Small Transaction Costs, Absence of Arbitrage and Consistent Price Systems

Yuri Kabanov

Laboratoire de Mathématiques, Université de Franche-Comté

April 1, 2011

Introduction

For the discrete-time setting there is a plethora of criteria for various types of arbitrage, see Ch. 3¹. For continuous-time models only a few results on the no-arbitrage criteria are available. In a recent paper² it was established an interesting result in this direction. A question on sufficient and necessary conditions for the absence of arbitrage was formulated not for a single model but for a whole family of them. In GRS it was considered a family of **2-asset** models with a fixed **continuous** price process and **constant** transaction costs tending to zero. The no-arbitrage criterion is very simple : the NA^{w} -property holds for each model if and only if each model admits a consistent price system.

^{1.} Kabanov Yu., Safarian M. Markets with Transaction Costs. Mathematical Theory. Springer, 2009.

^{2.} Guasoni P., Rásonyi M., Schachermayer W. On fundamental theorem of asset pricing for continuous processes under small transaction costs. *Ann. Finance*, **6** (2010).

Generalization, 1

Let $K^{\varepsilon*} := \mathbf{R}_+ (\mathbf{1} + U_{\varepsilon}) = \operatorname{cone} (\mathbf{1} + U_{\varepsilon})$, where $U_{\varepsilon} := \{x \in \mathbf{R}^d : \max_i |x^i| \le \varepsilon\}, \varepsilon \in]0, 1]$. That is, $K^{\varepsilon*}$ is the closed convex cone in \mathbf{R}^d generated by the max-norm ball of radius ε with center at $\mathbf{1} := (1, \ldots, 1)$. We denote by K^{ε} the (positive) dual cone of $K^{\varepsilon*}$. Let $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ be a stochastic basis and let $S = (S_t)_{t \le T}$ be a **continuous** semimartingale with strictly positive components. We consider the linear controlled stochastic equation

$$dV_t^i = V_{t-}^i dY_t^i + dB_t^i, \quad V_0^i = 0, \qquad i \leq d,$$

where Y^i is the stochastic logarithm of S^i , i.e. $dY^i_t = dS^i_t/S^i_t$, $Y^i_0 = 1$, and the strategy *B* is a predictable càdlàg process of bounded variation with $\dot{B} \in -K^{\varepsilon}$. The notation \dot{B} stands for (a measurable version of) the Radon–Nikodym derivative of *B* with respect to ||B||, the total variation process of *B*.

A strategy *B* is ε -admissible if for the process $V = V^B$ there is a constant κ such that $V_t + \kappa S_t \in K^{\varepsilon}$ for all $t \leq T$. The set of processes *V* corresponding to ε -admissible strategies is denoted by $A_0^{T\varepsilon}$ while the notation $A_0^{T\varepsilon}(T)$ is reserved for the set of random variables V_T where $V \in A_0^{T\varepsilon}$. Using the random operator

$$\phi_t: (x^1, ..., x^d) \mapsto (x^1/S^1_t, ..., x^d/S^d_t)$$

define the random cone $\widehat{K}_t^{\varepsilon} = \phi_t K^{\varepsilon}$ with the dual $\widehat{K}_t^{\varepsilon*} = \phi_t^{-1} K^{\varepsilon*}$. Put $\widehat{V}_t = \phi_t V_t$. We denote by $\mathcal{M}_0^T (\widehat{K}^{\varepsilon*} \setminus \{0\})$ the set of martingales Z such that $Z_t \in \widehat{K}_t^{\varepsilon*} \setminus \{0\}$.

Theorem We have :

$$\mathcal{A}_0^{T\varepsilon}(\mathcal{T})\cap L^0(\mathbf{R}^d_+,\mathcal{F}_{\mathcal{T}})=\{0\} \ \, \forall \, \varepsilon \ \, \Leftrightarrow \ \, \mathcal{M}_0^{\mathcal{T}}(\widehat{\mathcal{K}}^{\varepsilon*}\setminus\{0\})\neq \emptyset \ \, \forall \, \varepsilon.$$

Comments on financial interpretation.

For d = 2 our model is the same as of GRS. The only difference is that we use the "old-fashion" definition of the value processes but it is not essential. In the financial interpretation the cones K^{ε} and \hat{K}^{ε} are the solvency regions in the terms of the numéraire and physical units, respectively, V and \hat{V} are value processes, elements of $\mathcal{M}_0^T(\hat{K}^{\varepsilon*} \setminus \{0\})$ are ε -consistent price systems, etc. The condition " $\mathcal{A}_0^{T\varepsilon}(T) \cap L^0(\mathbf{R}^d_+, \mathcal{F}_T) = \{0\}$ for all ε " can be referred to as the universal NA^w-property.

Applications to Financial Context

In the case d > 2 we have no financial interpretation for the considered objects. Nevertheless, our result can be applied to a wide class of financially meaningful models, even with varying transaction costs. To see this, let us consider the family of models of currency markets with the solvency cones

$$\mathcal{K}(\Lambda^{\varepsilon}) = \operatorname{cone} \{ (1 + \lambda_{ij}^{\varepsilon}) \mathbf{e}_i - \mathbf{e}_j, \ \mathbf{e}_i, \ 1 \leq i, j \leq d \}.$$

Suppose that for every $\varepsilon \in]0, 1]$ there is $\varepsilon' \in]0, 1]$ such that $K(\Lambda^{\varepsilon}) \subseteq K^{\varepsilon'}$ and, vice versa, for any $\delta \in]0, 1]$ there is $\delta' \in]0, 1]$ such that $K^{\delta} \subseteq K(\Lambda^{\delta'})$. It is obvious that under this hypothesis Theorem ensures that for the currency markets the universal NA^{w} -property holds iif an ε -consistent price system does exist for every $\varepsilon > 0$. The hypothesis is fulfilled if $\Lambda^{\varepsilon} \to 0$ and the duals $K^{*}(\Lambda^{\varepsilon})$ have interiors containing $\mathbf{1}$, e.g., if all $\lambda_{ii}^{\varepsilon} = \varepsilon$.

Application to a Model with Efficient Friction

Proposition

Suppose that $\Lambda^{\varepsilon} \to 0$ and $\operatorname{int} K^*(\Lambda^{\varepsilon}) \neq \emptyset$ for all $\varepsilon \in]0,1]$. Then

 $\textit{NA}^w(\Lambda^\varepsilon) \quad \forall \, \varepsilon \in]0,1] \quad \Leftrightarrow \quad \mathcal{M}_0^{\mathcal{T}}(\widehat{K}^*(\Lambda^\varepsilon) \setminus \{0\}) \neq \emptyset \quad \forall \, \varepsilon \in]0,1].$

Proof. (\Rightarrow) Let $\delta \in]0, 1]$ and $w \in K^*(\Lambda^{\delta})$. Then $w^i/w^j \leq 1 + \lambda_{ij}^{\delta} \rightarrow 1$ as $\delta \rightarrow 0$. It follows that $K^*(\Lambda^{\delta'}) \subseteq K^{\delta*}$ for some $\delta' \in]0, 1]$. For the primary cones the inclusion is opposite. Thus, the assumed no-arbitrage property implies the no-arbitrage property as in Theorem. Take $\varepsilon \in]0, 1]$ and a vector $v \in \operatorname{int} K^*(\Lambda^{\varepsilon}) \cap U_1$. Put

$$\psi_{\mathbf{v}}: (x^1, ..., x^d) \mapsto (v^1 x^1, ..., v^d x^d).$$

Choose $\delta \in [0, 1]$ such that $\psi_{\nu}(\mathbf{1} + U_{\delta}) \subset K^*(\Lambda^{\varepsilon})$. By Theorem there is $Z \in \mathcal{M}_0^T(\widehat{K}^{\delta*} \setminus \{0\})$. The process $\psi_{\nu}Z$ is a martingale. Since $\psi_{\nu}Z = \phi\psi_{\nu}\phi^{-1}Z$, it is an element of $\mathcal{M}_0^T(\widehat{K}^*(\Lambda^{\varepsilon}) \setminus \{0\})$.

To prove the nontrivial implication (\Rightarrow) we exploit the fact that the universal NA^w-property holds for any imbedded discrete-time model. Using the criterion for NA^r -property we deduce from here the existence of a "universal chain", that is a sequence of stopping times τ_n increasing stationary to T and such that $\mathcal{M}_{0}^{\tau_{n}}(\widehat{K}^{\varepsilon*} \setminus \{0\}) \neq \emptyset$ for all $\varepsilon \in]0,1]$ and $n \geq 1$. In an analogy with GRS, we relate with this "universal chain" functions $F^{i}(\varepsilon)$, $i \leq d$, and check that there is, for each *i*, an alternative : either $F^i = 0$, or $F^{i}(0+) = 1$. This is the most involved part of the proof. If all $F^{i} = 0$, the sets $\mathcal{M}_{0}^{\tau_{n}}(\widehat{K}^{\varepsilon*} \setminus \{0\})$ are non-empty and we conclude. If there is a coordinate for which $F^{i}(0+) = 1$, there exists a strict arbitrage opportunity.

Universal Discrete-Time NA^w-property

A continuous-time model has universal discrete-time NA^w-property if for any $\varepsilon > 0$, $N \ge 2$, and stopping times $\sigma_1, \ldots, \sigma_N \in \mathcal{T}_T$, such that $\sigma_n < \sigma_{n+1}$ on the set $\{\sigma_n < T\}$ we have that

$$L^{0}(\mathbf{R}^{d}_{+},\mathcal{F}_{T})\cap\sum_{n\leq N}L^{0}(-\phi_{\sigma_{n}}K^{\varepsilon},\mathcal{F}_{\sigma_{n}})=\{0\}.$$

Proposition

If the universal discrete-time NA^w-property holds, then there are strictly increasing stopping times τ_n with $P(\tau_n < T) \rightarrow 0$ as $n \rightarrow \infty$ such that $\mathcal{M}_0^{\tau_N}(\widehat{K}^{\varepsilon*} \setminus \{0\}) \neq \emptyset$ for every N and ε .

Proof. Define recursively the stopping times : $\sigma_0 = 0$,

$$\sigma_n = \sigma_n^{\varepsilon} := \inf\{t \ge \sigma_{n-1} : \max_{i \le d} |\ln S_t^i - \ln S_{\sigma_{n-1}}^i| \ge \ln(1 + \varepsilon/8)\}, \quad n \ge 1$$

Lemma

For any integer $N \geq 1$ there is $Z \in \mathcal{M}_0^{\sigma_N}(\widehat{K}^{\varepsilon*} \setminus \{0\}).$

Proof. To avoid new notation we assume wlg that $S = S^{\sigma_N}$. Let $X_n := S_{\sigma_n}$. By our assumption and in virtue of the criterion for the NA^r -property there is a d.-t. martingale $(M_n)_{n \le N}$ with $M_n \in L^{\infty}(\phi_{\sigma_n}^{-1}K^{\varepsilon/4*} \setminus \{0\})$. Put $Z_t := E(M_N | \mathcal{F}_t)$. Let us check that $Z \in \mathcal{M}_0^{\sigma_N}(\widehat{K}^{\varepsilon*} \setminus \{0\})$. On the set $\{t \in [\sigma_{n-1}, \sigma_n]\}$

$$\tilde{Z}_t := \phi_t Z_t = E(\phi_t \phi_{\sigma_n}^{-1} \tilde{Z}_{\sigma_n} | \mathcal{F}_t)$$

where $\tilde{Z}_{\sigma_n} := \phi_{\sigma_n} Z_{\sigma_n}$. Note that

$$(1+arepsilon/8)^{-2}\leq S_t^i/S_{\sigma_n}^i=(S_t^i/S_{\sigma_{n-1}}^i)(S_{\sigma_{n-1}}^i/S_{\sigma_n}^i)\leq (1+arepsilon/8)^2.$$

Therefore,

$$(1+\varepsilon/8)^{-2} E(\tilde{Z}^{i}_{\sigma_{n}}|\mathcal{F}_{t}) \leq \tilde{Z}^{i}_{t} \leq (1+\varepsilon/8)^{2} E(\tilde{Z}^{i}_{\sigma_{n}}|\mathcal{F}_{t}).$$

But $E(\tilde{Z}_{\sigma_n}|\mathcal{F}_t) \in \operatorname{cone}(\mathbf{1} + U_{\varepsilon/4}) \setminus \{0\})$, i.e. the components of $E(\tilde{Z}_{\sigma_n}|\mathcal{F}_t)$ take values in the interval with the extremities $\lambda(1 \pm \varepsilon/4)$ where $\lambda > 0$ depends on n and ω . Thus,

$$1-\varepsilon \leq (1+\varepsilon/8)^{-2}(1-\varepsilon/4) \leq \tilde{Z}_t^i/\lambda \leq (1+\varepsilon/8)^2(1+\varepsilon/4) \leq 1+\varepsilon.$$

This implies the assertion of the lemma.

The end of proof is as in GRS. Take a sequence of $\varepsilon_k \downarrow 0$. For each $n \ge 1$ we find an integer $N_{n,k}$ such that

$$P(\sigma_{N_{n,k}}^{\varepsilon_k} < T) < 2^{-(n+k)}.$$

WIg we assume that for each k the sequence $(N_{n,k})_{n\geq 1}$ is increasing. The increasing sequence of stopping times $\tau_n := \min_{k\geq 1} \sigma_{N_{n,k}}^{\varepsilon_k}$ converges to T stationary : $P(\tau_n < T) \leq 2^{-n}$. Applying the lemma with ε_k we obtain that for the process S stopped at $\sigma_{N_{n,k}}^{\varepsilon_k}$ there is an ε_k -consistent price system. The latter, being stopped at τ_n , is an ε_k -consistent price system for S^{τ_n} . We assume that $P(\tau_n < T) > 0$ for all *n*. Let $\mathcal{T}_T \neq \emptyset$ be the set of stopping times σ such that $P(\sigma < T) > 0$ and, for some *n*, the inequality $\sigma < \tau_n$ holds on $\{\sigma < T\}$. Let $\sigma \in \mathcal{T}_T$ and let *n* be such that $\sigma < \tau_n$ holds on $\{\sigma < T\}$. We denote by $\mathcal{M}^{i}(\sigma,\varepsilon,n)$ the set of processes Z such that : 1) Z = 0 on $\{\sigma = T\}$; 2) Z is a martingale on $[\sigma, \tau_n]$, i.e. $E(Z_{\tau_n} | \mathcal{F}_{\vartheta}) = Z_{\vartheta}$ for any stopping time ϑ such that $\sigma < \vartheta < \tau_n$ on $\{\sigma < T\}$; 3) $Z_t(\omega) \in \operatorname{int} \widehat{K}_{t}^{\varepsilon*}(\omega)$ when $\sigma(\omega) < T$ and $t \in [\sigma(\omega), \tau_n(\omega)]$; 4) $EZ'_{\sigma}I_{\{\sigma < T\}} = 1.$ The process $Z = \tilde{Z}I_{\{\sigma < T\}} / E\tilde{Z}_{\sigma}^{i}I_{\{\sigma < T\}}$ belongs to $\mathcal{M}^{i}(\sigma, \varepsilon, n)$ provided that $\tilde{Z} \in \mathcal{M}_{0}^{\tau_{n}}(\operatorname{int} \widehat{K}^{\varepsilon*})$.

Let
$$F^{i}(\varepsilon) := \sup_{\sigma \in \mathcal{T}_{T}} F^{i}(\sigma, \varepsilon)$$
 where

$$F^{i}(\sigma, \varepsilon) := \overline{\lim_{n}} \inf_{Z \in \mathcal{M}^{i}(\sigma, \varepsilon, n)} EZ^{i}_{\tau_{n}} I_{\{\tau_{n} < T\}}.$$

We also put

$$f^{i}(\sigma,\varepsilon,n) := \operatorname{ess\,inf}_{Z \in \mathcal{M}^{i}(\sigma,\varepsilon,n)} E((Z^{i}_{\tau_{n}}/Z^{i}_{\sigma})I_{\{\tau_{n} < T\}}|\mathcal{F}_{\sigma}).$$

Lemma

For any $Z \in \mathcal{M}^{i}(\sigma, \varepsilon, n)$ there is a process $\overline{Z} \in \mathcal{M}^{i}(\sigma, \varepsilon, n+1)$ such that $\overline{Z}^{\tau_{n}} = Z^{\tau_{n}}$.

Proof. Suppose first that $Z \in \mathcal{M}^i(\sigma, \varepsilon', n)$ for some $\varepsilon' < \varepsilon$. Take $\delta > 0$ and $\tilde{Z} \in \mathcal{M}^i(\sigma, \delta, n+1)$. Define the process \bar{Z} with components

$$\bar{Z}^j := Z^j I_{[0,\tau_n[} + \frac{Z^j_{\tau_n}}{\tilde{Z}^j_{\tau_n}} \tilde{Z}^j I_{[\tau_n,T]}.$$

Note that

$$\begin{split} \phi_t Z_t &= \lambda_t (1 + u_t^1, \dots, 1 + u_t^d), \quad t \in [\sigma, \tau_n], \\ \phi_t \tilde{Z}_t &= \tilde{\lambda}_t (1 + \tilde{u}_t^1, \dots, 1 + \tilde{u}_t^d), \quad t \in [\tau_n, \tau_{n+1}], \\ \text{where } \max_j |u^j| \leq \varepsilon', \max_j |\tilde{u}^j| \leq \delta \text{ and } \lambda_t, \tilde{\lambda}_t > 0. \text{ It follows that} \\ \bar{Z} \text{ belongs to } \mathcal{M}^i(\sigma, \bar{\varepsilon}, n+1) \text{ with} \end{split}$$

$$ar{arepsilon} = rac{(1+arepsilon')(1+\delta)}{1-\delta} - 1.$$

Since $\bar{\varepsilon} < \varepsilon$ for sufficiently small $\delta = \delta(\varepsilon')$, the result follows. In the general case we consider the partition of the set $\{\sigma < T\}$ on \mathcal{F}_{τ_n} -measurable subsets A_k , on which the process Z evolves, on the interval $[\sigma, \tau_n]$, in the cones $\widehat{K}^{\varepsilon_k *}$, where $\varepsilon_k := (\varepsilon - 1/k) \lor 0$. As above, take processes $\widetilde{Z}^k \in \mathcal{M}^i(\sigma, \delta_k, n+1)$ with $\delta_k = \delta(\varepsilon_k)$. Then we can take as \overline{Z} the process with components

$$\bar{Z}^{j} := Z^{j} I_{[0,\tau_{n}[} + \sum_{k} \frac{Z_{\tau_{n}}^{kj}}{\tilde{Z}_{\tau_{n}}^{j}} \tilde{Z}^{kj} I_{A_{k}} I_{[\tau_{n},T]}.$$

Lemma

The sequence $(f^i(\sigma, \varepsilon, n))_{n\geq 0}$ decreases to $f^i(\sigma, \varepsilon) \leq F^i(\varepsilon)$. *Proof.* By Lemma 2 for any $Z \in \mathcal{M}^i(\sigma, \varepsilon, n)$ there is a process $\overline{Z} \in \mathcal{M}^i(\sigma, \varepsilon, n+1)$ such that $\overline{Z}^{\tau_n} = Z^{\tau_n}$. Using the martingale property of \overline{Z} we get that

$$\mathsf{E}((Z^i_{\tau_n}/Z^i_{\sigma})I_{\{\tau_n < T\}}|\mathcal{F}_{\sigma}) = \mathsf{E}((\bar{Z}^i_{\tau_n}/\bar{Z}^i_{\sigma})I_{\{\tau_n < T\}}|\mathcal{F}_{\sigma}) \ge \mathsf{E}((\bar{Z}^i_{\tau_{n+1}}/\bar{Z}^i_{\sigma})I_{\{\tau_{n+1} < T\}}|\mathcal{F}_{\sigma})$$

It follows that $f^i(\sigma, \varepsilon, n) \ge f^i(\sigma, \varepsilon, n+1)$. Suppose that the inequality $f^i(\sigma, \varepsilon) \le F^i(\varepsilon)$ fails. Then there is a non-null \mathcal{F}_{σ} -measurable set $A \subseteq \{\sigma < T\}$ and a constant a > 0 such that $f^i(\sigma, \varepsilon, n)I_A \ge (F^i(\varepsilon) + a)I_A$ for all sufficiently large n. Put $\sigma_A := \sigma I_A + TI_{A^c}$. Then for any $Z \in \mathcal{M}^i(\sigma, \varepsilon, n)$ the process ZI_A/EZI_A is in $\mathcal{M}^i(\sigma_A, \varepsilon, n)$. Since $E(\xi|\mathcal{F}_{\sigma})I_A = E(\xi|\mathcal{F}_{\sigma_A})I_A$,

$$f^{i}(\sigma_{A},\varepsilon,n)I_{A} \geq f^{i}(\sigma,\varepsilon,n)I_{A}.$$

Thus, for any $Z \in \mathcal{M}^i(\sigma_A, \varepsilon, n)$ and large n

$$\mathsf{EZ}^i_{\tau_n} \mathsf{I}_{\{\tau_n < T\}} = \mathsf{EZ}^i_{\sigma_A} \mathsf{E}((\mathsf{Z}^i_{\tau_n}/\mathsf{Z}^i_{\sigma_A})\mathsf{I}_{\{\tau_n < T\}}|\mathcal{F}_{\sigma_A}) \geq \mathsf{F}^i(\varepsilon) + \mathsf{a}$$

in contradiction with the definition of $F^{i}(\varepsilon)$.

Lemma

Let $\sigma \in \mathcal{T}_T$ be such that $\sigma \leq \tau_{n_0}$ on the set $\{\sigma < T\}$ and let $\varepsilon, \delta > 0$. Then there are $n \geq n_0$, $\Gamma \in \mathcal{F}_\sigma$ with $P(\Gamma) \leq \delta$, and $Z \in \mathcal{M}^i(\sigma, \varepsilon, n)$ such that $Z^i_\sigma = \eta := I_{\{\sigma < T\}}/EI_{\{\sigma < T\}}$ and

$$E(Z^{i}_{\tau_{n}}I_{\{\tau_{n}<\mathcal{T}\}}|\mathcal{F}_{\sigma}) \leq \frac{I_{\{\sigma<\mathcal{T}\}}}{EI_{\{\sigma<\mathcal{T}\}}}[(\mathcal{F}^{i}(\varepsilon)+\delta)I_{\Gamma^{c}}+I_{\Gamma}].$$

Proof. Recall that the essential infimum ξ of a family of random variables $\{\xi^{\alpha}\}$ is the limit of a decreasing sequence of random variables of the form $\xi^{\alpha_1} \wedge \xi^{\alpha_2} \wedge ... \wedge \xi^{\alpha_m}$, $m \to \infty$. Thus, for any a > 0 the sets $\{\xi^{\alpha_k} \leq \xi + a\}$ form a covering of Ω . Using the standard procedure, one can construct from this covering a measurable partition of Ω by sets A^k such that $\xi^{\alpha_k} \leq \xi + \gamma$ on A^k .

Thus, for any fixed $n \ge n_0$ there are a countable partition of the set $\{\sigma < T\}$ into \mathcal{F}_{σ} -measurable sets $A^{n,k}$ and a sequence of $Z^{n,k} \in \mathcal{M}^i(\sigma,\varepsilon,n)$ such that

$$E((Z_{\tau_n}^{n,k,i}/Z_{\sigma}^{n,k,i})I_{\{\tau_n < T\}}|\mathcal{F}_{\sigma}) \leq f^i(\sigma,\varepsilon,n) + 1/n \quad \text{on } A^{n,k}.$$

Put, for $t \in [\sigma,\tau_n]$,

$$\tilde{Z}_t^n := \eta \sum_{k=1}^{\infty} \frac{1}{Z_{\sigma}^{n,k,i}} Z_t^{n,k} I_{\mathcal{A}^{n,k}}.$$

Then $\tilde{Z}^n \in \mathcal{M}^i(\sigma, \varepsilon, n)$, $\tilde{Z}^{n,i}_{\sigma} = \eta$, and

$$E(\tilde{Z}_{\tau_n}^{n,i}I_{\{\tau_n < T\}}|\mathcal{F}_{\sigma}) = \eta E((\tilde{Z}_{\tau_n}^{n,i}/\eta)I_{\{\tau_n < T\}}|\mathcal{F}_{\sigma}) \leq \frac{I_{\{\sigma < T\}}}{EI_{\{\sigma < T\}}}[f^i(\sigma,\varepsilon,n)+1/n]$$

Note that $f^i(\sigma, \varepsilon, n) + 1/n$ decreases to $f^i(\sigma, \varepsilon) \leq F^i(\varepsilon)$. By the Egorov theorem the convergence is uniform outside of a set Γ of arbitrary small probability. The assertion of the lemma follows from here.

Proposition

For any $\varepsilon_1, \varepsilon_2$ we have the inequality

$$F^{i}(\varepsilon_{1})F^{i}(\varepsilon_{2}) \geq F^{i}((1+\varepsilon_{1})(1+\varepsilon_{2})/(1-\varepsilon_{2})-1).$$
 (1)

Either $F^i = 0$, or there is $c^i \ge 0$ such that $F^i(\varepsilon) \ge e^{-c^i \varepsilon^{1/3}}$. Proof. Fix $\delta > 0$ and a stopping time $\sigma \le \tau_{n_0}$ on the set $\{\sigma < T\}$. By the lemma there are $n \ge n_0$ and $Z^1 \in \mathcal{M}^i(\sigma, \varepsilon_1, n)$ such that

$$EZ_{\tau_n}^{1i}I_{\{\tau_n < T\}} \leq F^i(\varepsilon_1) + \delta.$$

Using the lemma again (now with τ_n playing the role of σ), we find m > n and $Z^2 \in \mathcal{M}^i(\tau_n, \varepsilon_2, m)$ with $Z_{\tau_n}^{2i} = I_{\{\tau_n < T\}} / EI_{\{\tau_n < T\}}$ such that outside of a set $\Gamma \in \mathcal{F}_{\tau_n}$ with $P(\Gamma) \leq \delta$

$$E(Z_{\tau_m}^{2i}I_{\{\tau_m < T\}} | \mathcal{F}_{\tau_n}) \leq \frac{I_{\{\tau_n < T\}}}{EI_{\{\tau_n < T\}}} [(\mathcal{F}^i(\varepsilon_2) + \delta)I_{\Gamma^c} + I_{\Gamma}].$$

Define on $[\sigma, \tau_m]$ the martingale Z with $Z_t^j := Z_t^{1j}$ on $[\sigma, \tau_n]$ and $Z_t^j := Z_t^{2j} Z_{\tau_n}^{1j} / Z_{\tau_n}^{2j}$ on $[\tau_n, \tau_m]$, $j = 1, \ldots, d$.

Then

$$\begin{split} \phi_t Z_t^1 &= \lambda_t^1 (1 + u_t^{11}, \dots, 1 + u_t^{1d}), \quad t \in [\sigma, \tau_n], \\ \phi_t Z_t^2 &= \lambda_t^2 (1 + u_t^{21}, \dots, 1 + u_t^{2d}), \quad t \in [\tau_n, \tau_m], \\ \text{where } \max_j |u^{1j}| &\leq \varepsilon_1, \, \max_j |u^{2j}| &\leq \varepsilon_2 \text{ and } \lambda_t^1, \lambda_t^2 > 0. \text{ It follows that} \\ &Z \in \mathcal{M}^i(\sigma, (1 + \varepsilon_1)(1 + \varepsilon_2)/(1 - \varepsilon_2) - 1, m). \end{split}$$

Note also that

$$\begin{aligned} \mathsf{E} Z^{i}_{\tau_{m}} I_{\{\tau_{m} < T\}} &= \mathsf{P}(\tau_{n} < T) \mathsf{E} Z^{2i}_{\tau_{m}} Z^{1i}_{\tau_{n}} I_{\{\tau_{m} < T\}} \\ &\leq \mathsf{P}(\tau_{n} < T) \mathsf{E} Z^{1i}_{\tau_{n}} I_{\{\tau_{n} < T\}} \mathsf{E}(Z^{2i}_{\tau_{m}} I_{\{\tau_{m} < T\}} | \mathcal{F}_{\tau_{n}}). \end{aligned}$$

Hence,

$$\mathsf{EZ}^{i}_{\tau_{m}}\mathsf{I}_{\{\tau_{m}<\mathcal{T}\}} \leq (\mathsf{F}^{i}(\varepsilon_{1})+\delta)(\mathsf{F}^{i}(\varepsilon_{2})+\delta)+\mathsf{EZ}^{1i}_{\tau_{n}}\mathsf{I}_{\{\tau_{n}<\mathcal{T}\}}\mathsf{I}_{\Gamma}.$$

The inequality (1) follows from here. Note that for $\varepsilon_1, \varepsilon_2 \in]0, 1/4]$

$$\frac{(1+\varepsilon_1)(1+\varepsilon_2)}{1-\varepsilon_2} - 1 = \frac{\varepsilon_1 + 2\varepsilon_2 + \varepsilon_1\varepsilon_2}{1-\varepsilon_2} \leq 4(\varepsilon_1 + \varepsilon_2).$$

Since F is decreasing, we obtain from (1) that $F^i(\varepsilon_1)F^i(\varepsilon_2) \ge F^i(4(\varepsilon_1 + \varepsilon_2))$ for all $\varepsilon_1, \varepsilon_2 \in]0, 1/8]$. Using Lemma 5 below with $f = \ln F^i$, we get the needed bound.

Yuri Kabanov

Small Transaction Costs

Lemma

Let $f :]0, x_0] \rightarrow \mathbf{R}$ be a decreasing function such that

$$f(x_1) + f(x_2) \ge f(4(x_1 + x_2)), \quad \forall x_1, x_2 \le x_0.$$
 (2)

Then there is c > 0 such that $f(x) \ge -cx^{1/3}$ for $x \in]0, x_0]$. *Proof.* In the non-trivial case where $f(x_0) < 0$, the constant $\kappa = -\inf_{x \in]x_0/8, x_0]} f(x)/x$ is strictly greater than zero. Iterating the inequality $2f(x) \ge f(8x)$ we obtain that $2^n f(x) \ge f(2^{3n}x)$ for all $x \in]0, x_02^{-3n}]$ and all integers $n \ge 0$. Therefore,

$$\frac{f(x)}{x} \ge 2^{2n} \frac{f(2^{3n}x)}{2^{3n}x} = \frac{1}{4} x_0^{2/3} \left(\frac{2^{3(n+1)}}{x_0}\right)^{2/3} \frac{f(2^{3n}x)}{2^{3n}x}.$$

For $x \in [2^{-3(n+1)}x_0, 2^{-3n}x_0]$, the right-hand side dominates $-cx^{-2/3}$ with the constant $c := \kappa x_0^{2/3}/4$. Thus, the inequality $f(x)/x \ge -cx^{-2/3}$ holds on $[0, x_0]$.

Proof of the Main Theorem

(\Leftarrow) The arguments are standard. For any $\xi \in \phi_t A_0^{T\varepsilon}(T)$ and $Z \in \mathcal{M}_0^T(\widehat{K}_t^{\varepsilon*} \setminus \{0\})$ we have $EZ_T \xi \leq 0$ and this inequality is impossible for $\xi \in L^0(\mathbf{R}^d_+, \mathcal{F}_T)$.

 (\Rightarrow) We need to consider only the case where the universal chain is such at that $P(\tau_n < T) > 0$ for every *n* and we can apply the results on functions F^i . The claim follows from the assertions below.

Proposition

If $\sum_{i} F^{i}(\varepsilon) = 0$ for all $\varepsilon > 0$, then $\mathcal{M}_{0}^{T}(\widehat{K}^{\varepsilon*} \setminus \{0\}) \neq \emptyset$. *Proof.* Fix $\varepsilon \in]0, 1]$ and define a sequence of $\varepsilon_{k} \downarrow 0$ such that $\overline{\varepsilon}_{N} \uparrow \varepsilon$ where

$$ar{arepsilon}_{N} := (1+arepsilon_{0}) \prod_{k=1}^{N} rac{1+arepsilon_{k}}{1-arepsilon_{k}} - 1.$$

We construct inductively an increasing sequence of integers $(n_N)_{N\geq 0}$ with $n_0 = 0$ and a sequence of $Z^{(N)} \in \mathcal{M}_0^{\tau_{n_N}}(\widehat{K}^{\overline{\varepsilon}_{N^*}} \setminus \{0\})$ such that for N = kd + r where $0 \leq r \leq d - 1$

$$EZ_{\tau_{n_N}}^{(N)(r+1)}I_{\{\tau_{n_N} < T\}} \le 2^{-N}.$$
(3)

Since $F^1(\varepsilon) = 0$, Lemma 4 ensures the existence of $Z^1 \in \mathcal{M}^1(0, \varepsilon_1, n_1)$ with

$$\mathsf{E} Z^{11}_{\tau_{n_1}} I_{\{\tau_{n_1} < T\}} \le 2^{-1}.$$

Put $Z^{(1)} := Z^1$. Take now $\delta_1 > 0$ such that

$$EZ_{\tau_{n_1}}^{(1)2}I_{\{\tau_{n_1} < T\}}I_A \le 2^{-3}$$

for every $A \in \mathcal{F}_{\tau_{n_1}}$ with $P(A) \leq \delta_1$. Using again Lemma 4 (now for the second coordinate), we find $n_2 > n_1$, the set $\Gamma_1 \in \mathcal{F}_{\tau_{n_1}}$ with $P(\Gamma_1) \leq \delta_1 \wedge 2^{-3}$, and $Z^2 \in \mathcal{M}^2(\tau_{n_1}, \varepsilon_2, n_2)$ such that $Z^{22}_{\tau_{n_1}} = 1$ and

$$E(Z_{\tau_{n_2}}^{22}I_{\{\tau_{n_2} < T\}} | \mathcal{F}_{\tau_{n_1}}) \leq [2^{-3} + I_{\Gamma_1}]I_{\{\tau_{n_1} < T\}} / P(\tau_{n_1} < T).$$

Put
$$Z_t^{(2)j} = Z_t^{(1)j}$$
 on $[0, \tau_{n_1}]$ and $Z_t^{(2)j} = Z_t^{2j} Z_{\tau_{n_1}}^{(1)j} / Z_{\tau_{n_1}}^{2j}$ on $]\tau_{n_1}, \tau_{n_2}]$,
 $j = 1, ..., d$. Note that $Z^{(2)} \in \mathcal{M}_0^{\tau_{n_2}}(\phi^{-1} \operatorname{cone} \{\mathbf{1} + U_{\overline{\varepsilon}_2}\} \setminus \{0\})$ and
 $EZ_{\tau_{n_2}}^{(2)2} I_{\{\tau_{n_2} < T\}} = P(\tau_{n_1} < T) EZ_{\tau_{n_2}}^{22} Z_{\tau_{n_1}}^{(1)2} I_{\{\tau_{n_2} < T\}}$
 $\leq P(\tau_{n_1} < T) EZ_{\tau_{n_1}}^{(1)2} I_{\{\tau_{n_1} < T\}} E(Z_{\tau_{n_2}}^{22} I_{\{\tau_{n_2} < T\}} | \mathcal{F}_{\tau_{n_1}}) \leq 2^{-2}$

We continue this procedure passing at each step from the coordinate j to the coordinate j + 1 for $j \le d - 1$ and from the coordinate d to the first one.

Since $P(\tau_n = T) \uparrow 1$, there is a process Z such that $Z^{\tau_{n_N}} = Z^{(N)}$ for every N. The components of Z are strictly positive processes on [0, T]. The condition (3) ensures that they are martingales. Therefore, $Z \in \mathcal{M}_0^T(\widehat{K}^{\varepsilon} \setminus \{0\})$.

Proposition

Suppose that $\sum F^i \neq 0$. Then there is $\varepsilon \in]0,1]$ for which the property NA_{ε}^w does not hold.

Proof. At least one of functions, say, F^1 , is not equal identically to zero. So, we have the bound $F^1(\varepsilon) > e^{-c\varepsilon^{1/3}}$ for all sufficiently small ε . Hence, there is a stopping time σ dominated by certain τ_{n_0} such that

$$\inf_{Z \in \mathcal{M}^{1}(\sigma,\varepsilon,n)} EZ^{1}_{\tau_{n}}I_{\{\tau_{n} < T\}} > e^{-c\varepsilon^{1/3}}$$

for all sufficiently large *n*. Then for every $Z \in \mathcal{M}^1(\sigma, \varepsilon, n)$ we have that

$$E(Z^1 I_{\{\tau_n=T\}} | \mathcal{F}_{\sigma}) \leq 1 - e^{-c \varepsilon^{1/3}}$$

Let us consider the sequence of random variables $\xi^n \in L^0(\mathbf{R}^d, \mathcal{F}_{\tau_n})$ such that the components $\xi^{n^2} = \cdots = \xi^{nd} = 0$ and

$$\xi^{n1} = -I_{\{\sigma < T\}} + (1 - e^{-c\varepsilon^{1/3}})^{-1}I_{\{\sigma < T, \tau_n = T\}}.$$

Clearly,

$$E(Z_{\tau_n}\xi^n|\mathcal{F}_{\sigma}) \leq -I_{\{\sigma < T\}} + (1 - e^{-c\varepsilon^{1/3}})^{-1}E(Z_{\tau_n}I_{\{\tau_n = T\}}|\mathcal{F}_{\sigma})I_{\{\sigma < T\}} \leq 0.$$

We have the inequality $EZ_{\tau_n}\xi^n \leq 0$, and, therefore, by the superhedging theorem (see Th. 3.6.3), ξ^n is the terminal value of an admissible process $\hat{V} = \hat{V}^B$ in the model having σ and τ_n as the initial and terminal dates, respectively. Note that on the non-null set $\{\sigma < T\}$ the limit of ξ^{n1} is strictly positive. To conclude we use the lemma below which one can get by applying, on each interval $[0, \tau_n]$, the Komlós-type result (Lemma 3.6.5) followed by the diagonal procedure.

Lemma

Suppose that $\xi^n = \widehat{V}_{\tau_n}^n$ where $\widehat{V}^n + \mathbf{1} \in \widehat{K}^{\varepsilon}$ and $\xi^n \to \xi$ a.s. as $n \to \infty$. Then there is a portfolio process \widehat{V} such that $\widehat{V} + \mathbf{1} \in \widehat{K}^{\varepsilon}$ and $\xi = \widehat{V}_T$.