
Jena, April 1, 2011

Small Transaction Costs, Absence of Arbitrage
and Consistent Price Systems

Yuri Kabanov
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Introduction

For the discrete-time setting there is a plethora of criteria for
various types of arbitrage, see Ch. 3 1. For continuous-time models
only a few results on the no-arbitrage criteria are available. In a
recent paper 2 it was established an interesting result in this
direction. A question on sufficient and necessary conditions for the
absence of arbitrage was formulated not for a single model but for
a whole family of them. In GRS it was considered a family of
2-asset models with a fixed continuous price process and
constant transaction costs tending to zero. The no-arbitrage
criterion is very simple : the NAw -property holds for each model if
and only if each model admits a consistent price system.

1. Kabanov Yu., Safarian M. Markets with Transaction Costs. Mathematical
Theory. Springer, 2009.

2. Guasoni P., Rásonyi M., Schachermayer W. On fundamental theorem of
asset pricing for continuous processes under small transaction costs. Ann. Finance,
6 (2010).
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Generalization, 1

Let K ε∗ := R+(1 + Uε) = cone (1 + Uε), where
Uε := {x ∈ Rd : maxi |x i | ≤ ε}, ε ∈]0, 1].
That is, K ε∗ is the closed convex cone in Rd generated by the
max-norm ball of radius ε with center at 1 := (1, . . . , 1). We
denote by K ε the (positive) dual cone of K ε∗.
Let (Ω,F , (Ft),P) be a stochastic basis and let S = (St)t≤T be a
continuous semimartingale with strictly positive components. We
consider the linear controlled stochastic equation

dV i
t = V i

t−dY
i
t + dB i

t , V i
0 = 0, i ≤ d ,

where Y i is the stochastic logarithm of S i , i.e. dY i
t = dS i

t/S
i
t ,

Y i
0 = 1, and the strategy B is a predictable càdlàg process of

bounded variation with Ḃ ∈ −K ε. The notation Ḃ stands for (a
measurable version of) the Radon–Nikodym derivative of B with
respect to ||B||, the total variation process of B.
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Generalization, 2

A strategy B is ε-admissible if for the process V = V B there is a
constant κ such that Vt + κSt ∈ K ε for all t ≤ T . The set of
processes V corresponding to ε-admissible strategies is denoted by
ATε

0 while the notation ATε
0 (T ) is reserved for the set of random

variables VT where V ∈ ATε
0 .

Using the random operator

φt : (x1, ..., xd) 7→ (x1/S1
t , ..., x

d/Sd
t )

define the random cone K̂ ε
t = φtK

ε with the dual K̂ ε∗
t = φ−1

t K ε∗.
Put V̂t = φtVt . We denote by MT

0 (K̂ ε∗ \ {0}) the set of

martingales Z such that Zt ∈ K̂ ε∗
t \ {0}.
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Generalization : Main Theorem

Theorem
We have :

ATε
0 (T ) ∩ L0(Rd

+,FT ) = {0} ∀ ε ⇔ MT
0 (K̂ ε∗ \ {0}) 6= ∅ ∀ ε.

Comments on financial interpretation.
For d = 2 our model is the same as of GRS. The only difference is
that we use the ”old-fashion”definition of the value processes but it
is not essential. In the financial interpretation the cones K ε and K̂ ε

are the solvency regions in the terms of the numéraire and physical
units, respectively, V and V̂ are value processes, elements of
MT

0 (K̂ ε∗ \ {0}) are ε-consistent price systems, etc. The condition
“ATε

0 (T ) ∩ L0(Rd
+,FT ) = {0} for all ε” can be referred to as the

universal NAw -property.
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Applications to Financial Context

In the case d > 2 we have no financial interpretation for the
considered objects. Nevertheless, our result can be applied to a
wide class of financially meaningful models, even with varying
transaction costs. To see this, let us consider the family of models
of currency markets with the solvency cones

K (Λε) = cone {(1 + λεij)ei − ej , ei , 1 ≤ i , j ≤ d}.

Suppose that for every ε ∈]0, 1] there is ε′ ∈]0, 1] such that
K (Λε) ⊆ K ε′ and, vice versa, for any δ ∈]0, 1] there is δ′ ∈]0, 1]
such that K δ ⊆ K (Λδ

′
). It is obvious that under this hypothesis

Theorem ensures that for the currency markets the universal
NAw -property holds iif an ε-consistent price system does exist for
every ε > 0. The hypothesis is fulfilled if Λε → 0 and the duals
K ∗(Λε) have interiors containing 1, e.g., if all λεij = ε.

Yuri Kabanov Small Transaction Costs 6 / 25



Application to a Model with Efficient Friction

Proposition

Suppose that Λε → 0 and intK ∗(Λε) 6= ∅ for all ε ∈]0, 1]. Then

NAw (Λε) ∀ ε ∈]0, 1] ⇔ MT
0 (K̂ ∗(Λε) \ {0}) 6= ∅ ∀ ε ∈]0, 1].

Proof. (⇒) Let δ ∈]0, 1] and w ∈ K ∗(Λδ). Then
w i/w j ≤ 1 + λδij → 1 as δ → 0. It follows that K ∗(Λδ

′
) ⊆ K δ∗ for

some δ′ ∈]0, 1]. For the primary cones the inclusion is opposite.
Thus, the assumed no-arbitrage property implies the no-arbitrage
property as in Theorem. Take ε ∈]0, 1] and a vector
v ∈ intK ∗(Λε) ∩ U1. Put

ψv : (x1, ..., xd) 7→ (v1x1, ..., vdxd).

Choose δ ∈]0, 1] such that ψv (1 + Uδ) ⊂ K ∗(Λε). By Theorem
there is Z ∈MT

0 (K̂ δ∗ \ {0}). The process ψvZ is a martingale.

Since ψvZ = φψvφ
−1Z , it is an element of MT

0 (K̂ ∗(Λε) \ {0}).
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Strategy of the Proof

To prove the nontrivial implication (⇒) we exploit the fact that
the universal NAw -property holds for any imbedded discrete-time
model. Using the criterion for NAr -property we deduce from here
the existence of a “universal chain”, that is a sequence of stopping
times τn increasing stationary to T and such that
Mτn

0 (K̂ ε∗ \ {0}) 6= ∅ for all ε ∈]0, 1] and n ≥ 1. In an analogy with
GRS, we relate with this “universal chain” functions F i (ε), i ≤ d ,
and check that there is, for each i , an alternative : either F i = 0,
or F i (0+) = 1. This is the most involved part of the proof. If all
F i = 0, the sets Mτn

0 (K̂ ε∗ \ {0}) are non-empty and we conclude.
If there is a coordinate for which F i (0+) = 1, there exists a strict
arbitrage opportunity.
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Universal Discrete-Time NAw -property

A continuous-time model has universal discrete-time NAw -property
if for any ε > 0, N ≥ 2, and stopping times σ1, . . . , σN ∈ TT , such
that σn < σn+1 on the set {σn < T} we have that

L0(Rd
+,FT ) ∩

∑
n≤N

L0(−φσnK ε,Fσn) = {0}.

Proposition

If the universal discrete-time NAw -property holds, then there are
strictly increasing stopping times τn with P(τn < T )→ 0 as
n→∞ such thatMτN

0 (K̂ ε∗ \ {0}) 6= ∅ for every N and ε.

Proof. Define recursively the stopping times : σ0 = 0,

σn = σεn := inf{t ≥ σn−1 : max
i≤d
| lnS i

t−lnS i
σn−1
| ≥ ln(1+ε/8)}, n ≥ 1.
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Lemma
For any integer N ≥ 1 there is Z ∈MσN

0 (K̂ ε∗ \ {0}).
Proof. To avoid new notation we assume wlg that S = SσN . Let
Xn := Sσn . By our assumption and in virtue of the criterion for the
NAr -property there is a d.-t. martingale (Mn)n≤N with
Mn ∈ L∞(φ−1

σn K
ε/4∗ \ {0}). Put Zt := E (MN |Ft). Let us check

that Z ∈MσN
0 (K̂ ε∗ \ {0}). On the set {t ∈ [σn−1, σn]}

Z̃t := φtZt = E (φtφ
−1
σn Z̃σn |Ft)

where Z̃σn := φσnZσn . Note that

(1 + ε/8)−2 ≤ S i
t/S

i
σn = (S i

t/S
i
σn−1

)(S i
σn−1

/S i
σn) ≤ (1 + ε/8)2.

Therefore,

(1 + ε/8)−2E (Z̃ i
σn |Ft) ≤ Z̃ i

t ≤ (1 + ε/8)2E (Z̃ i
σn |Ft).
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But E (Z̃σn |Ft) ∈ cone (1 + Uε/4) \ {0}), i.e. the components of

E (Z̃σn |Ft) take values in the interval with the extremities
λ(1± ε/4) where λ > 0 depends on n and ω. Thus,

1−ε ≤ (1+ε/8)−2(1−ε/4) ≤ Z̃ i
t/λ ≤ (1+ε/8)2(1+ε/4) ≤ 1+ε.

This implies the assertion of the lemma.
The end of proof is as in GRS. Take a sequence of εk ↓ 0. For each
n ≥ 1 we find an integer Nn,k such that

P(σεkNn,k
< T ) < 2−(n+k).

Wlg we assume that for each k the sequence (Nn,k)n≥1 is
increasing. The increasing sequence of stopping times
τn := mink≥1 σ

εk
Nn,k

converges to T stationary : P(τn < T ) ≤ 2−n.
Applying the lemma with εk we obtain that for the process S
stopped at σεkNn,k

there is an εk -consistent price system. The latter,
being stopped at τn, is an εk -consistent price system for Sτn .
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Properties of Universal Chains

We assume that P(τn < T ) > 0 for all n.
Let TT 6= ∅ be the set of stopping times σ such that P(σ < T ) > 0
and, for some n, the inequality σ ≤ τn holds on {σ < T}.
Let σ ∈ TT and let n be such that σ ≤ τn holds on {σ < T}.
We denote by Mi (σ, ε, n) the set of processes Z such that :
1) Z = 0 on {σ = T} ;
2) Z is a martingale on [σ, τn], i.e. E (Zτn |Fϑ) = Zϑ for any
stopping time ϑ such that σ ≤ ϑ ≤ τn on {σ < T} ;
3) Zt(ω) ∈ int K̂ ε∗

t (ω) when σ(ω) < T and t ∈ [σ(ω), τn(ω)] ;
4) EZ i

σI{σ<T} = 1.

The process Z = Z̃ I{σ<T}/EZ̃
i
σI{σ<T} belongs to Mi (σ, ε, n)

provided that Z̃ ∈Mτn
0 (int K̂ ε∗).
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Let F i (ε) := supσ∈TT F i (σ, ε) where

F i (σ, ε) := lim
n

inf
Z∈Mi (σ,ε,n)

EZ i
τn I{τn<T}.

We also put

f i (σ, ε, n) := ess inf
Z∈Mi (σ,ε,n)

E ((Z i
τn/Z

i
σ)I{τn<T}|Fσ).

Lemma
For any Z ∈Mi (σ, ε, n) there is a process Z̄ ∈Mi (σ, ε, n + 1)
such that Z̄ τn = Z τn .

Proof. Suppose first that Z ∈Mi (σ, ε′, n) for some ε′ < ε. Take
δ > 0 and Z̃ ∈Mi (σ, δ, n + 1). Define the process Z̄ with
components

Z̄ j := Z j I[0,τn[ +
Z j
τn

Z̃ j
τn

Z̃ j I[τn,T ].
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Note that

φtZt = λt(1 + u1
t , . . . , 1 + udt ), t ∈ [σ, τn],

φt Z̃t = λ̃t(1 + ũ1
t , . . . , 1 + ũdt ), t ∈ [τn, τn+1],

where maxj |uj | ≤ ε′, maxj |ũj | ≤ δ and λt , λ̃t > 0. It follows that
Z̄ belongs to Mi (σ, ε̄, n + 1) with

ε̄ =
(1 + ε′)(1 + δ)

1− δ
− 1.

Since ε̄ < ε for sufficiently small δ = δ(ε′), the result follows.
In the general case we consider the partition of the set {σ < T} on
Fτn-measurable subsets Ak , on which the process Z evolves, on the
interval [σ, τn], in the cones K̂ εk∗, where εk := (ε− 1/k) ∨ 0. As
above, take processes Z̃ k ∈Mi (σ, δk , n + 1) with δk = δ(εk).
Then we can take as Z̄ the process with components

Z̄ j := Z j I[0,τn[ +
∑
k

Z kj
τn

Z̃ j
τn

Z̃ kj IAk
I[τn,T ].
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Lemma
The sequence (f i (σ, ε, n))n≥0 decreases to f i (σ, ε) ≤ F i (ε).

Proof. By Lemma 2 for any Z ∈Mi (σ, ε, n) there is a process
Z̄ ∈Mi (σ, ε, n + 1) such that Z̄ τn = Z τn . Using the martingale property
of Z̄ we get that

E ((Z i
τn/Z

i
σ)I{τn<T}|Fσ) = E ((Z̄ i

τn/Z̄
i
σ)I{τn<T}|Fσ) ≥ E ((Z̄ i

τn+1
/Z̄ i

σ)I{τn+1<T}|Fσ).

It follows that f i (σ, ε, n) ≥ f i (σ, ε, n + 1).
Suppose that the inequality f i (σ, ε) ≤ F i (ε) fails. Then there is a
non-null Fσ-measurable set A ⊆ {σ < T} and a constant a > 0 such
that f i (σ, ε, n)IA ≥ (F i (ε) + a)IA for all sufficiently large n.
Put σA := σIA + TIAc . Then for any Z ∈Mi (σ, ε, n) the process
ZIA/EZIA is in Mi (σA, ε, n). Since E (ξ|Fσ)IA = E (ξ|FσA)IA,

f i (σA, ε, n)IA ≥ f i (σ, ε, n)IA.

Thus, for any Z ∈Mi (σA, ε, n) and large n

EZ i
τn I{τn<T} = EZ i

σA
E ((Z i

τn/Z
i
σA

)I{τn<T}|FσA) ≥ F i (ε) + a

in contradiction with the definition of F i (ε).
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Lemma
Let σ ∈ TT be such that σ ≤ τn0 on the set {σ < T} and let
ε, δ > 0. Then there are n ≥ n0, Γ ∈ Fσ with P(Γ) ≤ δ, and
Z ∈Mi (σ, ε, n) such that Z i

σ = η := I{σ<T}/EI{σ<T} and

E (Z i
τn I{τn<T}|Fσ) ≤

I{σ<T}

EI{σ<T}
[(F i (ε) + δ)IΓc + IΓ].

Proof. Recall that the essential infimum ξ of a family of random
variables {ξα} is the limit of a decreasing sequence of random
variables of the form ξα1 ∧ ξα2 ∧ ... ∧ ξαm , m→∞. Thus, for any
a > 0 the sets {ξαk ≤ ξ + a} form a covering of Ω. Using the
standard procedure, one can construct from this covering a
measurable partition of Ω by sets Ak such that ξαk ≤ ξ + γ on Ak .
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Thus, for any fixed n ≥ n0 there are a countable partition of the
set {σ < T} into Fσ-measurable sets An,k and a sequence of
Zn,k ∈Mi (σ, ε, n) such that

E ((Zn,k,i
τn /Zn,k,i

σ )I{τn<T}|Fσ) ≤ f i (σ, ε, n) + 1/n on An,k .

Put, for t ∈ [σ, τn],

Z̃n
t := η

∞∑
k=1

1

Zn,k,i
σ

Zn,k
t IAn,k .

Then Z̃n ∈Mi (σ, ε, n), Z̃n,i
σ = η, and

E (Z̃n,i
τn I{τn<T}|Fσ) = ηE ((Z̃n,i

τn /η)I{τn<T}|Fσ) ≤
I{σ<T}

EI{σ<T}
[f i (σ, ε, n)+1/n].

Note that f i (σ, ε, n) + 1/n decreases to f i (σ, ε) ≤ F i (ε). By the
Egorov theorem the convergence is uniform outside of a set Γ of
arbitrary small probability. The assertion of the lemma follows from
here.
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Proposition

For any ε1, ε2 we have the inequality

F i (ε1)F i (ε2) ≥ F i ((1 + ε1)(1 + ε2)/(1− ε2)− 1). (1)

Either F i = 0, or there is c i ≥ 0 such that F i (ε) ≥ e−c
iε1/3

.

Proof. Fix δ > 0 and a stopping time σ ≤ τn0 on the set {σ < T}. By
the lemma there are n ≥ n0 and Z 1 ∈Mi (σ, ε1, n) such that

EZ 1i
τn I{τn<T} ≤ F i (ε1) + δ.

Using the lemma again (now with τn playing the role of σ), we find
m > n and Z 2 ∈Mi (τn, ε2,m) with Z 2i

τn = I{τn<T}/EI{τn<T} such that
outside of a set Γ ∈ Fτn with P(Γ) ≤ δ

E (Z 2i
τm I{τm<T}|Fτn) ≤

I{τn<T}

EI{τn<T}
[(F i (ε2) + δ)IΓc + IΓ].

Define on [σ, τm] the martingale Z with Z j
t := Z 1j

t on [σ, τn] and

Z j
t := Z 2j

t Z 1j
τn /Z

2j
τn on [τn, τm], j = 1, . . . , d .
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Then
φtZ

1
t = λ1

t (1 + u11
t , . . . , 1 + u1d

t ), t ∈ [σ, τn],

φtZ
2
t = λ2

t (1 + u21
t , . . . , 1 + u2d

t ), t ∈ [τn, τm],

where maxj |u1j | ≤ ε1, maxj |u2j | ≤ ε2 and λ1
t , λ

2
t > 0. It follows that

Z ∈Mi (σ, (1 + ε1)(1 + ε2)/(1− ε2)− 1,m).

Note also that

EZ i
τm I{τm<T} = P(τn < T )EZ 2i

τmZ
1i
τn I{τm<T}

≤ P(τn < T )EZ 1i
τn I{τn<T}E (Z 2i

τm I{τm<T}|Fτn).

Hence,

EZ i
τm I{τm<T} ≤ (F i (ε1) + δ)(F i (ε2) + δ) + EZ 1i

τn I{τn<T}IΓ.

The inequality (1) follows from here. Note that for ε1, ε2 ∈]0, 1/4]

(1 + ε1)(1 + ε2)

1− ε2
− 1 =

ε1 + 2ε2 + ε1ε2

1− ε2
≤ 4(ε1 + ε2).

Since F is decreasing, we obtain from (1) that

F i (ε1)F i (ε2) ≥ F i (4(ε1 + ε2)) for all ε1, ε2 ∈]0, 1/8]. Using Lemma 5

below with f = lnF i , we get the needed bound.
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Lemma
Let f :]0, x0]→ R be a decreasing function such that

f (x1) + f (x2) ≥ f (4(x1 + x2)), ∀ x1, x2 ≤ x0. (2)

Then there is c > 0 such that f (x) ≥ −cx1/3 for x ∈]0, x0].

Proof. In the non-trivial case where f (x0) < 0, the constant
κ = − infx∈]x0/8,x0] f (x)/x is strictly greater than zero. Iterating
the inequality 2f (x) ≥ f (8x) we obtain that 2nf (x) ≥ f (23nx) for
all x ∈]0, x02−3n] and all integers n ≥ 0. Therefore,

f (x)

x
≥ 22n f (23nx)

23nx
=

1

4
x

2/3
0

(
23(n+1)

x0

)2/3
f (23nx)

23nx
.

For x ∈]2−3(n+1)x0, 2
−3nx0], the right-hand side dominates

−cx−2/3 with the constant c := κx
2/3
0 /4. Thus, the inequality

f (x)/x ≥ −cx−2/3 holds on ]0, x0].
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Proof of the Main Theorem

(⇐) The arguments are standard. For any ξ ∈ φtATε
0 (T ) and

Z ∈MT
0 (K̂ ε∗

t \ {0}) we have EZT ξ ≤ 0 and this inequality is
impossible for ξ ∈ L0(Rd

+,FT ).

(⇒) We need to consider only the case where the universal chain is
such at that P(τn < T ) > 0 for every n and we can apply the
results on functions F i . The claim follows from the assertions
below.

Proposition

If
∑

i F
i (ε) = 0 for all ε > 0, thenMT

0 (K̂ ε∗ \ {0}) 6= ∅.
Proof. Fix ε ∈]0, 1] and define a sequence of εk ↓ 0 such that
ε̄N ↑ ε where

ε̄N := (1 + ε0)
N∏

k=1

1 + εk
1− εk

− 1.
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We construct inductively an increasing sequence of integers
(nN)N≥0 with n0 = 0 and a sequence of Z (N) ∈MτnN

0 (K̂ ε̄N∗ \ {0})
such that for N = kd + r where 0 ≤ r ≤ d − 1

EZ (N)(r+1)
τnN

I{τnN<T} ≤ 2−N . (3)

Since F 1(ε) = 0, Lemma 4 ensures the existence of
Z 1 ∈M1(0, ε1, n1) with

EZ 11
τn1

I{τn1<T} ≤ 2−1.

Put Z (1) := Z 1. Take now δ1 > 0 such that

EZ (1)2
τn1

I{τn1<T}IA ≤ 2−3

for every A ∈ Fτn1
with P(A) ≤ δ1. Using again Lemma 4 (now for

the second coordinate), we find n2 > n1, the set Γ1 ∈ Fτn1
with

P(Γ1) ≤ δ1 ∧ 2−3, and Z 2 ∈M2(τn1 , ε2, n2) such that Z 22
τn1

= 1
and

E (Z 22
τn2

I{τn2<T}|Fτn1
) ≤ [2−3 + IΓ1 ]I{τn1<T}/P(τn1 < T ).
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Put Z
(2)j
t = Z

(1)j
t on [0, τn1 ] and Z

(2)j
t = Z 2j

t Z
(1)j
τn1

/Z 2j
τn1

on ]τn1 , τn2 ],

j = 1, . . . , d . Note that Z (2) ∈Mτn2
0 (φ−1cone {1 +Uε̄2} \ {0}) and

EZ (2)2
τn2

I{τn2
<T} = P(τn1 < T )EZ 22

τn2
Z (1)2
τn1

I{τn2
<T}

≤ P(τn1 < T )EZ (1)2
τn1

I{τn1
<T}E (Z 22

τn2
I{τn2

<T}|Fτn1
) ≤ 2−2.

We continue this procedure passing at each step from the
coordinate j to the coordinate j + 1 for j ≤ d − 1 and from the
coordinate d to the first one.
Since P(τn = T ) ↑ 1, there is a process Z such that Z τnN = Z (N)

for every N. The components of Z are strictly positive processes on
[0,T ]. The condition (3) ensures that they are martingales.
Therefore, Z ∈MT

0 (K̂ ε \ {0}).

Proposition

Suppose that
∑

F i 6= 0. Then there is ε ∈]0, 1] for which the
property NAw

ε does not hold.
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Proof. At least one of functions, say, F 1, is not equal identically to
zero. So, we have the bound F 1(ε) > e−cε

1/3
for all sufficiently

small ε. Hence, there is a stopping time σ dominated by certain τn0

such that
inf

Z∈M1(σ,ε,n)
EZ 1

τn I{τn<T} > e−cε
1/3

for all sufficiently large n. Then for every Z ∈M1(σ, ε, n) we have
that

E (Z 1I{τn=T}|Fσ) ≤ 1− e−cε
1/3
.

Let us consider the sequence of random variables ξn ∈ L0(Rd ,Fτn)
such that the components ξn2 = · · · = ξnd = 0 and

ξn1 = −I{σ<T} + (1− e−cε
1/3

)−1I{σ<T ,τn=T}.

Clearly,

E (Zτnξ
n|Fσ) ≤ −I{σ<T}+(1−e−cε1/3

)−1E (Zτn I{τn=T}|Fσ)I{σ<T} ≤ 0.
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We have the inequality EZτnξ
n ≤ 0, and, therefore, by the

superhedging theorem (see Th. 3.6.3), ξn is the terminal value of
an admissible process V̂ = V̂ B in the model having σ and τn as
the initial and terminal dates, respectively. Note that on the
non-null set {σ < T} the limit of ξn1 is strictly positive. To
conclude we use the lemma below which one can get by applying,
on each interval [0, τn], the Komlós-type result (Lemma 3.6.5)
followed by the diagonal procedure.

Lemma
Suppose that ξn = V̂ n

τn where V̂ n + 1 ∈ K̂ ε and ξn → ξ a.s. as

n→∞. Then there is a portfolio process V̂ such that V̂ + 1 ∈ K̂ ε

and ξ = V̂T .
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