Jena, April 1, 2011

Small Transaction Costs, Absence of Arbitrage and Consistent Price Systems

Yuri Kabanov

Laboratoire de Mathématiques, Université de Franche-Comté

April 1, 2011

Introduction

For the discrete-time setting there is a plethora of criteria for various types of arbitrage, see $\mathrm{Ch} .3^{1}$. For continuous-time models only a few results on the no-arbitrage criteria are available. In a recent paper ${ }^{2}$ it was established an interesting result in this direction. A question on sufficient and necessary conditions for the absence of arbitrage was formulated not for a single model but for a whole family of them. In GRS it was considered a family of 2-asset models with a fixed continuous price process and constant transaction costs tending to zero. The no-arbitrage criterion is very simple : the $N A^{w}$-property holds for each model if and only if each model admits a consistent price system.

[^0]
Generalization, 1

Let $K^{\varepsilon *}:=\mathbf{R}_{+}\left(\mathbf{1}+U_{\varepsilon}\right)=$ cone $\left(\mathbf{1}+U_{\varepsilon}\right)$, where $\left.\left.U_{\varepsilon}:=\left\{x \in \mathbf{R}^{d}: \max _{i}\left|x^{i}\right| \leq \varepsilon\right\}, \varepsilon \in\right] 0,1\right]$.
That is, $K^{\varepsilon *}$ is the closed convex cone in \mathbf{R}^{d} generated by the max-norm ball of radius ε with center at $\mathbf{1}:=(1, \ldots, 1)$. We denote by K^{ε} the (positive) dual cone of $K^{\varepsilon *}$. Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$ be a stochastic basis and let $S=\left(S_{t}\right)_{t \leq T}$ be a continuous semimartingale with strictly positive components. We consider the linear controlled stochastic equation

$$
d V_{t}^{i}=V_{t-}^{i} d Y_{t}^{i}+d B_{t}^{i}, \quad V_{0}^{i}=0, \quad i \leq d
$$

where Y^{i} is the stochastic logarithm of S^{i}, i.e. $d Y_{t}^{i}=d S_{t}^{i} / S_{t}^{i}$, $Y_{0}^{i}=1$, and the strategy B is a predictable càdlàg process of bounded variation with $\dot{B} \in-K^{\varepsilon}$. The notation B stands for (a measurable version of) the Radon-Nikodym derivative of B with respect to $\|B\|$, the total variation process of B.

Generalization, 2

A strategy B is ε-admissible if for the process $V=V^{B}$ there is a constant κ such that $V_{t}+\kappa S_{t} \in K^{\varepsilon}$ for all $t \leq T$. The set of processes V corresponding to ε-admissible strategies is denoted by $A_{0}^{T \varepsilon}$ while the notation $A_{0}^{T \varepsilon}(T)$ is reserved for the set of random variables V_{T} where $V \in A_{0}^{T \varepsilon}$. Using the random operator

$$
\phi_{t}:\left(x^{1}, \ldots, x^{d}\right) \mapsto\left(x^{1} / S_{t}^{1}, \ldots, x^{d} / S_{t}^{d}\right)
$$

define the random cone $\widehat{K}_{t}^{\varepsilon}=\phi_{t} K^{\varepsilon}$ with the dual $\widehat{K}_{t}^{\varepsilon *}=\phi_{t}^{-1} K^{\varepsilon *}$. Put $\widehat{V}_{t}=\phi_{t} V_{t}$. We denote by $\mathcal{M}_{0}^{T}\left(\widehat{K}^{\varepsilon *} \backslash\{0\}\right)$ the set of martingales Z such that $Z_{t} \in \widehat{K}_{t}^{\varepsilon *} \backslash\{0\}$.

Generalization: Main Theorem

Theorem
We have :

$$
A_{0}^{T \varepsilon}(T) \cap L^{0}\left(\mathbf{R}_{+}^{d}, \mathcal{F}_{T}\right)=\{0\} \quad \forall \varepsilon \Leftrightarrow \mathcal{M}_{0}^{T}\left(\widehat{K}^{\varepsilon *} \backslash\{0\}\right) \neq \emptyset \quad \forall \varepsilon
$$

Comments on financial interpretation.

For $d=2$ our model is the same as of GRS. The only difference is that we use the "old-fashion" definition of the value processes but it is not essential. In the financial interpretation the cones K^{ε} and $\widehat{K}^{\varepsilon}$ are the solvency regions in the terms of the numéraire and physical units, respectively, V and \widehat{V} are value processes, elements of $\mathcal{M}_{0}^{T}\left(\widehat{K}^{\varepsilon *} \backslash\{0\}\right)$ are ε-consistent price systems, etc. The condition " $A_{0}^{T \varepsilon}(T) \cap L^{0}\left(\mathbf{R}_{+}^{d}, \mathcal{F}_{T}\right)=\{0\}$ for all ε " can be referred to as the universal $N A^{w}$-property.

Applications to Financial Context

In the case $d>2$ we have no financial interpretation for the considered objects. Nevertheless, our result can be applied to a wide class of financially meaningful models, even with varying transaction costs. To see this, let us consider the family of models of currency markets with the solvency cones

$$
K\left(\Lambda^{\varepsilon}\right)=\operatorname{cone}\left\{\left(1+\lambda_{i j}^{\varepsilon}\right) e_{i}-e_{j}, e_{i}, 1 \leq i, j \leq d\right\} .
$$

Suppose that for every $\varepsilon \in] 0,1]$ there is $\left.\left.\varepsilon^{\prime} \in\right] 0,1\right]$ such that $K\left(\Lambda^{\varepsilon}\right) \subseteq K^{\varepsilon^{\prime}}$ and, vice versa, for any $\left.\left.\delta \in\right] 0,1\right]$ there is $\left.\left.\delta^{\prime} \in\right] 0,1\right]$ such that $K^{\delta} \subseteq K\left(\Lambda^{\delta^{\prime}}\right)$. It is obvious that under this hypothesis Theorem ensures that for the currency markets the universal $N A^{w}$-property holds iif an ε-consistent price system does exist for every $\varepsilon>0$. The hypothesis is fulfilled if $\Lambda^{\varepsilon} \rightarrow 0$ and the duals $K^{*}\left(\Lambda^{\varepsilon}\right)$ have interiors containing 1, e.g., if all $\lambda_{i j}^{\varepsilon}=\varepsilon$.

Application to a Model with Efficient Friction

Proposition

Suppose that $\Lambda^{\varepsilon} \rightarrow 0$ and $\operatorname{int} K^{*}\left(\Lambda^{\varepsilon}\right) \neq \emptyset$ for all $\left.\left.\varepsilon \in\right] 0,1\right]$. Then
$\left.\left.\left.\left.N A^{w}\left(\Lambda^{\varepsilon}\right) \quad \forall \varepsilon \in\right] 0,1\right] \quad \Leftrightarrow \quad \mathcal{M}_{0}^{T}\left(\widehat{K}^{*}\left(\Lambda^{\varepsilon}\right) \backslash\{0\}\right) \neq \emptyset \quad \forall \varepsilon \in\right] 0,1\right]$.
Proof. (\Rightarrow) Let $\delta \in] 0,1]$ and $w \in K^{*}\left(\Lambda^{\delta}\right)$. Then $w^{i} / w^{j} \leq 1+\lambda_{i j}^{\delta} \rightarrow 1$ as $\delta \rightarrow 0$. It follows that $K^{*}\left(\Lambda^{\delta^{\prime}}\right) \subseteq K^{\delta *}$ for some $\left.\left.\delta^{\prime} \in\right] 0,1\right]$. For the primary cones the inclusion is opposite.
Thus, the assumed no-arbitrage property implies the no-arbitrage property as in Theorem. Take $\varepsilon \in] 0,1]$ and a vector $v \in \operatorname{int} K^{*}\left(\Lambda^{\varepsilon}\right) \cap U_{1}$. Put

$$
\psi_{v}:\left(x^{1}, \ldots, x^{d}\right) \mapsto\left(v^{1} x^{1}, \ldots, v^{d} x^{d}\right) .
$$

Choose $\delta \in] 0,1]$ such that $\psi_{v}\left(1+U_{\delta}\right) \subset K^{*}\left(\Lambda^{\varepsilon}\right)$. By Theorem there is $Z \in \mathcal{M}_{0}^{T}\left(\widehat{K}^{\delta *} \backslash\{0\}\right)$. The process $\psi_{v} Z$ is a martingale. Since $\psi_{v} Z=\phi \psi_{v} \phi^{-1} Z$, it is an element of $\mathcal{M}_{0}^{T}\left(\widehat{K}^{*}\left(\Lambda^{\varepsilon}\right) \backslash\{0\}\right)$.

Strategy of the Proof

To prove the nontrivial implication (\Rightarrow) we exploit the fact that the universal $N A^{w}$-property holds for any imbedded discrete-time model. Using the criterion for $N A^{r}$-property we deduce from here the existence of a "universal chain", that is a sequence of stopping times τ_{n} increasing stationary to T and such that $\mathcal{M}_{0}^{\tau_{n}}\left(\widehat{K}^{\varepsilon *} \backslash\{0\}\right) \neq \emptyset$ for all $\left.\left.\varepsilon \in\right] 0,1\right]$ and $n \geq 1$. In an analogy with GRS, we relate with this "universal chain" functions $F^{i}(\varepsilon), i \leq d$, and check that there is, for each i, an alternative : either $F^{i}=0$, or $F^{i}(0+)=1$. This is the most involved part of the proof. If all $F^{i}=0$, the sets $\mathcal{M}_{0}^{\tau_{n}}\left(\widehat{K}^{\varepsilon *} \backslash\{0\}\right)$ are non-empty and we conclude. If there is a coordinate for which $F^{i}(0+)=1$, there exists a strict arbitrage opportunity.

Universal Discrete-Time $N A^{w}$-property

A continuous-time model has universal discrete-time $N A^{w}$-property if for any $\varepsilon>0, N \geq 2$, and stopping times $\sigma_{1}, \ldots, \sigma_{N} \in \mathcal{T}_{T}$, such that $\sigma_{n}<\sigma_{n+1}$ on the set $\left\{\sigma_{n}<T\right\}$ we have that

$$
L^{0}\left(\mathbf{R}_{+}^{d}, \mathcal{F}_{T}\right) \cap \sum_{n \leq N} L^{0}\left(-\phi_{\sigma_{n}} K^{\varepsilon}, \mathcal{F}_{\sigma_{n}}\right)=\{0\} .
$$

Proposition

If the universal discrete-time $N A^{w}$-property holds, then there are strictly increasing stopping times τ_{n} with $P\left(\tau_{n}<T\right) \rightarrow 0$ as $n \rightarrow \infty$ such that $\mathcal{M}_{0}^{\tau_{N}}\left(\widehat{K}^{\varepsilon *} \backslash\{0\}\right) \neq \emptyset$ for every N and ε.
Proof. Define recursively the stopping times : $\sigma_{0}=0$,
$\sigma_{n}=\sigma_{n}^{\varepsilon}:=\inf \left\{t \geq \sigma_{n-1}: \max _{i \leq d}\left|\ln S_{t}^{i}-\ln S_{\sigma_{n-1}}^{i}\right| \geq \ln (1+\varepsilon / 8)\right\}, \quad n \geq 1$.

Lemma

For any integer $N \geq 1$ there is $Z \in \mathcal{M}_{0}^{\sigma_{N}}\left(\widehat{K}^{\varepsilon *} \backslash\{0\}\right)$.
Proof. To avoid new notation we assume wlg that $S=S^{\sigma_{N}}$. Let $X_{n}:=S_{\sigma_{n}}$. By our assumption and in virtue of the criterion for the $N A^{r}$-property there is a d.-t. martingale $\left(M_{n}\right)_{n \leq N}$ with $M_{n} \in L^{\infty}\left(\phi_{\sigma_{n}}^{-1} K^{\varepsilon / 4 *} \backslash\{0\}\right)$. Put $Z_{t}:=E\left(M_{N} \mid \overline{\mathcal{F}}_{t}\right)$. Let us check that $Z \in \mathcal{M}_{0}^{\sigma_{N}}\left(\widehat{K}^{\varepsilon *} \backslash\{0\}\right)$. On the set $\left\{t \in\left[\sigma_{n-1}, \sigma_{n}\right]\right\}$

$$
\tilde{Z}_{t}:=\phi_{t} Z_{t}=E\left(\phi_{t} \phi_{\sigma_{n}}^{-1} \tilde{Z}_{\sigma_{n}} \mid \mathcal{F}_{t}\right)
$$

where $\tilde{Z}_{\sigma_{n}}:=\phi_{\sigma_{n}} Z_{\sigma_{n}}$. Note that

$$
(1+\varepsilon / 8)^{-2} \leq S_{t}^{i} / S_{\sigma_{n}}^{i}=\left(S_{t}^{i} / S_{\sigma_{n-1}}^{i}\right)\left(S_{\sigma_{n-1}}^{i} / S_{\sigma_{n}}^{i}\right) \leq(1+\varepsilon / 8)^{2}
$$

Therefore,

$$
(1+\varepsilon / 8)^{-2} E\left(\tilde{Z}_{\sigma_{n}}^{i} \mid \mathcal{F}_{t}\right) \leq \tilde{Z}_{t}^{i} \leq(1+\varepsilon / 8)^{2} E\left(\tilde{Z}_{\sigma_{n}}^{i} \mid \mathcal{F}_{t}\right)
$$

But $\left.E\left(\tilde{Z}_{\sigma_{n}} \mid \mathcal{F}_{t}\right) \in \operatorname{cone}\left(\mathbf{1}+U_{\varepsilon / 4}\right) \backslash\{0\}\right)$, i.e. the components of $E\left(\tilde{Z}_{\sigma_{n}} \mid \mathcal{F}_{t}\right)$ take values in the interval with the extremities $\lambda(1 \pm \varepsilon / 4)$ where $\lambda>0$ depends on n and ω. Thus,

$$
1-\varepsilon \leq(1+\varepsilon / 8)^{-2}(1-\varepsilon / 4) \leq \tilde{Z}_{t}^{i} / \lambda \leq(1+\varepsilon / 8)^{2}(1+\varepsilon / 4) \leq 1+\varepsilon
$$

This implies the assertion of the lemma.
The end of proof is as in GRS. Take a sequence of $\varepsilon_{k} \downarrow 0$. For each $n \geq 1$ we find an integer $N_{n, k}$ such that

$$
P\left(\sigma_{N_{n, k}}^{\varepsilon_{k}}<T\right)<2^{-(n+k)}
$$

WIg we assume that for each k the sequence $\left(N_{n, k}\right)_{n \geq 1}$ is increasing. The increasing sequence of stopping times $\tau_{n}:=\min _{k \geq 1} \sigma_{N_{n, k}}^{\varepsilon_{k}}$ converges to T stationary : $P\left(\tau_{n}<T\right) \leq 2^{-n}$. Applying the lemma with ε_{k} we obtain that for the process S stopped at $\sigma_{N_{n, k}}^{\varepsilon_{k}}$ there is an ε_{k}-consistent price system. The latter, being stopped at τ_{n}, is an ε_{k}-consistent price system for $S^{\tau_{n}}$.

Properties of Universal Chains

We assume that $P\left(\tau_{n}<T\right)>0$ for all n.
Let $\mathcal{T}_{T} \neq \emptyset$ be the set of stopping times σ such that $P(\sigma<T)>0$ and, for some n, the inequality $\sigma \leq \tau_{n}$ holds on $\{\sigma<T\}$. Let $\sigma \in \mathcal{T}_{T}$ and let n be such that $\sigma \leq \tau_{n}$ holds on $\{\sigma<T\}$. We denote by $\mathcal{M}^{i}(\sigma, \varepsilon, n)$ the set of processes Z such that :

1) $Z=0$ on $\{\sigma=T\}$;
2) Z is a martingale on $\left[\sigma, \tau_{n}\right]$, i.e. $E\left(Z_{\tau_{n}} \mid \mathcal{F}_{\vartheta}\right)=Z_{\vartheta}$ for any stopping time ϑ such that $\sigma \leq \vartheta \leq \tau_{n}$ on $\{\sigma<T\}$;
3) $Z_{t}(\omega) \in \operatorname{int} \widehat{K}_{t}^{\varepsilon *}(\omega)$ when $\sigma(\omega)<T$ and $t \in\left[\sigma(\omega), \tau_{n}(\omega)\right]$;
4) $E Z_{\sigma}^{i} I_{\{\sigma<T\}}=1$.

The process $Z=\tilde{Z} I_{\{\sigma<T\}} / E \tilde{Z}_{\sigma}^{i} I_{\{\sigma<T\}}$ belongs to $\mathcal{M}^{i}(\sigma, \varepsilon, n)$ provided that $\tilde{Z} \in \mathcal{M}_{0}^{\tau_{n}}\left(\operatorname{int} \widehat{K}^{\varepsilon *}\right)$.

Let $F^{i}(\varepsilon):=\sup _{\sigma \in \mathcal{T}_{T}} F^{i}(\sigma, \varepsilon)$ where

$$
F^{i}(\sigma, \varepsilon):=\varlimsup_{n} \inf _{Z \in \mathcal{M}^{i}(\sigma, \varepsilon, n)} E Z_{\tau_{n}}^{i} I_{\left\{\tau_{n}<T\right\}}
$$

We also put

$$
f^{i}(\sigma, \varepsilon, n):=\operatorname{ess} \inf _{Z \in \mathcal{M}^{i}(\sigma, \varepsilon, n)} E\left(\left(Z_{\tau_{n}}^{i} / Z_{\sigma}^{i}\right) I_{\left\{\tau_{n}<T\right\}} \mid \mathcal{F}_{\sigma}\right)
$$

Lemma

For any $Z \in \mathcal{M}^{i}(\sigma, \varepsilon, n)$ there is a process $\bar{Z} \in \mathcal{M}^{i}(\sigma, \varepsilon, n+1)$ such that $\bar{Z}^{\tau_{n}}=Z^{\tau_{n}}$.
Proof. Suppose first that $Z \in \mathcal{M}^{i}\left(\sigma, \varepsilon^{\prime}, n\right)$ for some $\varepsilon^{\prime}<\varepsilon$. Take $\delta>0$ and $\tilde{Z} \in \mathcal{M}^{i}(\sigma, \delta, n+1)$. Define the process \bar{Z} with components

$$
\bar{Z}^{j}:=Z^{j} I_{\left[0, \tau_{n}[\right.}+\frac{Z_{\tau_{n}}^{j}}{\tilde{Z}_{\tau_{n}}^{j}} \tilde{Z}^{j} I_{\left[\tau_{n}, T\right]} .
$$

Note that

$$
\begin{gathered}
\phi_{t} Z_{t}=\lambda_{t}\left(1+u_{t}^{1}, \ldots, 1+u_{t}^{d}\right), \quad t \in\left[\sigma, \tau_{n}\right], \\
\phi_{t} \tilde{Z}_{t}=\tilde{\lambda}_{t}\left(1+\tilde{u}_{t}^{1}, \ldots, 1+\tilde{u}_{t}^{d}\right), \quad t \in\left[\tau_{n}, \tau_{n+1}\right],
\end{gathered}
$$

where $\max _{j}\left|u^{j}\right| \leq \varepsilon^{\prime}, \max _{j}\left|\tilde{u}^{j}\right| \leq \delta$ and $\lambda_{t}, \tilde{\lambda}_{t}>0$. It follows that \bar{Z} belongs to $\mathcal{M}^{i}(\sigma, \bar{\varepsilon}, n+1)$ with

$$
\bar{\varepsilon}=\frac{\left(1+\varepsilon^{\prime}\right)(1+\delta)}{1-\delta}-1
$$

Since $\bar{\varepsilon}<\varepsilon$ for sufficiently small $\delta=\delta\left(\varepsilon^{\prime}\right)$, the result follows.
In the general case we consider the partition of the set $\{\sigma<T\}$ on $\mathcal{F}_{\tau_{n}}$-measurable subsets A_{k}, on which the process Z evolves, on the interval $\left[\sigma, \tau_{n}\right]$, in the cones $\widehat{K}^{\varepsilon_{k} *}$, where $\varepsilon_{k}:=(\varepsilon-1 / k) \vee 0$. As above, take processes $\tilde{Z}^{k} \in \mathcal{M}^{i}\left(\sigma, \delta_{k}, n+1\right)$ with $\delta_{k}=\delta\left(\varepsilon_{k}\right)$. Then we can take as \bar{Z} the process with components

$$
\bar{Z}^{j}:=Z^{j} I_{\left[0, \tau_{n}[\right.}+\sum_{k} \frac{Z_{\tau_{n}}^{k j}}{\tilde{Z}_{\tau_{n}}^{j}} \tilde{Z}^{k j} I_{A_{k}} I_{\left[\tau_{n}, T\right]}
$$

Lemma

The sequence $\left(f^{i}(\sigma, \varepsilon, n)\right)_{n \geq 0}$ decreases to $f^{i}(\sigma, \varepsilon) \leq F^{i}(\varepsilon)$.
Proof. By Lemma 2 for any $Z \in \mathcal{M}^{i}(\sigma, \varepsilon, n)$ there is a process
$\bar{Z} \in \mathcal{M}^{i}(\sigma, \varepsilon, n+1)$ such that $\bar{Z}^{\tau_{n}}=Z^{\tau_{n}}$. Using the martingale property of \bar{Z} we get that
$E\left(\left(Z_{\tau_{n}}^{i} / Z_{\sigma}^{i}\right) I_{\left\{\tau_{n}<T\right\}} \mid \mathcal{F}_{\sigma}\right)=E\left(\left(\bar{Z}_{\tau_{n}}^{i} / \bar{Z}_{\sigma}^{i}\right) I_{\left\{\tau_{n}<T\right\}} \mid \mathcal{F}_{\sigma}\right) \geq E\left(\left(\bar{Z}_{\tau_{n+1}}^{i} / \bar{Z}_{\sigma}^{i}\right) I_{\left\{\tau_{n+1}<T\right\}} \mid \mathcal{F}_{\sigma}\right)$
It follows that $f^{i}(\sigma, \varepsilon, n) \geq f^{i}(\sigma, \varepsilon, n+1)$.
Suppose that the inequality $f^{i}(\sigma, \varepsilon) \leq F^{i}(\varepsilon)$ fails. Then there is a non-null \mathcal{F}_{σ}-measurable set $A \subseteq\{\sigma<T\}$ and a constant $a>0$ such that $f^{i}(\sigma, \varepsilon, n) I_{A} \geq\left(F^{i}(\varepsilon)+a\right) I_{A}$ for all sufficiently large n.
Put $\sigma_{A}:=\sigma I_{A}+T I_{A}$. Then for any $Z \in \mathcal{M}^{i}(\sigma, \varepsilon, n)$ the process
$Z I_{A} / E Z I_{A}$ is in $\mathcal{M}^{i}\left(\sigma_{A}, \varepsilon, n\right)$. Since $E\left(\xi \mid \mathcal{F}_{\sigma}\right) I_{A}=E\left(\xi \mid \mathcal{F}_{\sigma_{A}}\right) I_{A}$,

$$
f^{i}\left(\sigma_{A}, \varepsilon, n\right) I_{A} \geq f^{i}(\sigma, \varepsilon, n) I_{A} .
$$

Thus, for any $Z \in \mathcal{M}^{i}\left(\sigma_{A}, \varepsilon, n\right)$ and large n

$$
E Z_{\tau_{n}}^{i} I_{\left\{\tau_{n}<T\right\}}=E Z_{\sigma_{A}}^{i} E\left(\left(Z_{\tau_{n}}^{i} / Z_{\sigma_{A}}^{i}\right) I_{\left\{\tau_{n}<T\right\}} \mid \mathcal{F}_{\sigma_{A}}\right) \geq F^{i}(\varepsilon)+a
$$

in contradiction with the definition of $F^{i}(\varepsilon)$.

Lemma

Let $\sigma \in \mathcal{T}_{T}$ be such that $\sigma \leq \tau_{n_{0}}$ on the set $\{\sigma<T\}$ and let $\varepsilon, \delta>0$. Then there are $n \geq n_{0}, \Gamma \in \mathcal{F}_{\sigma}$ with $P(\Gamma) \leq \delta$, and $Z \in \mathcal{M}^{i}(\sigma, \varepsilon, n)$ such that $Z_{\sigma}^{i}=\eta:=I_{\{\sigma<T\}} / E I_{\{\sigma<T\}}$ and

$$
E\left(Z_{\tau_{n}}^{i} I_{\left\{\tau_{n}<T\right\}} \mid \mathcal{F}_{\sigma}\right) \leq \frac{I_{\{\sigma<T\}}}{E I_{\{\sigma<T\}}}\left[\left(F^{i}(\varepsilon)+\delta\right) I_{\Gamma c}+I_{\Gamma}\right]
$$

Proof. Recall that the essential infimum ξ of a family of random variables $\left\{\xi^{\alpha}\right\}$ is the limit of a decreasing sequence of random variables of the form $\xi^{\alpha_{1}} \wedge \xi^{\alpha_{2}} \wedge \ldots \wedge \xi^{\alpha_{m}}, m \rightarrow \infty$. Thus, for any $a>0$ the sets $\left\{\xi^{\alpha_{k}} \leq \xi+a\right\}$ form a covering of Ω. Using the standard procedure, one can construct from this covering a measurable partition of Ω by sets A^{k} such that $\xi^{\alpha_{k}} \leq \xi+\gamma$ on A^{k}.

Thus, for any fixed $n \geq n_{0}$ there are a countable partition of the set $\{\sigma<T\}$ into \mathcal{F}_{σ}-measurable sets $A^{n, k}$ and a sequence of $Z^{n, k} \in \mathcal{M}^{i}(\sigma, \varepsilon, n)$ such that

$$
E\left(\left(Z_{\tau_{n}}^{n, k, i} / Z_{\sigma}^{n, k, i}\right) I_{\left\{\tau_{n}<T\right\}} \mid \mathcal{F}_{\sigma}\right) \leq f^{i}(\sigma, \varepsilon, n)+1 / n \quad \text { on } A^{n, k}
$$

Put, for $t \in\left[\sigma, \tau_{n}\right]$,

$$
\tilde{Z}_{t}^{n}:=\eta \sum_{k=1}^{\infty} \frac{1}{Z_{\sigma}^{n, k, i}} Z_{t}^{n, k} I_{A^{n, k}}
$$

Then $\tilde{Z}^{n} \in \mathcal{M}^{i}(\sigma, \varepsilon, n), \tilde{Z}_{\sigma}^{n, i}=\eta$, and
$E\left(\tilde{Z}_{\tau_{n}}^{n, i} I_{\left\{\tau_{n}<T\right\}} \mid \mathcal{F}_{\sigma}\right)=\eta E\left(\left(\tilde{Z}_{\tau_{n}}^{n, i} / \eta\right) I_{\left\{\tau_{n}<T\right\}} \mid \mathcal{F}_{\sigma}\right) \leq \frac{I_{\{\sigma<T\}}}{E I_{\{\sigma<T\}}}\left[f^{i}(\sigma, \varepsilon, n)+1 / n\right.$
Note that $f^{i}(\sigma, \varepsilon, n)+1 / n$ decreases to $f^{i}(\sigma, \varepsilon) \leq F^{i}(\varepsilon)$. By the Egorov theorem the convergence is uniform outside of a set Γ of arbitrary small probability. The assertion of the lemma follows from here.

Proposition

For any $\varepsilon_{1}, \varepsilon_{2}$ we have the inequality

$$
\begin{equation*}
F^{i}\left(\varepsilon_{1}\right) F^{i}\left(\varepsilon_{2}\right) \geq F^{i}\left(\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right) /\left(1-\varepsilon_{2}\right)-1\right) \tag{1}
\end{equation*}
$$

Either $F^{i}=0$, or there is $c^{i} \geq 0$ such that $F^{i}(\varepsilon) \geq e^{-c^{i} \varepsilon^{1 / 3}}$.
Proof. Fix $\delta>0$ and a stopping time $\sigma \leq \tau_{n_{0}}$ on the set $\{\sigma<T\}$. By the lemma there are $n \geq n_{0}$ and $Z^{1} \in \mathcal{M}^{i}\left(\sigma, \varepsilon_{1}, n\right)$ such that

$$
E Z_{\tau_{n}}^{1 i} I_{\left\{\tau_{n}<T\right\}} \leq F^{i}\left(\varepsilon_{1}\right)+\delta
$$

Using the lemma again (now with τ_{n} playing the role of σ), we find $m>n$ and $Z^{2} \in \mathcal{M}^{i}\left(\tau_{n}, \varepsilon_{2}, m\right)$ with $Z_{\tau_{n}}^{2 i}=I_{\left\{\tau_{n}<T\right\}} / E I_{\left\{\tau_{n}<T\right\}}$ such that outside of a set $\Gamma \in \mathcal{F}_{\tau_{n}}$ with $P(\Gamma) \leq \delta^{\tau_{n}}$

$$
E\left(Z_{\tau_{m}}^{2 i} I_{\left\{\tau_{m}<T\right\}} \mid \mathcal{F}_{\tau_{n}}\right) \leq \frac{I_{\left\{\tau_{n}<T\right\}}}{E I_{\left\{\tau_{n}<T\right\}}}\left[\left(F^{i}\left(\varepsilon_{2}\right)+\delta\right) I_{\Gamma c}+I_{\Gamma}\right] .
$$

Define on $\left[\sigma, \tau_{m}\right]$ the martingale Z with $Z_{t}^{j}:=Z_{t}^{1 j}$ on $\left[\sigma, \tau_{n}\right]$ and $Z_{t}^{j}:=Z_{t}^{2 j} Z_{\tau_{n}}^{1 j} / Z_{\tau_{n}}^{2 j}$ on $\left[\tau_{n}, \tau_{m}\right], j=1, \ldots, d$.

Then

$$
\begin{array}{cc}
\phi_{t} Z_{t}^{1}=\lambda_{t}^{1}\left(1+u_{t}^{11}, \ldots, 1+u_{t}^{1 d}\right), \quad t \in\left[\sigma, \tau_{n}\right], \\
\phi_{t} Z_{t}^{2}=\lambda_{t}^{2}\left(1+u_{t}^{21}, \ldots, 1+u_{t}^{2 d}\right), \quad t \in\left[\tau_{n}, \tau_{m}\right],
\end{array}
$$

where $\max _{j}\left|u^{1 j}\right| \leq \varepsilon_{1}, \max _{j}\left|u^{2 j}\right| \leq \varepsilon_{2}$ and $\lambda_{t}^{1}, \lambda_{t}^{2}>0$. It follows that

$$
Z \in \mathcal{M}^{i}\left(\sigma,\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right) /\left(1-\varepsilon_{2}\right)-1, m\right) .
$$

Note also that

$$
\begin{aligned}
E Z_{\tau_{m}}^{i} I_{\left\{\tau_{m}<T\right\}} & =P\left(\tau_{n}<T\right) E Z_{\tau_{m}}^{2 i} Z_{\tau_{n}}^{1 i} I_{\left\{\tau_{m}<T\right\}} \\
& \leq P\left(\tau_{n}<T\right) E Z_{\tau_{n}}^{1 i} I_{\left\{\tau_{n}<T\right\}} E\left(Z_{\tau_{m}}^{2 i} I_{\left\{\tau_{m}<T\right\}} \mid \mathcal{F}_{\tau_{n}}\right) .
\end{aligned}
$$

Hence,

$$
E Z_{\tau_{m}}^{i} I_{\left\{\tau_{m}<T\right\}} \leq\left(F^{i}\left(\varepsilon_{1}\right)+\delta\right)\left(F^{i}\left(\varepsilon_{2}\right)+\delta\right)+E Z_{\tau_{n}}^{1 i} I_{\left\{\tau_{n}<T\right\}} I_{\Gamma} .
$$

The inequality (1) follows from here. Note that for $\left.\left.\varepsilon_{1}, \varepsilon_{2} \in\right] 0,1 / 4\right]$

$$
\frac{\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right)}{1-\varepsilon_{2}}-1=\frac{\varepsilon_{1}+2 \varepsilon_{2}+\varepsilon_{1} \varepsilon_{2}}{1-\varepsilon_{2}} \leq 4\left(\varepsilon_{1}+\varepsilon_{2}\right)
$$

Since F is decreasing, we obtain from (1) that $F^{i}\left(\varepsilon_{1}\right) F^{i}\left(\varepsilon_{2}\right) \geq F^{i}\left(4\left(\varepsilon_{1}+\varepsilon_{2}\right)\right)$ for all $\left.\left.\varepsilon_{1}, \varepsilon_{2} \in\right] 0,1 / 8\right]$. Using Lemma 5 below with $f=\ln F^{i}$, we get the needed bound.

Lemma

Let $\left.f:] 0, x_{0}\right] \rightarrow \mathbf{R}$ be a decreasing function such that

$$
\begin{equation*}
f\left(x_{1}\right)+f\left(x_{2}\right) \geq f\left(4\left(x_{1}+x_{2}\right)\right), \quad \forall x_{1}, x_{2} \leq x_{0} . \tag{2}
\end{equation*}
$$

Then there is $c>0$ such that $f(x) \geq-c x^{1 / 3}$ for $\left.\left.x \in\right] 0, x_{0}\right]$.
Proof. In the non-trivial case where $f\left(x_{0}\right)<0$, the constant $\kappa=-\inf _{\left.x \in] x_{0} / 8, x_{0}\right]} f(x) / x$ is strictly greater than zero. Iterating the inequality $2 f(x) \geq f(8 x)$ we obtain that $2^{n} f(x) \geq f\left(2^{3 n} x\right)$ for all $\left.x \in] 0, x_{0} 2^{-3 n}\right]$ and all integers $n \geq 0$. Therefore,

$$
\frac{f(x)}{x} \geq 2^{2 n} \frac{f\left(2^{3 n} x\right)}{2^{3 n} x}=\frac{1}{4} x_{0}^{2 / 3}\left(\frac{2^{3(n+1)}}{x_{0}}\right)^{2 / 3} \frac{f\left(2^{3 n} x\right)}{2^{3 n} x}
$$

For $\left.x \in] 2^{-3(n+1)} x_{0}, 2^{-3 n} x_{0}\right]$, the right-hand side dominates $-c x^{-2 / 3}$ with the constant $c:=\kappa x_{0}^{2 / 3} / 4$. Thus, the inequality $f(x) / x \geq-c x^{-2 / 3}$ holds on $\left.] 0, x_{0}\right]$.

Proof of the Main Theorem

(\Leftarrow) The arguments are standard. For any $\xi \in \phi_{t} A_{0}^{T \varepsilon}(T)$ and $Z \in \mathcal{M}_{0}^{T}\left(\widehat{K}_{t}^{\varepsilon *} \backslash\{0\}\right)$ we have $E Z_{T} \xi \leq 0$ and this inequality is impossible for $\xi \in L^{0}\left(\mathbf{R}_{+}^{d}, \mathcal{F}_{T}\right)$.
(\Rightarrow) We need to consider only the case where the universal chain is such at that $P\left(\tau_{n}<T\right)>0$ for every n and we can apply the results on functions F^{i}. The claim follows from the assertions below.

Proposition

If $\sum_{i} F^{i}(\varepsilon)=0$ for all $\varepsilon>0$, then $\mathcal{M}_{0}^{T}\left(\widehat{K}^{\varepsilon *} \backslash\{0\}\right) \neq \emptyset$.
Proof. Fix $\varepsilon \in] 0,1]$ and define a sequence of $\varepsilon_{k} \downarrow 0$ such that $\bar{\varepsilon}_{N} \uparrow \varepsilon$ where

$$
\bar{\varepsilon}_{N}:=\left(1+\varepsilon_{0}\right) \prod_{k=1}^{N} \frac{1+\varepsilon_{k}}{1-\varepsilon_{k}}-1
$$

We construct inductively an increasing sequence of integers $\left(n_{N}\right)_{N \geq 0}$ with $n_{0}=0$ and a sequence of $Z^{(N)} \in \mathcal{M}_{0}^{\tau_{n_{N}}}\left(\widehat{K}^{\bar{\varepsilon}_{N^{*}}} \backslash\{0\}\right)$ such that for $N=k d+r$ where $0 \leq r \leq d-1$

$$
\begin{equation*}
\left.E Z_{\tau_{n_{N}}}^{(N)(r+1)}\right|_{\left\{\tau_{n_{N}}<T\right\}} \leq 2^{-N} \tag{3}
\end{equation*}
$$

Since $F^{1}(\varepsilon)=0$, Lemma 4 ensures the existence of $Z^{1} \in \mathcal{M}^{1}\left(0, \varepsilon_{1}, n_{1}\right)$ with

$$
E Z_{\tau_{n_{1}}}^{11} I_{\left\{\tau_{n_{1}}<T\right\}} \leq 2^{-1}
$$

Put $Z^{(1)}:=Z^{1}$. Take now $\delta_{1}>0$ such that

$$
E Z_{\tau_{n_{1}}}^{(1) 2} I_{\left\{\tau_{n_{1}}<T\right\}} I_{A} \leq 2^{-3}
$$

for every $A \in \mathcal{F}_{\tau_{n_{1}}}$ with $P(A) \leq \delta_{1}$. Using again Lemma 4 (now for the second coordinate), we find $n_{2}>n_{1}$, the set $\Gamma_{1} \in \mathcal{F}_{\tau_{n_{1}}}$ with $P\left(\Gamma_{1}\right) \leq \delta_{1} \wedge 2^{-3}$, and $Z^{2} \in \mathcal{M}^{2}\left(\tau_{n_{1}}, \varepsilon_{2}, n_{2}\right)$ such that $Z_{\tau_{n_{1}}}^{22}=1$ and

$$
E\left(Z_{\tau_{n_{2}}}^{22} I_{\left\{\tau_{n_{2}}<T\right\}} \mid \mathcal{F}_{\tau_{n_{1}}}\right) \leq\left[2^{-3}+I_{\Gamma_{1}}\right] I_{\left\{\tau_{n_{1}}<T\right\}} / P\left(\tau_{n_{1}}<T\right)
$$

Put $Z_{t}^{(2) j}=Z_{t}^{(1) j}$ on $\left[0, \tau_{n_{1}}\right]$ and $Z_{t}^{(2) j}=Z_{t}^{2 j} Z_{\tau_{n_{1}}}^{(1) j} / Z_{\tau_{n_{1}}}^{2 j}$ on $\left.] \tau_{n_{1}}, \tau_{n_{2}}\right]$, $j=1, \ldots, d$. Note that $Z^{(2)} \in \mathcal{M}_{0}^{\tau_{n_{2}}}\left(\phi^{-1}\right.$ cone $\left.\left\{\mathbf{1}+U_{\bar{\varepsilon}_{2}}\right\} \backslash\{0\}\right)$ and

$$
\begin{aligned}
E Z_{\tau_{n_{2}}}^{(2) 2} I_{\left\{\tau_{n_{2}}<T\right\}} & =P\left(\tau_{n_{1}}<T\right) E Z_{\tau_{n_{2}}}^{22} Z_{\tau_{n_{1}}}^{(1) 2} I_{\left\{\tau_{n_{2}}<T\right\}} \\
& \leq P\left(\tau_{n_{1}}<T\right) E Z_{\tau_{n_{1}}}^{(1) 2} I_{\left\{\tau_{n_{1}}<T\right\}} E\left(Z_{\tau_{n_{2}}}^{22} I_{\left\{\tau_{n_{2}}<T\right\}} \mid \mathcal{F}_{\tau_{n_{1}}}\right) \leq 2^{-2} .
\end{aligned}
$$

We continue this procedure passing at each step from the coordinate j to the coordinate $j+1$ for $j \leq d-1$ and from the coordinate d to the first one.
Since $P\left(\tau_{n}=T\right) \uparrow 1$, there is a process Z such that $Z^{\tau_{n}}=Z^{(N)}$ for every N. The components of Z are strictly positive processes on $[0, T]$. The condition (3) ensures that they are martingales. Therefore, $Z \in \mathcal{M}_{0}^{T}\left(\widehat{K}^{\varepsilon} \backslash\{0\}\right)$.

Proposition

Suppose that $\sum F^{i} \neq 0$. Then there is $\left.\left.\varepsilon \in\right] 0,1\right]$ for which the property $N A_{\varepsilon}^{\omega}$ does not hold.

Proof. At least one of functions, say, F^{1}, is not equal identically to zero. So, we have the bound $F^{1}(\varepsilon)>e^{-c \varepsilon^{1 / 3}}$ for all sufficiently small ε. Hence, there is a stopping time σ dominated by certain $\tau_{n_{0}}$ such that

$$
\inf _{Z \in \mathcal{M}^{1}(\sigma, \varepsilon, n)} E Z_{\tau_{n}}^{1} I_{\left\{\tau_{n}<T\right\}}>e^{-c \varepsilon^{1 / 3}}
$$

for all sufficiently large n. Then for every $Z \in \mathcal{M}^{1}(\sigma, \varepsilon, n)$ we have that

$$
E\left(Z^{1} I_{\left\{\tau_{n}=T\right\}} \mid \mathcal{F}_{\sigma}\right) \leq 1-e^{-c \varepsilon^{1 / 3}}
$$

Let us consider the sequence of random variables $\xi^{n} \in L^{0}\left(\mathbf{R}^{d}, \mathcal{F}_{\tau_{n}}\right)$ such that the components $\xi^{n 2}=\cdots=\xi^{n d}=0$ and

$$
\xi^{n 1}=-I_{\{\sigma<T\}}+\left(1-e^{-c \varepsilon^{1 / 3}}\right)^{-1} I_{\left\{\sigma<T, \tau_{n}=T\right\}} .
$$

Clearly,

$$
E\left(Z_{\tau_{n}} \xi^{n} \mid \mathcal{F}_{\sigma}\right) \leq-I_{\{\sigma<T\}}+\left(1-e^{-c \varepsilon^{1 / 3}}\right)^{-1} E\left(Z_{\tau_{n}} I_{\left\{\tau_{n}=T\right\}} \mid \mathcal{F}_{\sigma}\right) I_{\{\sigma<T\}} \leq 0
$$

We have the inequality $E Z_{\tau_{n}} \xi^{n} \leq 0$, and, therefore, by the superhedging theorem (see Th. 3.6.3), ξ^{n} is the terminal value of an admissible process $\widehat{V}=\widehat{V}^{B}$ in the model having σ and τ_{n} as the initial and terminal dates, respectively. Note that on the non-null set $\{\sigma<T\}$ the limit of $\xi^{n 1}$ is strictly positive. To conclude we use the lemma below which one can get by applying, on each interval $\left[0, \tau_{n}\right]$, the Komlós-type result (Lemma 3.6.5) followed by the diagonal procedure.

Lemma

Suppose that $\xi^{n}=\widehat{V}_{\tau_{n}}^{n}$ where $\widehat{V}^{n}+\mathbf{1} \in \widehat{K}^{\varepsilon}$ and $\xi^{n} \rightarrow \xi$ a.s. as $n \rightarrow \infty$. Then there is a portfolio process \widehat{V} such that $\widehat{V}+\mathbf{1} \in \widehat{K}^{\varepsilon}$ and $\xi=\widehat{V}_{T}$.

[^0]: 1. Kabanov Yu., Safarian M. Markets with Transaction Costs. Mathematical Theory. Springer, 2009.
 2. Guasoni P., Rásonyi M., Schachermayer W. On fundamental theorem of asset pricing for continuous processes under small transaction costs. Ann. Finance, 6 (2010).
