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An important issue in neuroscience is the characterization for the

underlying architectures of complex brain networks. However, little

is known about the network of anatomical connections in the human

brain. Here, we investigated large-scale anatomical connection

patterns of the human cerebral cortex using cortical thickness

measurements from magnetic resonance images. Two areas were

considered anatomically connected if they showed statistically

significant correlations in cortical thickness and we constructed

the network of such connections using 124 brains from the

International Consortium for Brain Mapping database. Significant

short- and long-range connections were found in both intra- and

interhemispheric regions, many of which were consistent with

known neuroanatomical pathways measured by human diffusion

imaging. More importantly, we showed that the human brain

anatomical network had robust small-world propertieswith cohesive

neighborhoods and short mean distances between regions that were

insensitive to the selection of correlation thresholds. Additionally, we

also found that this network and the probability of finding a connec-

tion between 2 regions for a given anatomical distance had both

exponentially truncated power-law distributions. Our results dem-

onstrated the basic organizational principles for the anatomical

network in the human brain compatible with previous functional

networks studies, which provides important implications of how

functional brain states originate from their structural underpinnings.

To our knowledge, this study provides the first report of small-world

properties and degree distribution of anatomical networks in the

human brain using cortical thickness measurements.

Keywords: anatomy, connectivity, cortical thickness, magnetic resonance

imaging, morphometry, scale free, small world

Introduction

The human brain is a large, interacting, complex network with
nontrivial topological properties (Sporns et al. 2004; Stam 2004;

Eguiluz et al. 2005; Salvador, Suckling, Coleman, et al. 2005;
Achard et al. 2006; Stam et al. 2007). The characterization for
the underlying architectures of such a network is an important

issue in neuroscience. It can reveal general principles of struc-
tural and functional organization in the human brain and in-
crease our understanding of how the human brain is capable of

generating and integrating information frommultiple sources in
real time (Sporns et al. 2004).
Thus far, most studies of complex brain networks in human

have focused upon exploring connectivity patterns under

functional brain states. For example, recent electroencephalo-
gram (EEG) (Micheloyannis et al. 2006; Stam et al. 2007),
magnetoencephalographic (MEG) recordings (Stam 2004) and

functional magnetic resonance imaging (fMRI) (Eguiluz et al.
2005; Salvador, Suckling, Coleman, et al. 2005; Achard et al.

2006) studies have consistently demonstrated that human brain

functional networks during behavior or even at resting state

have the small-world property, a prominent feature shared by

various social, economic, and biological networks (for a review,

see Strogatz 2001). A small-world architecture indicates that the

minimum path length between any pair of nodes is approxi-

mately equivalent to a comparable random network but the

nodes of the network have greater local interconnectivity or

cliquishness than a random network (Watts and Strogatz 1998).

In addition to the small-world features, Eguiluz et al. (2005)

demonstrated that human brain functional networks derived

from experimentally activated fMRI data at a mesoscale (voxel

level) have a scale-free power-law connection degree distribu-

tion, implying that there are a small number of regions (hubs)

with an unusually large number of connections. On the other

hand, another study from Achard et al. (2006) showed that

functional networks of the human brain derived from resting-

state fMRI data at a macroscale (regional level) follow an

exponentially truncated power-law distribution, implying rela-

tively reduced probabilities of huge hubs. The discrepancies

between the connectivity degree distributions could be due to

the different spatial scale analysis and/or experimental con-

ditions of the subjects applied in the 2 studies.
Although there have been a number of studies investigating

functional connectivity networks (Stam 2004; Eguiluz et al.

2005; Salvador, Suckling, Coleman, et al. 2005; Achard et al.

2006; Stam et al. 2007), little is known about the network of

anatomical connections in the human brain. Definition of

anatomical connectional models of the human brain is usually

based on inferring knowledge from primate species such as the

macaque monkey in which the connection pattern is well

known (Crick and Jones 1993; Stephan et al. 2001; Penny et al.

2004). The procedure is problematic, however, partly because

of our poor understanding of the evolutionary discrepancies.

Direct evidence for the underlying architecture of human brain

anatomical networks is still lacking (Tootell et al. 2003).

Characterization of such a network would be particularly vital

to reveal intrinsically structural organizational principles in the

human brain and enhance our understanding of how functional

brain states are associated with their structural substrates.

Recently, Sporns et al. (2005) have referred to the comprehen-

sive, detailed structural description of the network of elements

and connections forming the human brain as ‘‘human connec-

tome.’’ There is little evidence for such an interesting but also

very challenging scheme to date because of the difficulties of

defining the basic structural elements of the human brain in

terms of network nodes and connections (Sporns et al. 2005).

In this study, we propose an avenue of research to charac-
terize large-scale anatomical connectivity patterns of the human
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brain using morphological measurements from in vivo MRI.
Cortical thickness was chosen as a morphometric feature
because it reflects the size, density, and arrangement of cells
(neurons, neuroglia, and nerve fibers) (Parent and Carpenter

1995; Narr et al. 2005). Particularly, 2 recent studies have
suggested that interregional statistical associations in cortical
thickness provide important connectivity information in the

human brain (Worsley et al. 2005; Lerch et al. 2006) (we will
return to this issue in the Discussion section). To study large-
scale anatomical connectivity patterns in the human brain, we

first segmented the entire cerebral cortex into 54 areas and
automatically measured regional cortical thickness using com-
putational neuroanatomy. Two areas were considered anatom-

ically connected if they had significant correlations of cortical
thickness across a population of 124 normal brains drawn from
the International Consortium for Brain Mapping (ICBM) MRI
database (Mazziotta et al. 2001). Finally, we thresholded the

interregional correlation matrix to construct an undirected
graph and estimated its statistical and anatomical properties,
especially small-world properties and connectivity degree

distribution, using graph theoretical analysis. This allows us
for the first time to assess the dependencies of interregional
anatomical connectivity on the anatomical relationship be-

tween regions, and to demonstrate the small-world attributes
and degree distribution of human cortical networks using
cortical thickness measurements from in vivo MRI.

Materials and Methods

Subjects

The subjects scanned were 152 unselected normal volunteers of the
ICBM database. Each subject gave written informed consent and this
study was approved by the Research Ethics Committee of the Montreal
Neurological Institute and Hospital. The scans of 28 subjects were
excluded from the analysis due to the left-handedness (14 subjects),
unknown handedness (10 subjects), and failure of imaging processing (4
subjects). Of the remaining 124 right-handed subjects, 71 were male and
53 female. Ages ranged from 18 to 39 years (mean age 24.38, standard
deviation 4.25). The characteristics of the subjects have been described
previously (Watkins et al. 2001).

MRI Acquisition

MRI scans were performed on a Phillips Gyroscan 1.5-T superconduct-
ing magnet system. T1, T2, and proton density images were acquired for
each subject with the following sequences: T1-weighted (3D fast field
echo scan with 140--160 slices, 1-mm isotropic resolution, time
repetition [TR] = 18 ms, time echo [TE] = 10 ms, flip angle = 30�), T2-
weighted (2D multislice fast spin echo scan with 140--160 2-mm slices
with a 1 mm overlap, TR = 3300 ms, TE = 35 ms), and proton density (as
for T2 scan but with TE = 120 ms) images of the whole head. Only T1
image of each subject was applied in this study.

Measurements of Cortical Thickness

The native MR images were first registered into stereotaxic space
(Talairach and Tournoux 1988) using a 9-parameter linear transforma-
tion (Collins et al. 1994). Simultaneously, images were corrected for
nonuniformity artifacts using the N3 algorithms (Sled et al. 1998). The
registered and corrected images were further segmented into gray
matter, white matter, cerebrospinal fluid, and background using an
advanced neural net classifier (Zijdenbos et al. 2002). The inner and
outer gray matter surfaces were then automatically extracted from each
MR volume using the Constrained Laplacian-based Automated Segmen-
tation with Proximities (CLASP) algorithm (MacDonald et al. 2000; Kim
et al. 2005) and cortical thickness was measured in native space using
the linked distance between 2 surfaces at 40 962 vertices throughout
the cortex. Themeasurement in native space provided an unadjusted es-
timate of absolute cortical thickness (Shaw et al. 2006). A representative

cortical thickness map was shown in Figure 1A. The CLASP cortical
thickness algorithm has been validated using both manual measure-
ments (Kabani et al. 2001) and simulation approaches (Lerch and Evans
2005; Lee et al. 2006), and recently applied to Alzheimer’s disease
(Lerch et al. 2005) and cortical development studies (Shaw et al. 2006).
Individual cortical thickness maps were parcellated using the Auto-
mated Nonlinear Image Matching and Anatomical Labeling package
(Collins et al. 1995; Robbins et al. 2004). By registering each subject’s
MR images to a presegmented volumetric template using nonlinear
deformations (Collins et al. 1995), the labels of brain regions were trans-
formed to the cortical surface by assigning the value of the voxel label
to each vertex on the surface. An average cortical parcellation was
generated by finding the anatomical label with the highest occurrence
at each vertex (Fig. 1B) and 27 separate cortical regions were identified
for each hemisphere (Supplementary Table). Cortical thickness for each
region was measured as the mean thickness of all vertices defined as
belonging to that region.

Construction of Anatomical Connection Matrix

A key issue in characterizing human brain networks is the construction
of the anatomical connectionmatrix (Sporns et al. 2005). To address this
issue, in this study, we first defined anatomical connection as statistical
associations in cortical thickness between brain regions (Fig. 1C). Such
a morphometry-based connection concept has been introduced by the
2 recent studies (Worsley et al. 2005; Lerch et al. 2006). The statistical
similarity in cortical thickness between 2 regions was measured by
computing the Pearson correlation coefficient across subjects and
interregional correlation matrix (N 3 N, where N is the number of brain
regions, here N = 54) of such connections was acquired using the 124
brains included in this study (Fig. 1D). Prior to the correlation analysis,
a linear regression was performed at every region to remove the effects
of age, gender, age--gender interaction, and mean overall cortical
thickness; the residuals of this regression were then substituted for
the raw cortical thickness values. Because the correlation analysis was
performed for all 54 3 53/2 = 1431 pairs of regions, it was necessary to
perform a multiple comparisons correction to test the significance of
these correlations. We applied the false discovery rate (FDR) procedure
(Genovese et al. 2002) to correct the multiple comparisons at a q value
of 0.05. Using this threshold, we constructed a symmetric connection
matrix (Fig. 1E), whose element was 1 if the cortical thickness
correlation between 2 regions was statistically significant and 0 other-
wise. This binarized connection matrix captures the underlying
anatomical connection patterns of the human brain common to the
population sample under study. The anatomical and statistical proper-
ties of this network are further characterized below. It is also possible to
characterize the network with continuous weighting between nodes
(Barrat et al. 2004; Jiang et al. 2004) but this leads to complications of
statistical features descriptions in subsequent graph theoretical analysis.
This initial study therefore confined itself to a simpler on--off connec-
tivity analysis.

Anatomical Connections and Anatomical Distance

The binarized anatomical connection matrix can be visualized in 3D
anatomical space (Fig. 1F) by locating cortical regions according to their
y and z centroid stereotaxic coordinates. In this study, we also examined
the relationship between the anatomical connections and their corre-
sponding anatomical distance (Fig. 2). The anatomical distance between
2 regions was defined as Euclidean distance Dij (in mm) between

regional centroids: Dij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi –xj Þ
2
+ ðyi –yj Þ

2
+ ðzi –zj Þ

2
q

where (xi, yi, zi)

and (xj, yj, zj) are the stereotaxic coordinates of the centroids for
regions i and j. The connections with D > 75 mmwere considered long-
range connections shown in Figure 3. The Euclidean distance used in
the present study provides an approximate reflection on the true phys-
ical distance (axonal length) of connections between regions and has
been applied in previous functional brain networks studies (Salvador,
Suckling, Coleman, et al. 2005; Salvador, Suckling, Schwarzbauer, et al.
2005; Achard et al. 2006).

Graph Theoretical Analysis

To perform a graph theoretical analysis, the anatomical connection
matrix obtained above was described as an undirected graph G with N
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nodes and K edges, where nodes represent brain regions and edges
represent undirected connections between regions. In this study, we
estimated 3 important metrics of the graph G, namely, the mean degree
Ækæ, the clustering coefficient Cp, and the characteristic path length Lp.
The mean degree Ækæ of the graph G is the average of the degree over all
nodes, where the degree ki of a node i corresponds to the number of
connections to that node. The clustering coefficient Cp of the graph G is
the average of the clustering coefficient over all nodes, where the
clustering coefficient Ci of a node i is defined as the number of existing
connections between the node’s neighbors divided by all their possible
connections (Watts and Strogatz 1998). Cp is a measure of the extent of
local cluster or cliquishness of the network. Clearly, 0 < Cp < 1; and
Cp = 1 if and only if the network is fully connected, that is, each node
is connected to all other nodes. The characteristic path length Lp of the
graph G is the smallest number of connections required to connect one
node to another, averaged overall all pairs of nodes. Lp is a measure of the
extent of average connectivity or overall routing efficiency of the
network. In this study, we also defined the mean shortest path length Li
of a node i as the average of the shortest path lengths between this node
and all other nodes in this network. The nodes with the smallest Li or
largest ki were considered the hubs of the network (Achard et al. 2006).
To examine the small-world properties, the values of C real

p and Lrealp of
the anatomical network were compared with those of 1000 random
networks. We generated these random graphs using the random
rewiring procedure described by Maslov and Sneppen (2002) and
Milo et al. (2002), which preserves the same number of nodes, mean
degree Ækæ, and degree distribution as the real network. Typically,
a small-world network should fulfill the following conditions:
c = C real

p =C rand
p

>1 and k = Lrealp =Lrandp ~1 (Watts and Strogatz 1998). These 2
conditions can also be summarized into a simple quantitative measure-
ment, small worldness, r = c/k > 1 (Humphries et al. 2005; Achard et al.
2006), implying that the magnitude ratio between C real

p and C rand
p is

greater than themagnitude ratio between Lrealp and Lrandp : In this study, we
primarily report the results of C real

p and Lrealp of the anatomical network of
the human brain based on the FDR thresholded correlation matrix
(Genovese et al. 2002). It is reasonable that the small-world attributes
can change with the correlation thresholds. When the threshold is
increased, some weaker connections will be dropped out and the
resulting graphs will become sparser, leading to a decrease of the mean
degree (Fig. 4A). When the correlation threshold reaches an value of
Rmax, the mean degree of the resulting network will be less than the
log of the number of nodes [i.e., Ækæ < logðN Þ = 3:99] and small-world
properties are not estimable (Watts and Strogatz 1998; Achard et al.
2006). To explore the influence of thresholding on the small-world
attributes, in this study, we applied the maximum range of correlation
thresholds (0 < R < Rmax, with an incremental interval of 0.01) to
the correlation matrix, and repeated the small-world analysis for every
R value.
In addition to the small-word attributes, we also examined the

connectivity degree distribution of the brain network (Fig. 5). It has
been demonstrated that the small-world networks can be classified into
different categories (e.g., scale-free and exponentially truncated power-
law distribution) according to their connectivity distributions and each
of which exhibits specific network behaviors such as the resilience to
random errors or hubs attacks (Albert et al. 2000; Amaral et al. 2000;
Achard et al. 2006). Finally, the hub regions in this network were iden-
tified by using a regionally shortest path length Li averaged over both
hemispheres. To visualize the hubs, we also mapped the human brain
network with the Pajek software package (http://vlado.fmf.uni-lj.si/
pub/networks/pajek/) (Batagelj and Mrvar 1998) using a Kamada--Kawai
layout algorithm (Kamada and Kawai 1989) (Fig. 6). To assess the
importance of the hubs for the brain network, we individually eliminated
the hub and nonhub regions from the network and compared the
changes in the global properties (largest component size, clustering co-
efficients and characteristic path lengths) of the resulting networks using
a 2-sample t test.

Results

Under the statistical threshold of p value of 0.05 (corrected by
FDR), we observed that the 104 pairs of regions exhibited

significant anatomical connectivity (cortical thickness correla-
tions), which resulted in a binarized anatomical connection
matrix with a sparsity of ~7.3% (104/1431). Furthermore, we
observed a single component with 45 connected nodes and 9

disconnected nodes in the sparse matrix (Fig. 1E). In this study,
the properties of a network were calculated on its largest
component.

Interregional Anatomical Connections

About half of the connections (46/104; 44.2%) were intrahemi-

spheric, involving brain regions in the same lobe and anatom-
ically adjacent regions across different lobes. Several
symmetrically interhemispheric connections (18/104; 17.3%)

among certain bilaterally homologous regions in the cerebral
hemispheres were also found to be very significant. In addition,
we also observed significant asymmetrically interhemispheric
connections between the nonhomologous regions in different

hemispheres (40/104; 38.5%). Table 1 included the most
significant 15 interregional cortical thickness connections
(corrected P < 1.0 3 10–05) and their approximately associated

white matter fibers measured by diffusion imaging in human.

Anatomical Connections and Anatomical Distance

Figure 2 demonstrated the dependencies of anatomical con-

nectivity on anatomical distances. Most of the significant
connections appeared to have shorter anatomical distances (D
< 75 mm) but we also observed some long-range (D > 75 mm)

connections in this brain network. The probability of finding
a significant connection between any 2 regions for a given
anatomical distance can be modeled as an exponentially

truncated power law: PðDÞ~Da–1e–D=Dc with an estimated
exponent a = 1.33 and a cutoff distance Dc = 35.2 mm (Fig.
2C). This model indicates a scaling regimen, followed by an
exponential decay in the probability of connections with an

anatomical distance greater than a cutoff value of ~35 mm.
To further explore the pairs of regions that pertain to either

the short- or the long-range connections, we visualized the

connection map in the anatomical space (Fig. 3). In Figure 3B,
we observed that short-range (D < 75 mm) connections (69;
66.3%) existed predominantly in the posterior cortex. Figure 3C

indicated that long-range (D > 75 mm) connections (35; 33.7%)
are mainly between regions of the frontal cortex (superior fron-
tal gyrus [SFG], middle frontal gyrus [MFG], inferior frontal
gyrus [IFG],medial front-orbital gyrus [MOFG] andprecentral gyrus

[PrCG]) and regions of the temporal (superior temporal gyrus
[STG], middle temporal gyrus [MTG], inferior temporal gyrus [ITG]
and lateral occipitotemporal gyrus [LOTG]), parietal (superior

parietal lobe [SPL], precuneus [PCU], supramarginal gyrus [SMG]
and angular gyrus [AG]) and occipital association cortices (superior
occipital gyrus [SOG]).

Small-World Properties

In the present study, we calculated the clustering coefficient
and characteristic path length for both of the cortical thickness
connectivity network (C real

p = 0:30; Lrealp = 3:05) and the corre-
sponding random networks with the same number of nodes,

mean degree, and degree distribution (C random
p = 0:13;

L random
p = 2:65). In other words, the clustering coefficient of
the brain network is approximately twice that of a comparable

random network (c = 2.36), whereas the path length is
approximately equivalent to the random network (k = 1.15),

Cerebral Cortex October 2007, V 17 N 10 2409
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Figure 1. A flowchart for the construction of the human brain anatomical network using cortical thickness measurements from MRI. (A) Cortical thickness was estimated using
computational neuroanatomy. The native images were nonuniformity corrected and registered into stereotaxic space. The resulting images were then classified (1) to extract the
inner (2) and outer (3) gray matter surfaces. Cortical thickness was measured at each vertex (4,5). (B) The cerebral cortex was segmented into 54 cortical areas displayed on the
average cortex, each color representing a different region. (C) Anatomical connection was defined as statistically association in cortical thickness between 2 areas. As an example
of anatomical connections using cortical thickness correlations used in this study, we demonstrated that the thickness of right middle prefrontal gyrus had significant association
with that of left middle prefrontal gyrus. The left plot showed the associations (r 5 0.86, P 5 6.17 3 10�37) using raw cortical thickness values but the right plot showed

2410 Small-World Anatomical Networks d He et al.
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thus resulting in a small-world scalar parameter of r = 2.04
(Table 2). In Figure 4, we showed the small-world properties of
the anatomical network as a function of correlation threshold.
For a lower threshold value, the corresponding brain network is

almost fully connected and the small-world properties are
indiscernible (both C real

p and Lrealp are close to 1) from the
matched random networks. As the correlation threshold values

increased the clustering coefficient also increased rapidly (Fig.
4D), whereas the path length only changed slightly (Fig. 4E),
leading to the increases of the small worldness (Fig. 4F). Overall,

small-world properties were salient at higher threshold (Fig.
2D--F). The small-world models shown here therefore indicated
that anatomical networks of the human brain have greater local

interconnectivity or cliquishness and short mean distance
between regions.

Connectivity Degree Distribution and Hub Regions

In addition to the investigation of the small-world properties,

we also examined the degree distribution of the anatomical
network in the human brain. Clearly, the brain network does
not follow a power-law form because the fitted curve is not

a straight line on the log--log plot (Fig. 5). Rather, this
distribution can be well fitted by an exponentially truncated
power-law form: PðkÞ~ka–1e–k=kc with an estimated exponent
a = 1.38 and a cutoff degree kc = 2.50. This model indicates

a scaling regimen, followed by an exponential decay in the
probability of finding nodes with a connection degree greater
than a cutoff value of ~3. In addition, we also demonstrated that

the exponentially truncated power-law distribution was appar-
ent under several different correlation thresholds with only
a slight change in the values of estimated parameters (Fig. 5).

This distribution model indicated that the brain networks
included some hub nodes with many connections but pre-
vented the appearance of huge hubs with very many connec-

tions.
Twelve hub nodes of this network were identified by using

a regionally shortest path length averaged over both hemi-
spheres. These hubs included 9 regions of the heteromodal or

unimodal association cortex, 2 regions of the primary motor and
sensorymotor cortex and one region of the paralimbic cortex
(Fig. 6, Table 3), which had a large overlap with the hub nodes

identified in a very recent functional brain network study

associations (r 5 0.53, P 5 1.76 3 10�10) using the residuals of cortical thickness obtained by removing the effects of gender, age, gender--age interaction, and mean overall
cortical thickness. It was noted that the use of the residuals removed some of correlations between regions. Each data point represents a single subject in the study. (D) Correlation
matrix of the cortical thickness in the human brain was acquired using the 124 brains from the ICBM database. (E) Anatomical connection matrix was constructed by thresholding
the correlation matrix in (D) using a FDR procedure. The labeled matrix was presented below. Note that the matrix shown here only included interregional pathways with strong
correlations due to the conservative FDR threshold (Genovese et al. 2002) used to in this study. The sparse matrix was composed of 45 connected nodes and 9 disconnected nodes
including several unimodal (bilateral cuneus, bilateral middle occipital gyrus, and left inferior occipital gyrus), paralimbic, and limbic regions (bilateral uncus, bilateral insula, and right
cingulate region). R, right; L, left. For the abbreviations of the regions, see Supplementary Table. (F) The thresholded connection matrix was visualized in anatomical space. For
details, see Materials and Methods.

Figure 2. The dependencies of anatomical connectivity on anatomical distance. (A) Plot of anatomical connections (cortical thickness correlations) versus anatomical distance
between regions. Red circles indicate the anatomical connections between bilaterally homologous regions. The dotted lines indicate the values of correlations under the FDR
threshold (P 5 0.05). (B) Distribution of anatomical distance. Frequency indicates the number of significant connections for a given anatomical distance. The figure shows many
strong local-range connections and a few long-range connections. (C) Probability of finding a significant connection for a given distance in the log--log plot fitted by an exponentially
truncated power law (black solid line). The observed data points (plus sign) were obtained by a FDR threshold. Distance shown in figures indicates Euclidean distance between
regional centroids in stereotaxic space.

Cerebral Cortex October 2007, V 17 N 10 2411

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/1
7
/1

0
/2

4
0
7
/3

1
3
5
7
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



(Achard et al. 2006). To elucidate the importance of these hub

regions for the brain network, we removed the hub and nonhub

regions separately and compared the global properties of the

resulting 2-group networks (Fig. 7). Compared with the non-

hubs, the elimination of the hub regions only resulted in slight

changes in the largest component size (t = 0.31, P = 0.76) but

significant decreases in the clustering coefficient (t = –4.80, P =

8.67 3 10–5) and increases in the characteristic path length (t =

4.91, P = 6.50 3 10–5). In addition, we also found that, when

individual hub node was removed from the brain network, the

characteristic path lengths of the resulting networks were

larger than those (Lrealp = 3:05) of the experimental network

(Table 3).

Discussion

This is the first study, to our knowledge, to demonstrate the
large-scale anatomical connectivity patterns in the entire
human cerebral cortex using cortical thickness measurements.

We found significant short- and long-range anatomical connec-
tions (cortical thickness correlations) in both intrahemispheric
and interhemispheric regions. More importantly, we showed
that the human brain anatomical network had small-world

properties with cohesive neighborhoods and short path length
between regions. In addition, we also demonstrated that both
the anatomical network and the probability of finding a connec-

tion between 2 regions for a given anatomical distance followed
an exponentially truncated power-law model. Taken together,

Figure 4. Small-world properties of the anatomical networks as a function of correlation threshold. (A) The mean degree of human brain anatomical networks decreases as the
correlation threshold increases. Small-world properties are not estimable when the mean degree of anatomical network obtained under the correlation threshold Rmax is less than
log(N) 5 3.99 (Watts and Strogatz 1998; Achard et al. 2006). (B) The largest component size decreases as the correlation threshold increases. (C) The connectedness tends to
decrease as the correlation threshold, where the connectedness is assessed by the reachability matrix recording if at least one path exists between all pairs of nodes (Sporns et al.
2000). (D) The clustering coefficient increases as the correlation threshold increases. (E) The path length has relatively small changes as the correlation threshold increases. (F) The
small worldness tends to increase as the correlation threshold increases. The black arrows indicate the values of small-world properties of the human brain anatomical network
constructed by a FDR threshold.

Figure 3. Short- and long-range anatomical connections in the anatomical space. (A) One hundred and four undirected edges (~7.3% of the 1431 possible connections among
regions) representing the significant connections were shown in a sagittal view of the brain. Edges were classified into (B) short-range connections (D\75 mm, red) and (C) long-
range connections (D[ 75 mm, blue) The locations of the nodes indicated the y and z coordinates of the regional centroids in Talairach space.
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we concluded that our results provided an important structural
description for the network of anatomical connections in the
human brain.

Interpreting Cortical Thickness Correlations

Human neuroanatomy is less well developed than nonhuman

neuroanatomy because the common invasive tracer methods
cannot be applied to the human brain (Crick and Jones 1993).
Thus, the patterns of anatomical connections in the human

brain remain unclear. Recent noninvasive diffusion MRI techni-
ques have provided a promising experimental route toward
revealing the connectivity patterns in vivo in human but there

continues to be some limitations in data acquisition and
processing approaches such as the issues of crossing or
intersecting fibers (Dougherty et al. 2005; Tuch et al. 2005).
Here we proposed a new avenue of research to explore the

patterns of anatomical connectivity in the human brain. A
prominent difference between the current analysis and pre-
vious studies on the human anatomical substrates is that, in the

current study, 2 areas are considered anatomically connected if
they show statistically significant associations in cortical thick-
ness. Although the exact biological nature of the cortical

thickness correlations is still unknown, it has been argued
that the covariation of the morphological features (tissue
volume or concentration) in related cortical regions may be

resulted from the mutually trophic influences (Ferrer et al.
1995), the contribution of heredity (Suddath et al. 1990;
Steinmetz et al. 1994; Thompson et al. 2001), or common
experience-related plasticity (Maguire et al. 2000; Draganski

et al. 2004; Mechelli et al. 2004). Recently, studies have also
indicated that these intercorrelated regions may be a part of
functional, neuroanatomically interconnected systems (Andrews

et al. 1997; Wright et al. 1999; Mechelli et al. 2005; Mitelman
et al. 2005). For instance, Andrews et al. (1997) observed that

Figure 6. The topology of human brain anatomical network representing significant cortical thickness correlations. Regions are represented as nodes, and connections are
represented as edges that link the nodes. Hubs regions are colored in red and nonhub regions are colored in green. Black lines represent long-range connections (D[75 mm) and
gray lines represent short-range connections. The geometric distance between regions on the drawing space approximates the shortest path length between them. The network
was visualized with the Pajek program (Batagelj and Mrvar 1998). For the abbreviations of the regions, see Supplementary Table.

Figure 5. The degree distributions of human brain anatomical networks for 3 different
correlation threshold values. The black solid lines indicate exponentially truncated
power-law fits in the log--log plot of the cumulative probability degree versus the
degree for the 3 correlation threshold values. Here a cumulative distribution was used
to reduce the effects of noise on this smaller data set (Strogatz 2001). Upright
triangles: correlation threshold R 5 0.31 (corresponding to P value of 0.05 corrected
by FDR); mean degree hki55.4; estimated exponent a 5 1.38; and cutoff degree
kc 5 2.50. Plus sign: correlation threshold R 5 0.27; mean degree hki57.0; esti-
mated exponent a 5 1.13; and cutoff degree kc 5 1.43. Squares: correlation thresh-
old R 5 0.23; mean degree hki59.0; estimated exponent a 5 1.09; and cutoff
degree kc 5 1.32.
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several components of the human visual system (i.e., the optic

tract, lateral geniculate nucleus, and primary visual cortex)
covary in volume across individuals. Significant regional gray
matter volumetric or concentration correlationswere also found

in the frontal-temporal (Woodruff et al. 1997; Bullmore et al.
1998; Mitelman et al. 2005) and frontal-parietal systems (Wright
et al. 1999;Mechelli et al. 2005). One vital support for the present

study is that Lerch et al. (2006) demonstrated a striking similarity
between the cortical thickness correlation maps of Brodmann
Area 44 and diffusion tensor maps of the arcuate fasciculus (a

language-related neural pathway connecting Broca’s and Wer-
nicke’s areas), suggesting that they were measuring 2 aspects of
the same underlying processes. All these processes are the likely
driving forces behind the patterns of anatomical connections of

the human brain herein.

Cortical Thickness Correlations and Neuroanatomical

Pathway

In this study, we detected 104 pairs of regions showing
significant correlations in cortical thickness. A question of

interest is whether the regions found to be associated in the

present investigation are also related to the neuroanatomical
pathway of the human brain. To address this issue, we matched
the 15 most significant (corrected P < 1.0 3 10–05) connections

to the approximate associated anatomical connections obtained
from previous human diffusion imaging studies (Table 1).
Several significant correlations were present in homologous

regions in a bilateral and symmetrical fashion; this finding can be
explained by the associations between these regions through
the corpus callosum (CC), a crucial white matter structure

providing interhemispheric communications between both
hemispheres of the brain. Indeed, it has been suggested that
the parcellation of the CC in vivo into several major subdivisions
such as the genu, the body, and the splenium, is based on the

transit of interhemispheric pathways connecting homologous
brain areas (Huang et al. 2005; Hofer and Frahm 2006; Zarei et al.
2006). Thus, tracts connecting to prefrontal cortex occupy the

genu and anterior part of the body of the CC. Moreover,
connections of the central brain regions such as the primary
motor and sensorymotor cortex are located within the midbody

Table 2

Small-world properties of brain networks shown in the present study and previous studies

Brain networks N Cp Lp c k r

Human: anatomical network (the present study) 54 0.30 3.05 2.36 1.15 2.04
Human: functional network (Achard et al. 2006) 90 0.53 2.49 2.37 1.09 2.18
Human: functional network (Salvador, Suckling, Coleman, et al. 2005) 45 0.25 2.82 2.08 1.09 1.91
Macaque: anatomical network (Sporns and Zwi 2004) 71 0.46 2.38 1.92 1.12 1.70
Cat: anatomical network (Sporns and Zwi 2004) 52 0.55 1.81 1.37 1.05 1.30

Note: N, Cp, and Lp denote the number of nodes, clustering coefficient, and mean shortest path length of the real brain networks, respectively. c denotes the ratio of the clustering coefficient between

the brain networks and the constructed random networks. k denotes the ratio of the mean shortest path length between the brain networks and the constructed random networks. In the present

study, these random graphs were generated using a random rewiring procedure (Maslov and Sneppen 2002). r is a ratio of c and k, measuring the small worldness of a network. For the

details, see Methods and Materials. Note that the small-world attributes shown in the present investigation are much closer to those of the human brain functional networks, compared with those of

the anatomical brain networks of macaque and cat.

Table 1

The most significant 15 interregional cortical thickness correlations (corrected P\ 1.0 3 10�05) and their approximate associated fiber tracts

No. Region A Region B Class Correlations D (mm) Approximate associated fiber tracts

R Corrected P

1 PoCG.R PoCG.L SIH 0.67 1.96 3 10�13 79.4 The midbody in the CCa,b

2 MTG.R MTG.L SIH 0.62 1.63 3 10�10 105.9 The splenium in the CCb

3 SFG.R MdFG.R IH 0.61 2.73 3 10�10 14.5 SLFc,e

4 MdFG.R MdFG.L SIH 0.58 2.78 3 10�09 18.1 The genu and anterior part of the body in the CCa,b

5 SPL.L PoCG.L IH 0.58 2.78 3 10�09 39.6 SLFc,e

6 PrCG.R PrCG.L SIH 0.55 6.47 3 10�08 84.6 The midbody in the CCa,b

7 MFG.R MFG.L SIH 0.53 2.82 3 10�07 69.2 The genu and anterior part of the body in the CCa,b,d

8 LOFG.R LOFG.L SIH 0.53 4.20 3 10�07 41.6 The rostrum in the CCd

9 PHG.R PHG.L SIH 0.52 6.04 3 10�07 19.5 The splenium in the CCb

10 IFG.R IFG.L SIH 0.52 7.85 3 10�07 87.4 The genu and anterior part of the body in the CCa,b

11 SFG.L PrCG.L IH 0.51 1.03 3 10�06 41.9 SLFc,e

12 STG.R MTG.R IH 0.50 4.25 3 10�06 26.2 U-fibersc

13 PrCG.R SPL.R IH 0.49 4.79 3 10�06 53.8 SLFc,e

14 SFG.R SFG.L SIH 0.49 5.16 3 10�06 39.6 The genu and anterior part of the body in the CCa,b,d

15 SFG.L MFG.L IH 0.49 7.25 3 10�06 31.3 U-fibersc

Note: List of the 15 pairs of connected regions (descending order of statistical significance) with the most significant cortical thickness correlations (corrected by FDR). These connections were classified

into intrahemispheric (IH, 6) and symmetrically interhemispheric (SIH, 9) connections. R and P denote the cortical thickness correlation coefficients between regions and their corresponding

significant levels. D denotes the Euclidean distance, defined as the distance between each pair of regional centroids in stereotaxic space. A pair of regions with D[ 75 mm was considered long-range

connections in bold and short-range connections otherwise. Approximate associated fiber tracts for each cortical thickness correlation observed in this study were listed the rightmost column.

Note that the cortical thickness correlations among regions were calculated after removing the effects of age, gender, age--gender interaction, and mean overall cortical thickness. See supplementary

Table for the abbreviations of the regions.
aHofer and Frahm 2006.
bZarei et al. 2006.
cWakana et al. 2004.
dHuang et al. 2005.
eMakris et al. 2005.
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of the CC; the interhemispheric connections of the parietal
cortex are located within the posterior part of the body and

splenium. Finally, connections of the temporal and occipital
cortex transit most exclusively through the splenium of the CC.
These results from diffusion imaging studies provide an impor-
tant support for our findings of symmetrically interhemispheric

correlations in cortical thickness. In addition to the interhemi-
spheric connections, we also observed significant intrahemi-
spheric connections between SFG--MdFG, SFG--PrCG, SPL--PrCG

and SPL--PoCG (Table 1) that are all associated with the superior
longitudinal fascicle (SLF) linking the caudodorsal prefrontal
cortex with the premotor (PrCG), supplementary motor

(MdFG), and superior parietal regions (SPL) (Wakana et al.
2004; Makris et al. 2005). All those areas and the network they
form via the SLF are involved in the control of reaching and,

more generally, movement in space (Mountcastle et al. 1975;
Lacquaniti et al. 1995). The connections between adjacent areas
STG--MTG and SFG--MFG (Table 1) are examples of short
association fibers (e.g., U-fibers) that provide the means of

interaction for those adjacent areas participating in common
computations: language processing (STG--MTG) and higher-
order cognitive control (SFG--MFG) (Wakana et al. 2004;

Petrides 2005). Additionally, in this study, we also observed
significant cortical thickness correlations among the IFG, STG,
and SMG regions (Fig. 6), which were consistent with previous

cortical thickness correlation study (Lerch et al. 2006) and fiber
tracking (arcuate fasciculus) study (Parker et al. 2005). Taken
together, these significant cortical thickness correlations ob-
served in the present study are related to the major fibers tracts

(CC and SLF) or short association fibers (U-fibers). One could
therefore speculate that the morphometry-based corticocort-
ical correlates provide approximate reflection on the true

anatomical connections among neuronal elements. A detailed
investigation on the cortical thickness correlations and their

corresponding anatomical connections in the human brain will

be an important topic for future studies.
In this study, we also observed differences in connectivity

patterns in the left and right hemispheric regions, such as the

medial and lateral orbital frontal gyrus, AG, and lingual gyrus
(Fig. 6). Previous studies have reported structural and functional
asymmetries in several regions of human cortex, including

frontal, temporal, and occipital regions (for a review, see Toga
and Thompson 2003). Furthermore, Mechelli et al. (2005) have
also demonstrated interregional asymmetric patterns of associ-
ations in gray matter concentration, providing further support

for our finding of connection patterns differences in 2 hemi-
spheric regions. In future, it would be interesting to examine
the asymmetric cortical thickness associations in details using

Figure 7. The comparison of the impacts of hub and nonhub regions on network
properties. (A) The elimination of the hubs did not significantly affect the largest
component size but (B) significantly decreased the clustering coefficient and (C)
increased the path length of the resulting network in comparison with the elimination
of the nonhub nodes. For the details of the hubs in the brain network and their
statistical properties, see Table 3.

Table 3

Regions of the human brain anatomical network and their statistical properties

Regions Class Li ki Ci N9 C9p L9p

PrCG Primary 2.19 9.00 0.25 43.00 0.30 3.17
SFG Association 2.50 8.50 0.47 44.00 0.29 3.10
SPL Association 2.32 10.00 0.26 43.50 0.29 3.13
MTG Association 2.51 6.50 0.25 44.00 0.27 3.22
PoCG Primary 2.53 4.50 0.60 44.00 0.29 3.08
MFG Association 2.59 7.00 0.50 44.00 0.30 3.08
IFG Association 2.62 5.50 0.33 44.00 0.30 3.18
PHG Paralimbic 2.76 6.00 0.40 43.50 0.29 3.07
SOG Association 2.79 4.00 0.05 44.00 0.31 3.10
LOTG Association 2.80 3.00 0.84 44.00 0.29 3.06
MOTG Association 2.86 4.50 0.69 44.00 0.29 3.07
MdFG Association 2.92 4.50 0.65 44.00 0.30 3.05
STG Association 3.06 4.50 0.45 44.00 0.30 3.07
OP Primary 3.06 2.50 0.00 43.50 0.32 3.02
ANG Association 3.08 3.00 0.17 44.00 0.31 3.05
PCU Association 3.21 3.50 0.20 44.00 0.31 3.04
CING Paralimbic 3.22 2.00 0.00 43.00 0.32 2.98
CUN Association 3.29 1.00 0.00 44.00 0.31 3.04
MOFG Paralimbic 3.41 3.50 0.24 44.00 0.30 3.03
SMG Association 3.45 2.50 0.00 43.50 0.32 3.00
ITG Association 3.60 2.50 0.17 44.00 0.31 3.04
LING Association 3.63 3.00 0.25 44.00 0.30 3.02
LOFG Paralimbic 3.95 2.00 0.00 43.50 0.32 2.97
IOG.R Association 4.11 1.00 0.00 44.00 0.31 3.00

Note: The hub regions (in bold) in the anatomical network of the human brain were identified using a regionally shortest path length Li and they were listed in an ascending order of Li. These regions were

classified as Primary, Associations, and Paralimibic as described by Achard et al. (2006). ki and Ci denote the degree and clustering coefficient of each region. N9, C9p, and L9p denote the largest

component size, clustering coefficient, and characteristic path length of the resulting network when region i was individually eliminated from the brain network. Note that when the hub nodes were

removed from the brain network, the path length L9p of the resulting network is larger than the path length Lrealp (3.05) of the experimental network. For the abbreviations of the regions, see

Supplementary Table.
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the ‘‘seed’’ regions of interest methods described by Mechelli
et al. (2005).

Anatomical Connections and Anatomical Distance

Using cortical thickness measurements, in the present study,
we found many short-range connections as well as some long-
range connections (Figs. 2 and 3). Several recent functional

connectivity studies using fMRI have also demonstrated the
local and long-range connections in the human brain (Salvador,
Suckling, Coleman, et al. 2005; Salvador, Suckling, Schwarzbauer,
et al. 2005; Achard et al. 2006) that are consistent with our

results. As noted in previous section, short-range/local con-
nections may be associated with the short fibers (arcuate or
U-fibers) that constitute the local circuitry but long-range con-

nections may be associated with the commissural fibers (right--
left hemispheric connections) and intrahemispheric association
fibers (e.g., SLF) (Wakana et al. 2004). In this study, we also

demonstrated the dependencies of anatomical connectivity on
anatomical distance, characterized as a power-law form with an
exponential cutoff, implying that the probability of finding

a connection is distributed by a scale regimen, followed by an
exponential decay in probability of connections with an
anatomical distance greater than a cutoff value (~35 mm).
Such spatial constraints on connections are biologically realistic

and have been acknowledged in many biological systems. It has
been suggested that the likelihood of long-range connections
among macaque cortical regions decreases with distance, partly

because the concentration of diffusible signaling and growth
factors decays with distance (Sporns et al. 2004). Recently, the
computational models of cortical development based on this

physical principle have been proposed to understand the
relationship of cortical morphology and the connectivity of
normal brains (Hilgetag and Barbas 2006). These investigations
provide important support for our findings of the dependencies

of anatomical connectivity on anatomical distance in the human
brain. It is also noted that, although the number of long-range
connections is limited in the brain networks, they might

constitute shortcuts to ensure short mean path lengths of the
whole networks (Kaiser and Hilgetag 2004).

Small-World Anatomical Networks of the Human Brain

The coexistence of many short-range anatomical connections as

well as some long-range connections raised the possibility that
the anatomical network of the human brain might have small-
world properties. Because it was introduced by Watts and
Strogatz (1998), the small-world model has made a tremendous

impact on the studies of numerous complex networks, from
social, economic to biological networks (for a review, see
Strogatz 2001). The model characterizes the architecture of

the networks with well-connected local neighborhoods and
short mean distance between nodes. Recent studies have
suggested that the human brain functional networks con-

structed from fMRI (Eguiluz et al. 2005; Salvador, Suckling,
Coleman, et al. 2005; Achard et al. 2006), EEG (Micheloyannis
et al. 2006; Stam et al. 2007) and MEG (Stam 2004) data along
with nonhuman cortical networks derived from anatomical

tract-tracing method (Hilgetag et al. 2000; Stephan et al. 2000;
Sporns and Zwi 2004) have small-world properties. Our results
demonstrate for the first time that such properties are also the

characteristics of large-scale anatomical networks of the human
cerebral cortex (Fig. 4). The 2 main features for the small-world

topology, high clustering coefficient and short path length,
indicate the local clustering or cliquishness of the connectivity
network and the small number of connections between any pair
of regions. Previous optimal study using computational simula-

tion (Sporns et al. 2000) has demonstrated the emergence of
small-world topologies when networks are evolved for high
complexity (defined as the coexpression of local specialization

and global integration; Tononi et al. 1998; Sporns and Tononi
2002). Thus, our finding of small-world attributes in the cortical
thickness networks reflects a near-optimal organizational pat-

tern for the evolution of human brain structures. Furthermore,
we proposed that the optimal design of the human brain
anatomical network might have important implications for

understanding how functional brain states emerge from their
structural underpinnings. It has been suggested that the
structure of the cerebral cortex is intimately associated with
its function, as many other biological systems (Sporns and Zwi

2004). High clustering assures the modularized information
processing, which are functionally segregated from one to
another. Short paths assure effective interactions or rapid

transfer of information between regions, which are essential
for functional integration. The coexistence of functional segre-
gation and functional integration guarantees the effective

integration of multiple segregated sources of information
(Tononi et al. 1994; Sporns and Zwi 2004; Sporns et al. 2004).
Our results of small-world properties reported here might thus
provide the underlying structural substrates of such functional

coexistence in the human brain.
To further address the associations between structural and

functional networks of the human brain, we compared our

results with the values of small-world properties from previous
brain network studies (Sporns and Zwi 2004; Salvador, Suckling,
Coleman, et al. 2005; Achard et al. 2006) in Table 2. Our

measurements of small-world properties in the human cortical
anatomical network are c = 2.36, k = 1.15, and r = 2.04. Salvador,
Suckling, Coleman, et al. (2005) and Achard et al. (2006)

reported the values in human brain functional networks: c =

2.08, k = 1.09, r = 1.91, and c = 2.37, k = 1.09, r = 2.18,
respectively, whereas Sporns and Zwi (2004) reported the
values in nonhuman cortical anatomical networks: c = 1.92, k =

1.12, and r = 1.70 for macaque whole cortex and c = 1.37, k =

1.05, and r = 1.30 for cat whole cortex (Table 2). As expected,
the values of small worldness in this study are in closer

proximate to those of the human brain functional networks
than macaque and cat anatomical networks. Additionally, we
also found our absolute values for Cp and Lp (C real

p = 0:30 and

Lrealp = 3:05) had a good match with Salvador, Suckling, Coleman,
et al.’s (2005) study (C real

p = 0:25and Lrealp = 2:82). However, it
should be noted that the present study and previous functional
imaging studies used different subject populations and image

analysis methods, such as different regional parcellation
schemes and correlation threshold selections. These factors
might have an impact on the construction of the anatomical/

functional connection matrix that could eventually influence
the comparability of these results. Thus, these different groups’
comparisons in the values of small-world properties should be

made cautiously. A systematic exploration for the network
properties of the human brain using anatomical and functional
data obtained within the same subjects could offer a more

practicable strategy for mapping the associations of structural
and functional properties. Overall, combined the previous
results and the current findings, we concluded that small-world
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properties might be a general principle of structural and
functional organization of complex brain networks.

The Human Brain Anatomical Network is not Scale Free

In addition to the small-world properties, another important
finding of this study is that the large-scale anatomical network of

the human brain has an exponentially truncated power-law
degree distribution as opposed to a scale-free distribution
(Fig. 5). This result is largely compatible with previous studies

in human brain functional networks (Achard et al. 2006) and
nonhuman cortical anatomical networks (Sporns and Zwi
2004). This truncated power-law distribution indicates that

the human brain network has some ‘‘core’’ regions but prevents
the appearance of the huge hubs with very many connections.
Compared with a scale-free network, such a network structure

shown here is more resilient to targeted attacks but equally
resilient to random errors (Albert et al. 2000; Achard et al.
2006). Although the biological causes underlying this network
topology remain unclear, physical constraints on the number of

afferent connections a neuron can support render the expo-
nentially truncated power-law possible mechanism in neuronal
development (Sporns and Zwi 2004). Our results of the

dependencies of interregional anatomical connections on the
anatomical distance (Euclidean distance) (Fig. 2) provide
further support for this view.

In the present study, we also identified several hub regions in
the anatomical network of the human brain (Fig. 6, Table 3),
most of which are the heteromodal or unimodal association

cortex receiving convergent inputs from multiple cortical
regions. Many hubs (e.g., SFG, SPL, MTG, MFG, IFG, and SOG)
observed here are in accordance with the findings in the
functional brain network by Achard et al. (2006). It has been

argued that hubs in the brain networks are regions with
multimodal or integrative function and their damages can
remarkably affect the stability and efficiency of the network

(Sporns and Zwi 2004; Achard et al. 2006). In the brain
anatomical network, while comparing with the nonhub regions,
the elimination of the hub regions leads to significant decreases

of the clustering coefficients and increases of the path lengths
(Fig. 7), though the largest component size of the resulting
networks remains significantly unaffected, suggesting that the
hubs might be of particular importance for not only the

existence of highly local clustering but also the overall routing
efficiency of the brain network (the small-world behavior). We
therefore suspected that the patients (e.g., schizophrenia and

Alzheimer’s disease) with the known structural and functional
abnormality of the association cortex might have altered small-
world properties in the anatomical networks, which could be

examined in the future investigations.

Methodological Issues

Some methodological issues of the present study need to be ad-
dressed. First, we used fully automatic and operator-independent

procedures to measure the cortical thickness from MRI. The
concern is that the cortical thickness measurement results
could be potentially influenced by the scanning protocols (Han
et al. 2006) and image processing methods implemented (Lerch

and Evans 2005). Second, we applied a conservative FDR
threshold (Genovese et al. 2002) to construct the anatomical
connection matrix of the human brain, which allowed us to

examine only those pathways with strong correlations. Cur-
rently, it is difficult to determine a definitive threshold in the

construction of complex brain networks based upon correla-
tion methods, such as the human brain functional network
derived from fMRI (Salvador, Suckling, Coleman, et al. 2005;
Achard et al. 2006) or EEG data (Micheloyannis et al. 2006; Stam

et al. 2007). Future investigations in the continuous weighted
brain networks could be helpful to avoid the thresholding
issues. Here we found that our selected threshold caused

a relatively low sparsity (~7.3%) in comparison with the sparsity
of the anatomical connectivity matrices of macaque [~15%, 746/
(71 3 70)] and cat [~33%, 820/(52 3 51)] (Sporns and Zwi

2004). However, it is difficult to compare the sparsity of this
matrix with the anatomical matrices of macaque and cat
because they were established using different methods: The

anatomical matrices in macaque and cat were derived from
tract-tracing data but our matrix was obtained from the
thresholded cortical thickness correlations. Despite this, we
still examined the properties of our cortical thickness network

with a 15% sparsity, which corresponds to the 15% sparsity in
the macaque anatomical network (Sporns and Zwi 2004) and
found c = 1.7 and k = 1.16. Though at 31%, which corresponds to

the 31% sparsity in the cat anatomical network (Sporns and Zwi
2004), our network had a reduced small-world properties, c =

1.14 and k = 1.005. The discrepancies could be due to the fact

that there is a higher structural similarity in the cerebral cortex
between the human and macaque than the human and cat.
Third, a prior volumetric template was employed to automat-
ically parcellate the entire cerebral cortex into different regions

(Collins et al. 1995). Such an atlas-based parcellation allows us to
characterize the large-scale connectivity pattern for the human
brain networks; however, one of the problems is that there is

interindividual variability in the anatomical boundaries of
regions. Currently, there is no single acceptable strategy for
the cortical parcellation, the validity of the parcellation thus

mostly depends on the suitability of the applied atlas. Nonethe-
less, several recent studies have investigated the functional or
anatomical connectivity pattern in the human brain using such

an atlas-based parcellation strategy (Wright et al. 1999; Salvador,
Suckling, Coleman, et al. 2005; Achard et al. 2006). In future
studies, it might be more meaningful to parcellate the cerebral
cortex based on a finer myeloarchitectonic feature. In addition,

it is also helpful to explore the impact of different parcellation
schemes on the network architectures. Fourth, we described
a large-scale structural organization for human brain anatomical

networks using the cortical thickness measurements. Currently,
such a macroscale description is more practical to reveal the
anatomical connectivity patterns of the human brain than

microscale and mesoscale descriptions because of its relatively
low computational load and simple definition in neuronal
elements (regions) and connections. Further investigations
could involve the characterization of connection patterns

among neuronal elements such as cortical vertices and assess
the dependencies of the network architectures on spatial
scales. Finally, we used cortical thickness measurements as

a morphological feature to construct the anatomical connection
matrix of the human brain and further described its anatomical
and statistical properties. The morphological features can also

include surface area, tissue volume, tissue density, and others.
Our recent study (in preparation) demonstrates that the gray
matter volume networks in the human brain also have the small-

world properties, which are consistent with the present study.
It will be interesting to explore more detailed patterns using
these morphological features.
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Conclusion

To our knowledge, this paper provided the first evidence of
small-world properties and degree distribution in large-scale
anatomical networks in the human brain by means of cortical
thickness measurements from MRI. These findings are largely

compatible with previous human brain functional networks
studies, thus significantly enhancing our understanding of how
brain functional states emerge from their underlying structural

substrates. Our results indicate that the morphometry-based
approach we use here may be useful to reveal the patterns of
anatomical connectivity in the human brain, which opens a new

window for mechanistic modeling and interpretation of human
brain anatomical networks recently sparked as the human
connectome (Sporns et al. 2005). Further work could be

conducted to examine whether these networks properties are
altered during normal development and aging as well as under
specific brain disorders.

Supplementary Material

Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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