,b+δ0)c

|Rt(u)| = 0. (2.12)

Remark 2.5. Analogously to Remark 2.3, (2.11) enables us to establish the following natural asymptotic formula:

E (ϕ(Xτ )|Xt = y) = t
ϕ(y)s(y)

ft(y)
+ o(1) = ϕ(y) + o(1), (t→ 0),

for L-a.e. y ∈ [a, b]c. The second equality above holds whenever ft(y) satisfies (1.1).

1As stated in the introduction, (1.1) holds for a large class of Markov processes with jumps as proved by [30]. For Lévy processes, [38]
provided a more elementary proof using the same conditions and similar approach as in [30]. Higher order short-time expansions for the
transition densities were obtained in [19].
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3 On a precise bound for the remainder term

In the previous section, we developed the necessary results for finding estimates of the functional

f(0, y, t) := E [ϕ(Xτ )1τ≤t|Xt = y] (3.1)

in short-time. Indeed, as explained in Remark 2.3, Theorem 2.2 yields the following natural estimate for f(0, y, t):

f̃(0, y, t) =

t2

2

∫
(a,b)c

ϕ(v)s(v)s(y − v)dv

ft(y)
. (3.2)

The estimate (3.2) will be used below to develop adaptive discretization schemes for the Monte Carlo computation of
functionals of the killed Lévy process (see Section 4). To this end, we first need to find an explicit estimate for the
remainder Rt(y) appearing in (2.5). Such an estimate can be expressed in terms of bounds for the tail probability and
transition densities of the small-jump component (Xε

t )t≥0. Hence, we start by providing explicit expressions for the

upper bounds appearing in (2.4) and then proceed to give a precise error bound for |f(0, y, t)− f̃(0, y, t)|.

3.1 Bounding the tail probability of the supremum

The following exponential inequality for Lévy processes with bounded jumps will be important to estimate the supre-
mum of the small-jump component (Xε

t ) defined in Section 2. Its proof, which is provided in Appendix B for com-
pleteness, is a variation of the bound obtained in [38] (which in turn is based on Lemma 26.4 in [40]).

Lemma 3.1. Let (Mt) be a martingale Lévy process with |∆Mt| ≤ ε and 〈M,M〉t = σ2
εt. Then,

P
(

sup
s≤t

(Ms + µs) ≥ η
)
≤ t

η
ε C̄`(η, ε;µ) (` = 0, 1), (3.3)

with the following constants C̄`(η, ε;µ) and corresponding conditions:

(1) C̄0(η, ε;µ) = e
µ∨0
ε e−1

eσ
2
ε/ε

2

for all η > 0 and 0 < t < η/(µ ∨ 0) (with the convention here and below that the
fraction is +∞ if the denominator is zero);

(2) C̄1(η, ε;µ) = e
µ∨0
ε e−1

(
eσ2
ε

εη

)η/ε
for all η > 0 and 0 < t < η/(µ∨ 0) if either (i) µ ≤ 0 or (ii) µ > 0 and η ≤ σ2

ε/ε;

In order to apply Lemma 3.1 for (Xε
t )t≥0, we recall that 0 < ε < 1 so that EXε

t = µεt. Then, the martingale part
Mε
t := Xε − µεt of Xε is such that

〈Mε,Mε〉t =

(
σ2 +

∫
c̄ε(x)x2ν(dx)

)
t = σ2

εt.

Thus, fixing

t0(ε, η) :=
η

2(µε ∨ 0)
, (3.4)

it follows that, for all 0 < t < t0,

P
(

sup
s≤t

Xε
s ≥ η

)
≤ P

(
sup
s≤t

Mε
s + |µε|t ≥ η

)
≤ P

(
sup
s≤t

Mε
s ≥

η

2

)
≤ t

η
2εC

(η
2
, ε
)
, (3.5)

with C(η, ε) is defined by

C(η, ε) :=

(
eσ2
ε

εη

) η
ε

. (3.6)

Similarly, we have P(sups≤t |Xε
s | ≥ η) ≤ 2t

η
2εC (η/2, ε).
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3.2 Bounding the transition density of the small-jump component

To obtain explicit expressions for the constants appearing in the bounds for the density fεt in Lemma 2.1, we shall
assume that the process X is such that Xε

t has a unimodal distribution for all t > 0 and ε > 0. By Yamazato’s theorem
(see Theorem 53.1 in [40]), a sufficient condition for this is that the process X is self-decomposable, which is the case if

and only if the Lévy density s is of the form s(x) = k(x)
|x| for a function k which is increasing on (−∞, 0) and decreasing

on (0,∞) (see Corollary 15.11 in [40]). In particular, most of the parametric models used in the literature (such as
stable, tempered stable, variance gamma, and normal inverse Gaussian processes) are self-decomposable and so these
processes as well as their truncated versions have unimodal densities at all times.

Let mε
t be the mode of Xε

t . If mε
t ∈ [−η, η] and η > η, then the density can be estimated by

sup
|x|≥η

fεt (x) ≤ 2

η − η
P [|Xε

t | ≥ η], (3.7)

simply because the density is decreasing in (η,∞) and increasing in (−∞,−η). The relation (3.7) in turn leads to a
bound of the form (2.4-ii) by applying the tail bound (2.4-i). It remains to find conditions for mε

t ∈ [−η, η]. Since
obviously Xε has finite second moment, the following bound due to Johnson and Rogers [26] can be applied

|mε
t − EXε

t |
2 ≤ 3Var(Xε

t ). (3.8)

Thus, recalling the mean and variance formulas given in (2.3), mε
t ∈ [−η, η] whenever 0 < t < t1, where t1 is such that

t1|µε|+
√

3 t
1/2
1

(
σ2 +

∫
|x|≤ε

|x|2ν(dx)

)1/2

= η. (3.9)

By taking η = η/2, we will have

sup
|x|≥η

fεt (x) ≤ 4

η
P
[
|Xε

t | ≥
η

2

]
≤ 8C(η/4, ε)

η
t
η
2ε , (3.10)

for any 0 < t < t1 ∧ t0 with t0 defined as in (3.4).

3.3 Precise bound for the remainder

We are now ready to give an explicit bound for the reminder term Rt(y) appearing in (2.5), which in turn will produce
an error bound for |f(0, y, t)− f̃(0, y, t)|. Throughout, we shall use the following notation:

(i) aε := supx sε(x) and a′ε := supx |s′ε(x)|, where, as before, sε(x) := cε(x)s(x) is the Lévy density s, truncated in
a neighborhood of the origin;

(ii) λε :=
∫
s(x)cε(x)dx, µε := µ−

∫
|x|≤1

xcε(x)s(x)dx, and σ2
ε := σ2 +

∫
c̄ε(x)x2s(x)dx;

(iii) C(η, ε) is defined as in (3.6), t0(ε, η) is defined as in (3.4), and t1(ε, η) is defined as in (3.9).

The following result, whose proof is given in Appendix B, gives an estimate for Rt(y) in terms of the previously
defined notation and the L∞- and Lipschitz norms of ϕ denoted hereafter by

‖ϕ‖∞ := ess sup
x
|ϕ(x)|, ‖ϕ‖Lip := inf {K ≥ 0 : |ϕ(x)− ϕ(y)| ≤ K|x− y|, ∀x, y ∈ R} .

Theorem 3.2. Using the notation of Theorem 2.2, assume that the process X is such that Xε
t has a unimodal

distribution for all t > 0 and ε > 0. Let c := b ∧ |a| and ∆y := (b− y) ∧ (y − a) > 0. Then,

|Rt(y)| ≤ 1

t2
eR(0, y, t),

7



for all 0 < t < t0(ε, (∆y/2) ∧ c) ∧ t1(ε,∆y/2), where

eR(0, y, t) := e−λεt‖ϕ‖∞C(∆y/4, ε)t
∆y
4ε

{
8

∆y
+ 2aεt+ aελεt

2

}
+ 2e−λεt‖ϕ‖∞aεC(c/2, ε)t1+ c

2ε {1 + tλε}

+
‖ϕ‖∞λ2

εaε
2

t3 + ‖ϕ‖∞aελ−1
ε

(
1− e−λεt[1 + λεt+ (λεt)

2/2]
)

(3.11)

+ e−λεtt2
[
aελε‖ϕ‖Lip + 2‖ϕ‖∞a2

ε + ‖ϕ‖∞λεa′ε
]
(σεt

1/2 +
|µε|
2
t).

Two immediate conclusions can be drawn. First, note that, by taking ε <
∆y

8 ∧
c
2 , we obtain a bound for the

remainder satisfying condition (2.6). Second, as seen in Remark 2.3, the previous bound implies the following error
bound

|f(0, y, t)− f̃(0, y, t)| ≤ eR(0, y, t)

ft(y)
=: ef (0, y, t),

with f and f̃ defined as in (3.1)-(3.2).

Remark 3.3. The approximation for the conditional exit probability p(0, y, t) := P [τ ≤ t|Xt = y] is obtained by
substituting ϕ ≡ 1 into (2.8):

p̃(0, y, t) =

t2

2

∫
(a,b)c

s(v)s(y − v)dv

ft(y)
.

Making this substitution in the previous bound, it follows that |p(0, y, t)− p̃(0, y, t)| ≤ ep(0, y, t) with ep(0, y, t) given by

ep(0, y, t) :=
1

ft(y)

(
e−λεtC(∆y/4, ε)t

∆y
4ε

{
8

∆y
+ 2aεt+ aελεt

2

}
+ 2e−λεtaεC(c/2, ε)t1+ c

2ε {1 + tλε}+
λ2
εaε
2

t3

+ aελ
−1
ε

(
1− e−λεt[1 + λεt+ (λεt)

2/2]
)

+ e−λεtt2
[
2a2
ε + λεa

′
ε

]
(σεt

1/2 +
|µε|
2
t)

)
,

valid for all t < t0(ε, (∆y/2) ∧ c) ∧ t1(ε,∆y/2). The one-sided case (a = −∞) can similarly be obtained.

4 Adaptive simulation of killed Lévy processes

Our goal in this section is to design a type of adaptive Monte Carlo estimators for functionals of the form

E[F (XT )1τ>T ], (4.1)

where F is a Borel measurable function and τ := inf{t ≥ 0 : Xt /∈ D} with D := (a, b), for some a ∈ [−∞, 0) and
b ∈ (0,∞]. From now on, to simplify notation and with no loss of generality, we shall take T = 1.

For 0 < s < t, x ∈ R, and y ∈ R, we denote by PBR(s,t,x,y)[·] the bridge law of the Lévy process X on the time interval

[s, t] with starting value x and terminal value y; that is, this is a version of the regular conditional distribution of
{x+Xu−s}u∈[s,t] given Xt−s = y − x. Since Xt has a strictly positive density on R for every t > 0, the bridge law is
uniquely defined for L-almost every y ∈ R (recall that L stands for the Lebesgue measure), which is sufficient for our
purposes. We also let p(x, y, t) denote the exit probability from the domain D before time t for the Lévy bridge:

p(x, y, t) := PBR(0,t,x,y)[τ ≤ t] = P [∃u ∈ [0, t] : x+Xu /∈ (a, b)|Xt = y] . (4.2)

Our approach is based on the following decomposition:

E[F (X1)1τ>1] = E

[
F (X1)

N−1∏
i=0

(
1− p(XTi , XTi+1 , Ti+1 − Ti)

)]
, (4.3)

where 0 = T0 ≤ · · · ≤ TN = 1 are suitable sampling times. Formula (4.3) directly follows from the Markov property
when the sampling points are deterministic. In that case, the set of points X := {(Ti, XTi)}Ni=0 is called a deterministic
skeleton. In our setting both the number of points N and the sampling times 0 = T0 ≤ T1 ≤ · · · ≤ TN = 1 are random
and we need to formalize under what conditions on X (4.3) still holds. The following result will suffice for our purposes.
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Lemma 4.1. Let N be a random variable with support N ⊆ N, such that N > 0, and let 0 = T0 ≤ · · · ≤ TN = 1 be
random points such that

(1) Each Ti takes values in a countable set K ⊂ [0, 1];

(2) For each n ∈ N and (s0, . . . , sn) ∈ Kn+1 with 0 = s0 ≤ · · · ≤ sn = 1, the event {N = n, (T0, . . . , Tn) =
(s0, . . . , sn)} is σ(Xsi : i = 0, . . . , n)-measurable.

Then, (4.3) is satisfied for any measurable function F with E[|F (X1)|] < ∞ and, furthermore, for every t ∈ (0, 1),
n ∈ N , and A ∈ B(R),

P [Xt ∈ A|N = n, T0, . . . , TN , XT0 , . . . , XTN ] = PBRTi∗ ,Ti∗+1,XTi∗ ,XTi∗+1
[Xt ∈ A] , where i∗ = max{i : Ti ≤ t}. (4.4)

Proof. Throughout, we let p̄(x, y, t) := 1 − p(x, y, t), ~Kn := {(s0, . . . , sn) ∈ Kn+1 : 0 = s0 ≤ · · · ≤ sn = 1},
U0 := [s0, s1], and Ui := (si, si+1], with i = 1, . . . , n− 1. We also use the notation

IU := 1{Xu∈(a,b):∀u∈U}, for a domain U ⊂ R+, and I∅ = 1. (4.5)

Then, by Markov property

E[F (X1)1τ>1] =
∑
n∈N

∑
(s0,...,sn)∈~Kn

E
[
F (X1)I[0,1]1{N=n,(T0,...,Tn)=(s0,...,sn)}

]

=
∑
n∈N

∑
(s1,...,sn)∈~Kn

E
[
F (X1)1{N=n,(T0,...,Tn)=(s0,...,sn)}E

[ n−1∏
i=0

IUi
∣∣Xsj : j = 0, . . . , n

]]

=
∑
n∈N

∑
(s1,...,sn)∈~Kn

E

[
F (X1)1{N=n,(T0,...,Tn)=(s0,...,sn)}

n−1∏
i=0

p̄
(
XTi , XTi+1

, Ti+1 − Ti
)]

= E

[
F (X1)

N−1∏
i=0

p̄
(
XTi , XTi+1

, Ti+1 − Ti
)]
,

which proves (4.3). Similarly,

P[Xt ∈ A|N = n, T0, . . . , TN , XT0 , . . . , XTN ]

=
∑

(s0,...,sn)∈~Kn

P[Xt ∈ A|N = n, (T0, . . . , Tn) = (s0, . . . , sn), XT0
, . . . , XTN ]1(T0,...,Tn)=(s0,...,sn)

=
∑

(s0,...,sn)∈~Kn

PBRsi∗ ,si∗+1,Xsi∗ ,Xsi∗+1
[Xt ∈ A]1(T0,...,Tn)=(s0,...,sn) = PBRTi∗ ,Ti∗+1,XTi∗ ,XTi∗+1

[Xt ∈ A].

From (4.3), it is now evident that, for the computation of (4.1) by Monte Carlo, it suffices to simulate independent
replicas of the random variable Y := F (X1)N(X ), where hereafter we denote

N(X ) :=

N−1∏
i=0

(
1− p(XTi , XTi+1

, Ti+1 − Ti)
)
.

The exit probability p(x, y, t) does not typically admit a closed form expression and some type of approximation must
be applied for its evaluation. The short-time asymptotics (2.8) yields the following natural estimate for p(x, y, t) when
x, y ∈ D:

p̃(x, y, t) := (p̆(x, y, t) ∨ 0) ∧ 1, with p̆(x, y, t) :=
t2

2

∫
(a,b)c

s(u− x)s(y − u)

ft(y − x)
du. (4.6)
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We also set p̃(x, y, t) = 1 if x /∈ D or y /∈ D. This approximation satisfies∣∣∣p̃(x, y, t)− p(x, y, t)∣∣∣ ≤ ep(x, y, t), (4.7)

where the error bound ep(x, y, t) is defined as in Remark 3.3 for x, y ∈ D and by ep(x, y, t) = 0 if x /∈ D or y /∈ D. We
can then approximate N(X ) by

Ñ(X ) :=

N−1∏
i=0

(
1− p̃(XTi , XTi+1 , Ti+1 − Ti)

)
. (4.8)

Replacing the true exit probability p(x, y, t) with its approximation p̃(x, y, t) introduces a bias into the evaluation
of N(X ), which is hard to quantify if the process X is discretized using the uniformly spaced grid Ti = i/N . For this
reason, we now propose an adaptive algorithm for the determination of the sampling times, which starts by simulating
the terminal value X1 and then refines the sampling grid, using more discretization points when the estimate of
the approximation error is “large”. The algorithm is parameterized by a real number γ > 0, which represents the
error tolerance and ensures that under suitable conditions on ep, the global discretization error for approximating the
quantity of interest (4.1) will be bounded by γ (see Proposition 4.2 below). The algorithm also requires simulation
from the marginal distribution f1 of X1 and the bridge distribution of Xt/2 conditioned to Xt = y (t > 0). Hereafter,

we denote the density of this bridge distribution by f brt/2(x, y) and recall the following well-known formula:

f brt/2(x, y) :=
ft/2(x)ft/2(y − x)

ft(y)
. (4.9)

At the end of this section, we introduce a new method to simulate variates from the density (4.9).

The procedure to generate the skeleton of X is outlined in pseudo-code in Algorithm 1 below. Assume that this
algorithm terminates in finite time a.s. (see Proposition 4.2 for sufficient conditions for this to hold). The algorithm
then defines a pair N and T := (T0, . . . , TN ), which satisfies the conditions of Lemma 4.1. Indeed, by construction,
each Ti takes values in the dyadic grid {i2−m, i = 0, . . . , 2m,m = 0, 1, . . . }, which is a countable set. To check the
second condition of the lemma, we fix n and a partition π := {s0, . . . , sn} of [0, 1], and proceed as follows to write the
event E := {N = n, T0 = s0, T1 = s1, . . . , Tn = sn} in terms of {Xsi}ni=0:

• We can and will assume with no loss of generality that π is a recursive dyadic partition, meaning that {0, 1} ⊂ π
and, for every t ∈ (0, 1) ∩ π, there exists k ∈ N with 2kt ∈ N, and if we take the smallest such k then also
t+ 1

2k
∈ π and t− 1

2k
∈ π. By construction, if π does not have this property, the event E has zero probability.

• We shall assume that n ≥ 2 because if n = 1 then necessarily s0 = 0 and s1 = 1 and, therefore,

E = {X1 /∈ D} ∪ {X1 ∈ D, ep(X0, X1, 1) ≤ γ} ∈ σ(X0, X1).

• For each ` ∈ {0, . . . , n − 1}, define π` := {si ∈ π : 2n−`si is an even integer}. The number of elements of π` is
denoted n` and the sorted elements of π` are denoted s`1 < · · · < s`n` . Clearly, π0 = π and πn−1 6= π since 1/2 ∈ π
whenever n ≥ 2; we let `∗ = max{l ≥ 0 : πl = π} and π∗ = π \ π`∗+1.

• For each i = 1, . . . , n` − 1, define the event

E`i :=

 {ω : ep

(
Xs`i

(ω), Xs`i+1
(ω), s`i+1 − s`i

)
≤ γ(s`i+1 − s`i)}, if π ∩ (s`i , s

`
i+1) = ∅,

{ω : ep

(
Xs`i

(ω), Xs`i+1
(ω), s`i+1 − s`i

)
> γ(s`i+1 − s`i)}, if π ∩ (s`i , s

`
i+1) 6= ∅.

Then, it follows that

E =

{
n⋂
i=0

{Xsi ∈ D} ∩
n−1⋂
`=`∗

n`−1⋂
i=1

E`i

}
∪

 ⋃
s∈π∗
{Xs /∈ D} ∩

⋂
s∈π`∗+1

{Xs ∈ D} ∩
n−1⋂

`=`∗+1

n`−1⋂
i=1

E`i


which clearly belongs to σ(Xsi : i = 0, . . . , n).
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Algorithm 1 [X ] = GenerateSkeleton(γ)

N0 = 0, N1 = 1, m = 1
T 1

0 = 0, T 1
1 = 1, X0 = 0

Generate an observation X1 from the density f1

while Nm 6= Nm−1 and {XTmi
∈ D, for i = 1, ..., Nm} do

n = 0, Tm+1
0 = 0

for i = 0→ Nm − 1 do
∆T = Tmi+1 − Tmi
if ep(XTmi

, XTmi+1
,∆T ) > γ∆T then

Tm+1
n+1 = (Tmi + Tmi+1)/2, Tm+1

n+2 := Tmi+1

Generate an observation XTm+1
n+1

from the bridge density f br∆T/2(·, XTmi+1
−XTmi

)

n = n+ 2
else
Tm+1
n+1 := Tmi+1

n = n+ 1
end if

end for
Nm+1 = n
m = m+ 1

end while
RETURN X = {(Tmi , XTmi

)}Nmi=0.

To see that XTm+1
n+1

can be sampled from the bridge density f br∆T/2(·, XTmi+1
−XTmi

) in Algorithm 1, we can apply the

second part of Lemma 4.1 to the couple (k, Tk), where Tk = {T0, . . . , Tk} contains the first k+ 1 sampling times which
have been added to the grid by the algorithm, in increasing order.

Algorithm 1 terminates when at least one of the sampling observations XTi is out of the domain D or the error
over each subinterval of the sampling times 0 = T0 < · · · < TN = 1 is small enough in the following sense:

ep(XTi , XTi+1 , Ti+1 − Ti) ≤ γ(Ti+1 − Ti), i = 0, . . . , N − 1. (4.10)

At first glance, it is not obvious that the algorithm will actually terminate in finite time. The following result gives
conditions under which this is the case and shows that the global error of the estimate is of order γ.

Proposition 4.2. The following assertions hold:

(i) Let X be a Lévy process satisfying one of the following two (non mutually exclusive) conditions:

1. X does not hit points; that is, P(τ{x} <∞) = 0 for all x, where τ{x} := inf{s > 0 : Xs = x} or, equivalently,∫
R
<
(

1

1 + ψ(u)

)
du =∞,

where ψ(u) = logE[eiuX1 ] (see [29, Theorem 7.12]);

2. X is a finite variation process.

Additionally, assume that the upper bound of the approximation error ep(x, y, t) satisfies

lim
t↓0

1

t
sup

x,y∈(a′,b′)

ep(x, y, t) = 0, ∀a′, b′ ∈ (a, b). (4.11)

Then, Algorithm 1 terminates in finite time a.s.

(ii) Assume that E|F (X1)| <∞. Let X = {(Ti, XTi)}Ni=0 be a skeleton of X on [0, 1] satisfying (4.10) and Ñ (X ) be
given by (4.8). Then,

|E[F (X1)1τ>1]− E[F (X1) Ñ(X )]| ≤ γE[|F (X1)|]. (4.12)
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Remark 4.3. In view of Proposition 4.2, E[F (X1)1τ>1] can be approximated by the Monte Carlo estimator

1

M

M∑
k=1

F
(
X

(k)
1

)
Ñ
(
X (k)

)
,

where X(k) are independent copies of the process X and Ñ(X (k)) are corresponding values computed with formula
(4.8). This estimator has a statistical error which can be estimated in the usual way, and a discretization bias, which
is bounded from above by γE[|F (X1)|]. In view of (4.13) below, a more precise a posteriori estimate of the bias is

1

M

M∑
k=1

|F (X
(k)
1 )|1

S
(k)
N

N∑
i=1

ep

(
X

(k)

T
(k)
i

, X
(k)

T
(k)
i+1

, T
(k)
i+1 − T

(k)
i

)
, with SN := {(XT0 , . . . , XTN ) ∈ DN+1}.

Lemma 4.4. Let X be a Lévy process such that for all t > 0, the law of Xt has no atom. Then, for all x ∈ R,

P[{t ∈ [0, 1] : ∆Xt 6= 0, Xt− = x} = ∅] = 1; P[{t ∈ [0, 1] : ∆Xt 6= 0, Xt = x} = ∅] = 1.

Proof. We only prove the first identity, the second one follows by similar arguments (or alternatively by time reversal).
Let Nε

1 = #{t ∈ [0, 1] : |∆Xt| > ε,Xt− = x}. Then

P[{t ∈ [0, 1] : ∆Xt 6= 0, Xt− = x} 6= ∅] ≤ E[N0
1 ] ≤

∞∑
n=1

E[N
1
n

1 ].

But by the compensation formula (see [6, section 0.5]),

E[N
1
n

1 ] = E
[ ∫ 1

0

∫
|y|>ε

1Xs=xν(dy)ds

]
=

∫
|y|>ε

ν(dy)

∫ 1

0

P[Xs = x]ds = 0.

Proof of Proposition 4.2. Part (i). With the aim of obtaining a contradiction, assume that the statement of
the proposition is not true, and the algorithm does not terminate. Let {T̃i}i≥1 be the infinite sequence of different
sampling times produced by the algorithm (in the order in which they were generated, that is, not necessarily ordered
in time). Let X̃i := XT̃i

be the corresponding sampling observations. Since the sequence {T̃i} is bounded, we can

find indices {ik}k≥1 such that T̃ik → T ∗. Moreover, since every point T̃i (for i ≥ 2) is obtained as a midpoint of a
certain interval, we can find two sequences {T−i } and {T+

i } such that T−i ↑ T ∗, T
+
i ↓ T ∗, T ∗ ∈ [T−i , T

+
i ] for all i and

and ep(XT−i
, XT+

i
, T+
i − T

−
i ) > γ(T+

i − T
−
i ) for all i. In addition, since the process X has right and left limits, both

limXT+
i

= X+ and limXT−i
= X− exist. There are three possibilities.

If X− ∈ (−∞, a) ∪ (b,∞) or X+ ∈ (−∞, a) ∪ (b,∞) then for some i, X̃i /∈ D, so that the algorithm must have
stopped in finite time and we have a contradiction.

If X− ∈ (a, b) and X+ ∈ (a, b) then, using the property (4.11), we can find a contradiction with ep(XT−i
, XT+

i
, T+
i −

T−i ) > γ(T+
i − T

−
i ).

It remains to treat the case when X− or X+, or both, are at the boundary of D. Then, either X− = X+ = XT∗

or ∆XT∗ 6= 0. The latter case is ruled out by Lemma 4.4 and in the case when X cannot hit points, the former case
is ruled out as well.

We may therefore assume that X is a finite variation process with nonzero drift µ (cf. [29, Theorem 7.12]) and, to
fix the notation, that X− = X+ = XT∗ = b. We may also assume that T ∗ is irrational, since for every t ∈ Q ∩ [0, 1],
P[Xt = b] = 0. The fact that T ∗ /∈ Q implies that T−i < T ∗ < T+

i for every i, and we can also assume that XT+
i

and

XT−i
belong to D for each i, because otherwise the algorithm would have stopped in finite time.

Introduce two sequences of stopping times:

τ0 = inf{t > 0 : Xt ≥ b} ∧ 1, σn = inf{t > τn : Xt ≤ b} ∧ 1, τn+1 = inf{t > σn : Xt ≥ b} ∧ 1, n ≥ 0.
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The sequences {τn} and {σn} do not have an accumulation point except t = 1 and for each n ≥ 0, σn > τn if τn < 1
and τn+1 > σn if σn < 1. This holds because for a finite variation process X with drift µ 6= 0, {0} is irregular for [0,∞)
if µ < 0 and for (−∞, 0] if µ > 0 [40, Theorem 43.20], and X may only creep in the direction opposite to the drift [29,
Theorem 7.11]. Then clearly, for every τ ∈ [0, 1] such that Xτ = b, either there is n ≥ 0 with σn = τ , which means
that for some ε > 0, Xt /∈ D for t ∈ (τ − ε, τ), or there is n ≥ 0 with τn = τ , which means that for some ε > 0, Xt /∈ D
for t ∈ (τ, τ + ε). In both cases, there is a contradiction with the fact that XT+

i
and XT−i

belong to D for each i.

Part (ii). Below, we denote p̄(x, y, t) := 1− p(x, y, t), ¯̃p(x, y, t) = 1− p̃(x, y, t), and SN := {(XT0
, . . . , XTN ) ∈ DN+1}.

Then, since

N(X )− Ñ(X ) =

N−1∏
i=0

p̄
(
XTi , XTi+1

, Ti+1 − Ti
)
−
N−1∏
i=0

¯̃p
(
XTi , XTi+1

, Ti+1 − Ti
)
,

we get

|E[F (X1)1τ>1]− E[F (X1)Ñ(X )]| ≤ E
[
|F (X1)|1SN

N−1∑
i=0

ep(XTi , XTi+1 , Ti+1 − Ti)
]
, (4.13)

which can be bounded by γE [|F (X1)|].

Simulation of Lévy bridges The adaptive method presented in this section requires fast simulation from the bridge
distribution of Xt/2 conditioned to Xt = y (with t > 0), whose density is given by (4.9). We now propose a simple
yet efficient method for simulating from the bridge distribution, valid for Lévy processes with unimodal density at all
times. As remarked in Section 3, a sufficient condition for a Lévy process to have a unimodal density for all t > 0 is
that it belongs to the class of self-decomposable processes which includes most of the parametric models used in the
literature. The algorithm is based on the following simple estimate.

Proposition 4.5. Let X be a Lévy process such that the density ft of Xt is unimodal for all t > 0. Then,

f brt/2(x, y) ≤
ft/2(y/2)

ft(y)
max{ft/2(x), ft/2(y − x)}. (4.14)

Proof. For all x and y,

ft/2(x)ft/2(y − x) = max{ft/2(x), ft/2(y − x)}min{ft/2(x), ft/2(y − x)}

By the assumption of unimodality, the density ft may not have a local minimum, hence, for all a, b, min(ft/2(a), ft/2(b)) ≤
ft/2

(
a+b

2

)
and the result follows.

As a consequence of the previous result, random variates with density f brt/2(x, y) can be simulated using the classical

rejection method [14], with the proposal density given by f̄(x) = 1
2 (ft/2(x) + ft/2(y − x)), provided that the following

two requirements are met:

(a) random variates with density ft(x) can be simulated in bounded time;

(b) the density ft(x) is known explicitly or can be evaluated in bounded time,

Assumptions (a) and (b) are satisfied, e.g., for the variance gamma process, normal inverse gaussian process, or for
stable processes. Simulating a random variable X with density f̄(x) = 1

2 (ft/2(x) + ft/2(y − x)) is straightforward:
simulate a random variate Z with density ft/2 and an independent Bernoulli random variate U ; then, take X = Z if
U = 0 and X = y − Z otherwise.

The expected number of iterations needed until the acceptance for a given value of y is equal to C =
2ft/2(y/2)

ft(y) .

This number is bounded for Lévy processes with Pareto tails such as stable. For processes with lighter tails it may
be unbounded for large y, but the probability of having a large value of y in an adaptive simulation is very small.
For example, if we want to simulate Xt/2 and Xt by first simulating Xt and then Xt/2 from the bridge law using
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formula (4.14), we find that the conditional expectation of the number of iterations given Xt equals
2ft/2(Xt/2)

ft(Xt)
, and

the unconditional expectation is

E
[

2ft/2(Xt/2)

ft(Xt)

]
= 2

∫
R
ft/2(x/2)dx = 4.

5 Numerical illustrations

In this section, to simplify the discussion, we assume that the interval D is of the form D = (−∞, b). For the numerical
implementation of Algorithm 1 given in Section 4, one needs to be able to perform the following computations efficiently:

• Simulation of the increments of Xt for arbitrary t;

• Evaluation of the density ft of Xt for arbitrary t;

• Evaluation of the “incomplete convolution” of the Lévy density: C(b, y) :=
∫∞
b
s(v)s(y − v)dv;

• Evaluation of the error bound ep(x, y, t), appearing in Algorithm 1.

These computations can be performed relatively easily, for example, for α-stable Lévy processes with Lévy density
s(x) = |x|−α−1(c−1x<0 + c+1x>0) and for the variance gamma process with Lévy density s(x) = |x|−1(ce−λ−|x|1x<0 +
ce−λ+|x|1x>0). For α-stable processes, the increments can be simulated with an explicit algorithm (cf. [9]), the density
can be computed using a rapidly convergent series [39] or expressed via special functions (cf. [23]), tabulated for t = 1
and computed by the scaling property for other values of t. The incomplete convolution is given by

C(b, y) = c+c−b
−1−2αB(1 + 2α, 1)F

(
1 + α, 1 + 2α, 2 + 2α,

y

b

)
, (5.1)

where B is the beta function and F is the hypergeometric function, for which a rapidly converging series is available
[24] and which can also be tabulated prior to the Monte Carlo computation. For the variance gamma process, the
density is explicit and the increments are straightforward to simulate [12]. The incomplete convolution is given by

C(b, y) =
c2

y

{
e−yλ+Ei(λ(b− y))− eyλ−Ei(λb)

}
where Ei(x) :=

∫∞
x

e−z

z dz, which can also be tabulated, and λ := λ− + λ+. The error bound ep for the α-stable or
the variance gamma process can be obtained along the lines of the general computation of Section 3 or the specific
computation for the Cauchy process in the Appendix C.

For the numerical simulations in this section we shall concentrate on the Cauchy process, which is an α-stable
process with c+ = c− := c and α = 1. For this process, formula (5.1) simplifies to

C(b, y) =
c2

3b3

{
1 + 3

∞∑
n=1

n+ 1

n+ 3

(y
b

)n}
=
c2

b3

{
1 +

b

y
+

2b2

y2
+

y

b− y
+

2b3

y3
log
(

1− y

b

)}
.

Note that for small y, the series representation has more stable behavior than the exact formula. The error estimate
ep is computed as explained in section C of the Appendix. In both examples below, we take c = 1.

Example 1. In our first example, we evaluate the probability P[sup0≤s≤1Xs ≤ 1] = P(τ > 1), which can be expressed
in terms of the function (4.1) by taking T = 1, F (X1) = 1, and the domain (a, b) = (−∞, 1). Note that in this case,
the starting value of the process is relatively far from the boundary, and hence the advantage of using the adaptive
algorithm is less important. The process will typically cross the boundary by a large jump with a large overshoot,
which makes the exit easy to detect, even with a uniform discretization.

We study the performance of our adaptive algorithm for various values of γ, and compare it to the standard uniform
discretization. When interpreting the results of simulations, one needs to distinguish between the actual error (that
is, the difference between the computed value and the true value), and the theoretical value of the bias (computed as
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Figure 1: Illustration for Example 1. Left: values returned by the uniform discretization algorithm and the adaptive
algorithm, as function of the computational time for 106 paths, measured in seconds. Different points on the graph
correspond to different numbers of discretization dates for the uniform discretization (ranging from 32 to 8192) and
different values of the tolerance parameter γ for the adaptive algorithm (ranging from 7 to 7 × 10−4). The curve for
the uniform discretization is smooth because all the points have been generated using the same trajectories, while for
the adaptive discretization different paths have been used. Right: comparison of the theoretical bias of the adaptive
algorithm with the actual discretization bias of the uniform discretization.

explained in Remark 4.3 above), which does not require the knowledge of the true value. As an estimate of the true
value, we use the value computed in an independent simulation by uniform discretization with 16384 points and 107

trajectories, which is approximately equal to 0.38935 with a standard deviation of 10−4. The difference between the
values for 8192 and 16384 points (on the same trajectories) is smaller than 10−4, hence one can presume that, for all
practical purposes, convergence up to this precision has been achieved.

Figure 1 shows the dependence of the values computed by the two algorithms on the computational time required
for 106 MC trajectories, for different numbers of discretization points (for the uniform discretization) and different
values of the tolerance parameter γ (for the adaptive algorithm). While the uniform discretization algorithm exibits
a clear bias which decreases as the number of discretization dates increases, the adaptive algorithm removes the bias
completely; all values returned by this algorithm are within confidence bounds of the true value.

The theoretical bias, computed as explained in Remark 4.3, is greater than the actual error, because the error
estimates of Appendix C are upper bounds, and because it does not take into account the possible cancellation of errors
on different intervals. Figure 1, right graph, compares the theoretical estimate of the bias of the adaptive algorithm
with the actual bias of the uniform discretization. One can see that for small computational times, the theoretical
bias for the adaptive algorithm is greater than the error of the uniform discretization, however, the theoretical bias
converges to zero much faster, and for relatively large computational times is actually smaller than the error of the
uniform discretization. The empirical convergence rate (estimated from the slope of the straight lines) is T−0.81 for
the uniform discretization and T−3.4 for the theoretical bias of the adaptive algorithm.

Example 2. In our second example, we evaluate the probability P[sup0≤s≤1Xs ≤ 10−2], which again can be expressed
in terms of the function (4.1) by taking T = 1, F (X1) = 1, and the domain (a, b) = (−∞, 10−2). In contrast to Example
1, here we consider a situation where the starting point is close to the boundary. In this case, as we shall see below, the
advantage of the adaptive algorithm is more striking, since the process can cross the boundary and come back while
it is still close to the starting point and, hence, a very fine discretization will be necessary to detect this event with
uniformly spaced observations. As a result, for the uniform discretization we do not observe convergence to a sufficient
precision even with 16384 points, and therefore the true value cannot be estimated as in the previous example. Instead,
we shall use as the true value the value produced by the adaptive algorithm with 107 Monte Carlo paths and equal to
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Figure 2: Illustration for Example 2. Left: values returned by the uniform discretization algorithm and the adaptive
algorithm, as function of the computational time for 106 paths, measured in seconds. Different points on the graph
correspond to different numbers of discretization dates for the uniform discretization (ranging from 256 to 16384) and
different values of the tolerance parameter γ for the adaptive algorithm (ranging from 9 to 9×10−3). Right: comparison
of the theoretical bias of the adaptive algorithm with the actual discretization bias of the uniform discretization.

0.0360, with standard deviation of 6× 10−5 and theoretical bias of 3× 10−5.

Similarly to the previous example, Figure 2 shows the dependence of the values computed by the two algorithms
on the computational time required for 106 MC trajectories. Here, the adaptive algorithm exibits the same kind of
behavior as in the Example 1 above: all the points generated by the algorithm are within the confidence bounds of
the true value. However, for the uniform discretization, the convergence is much slower than before and only the last
value obtained with 16384 discretization points falls within the confidence bounds. Figure 2, right graph, compares
the theoretical estimate of the bias of the adaptive algorithm with the actual bias of the uniform discretization. Once
again, the behavior of the adaptive algorithm is roughly the same as in the previous example, showing that the method
is robust with respect to the parameters on the problem. On the other hand, as expected, the uniform discretization
presents a significant bias in this case (the convergence rates are similar to those obtained in the previous example,
but the constant for the uniform discretization is much bigger).

Acknowledgments: The authors are grateful to an anonymous referee and both the associate editor and the editor-
in-chief for their constructive and insightful comments that greatly helped to improve the paper.

A Proofs of Section 2

A.1 Proof of Theorem 2.2

Throughout the proof, we shall use the notation

Ȳt := sup
0≤s≤t

Ys and Y t := inf
0≤s≤t

Ys, (A.1)

for a given cádlág process (Yt)t≥0. Without loss of generality (by considering separately the positive and the negative
part), we can and will assume that ϕ is nonnegative. Additionally, assume that a ∈ (−∞, 0) and b ∈ (0,∞). The cases
a = −∞ and b =∞ will be evident from the proof below. We also let ‖ϕ‖∞ := ess supxϕ(x), ‖ϕ‖Lip be the Lipschitz
norm of ϕ, Iδ(y) := (y − δ, y + δ), η := δ0/2, c = b ∧ |a|, B := {τ ≤ t} = {X̄t ≥ b or Xt ≤ a}, Uεt := sups≤t |Xε

s |,
and aε := supx sε(x), which are finite in light of (2.1). In what follows, Fεt := σ (Xε

s : s ≤ t)∨N where N denotes the
null sets of F . To lighten the notation below, whenever the ess sup of a function g, defined L-a.e. in some region, is
considered, we shall simply write supu g(u) instead of ess supug(u).
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The idea is to condition on the number of jumps of the compound Poisson component Zε. To this end, let us denote

Ak(t) = E
(
ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nεt =k}

)
, for k = 0, 1, 2, and A3(t) = E

(
ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nεt≥3}

)
,

so that clearly
E(ϕ(Xτ )1{τ≤t,Xt∈Iδ(y)}) = A0(t) + · · ·+A3(t). (A.2)

Note that each of the terms on the right-hand side of the previous equation can be expressed as

Ak(t) =

∫ y+δ

y−δ
P kt (u)du, (k = 0, . . . , 3), (A.3)

for some nonnegative functions P kt (u). Indeed, for k = 0, 1, 2, by the standard definition of conditional expectation,

Ak(t) = E
(
ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nεt =k}

)
= E

(
E
(
ϕ(Xτ )1{τ≤t,Nεt =k}

∣∣Xt

)
1{Xt∈Iδ(y)}

)
=

∫ y+δ

y−δ
E(ϕ(Xτ )1{τ≤t,Nεt =k}

∣∣Xt = u)ft(u)du =:

∫ y+δ

y−δ
P kt (u)du. (A.4)

The case k = 3 is treated in the same way. Let us analyze each of the four terms in the right-hand side of (A.2).

(1) No big jump. Note that, on the event Nε
t = 0, Xs = Xε

s for all s ≤ t and, thus, {τ ≤ t} = {τε ≤ t}, where
τε := inf{u ≥ 0 : Xε

u /∈ (a, b)}. Therefore,

A0(t) = E
(
ϕ(Xε

τε)1{τε≤t,Xεt∈Iδ(y),Nεt =0}
)

= E
(
ϕ(Xε

τε)1{τε≤t,Xεt∈Iδ(y)}
)
P (Nε

t = 0) ,

where in the last equality we used the independence of Xε and Nε. Next, conditioning on Fετε , it follows that

A0(t) = e−λεtE(ϕ(Xε
τε)1{τε≤t,Xεt∈Iδ(y)}) = e−λεtE

(
E(1{Xεt∈Iδ(y)}

∣∣Fετε)ϕ(Xε
τε)1{τε≤t}

)
.

By Markov’s property,

A0(t) = e−λεtE
(
E
(
1{Xεt−Xετε+Xε

τε
∈Iδ(y)}

∣∣∣Fετε)ϕ(Xε
τε)1{τε≤t}

)
= e−λεtE

(
F (Xε

τε , t− τε)ϕ(Xε
τε)1{τε≤t}

)
,

where F (z, s) = P (z +Xε
s ∈ Iδ(y)). Note that if τε = t, then F (Xε

τε , t− τε) = 0 since Xε
τε ∈ (a, b)c and Iδ(y) ⊂ (a, b).

On the other hand, on the event τε < t,

F (Xε
τε , t− τε) =

∫ y+δ

y−δ
fεt−τε(u−Xε

τε)du ≤
∫ y+δ

y−δ
sup

0<s≤t
sup

x∈(a,b)c
fεs (u− x)du,

since again Xε
τε ∈ (a, b)c. Putting the two previous cases together and recalling (A.3), we have

A0(t) =

∫ y+δ

y−δ
P 0
t (u)du ≤

∫ y+δ

y−δ

(
e−λεt‖ϕ‖∞ sup

0<s≤t
sup

x∈(a,b)c
fεs (u− x)

)
du =:

∫ y+δ

y−δ
P̄ 0
t (u)du, (A.5)

implying that P 0
t (u) ≤ P̄ 0

t (u), for L-a.e. u ∈ (a+ δ0, b− δ0). Furthermore, using (2.4-ii),

sup
a+δ0<u<b−δ0

P 0
t (u) ≤ sup

a+δ0<u<b−δ0
P̄ 0
t (u) ≤ ‖ϕ‖∞c3(δ0, ε)t

3, (t < t0).

(2) One big jump. Let τi and Yi be the time and size of the ith jump of Zε. Clearly, on the event {Nε
t = 1},

ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nεt =1} = ϕ(Xε
τ )1{τ<τ1,Xεt+Y1∈Iδ(y),Nεt =1} + ϕ(Xε

τ + Y1)1{τ1≤τ≤t,Xεt+Y1∈Iδ(y),Nεt =1}

≤ ‖ϕ‖∞1{Xεt+Y1∈Iδ(y),Nεt =1}

(
1{X̄εt≥b or Xεt≤a} + 1{X̄εt+Y1≥b or Xεt+Y1≤a}

)
.
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It follows that

0 ≤ A1(t) ≤ ‖ϕ‖∞E
(
1{Uεt≥c,Xεt+Y1∈Iδ(y),Nεt =1}

)
+ ‖ϕ‖∞E

(
1{Y1≥b−X̄εt or Y1≤a−Xεt}1{Xεt+Y1∈Iδ(y),Nεt =1}

)
= e−λεt‖ϕ‖∞λεtE

(
1{Uεt≥c,Xεt+Y1∈Iδ(y)}

)︸ ︷︷ ︸
A1,1(t)

+ e−λεt‖ϕ‖∞λεtE
(
1{Y1≥b−X̄εt or Y1≤a−Xεt}1{Xεt+Y1∈Iδ(y)}

)
︸ ︷︷ ︸

A1,2(t)

,

where in the last equality we use the joint independence of Nε, Y1, and Xε. Conditioning on σ(Xε
s : s ≥ 0) and

applying Fubini,

A1,1(t) = e−λεt‖ϕ‖∞tE
(

1{Uεt≥c}

∫ y+δ−Xεt

y−δ−Xεt
sε(v)dv

)
=

∫ y+δ

y−δ
e−λεt‖ϕ‖∞tE

(
1{Uεt≥c}sε(u−X

ε
t )
)︸ ︷︷ ︸

P̄ 1,1
t (u)

du. (A.6)

Using (2.1) and Lemma 2.1, supu P̄
1,1
t (u) ≤ e−λεtt‖ϕ‖∞aεP (Uεt ≥ c) ≤ e−λεtaε‖ϕ‖∞C2(c, ε)t3, where ε > 0 is chosen

small enough. Similarly, conditioning on σ(Xε
s : s ≥ 0), making the substitution u = Xε

t + v, and applying Fubini,

A1,2(t) = e−λεt‖ϕ‖∞tE
(∫

1{v≤a−Xεt or v≥b−X̄εt }1{y−δ<Xεt+v≤y+δ}sε(v)dv

)
=

∫ y+δ

y−δ
e−λεt‖ϕ‖∞tE

(
1{u≤a+Xεt−Xεt or u≥b+Xεt−X̄εt }sε(u−X

ε
t )
)

︸ ︷︷ ︸
P̄ 1,2
t (u)

du. (A.7)

Using again Lemma 2.1,

sup
u∈(a+δ0,b−δ0)

P̄ 1,2
t (u) ≤ e−λεt‖ϕ‖∞taεP

(
Xε
t −X

ε
t ≥ δ0 or X̄ε

t −Xε
t ≥ δ0

)
≤ e−λεt‖ϕ‖∞taεP

(
X̄ε
t −X

ε
t ≥ δ0

)
≤ e−λεt‖ϕ‖∞taεP

(
sup
s≤t
|Xε

s | ≥ δ0/2
)
≤ e−λεt‖ϕ‖∞aεC2(δ0/2, ε)t

3. (A.8)

Therefore, recalling from (A.3), the nonnegative function P 1
t (u) is such that,for L-a.e. u ∈ (a+δ0, b−δ0), 0 ≤ P 1

t (u) ≤∑2
`=1 P̄

1,`
t (u) ≤ ‖ϕ‖∞aεt3 (C2(c, ε) + C2(η, ε)).

(3) Two big jumps. As before, let τi and Yi be the time and size of the ith jump of Zε. Clearly,

ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nεt =2} = ϕ(Xε
τ )1{τ<τ1,Xεt+Y1+Y2∈Iδ(y),Nεt =2}

+ ϕ(Xε
τ + Y1)1{τ1≤τ<τ2,Xεt+Y1+Y2∈Iδ(y),Nεt =2}

+ ϕ(Xε
τ + Y1 + Y2)1{τ2≤τ≤t,Xεt+Y1+Y2∈Iδ(y),Nεt =2}

≤ ‖ϕ‖∞1{∃s<τ1:Xεs /∈(a,b);Xεt+Y1+Y2∈Iδ(y);Nεt =2}

+ ϕ(Xε
τ + Y1)1{∃s∈[τ1,τ2):Xεs+Y1 /∈(a,b);Xεt+Y1+Y2∈Iδ(y);Nεt =2},

+ ‖ϕ‖∞1{∃s∈[τ2,t]:Xεs+Y1+Y2 /∈(a,b);Xεt+Y1+Y2∈Iδ(y);Nεt =2}.

Then, using the independence of Nε, the Yi’s, and Xε in the first and last terms, we have the inequality:

A2(t) ≤ e−λεt(t2/2)λ2
ε‖ϕ‖∞E

(
1{Uεt≥c,Xεt+Y1+Y2∈Iδ(y)}

)
+ E

(
ϕ(Xε

τ + Y1)1{X̄εt+Y1≥b or Xεt+Y1≤a;Xεt+Y1+Y2∈Iδ(y);Nεt =2}

)
(A.9)

+ e−λεt(t2/2)λ2
ε‖ϕ‖∞E

(
1{X̄εt+Y1+Y2≥b or Xεt+Y1+Y2≤a;Xεt+Y1+Y2∈Iδ(y)}

)
,

=: A2,1(t) +A2,2(t) +A2,3(t).

As before, conditioning on σ(Xε
s : s ≥ 0), changing variable from w to u = Xε

t + v + w, and applying Fubini,

A2,1(t) = e−λεt2−1‖ϕ‖∞t2E
(∫∫

1{Uεt≥c}1{y−δ<Xεt+w+v<y+δ}sε(v)sε(w)dvdw

)
=

∫ y+δ

y−δ
e−λεt2−1‖ϕ‖∞t2

∫ ∞
−∞

sε(v)E
(
1{Uεt≥c}sε(u−X

ε
t − v)

)
dvdu =:

∫ y+δ

y−δ
P̄ 2,1
t (u)du, (A.10)

18



and, hence,

sup
u
P̄ 2,1
t (u) ≤ e−λεt2−1‖ϕ‖∞t2λεaεP (Uεt ≥ c) ≤ e−λεt2−1‖ϕ‖∞λεaεC1(c, ε)t3.

Similarly,

A2,3(t) = e−λεt2−1‖ϕ‖∞t2E
(∫∫

1{X̄εt+v+w≥b or Xεt+v+w≤a}1{y−δ<Xεt+w+v<y+δ}sε(v)sε(w)dvdw

)
=

∫ y+δ

y−δ
e−λεt2−1‖ϕ‖∞t2

∫
E
(
1{X̄εt−Xεt+u≥b or Xεt−Xεt+u≤a}sε(u−Xε

t − v)
)
sε(v)dvdu

=:

∫ y+δ

y−δ
P̄ 2,3
t (u)du, (A.11)

and, thus, as in (A.8),

sup
u∈[a+δ0,b−δ0]

P̄ 2,3
t (u) ≤ e−λεt2−1‖ϕ‖∞t2λεaεP

(
Xε
t −X

ε
t ≥ δ0 or X̄ε

t −Xε
t ≥ δ0

)
≤ e−λεt2−1‖ϕ‖∞λεaεC1(δ0/2, ε)t

3.

Finally, we provide an upper bound for A2,2(t). First, we use the bound ϕ(Xε
τ + Y1) ≤ ϕ(Y1) + ‖ϕ‖LipU

ε
t and again

the independence of Nε, the Yi’s, and Xε to get

A2,2(t) ≤ e−λεt(t2/2)λ2
εE
(
{ϕ(Y1) + ‖ϕ‖LipU

ε
t }1{X̄εt+Y1≥b or Xεt+Y1≤a;Xεt+Y1+Y2∈Iδ(y)}

)
.

Next, by conditioning on σ(Xε
s : s ≥ 0) ∨ σ(Y1), we may write2

A2,2(t) ≤ e−λεt(t2/2)λεE

(
{ϕ(Y1) + ‖ϕ‖LipU

ε
t }1{X̄εt+Y1≥b or Xεt+Y1<a}

∫ y+δ−Xεt−Y1

y−δ−Xεt−Y1

sε(w)dw

)

= e−λεt(t2/2)E

(∫
(a−Xεt ,b−X̄εt )c

{ϕ(v) + ‖ϕ‖LipU
ε
t } sε(v)

∫ y+δ−Xεt−v

y−δ−Xεt−v
sε(w)dwdv

)
(A.12)

=

∫ y+δ

y−δ
e−λεt2−1t2E

(∫
(a−Xεt ,b−X̄εt )c

{ϕ(v) + ‖ϕ‖LipU
ε
t } sε(v)sε(u−Xε

t − v)dv

)
︸ ︷︷ ︸

P̄ 2,2
t (u)

du.

In order to find a lower bound for A2(t), note that

ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nεt =2} ≥ ϕ(Xε
τ + Y1)1{τ1≤τ<τ2,Xεt+Y1+Y2∈Iδ(y),Nεt =2}

≥ ϕ(Xε
τ + Y1)1{Y1+Xεt≥b or X̄εt+Y1≤a}1{X̄εt<b,Xεt>a}1{X

ε
t+Y1+Y2∈Iδ(y),Nεt =2}.

Using the previous inequality and the lower bound ϕ(Xε
τ + Y1) ≥ ϕ(Y1)−‖ϕ‖LipU

ε
t together with the independence of

Nε, the Yi’s, and Xε, it follows that

A2(t) ≥ e−λεt (λεt)
2

2
E
(
{ϕ(Y1)− ‖ϕ‖LipU

ε
t }1{Y1∈(a−X̄εt ,b−Xεt )c,X̄εt<b,Xεt>a,Xεt+Y1+Y2∈Iδ(y)}

)
=

∫ y+δ

y−δ
e−λεt2−1t2E

(
1{X̄εt<b,Xεt>a}

∫
(a−X̄εt ,b−Xεt )c

{ϕ(v)− ‖ϕ‖LipU
ε
t } sε(v)sε(u−Xε

t − v)dv

)
︸ ︷︷ ︸

P 2
t (u)

du.

As it will be proved in Lemma A.1 below, P̄ 2,2
t (u) and P 2

t (u) are such that

lim
t→0

sup
u∈(a+δ0,b−δ0)

∣∣∣∣∣ 1

t2
P̄ 2,2
t (u)− 1

2

∫
(a,b)c

ϕ(v)sε(v)sε(u− v)dv

∣∣∣∣∣ = 0, (A.13)

lim
t→0

sup
u∈(a+δ0,b−δ0)

∣∣∣∣∣ 1

t2
P 2
t (u)− 1

2

∫
(a,b)c

ϕ(v)sε(v)sε(u− v)dv

∣∣∣∣∣ = 0. (A.14)

2Here and below we use the convention (x, y) = ∅ and (x, y)c = (−∞,∞) for x > y.
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Using (A.9), (A.14) and the corresponding bounds for P̄ 2,1
t (u) and P̄ 2,3

t (u), it follows that the nonnegative function
P 2
t (u) defined in (A.3) is such that

lim
t→0

sup
u∈(a+δ0,b−δ0)

∣∣∣∣∣ 1

t2
P 2
t (u)− 1

2

∫
(a,b)c

ϕ(v)sε(v)sε(u− v)dv

∣∣∣∣∣ = 0. (A.15)

(4) Three or more big jumps. As before, we have the following bound

0 ≤ E
(
ϕ(Xτ )1{τ≤t,Xt∈Iδ(y),Nεt =n}

)
≤ ‖ϕ‖∞E

(
1{Xεt+

∑n
i=1 Yi∈Iδ(y),Nεt =n}

)
= ‖ϕ‖∞P(Nε

t = n)

∫ y+δ

y−δ
E (s∗nε (u−Xε

t )) du,

Using the previous inequality and (A.3), we have

A3(t) =

∫ y+δ

y−δ
P 3
t (u)du ≤

∫ y+δ

y−δ

[ ∞∑
n=3

e−λεt
tn

n!
‖ϕ‖∞E (s∗nε (u−Xε

t ))

]
du =:

∫ y+δ

y−δ
P̄ 3
t (u)du.

Since ‖s∗nε ‖∞ ≤ λn−1
ε aε,

sup
u
P̄ 3
t (u) ≤ e−λεtaε‖ϕ‖∞

∞∑
n=3

tn

n!
λn−1
ε ≤ C(ε)t3, (A.16)

for some constant C(ε) <∞, and we conclude that 0 ≤ P 3
t (u) ≤ C(ε)t3 for L-a.e. u.

Putting the four previous steps together, we conclude that E
(
ϕ(Xτ )1{τ≤t,Xt∈(y−δ,y+δ)}

)
=
∫ y+δ

y−δ Pt(u)du, for a function

Pt(u) such that

lim
t→0

sup
u∈(a+δ0,b−δ0)

∣∣∣∣∣ 1

t2
Pt(u)− 1

2

∫
(a,b)c

ϕ(v)sε(v)sε(u− v)dv

∣∣∣∣∣ = 0.

Finally, it is easy to see that for any u ∈ (a+ δ0, b− δ0) and a < 0 < b, there exists an ε0 > 0 small enough such that∫
(a,b)c

ϕ(v)sε(v)sε(u− v)dv =
∫

(a,b)c
ϕ(v)s(v)s(u− v)dv, for all 0 < ε < ε0. This concludes the proof. �

Lemma A.1. Verification of (A.13) and (A.14).

Proof. Let 0 < ε < 1 and Mε
t := Xε

t − µεt be the martingale component of Xε. We shall analyze the expressions
appearing inside the absolute values on the right hand side of equations (A.13) and (A.14). Define the random intervals
Ī := (a−Xε

t , b− X̄ε
t ), I := (a− X̄ε

t , b−X
ε
t ), and the corresponding limiting interval J = (a, b), under the convention

(x, y) = ∅ if y < x. Denote

D1
t (u) = E

(∫
Īc
{ϕ(v) + ‖ϕ‖LipU

ε
t } sε(v)sε(u−Xε

t − v)dv

)
−
∫
Jc
ϕ(v)sε(v)sε(u− v)dv,

D2
t (u) = E

(
1{X̄εt<b,Xεt>a}

∫
Ic
{ϕ(v)− ‖ϕ‖LipU

ε
t } sε(v)sε(u−Xε

t − v)dv

)
−
∫
Jc
ϕ(v)sε(v)sε(u− v)dv.

Let us first analyze D1
t . Clearly,

D1
t (u) = ‖ϕ‖Lip E

(
Uεt

∫
Īc
sε(v)sε(u−Xε

t − v)dv

)
+ E

(∫
Īc\Jc

ϕ(v)sε(v)sε(u−Xε
t − v)dv

)
+ E

(∫
Jc
ϕ(v)sε(v)[sε(u−Xε

t − v)− sε(u− v)]dv

)
,

and, therefore, using that Īc \ Jc ⊂ (a, a−Xε
t ) ∪ (b− X̄ε

t , b), under the convention (−∞,−∞) = (∞,∞) = ∅,

|D1
t (u)| ≤ aελε‖ϕ‖LipEUεt + a2

ε‖ϕ‖∞E(X̄ε
t −X

ε
t ) + λε‖ϕ‖∞‖s′ε‖∞E|Xε

t |
≤ (aελε‖ϕ‖Lip + 2‖ϕ‖∞a2

ε)
(
E sup
s≤t
|Mε

s |+ |µε|t
)

+ ‖ϕ‖∞λε‖s′ε‖∞ (E|Mε
t |+ |µε|t)
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Using the trivial inequalities (E sups≤t |Mε
s |)2 ≤ E sups≤t(M

ε
s )2 and (E|Mε

s |)2 ≤ E(Mε
s )2, together with Doob’s in-

equality, we then get the bound∣∣D1
t (u)

∣∣ ≤ [2aελε‖ϕ‖Lip + 4‖ϕ‖∞a2
ε + ‖ϕ‖∞λε‖s′ε‖∞

]
σεt

1/2

+
[
aελε‖ϕ‖Lip + 2‖ϕ‖∞a2

ε + ‖ϕ‖∞λε‖s′ε‖∞
]
|µε|t, (A.17)

where σ2
ε := σ2 +

∫
c̄ε(x)x2ν(dx). For D2

t (u), note that

D2
t (u) = −E

(
1{X̄εt≥b or Xεt≤a}

∫
Ic
ϕ(v)sε(v)sε(u−Xε

t − v)dv

)
+ ‖ϕ‖LipE

(
1{X̄εt<b,Xεt>a}U

ε
t

∫
Ic
sε(v)sε(u−Xε

t − v)dv

)
+ E

(∫
Ic
ϕ(v)sε(v)sε(u−Xε

t − v)dv

)
−
∫
Jc
ϕ(v)sε(v)sε(u− v)dv.

Defining c = |a| ∧ b and following the same steps as above, it is easy to verify that |D2
t (u)| admits the following upper

bound: ∣∣D2
t (u)

∣∣ ≤ ‖ϕ‖∞λεaεP(Uεt ≥ c) + aελε‖ϕ‖LipEUεt + 2a2
ε‖ϕ‖∞EUεt + λε‖ϕ‖∞‖s′ε‖∞E|Xε

t |
≤ ‖ϕ‖∞λεaεC1(c, ε)t+

[
2aελε‖ϕ‖Lip + 4‖ϕ‖∞a2

ε + ‖ϕ‖∞λε‖s′ε‖∞
]
σεt

1/2

+
[
aελε‖ϕ‖Lip + 2‖ϕ‖∞a2

ε + ‖ϕ‖∞λε‖s′ε‖∞
]
|µε|t, (A.18)

where we had used the tail probability bound in (2.4).

A.2 Proof of Proposition 2.4

We use the notation introduced at the beginning of Section A.1 above and, as before, we assume without loss of
generality that ϕ is nonnegative. As it was done in (A.2), by partitioning the space into the different values that Nε

t

can take on, we can decompose E(ϕ(Xτ )1{Xt∈Iδ(y)}) into three terms: no big jumps, one big jump, and two or more
big jumps. These terms can in turn be expressed as integrals of the form (A.3) using a procedure similar to (A.4). The
term with no big jumps is such that∫ y+δ

y−δ
P 0
t (u)du := E(ϕ(Xτ )1{Xt∈Iδ(y),Nεt =0}) ≤ ‖ϕ‖∞P (Xε

t ∈ Iδ(y), Nε
t = 0) =

∫ y+δ

y−δ
e−λεt‖ϕ‖∞fεt (u)du,

which yields an upper bound for P 0
t (u) of the form P̄ 0

t (u) := e−λεt‖ϕ‖∞fεt (u). Using (2.4-ii), we can further upper
bound P̄ 0

t (u) by ‖ϕ‖∞c2(c, ε)t2 uniformly in (a− δ0, b+ δ0)c. The term with two or more big jumps can be bounded
similarly to the term with three or more big jumps in the previous section. Concretely, this term satisfies∫ y+δ

y−δ
P 2
t (u)du := E

(
ϕ(Xτ )1{Xt∈Iδ(y),Nεt≥2}

)
≤
∫ y+δ

y−δ

[ ∞∑
n=2

e−λεt
tn

n!
‖ϕ‖∞E (s∗nε (u−Xε

t ))

]
du =:

∫ y+δ

y−δ
P̄ 2
t (u)du,

and, using that ‖s∗nε ‖∞ ≤ λn−1
ε aε, we can further upper bound P̄ 2

t (u) by C(ε)t2 for a constant C(ε) < ∞. The term
with exactly one jump is decomposed as follows:∫ y+δ

y−δ
P 1
t (u)du := E

(
ϕ(Xτ )1{Xt∈Iδ(y),Nεt =1}

)
= E

(
ϕ(Xε

τ )1{Xt∈Iδ(y);τ<τ1;Nεt =1}
)

+ E
(
ϕ(Xτ )1{Xt∈Iδ(y);τ≥τ1;Nεt =1}

)
,

where τ1 is the time of the first big jump. Out of these two terms, the first one satisfies

E
(
ϕ(Xε

τ )1{Xt∈Iδ(y);τ<τ1;Nεt =1}
)
≤ ‖ϕ‖∞P[∃s ∈ [0, t] : Xε

s /∈ D;Xε
t + Y1 ∈ Iδ;Nε

t = 1]

= e−λεtλεt‖ϕ‖∞P[∃s ∈ [0, t] : Xε
s /∈ D;Xε

t + Y1 ∈ Iδ]

≤
∫ y+δ

y−δ
e−λεtt‖ϕ‖∞E

[
1Uεt≥csε(u−X

ε
t )
]
du,
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where the integrand P̄ 1,1
t (u) := e−λεtt‖ϕ‖∞E

[
1Uεt≥csε(u−X

ε
t )
]

is uniformly bounded by ‖ϕ‖∞aεC1(c, ε)t2. As for

the second term E
(
ϕ(Xτ )1{Xt∈Iδ(y);τ≥τ1;Nεt =1}

)
= E

(
ϕ(Xε

τ + Y1)1{Xεt+Y1∈Iδ(y);τ≥τ1;Nεt =1}
)
, it can be bounded from

above by

E(ϕ(Y1)1{Xεt+Y1∈Iδ(y);Nεt =1}) + ‖ϕ‖LipE(Uεt 1{Xεt+Y1∈Iδ(y);Nεt =1})

=

∫ y+δ

y−δ

{
e−λεttE [ϕ(u−Xε

t )sε(u−Xε
t )] + e−λεtt‖ϕ‖LipE [Uεt sε(u−Xε

t )]
}
du

≤
∫ y+δ

y−δ
{tϕ(u)sε(u) + t(‖ϕ‖Lipaε + ‖ϕ‖∞‖s′ε‖∞)E[|Xε

t |] + t‖ϕ‖LipaεE[Uεt ]} du.

Similarly, this can be bounded from below by

E(ϕ(Y1)1{Xεt+Y1∈Iδ(y);X̄εt<b;X
ε
t>a;Nεt =1})− ‖ϕ‖LipE(Uεt 1{Xεt+Y1∈Iδ(y);Nεt =1})

=

∫ y+δ

y−δ

{
e−λεttE(ϕ(u−Xε

t )sε(u−Xε
t )1{X̄εt<b,Xεt>a})− e

−λεtt‖ϕ‖LipE(Uεt sε(u−Xε
t ))
}
du

≥
∫ y+δ

y−δ

{
tϕ(u)sε(u)− ‖ϕ‖∞aελεt2 − t(‖ϕ‖Lipaε + ‖ϕ‖∞‖s′ε‖∞)E[|Xε

t |]− t‖ϕ‖LipaεE[Uεt ]− t‖ϕ‖∞aεC1(c, ε)t
}
du.

To conclude, we estimate E[|Xε
t |] and E[Uεt ] as in the proof of Lemma A.1 above. �

B Proofs of Section 3

In this part, we provide the building blocks to develop an upper bound for the remainder Rt(u) appearing in (2.5).

B.1 Proof of Lemma 3.1

Let us first assume that µ ≥ 0 so that Xt := Mt + µt is a submartingale. By Doob’s inequality, for all c > 0,

P
(

sup
s≤t

Xs ≥ η
)

= P
(

sup
s≤t

ecXs ≥ ecη
)
≤ E[ecXt ]

ecη
= etψ(c)−cη (B.1)

with ψ(c) = µc+ σ2c2

2 +
∫
|z|≤ε(e

cz − 1− cz)ν(dz). Minimizing the right-hand side over all c > 0, we get, as in [38] (see

p. 87 therein),

inf
c>0

etψ(c)−cη = exp

(
−t
∫ η/t

ψ′(0)

τ(z)dz

)
= exp

(
−t
∫ η/t

µ

τ(z)dz

)
, (B.2)

where we are taking t < η/µ and τ : [0,∞)→ R is the inverse function of

ψ′(x) = µ+ σ2x+

∫
|z|≤ε

z(ezx − 1)ν(dz). (B.3)

As in [25], note that, for x ≥ 0,

0 ≤
∫
|z|≤ε

z(ezx − 1)ν(dz) ≤
∫
|z|≤ε

|z|(e|z|x − 1)ν(dz) ≤
∫
|z|≤ε

|z|
∞∑
k=1

(|z|x)k

k!
ν(dz)

≤
∫
|z|≤ε

|z|2ν(dz)

∞∑
k=1

εk−1xk

k!
=

∫
|z|≤ε

|z|2ν(dz)
1

ε
(eεx − 1) .
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From the previous inequality, for x ≥ 0,

0 ≤ ψ′(x) ≤ µ+ σ2x+

∫
|z|≤ε

|z|2ν(dz)
1

ε
(eεx − 1) ≤ µ+

eεx − 1

ε
σ2
ε ,

where we used the fact that σ2
ε = σ2 +

∫
|z|≤ε |z|

2ν(dz). This implies that

τ(z) ≥ 1

ε
log

{
1 +

z − µ
σ2
ε

ε

}
,

and therefore, substituting this into (B.1) and (B.2) and using that v ln(v) ≤ (1 + v) ln(1 + v) and e−v log v ≤ ee
−1

for
all v > 0, we have

P
[
sup
s≤t

Xs ≥ η
]
≤ exp

{
− tσ

2
ε

ε2

∫ ε(η−µt)
tσ2
ε

0

log(1 + s)ds

}

= exp

{
− tσ

2
ε

ε2

((
1 +

ε(η − µt)
tσ2
ε

)
log

(
1 +

ε(η − µt)
tσ2
ε

)
− ε(η − µt)

tσ2
ε

)}
≤ exp

{
−η − µt

ε
log

(
ε(η − µt)
eσ2
εt

)}
≤ t

η
ε e

µ
ε e
−1

exp

{
−η − µt

ε
log

(
ε(η − µt)
eσ2
ε

)}
,

The above inequality proves the statement (2-i) for the case µ = 0. Next, it is easy to check that the function
u → (u/ε) log(εu/eσ2

ε) is strictly convex in (0,∞) and reaches its global minimum value of −σ2
ε/ε

2 at u = σ2
ε/ε.

Hence, whenever η − µt ≥ 0,

P
[
sup
s≤t

Xs ≥ η
]
≤ t

η
ε e

µ
ε e
−1

e
σ2
ε
ε2 ,

which proves the statement (1) for µ ≥ 0. Also, if µ > 0, t < η/µ, and η < σ2
ε/ε, we have that

exp

{
−η − µt

ε
log

(
ε(η − µt)
eσ2
ε

)}
≤ sup

0≤u≤η
exp

{
−u
ε

log

(
εu

eσ2
ε

)}
= e
− ηε log

(
εη

eσ2
ε

)
=

(
eσ2
ε

εη

) η
ε

,

which proves the statement (2-ii). Finally, we consider the case µ < 0. In that case, obviously, Mt + µt ≤Mt and

P
(

sup
s≤t

(Ms + µs) ≥ η
)
≤ P

(
sup
s≤t

Ms ≥ η
)
≤ t

η
ε

(
eσ2
ε

εη

) η
ε

≤ t
η
ε e

σ2
ε
ε2 ,

where in the second inequality we used the case (2-i) with µ = 0 that was proved above. The previous inequality proves
the bounds (2-i) and (1) for µ < 0. �.

B.2 Proof of Theorem 3.2.

To prove the estimate (3.11) for the remainder Rt(y), we analyze each of the four terms in (A.2) contributing to it.

(No big jump) The first component of the error is due to P 0
t which, as seen in (A.5), can be bounded by

e(0)(0, y, t) := e−λεt‖ϕ‖∞ sup
0<u≤t

sup
x∈(a,b)c

fεu(y − x) = e−λεt‖ϕ‖∞ sup
0<u≤t

sup
z∈(y−b,y−a)c

fεu(z).

Next, recalling the notation ∆y = (b−y)∧(y−a) > 0 and employing our hypothesis that Xε
t has unimodal distribution,

we can further apply the bound (3.10) to get

e(0)(0, y, t) ≤ e−λεt 4‖ϕ‖∞
∆y

sup
0<u≤t

P
[
|Xε

u| ≥
∆y

2

]
≤ 8e−λεt‖ϕ‖∞

∆y
C(∆y/4, ε)t

∆y
4ε ,

for t < t0(ε,∆y/2) ∧ t1(ε,∆y/2).
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(One big jump) There are two sub-components to the error in this case. The first is due to P̄ 1,1 in (A.6). This term
can be bounded by

e(1,1)(0, y, t) := ‖ϕ‖∞e−λεttE
(
1{Uεt≥c}sε(y −X

ε
t )
)
≤ ‖ϕ‖∞e−λεttaεP(Uεt ≥ c) ≤ 2‖ϕ‖∞e−λεtaεC(c/2, ε)t1+ c

2ε ,

for t < t0(ε, c/2). The other sub-component is due to P̄ 1,2 in (A.7), which can be bounded, for t < t0(ε,∆y/2), as
follows:

e(1,2)(0, y, t) := ‖ϕ‖∞e−λεttE
(
1{X̄εt−Xεt+y≥b orXεt−Xεt+y≤a}sε(y −Xε

t )
)

≤ ‖ϕ‖∞e−λεttaεP
(

sup
u≤t
|Xε

u| ≥
∆y

2

)
≤ 2‖ϕ‖∞e−λεtaεC(∆y/4, ε)t

1+
∆y
4ε .

(Three or more big jumps) This component can be bounded as in (A.16):

e(3)(0, y, t) := ‖ϕ‖∞e−λεt
∞∑
n=3

tn

n!
E (s∗nε (u−Xε

t )) ≤ ‖ϕ‖∞aελ−1
ε

(
1− e−λεt[1 + λεt+ (λεt)

2/2]
)
. (B.4)

(Two big jumps) There are three sub-components to the error in this case. From (A.10),

e(2,1)(0, y, t) := ‖ϕ‖∞e−λεt
t2

2

∫ ∞
−∞

sε(v)E
{
1{Uεt≥c}sε(y −X

ε
t − v)

}
dv ≤ ‖ϕ‖∞e−λεtaελεC(c/2, ε)t2+ c

2ε , (B.5)

for t < t0(ε, c). Similarly, from (A.11),

e(2,3)(0, y, t) := ‖ϕ‖∞e−λεt
t2

2

∫ ∞
−∞

sε(v)E
{

1{X̄εt−Xεt+y≥b orXεt−Xεt+y≤a}sε(y −Xε
t − v)

}
dv

≤ ‖ϕ‖∞e−λεt
t2

2
aελεP

(
sup
u≤t
|Xε

u| ≥
∆y

2

)
≤ ‖ϕ‖∞e−λεtaελεC(∆y/4, ε)t

2+
∆y
4ε , (B.6)

for t < t0(ε,∆y/2). Next, we consider the error due to the limits (A.13-A.14). These were bounded in Lemma A.1.
Hence, by taking the maximum of (A.17) and (A.18), after some simplification, we get the following expression for the
error term e(2,2)(0, y, t):

e−λεtt2
(
‖ϕ‖∞λεaεC(c/2, ε)t

c
2ε +

[
aελε‖ϕ‖Lip + 2‖ϕ‖∞a2

ε + ‖ϕ‖∞λε‖s′ε‖∞
]
(σεt

1/2 +
|µε|
2
t)

)
.

Finally, we also need to take into account the error due to approximating e−λεt t
2

2

∫
(a,b)c

ϕ(v)sε(v)sε(y − v)dv by

t2

2

∫
(a,b)c

ϕ(v)sε(v)sε(y − v)dv, which is of order ‖ϕ‖∞λ2
εaεt

3/2. Putting all the previous bounds together, we obtain

the overall bound (3.11). �

C Finding the estimate ef(0, y, t) for the Cauchy process

In this paragraph our aim is to find an explicit bound for the Cauchy process with Lévy density ν(x) = c
|x|2 (and no

drift), which is used in the numerical illustrations. For simplicity, we shall only consider the one-sided case (a = −∞).
Setting cε(x) = 1|x|>ε, we get µε = 0 for all ε, and the law of the process is symmetric, which means that t0(ε, η) =

t1(ε, η) = +∞ for all ε > 0 and η > 0. Moreover, σ2
ε = 2cε and Lemma 3.1 implies that P[sups≤tXt ≥ η] ≤ t

η
εC(η, ε)

and P[sups≤t |Xt| ≥ η] ≤ 2t
η
εC(η, ε) with C(η, ε) =

(
2ce
η

) η
ε

. The results of the above section can now be improved to

e(0)(0, y, t) ≤ ‖ϕ‖∞
4e−λεt

b− y
C(ε, (b− y)/2)t

b−y
2ε e(1,1)(0, y, t) ≤ ‖ϕ‖∞e−λεtaεC(ε, b)t1+ b

ε

e(1,2)(0, y, t) ≤ 2‖ϕ‖∞e−λεtaεC(ε, (b− y)/2)t1+ b−y
2ε , e(2,1)(0, y, t) ≤ ‖ϕ‖∞

2
e−λεtaελεC(b, ε)t2+ b

ε

e(2,3)(0, y, t) ≤ ‖ϕ‖∞e−λεtaελεC((b− y)/2, ε)t2+ b−y
2ε
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To estimate e(2,2) more precisely, let ε0 <
b−y−ε

2 ∧ (b− ε). Then,

|D1
t (y)| ≤ 2‖ϕ‖∞aελεP (Uεt ≥ ε0) + 2‖ϕ‖LipE

[
Uεt

∫ ∞
b

sε(v − X̄ε
t )sε(y − v + X̄ε

t −Xε
t )dv

]
+ ‖ϕ‖∞E

[
1Uεt<ε0

∫ ∞
b

(sε(v − X̄ε
t )sε(y − v + X̄ε

t −Xε
t )− sε(v)sε(y − v))dv

]
≤ 2aελε(‖ϕ‖∞P (Uεt ≥ ε0) + ‖ϕ‖LipE[Uεt ])− ‖ϕ‖∞E [Uεt ]

∫ ∞
b

s′ε(v − ε0)sε(y − v + 2ε0)dv

+ 2‖ϕ‖∞E [Uεt ]

∫ ∞
b

sε(v)s′ε(y − v +
b− y

2
)dv

≤ 2aελε(‖ϕ‖∞P (Uεt ≥ ε0) + ‖ϕ‖LipE[Uεt ]) + 2‖ϕ‖∞E [Uεt ] sε (b− ε0) sε (b− y − 2ε0) .

A similar argument shows that

|D2
t (y)| ≤ sε(b)λε(2‖ϕ‖LipE[Uεt ] + ‖ϕ‖∞P[X̄ε

t ≥ b]) + ‖ϕ‖∞E [Uεt ] sε (b) sε (b− y) ,

which means that the bound for |D1
t (y)| always dominates. Using the former bound, we finally find the following upper

bound for e2,2(0, y, t):

2‖ϕ‖∞e−λεtaελεC(ε0, ε)t
2+

ε0
ε + 2e−λεtt

5
2σε{sε (b− ε0) sε (b− y − 2ε0) ‖ϕ‖∞ + aελε‖ϕ‖Lip}.

To specialize the estimate e(3), we upper bound λnεP(X̄t ≥ b,Xt ∈ Iδ(y)|Nε
t = n) by

λnεP
(
X̄ε
t + max

0≤k≤n

k∑
i=1

Yi ≥ b,Xε
t +

n∑
i=1

Yi ∈ Iδ(t)
)
≤ λnε

n∑
k=0

P
(
X̄ε
t +

k∑
i=1

Yi ≥ b,Xε
t +

n∑
i=1

Yi ∈ Iδ(t)
)
.

The cases k = 0 and k = n are treated separately:

λnεP

(
X̄ε
t ≥ b,Xε

t +

n∑
i=1

Yi ∈ Iδ(t)

)
≤ δP

(
sup
u≤t

Xε
u ≥ b

)
sup
x
s∗nε (x) ≤ δC(b, ε)t

b
ε sup

x
s∗nε (x).

λnεP

(
X̄ε
t +

n∑
i=1

Yi ≥ b,Xε
t +

n∑
i=1

Yi ∈ Iδ(t)

)
≤ δP

(
X̄ε
t −Xε

t + y + δ ≥ b
)

sup
x
s∗nε (x) ≤ 2δC((b− y)/2, ε)t

b−y
2ε sup

x
s∗nε (x).

For 0 < k < n,

P

(
X̄ε
t +

k∑
i=1

Yi ≥ b,Xε
t +

n∑
i=1

Yi ∈ Iδ(t)

)
= E

[∫ y+δ

y

du

∫ ∞
b−X̄εt

dv s∗kε (v)s∗(n−k)
ε (u− v −Xε

t )

]

≤ δ sup
x
s∗nε (x)P (Uεt ≥ ε0) + δs̄∗kε (b− ε0)

∫ ∞
b

dv s̄∗(n−k)
ε (y − v + 2ε0 + δ)

where s̄ε is any function which is increasing on (−∞, 0), decreasing on (0,∞) and satisfies s̄ε(x) ≥ sε(x) for all x. For
the Cauchy process one can take

s̄ε(x) =
2c

x2 + ε2
so that s̄∗kε (x) =

1

π

(
2πc

ε

)k
εk

(εk)2 + x2
,

∫ ∞
b

s̄∗kε (v)dv =
1

π

(
2πc

ε

)k
arctan

εk

b
.

Assembling all the estimates together, we finally get

e(3)(0, y, t) ≤ ‖ϕ‖∞
6

aελ
2
εt

3(C(b, ε)t
b
ε + 2C((b− y)/2, ε)t

b−y
2ε + 2C(ε0, ε)t

ε0
ε ) +

16πc3t3‖ϕ‖∞
3ε(b− ε0)2(b− y − 2ε0)

e
2πct
ε −λεt.

The above estimates satisfy condition (2.6) for ε < b−y
4 ∧ b. In the numerical examples discussed in the paper we have

taken ε = b−y
8 ∧

b
2 and ε0 = b−y

4 ∧
b
2 .
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[11] F. Comte and V. Genon-Catalot. Estimation for Lévy processes from high-frequency data within a long time
interval. To appear in Annals of Statistics, 2011.

[12] R. Cont and P. Tankov. Financial modelling with Jump Processes. CRC Press / Chapman & Hall, 2004.

[13] J. Corcuera, J. De Spiegeleer, A. Ferreiro-Castilla, A.E. Kyprianou, D. Madan, and W. Schoutens. Efficient pricing
of contingent convertibles under smile conform models. Preprint, available from www.ssrn.com, 2011.

[14] L. Devroye. Non-Uniform Random Variate Generation Springer-Verlag, 1986.

[15] A. Dzougoutov, K-S. Moon, E. Von Schwerin, A. Szepessy, and R. Tempone. Adaptive Monte Carlo algorithms
for stopped diffusion. Lect. Notes Comput. Sci. Eng., 44:59–88, 2005. In Multiscale methods in science and
engineering, B. Enguist, P. Lötstedt, and O. Runborg (eds.). Springer.

[16] F. Fang, H. Jonsson, W. Schoutens, and C. Oosterlee. Fast valuation and calibration of credit default swaps under
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[21] J.E. Figueroa-López, Y. Luo, and C. Ouyang. Small-time expansions for local jump-diffusion models with infinite
jump activity. Preprint, 2011. Available at arXiv:1108.3386v2 [math.PR].

26
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