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Abstract—The complexity of social mobile networks (networks
of devices carried by humans–e.g. sensors or PDAs–and commu-
nicating with short-range wireless technology) makes protocol
evaluation hard. A simple and efficient mobility model such as
SWIM reflects correctly kernel properties of human movement
and, at the same time, allows to evaluate accurately protocols
in this context. In this paper we investigate the properties of
SWIM, in particular how SWIM is able to generate social
behavior among the nodes and how SWIM is able to model
networks with a power-law exponential decay dichotomy of inter
contact time and with complex sub-structures (communities) as
the ones observed in the real data traces. We simulate three real
scenarios and compare the synthetic data with real world data
in terms of inter-contact, contact duration, number of contacts,
and presence and structure of communities among nodes and
find out a very good matching. By comparing the performance
of BUBBLE, a community-based forwarding protocol for social
mobile networks, on both real and synthetic data traces, we
show that SWIM not only is able to extrapolate key properties
of human mobility but also is very accurate in predicting
performance of protocols based on social human sub-structures.

Index Terms—Mobility model, small world, simulations, for-
warding protocols in mobile networks.

I. INTRODUCTION

Mobile ad-hoc networking has presented many challenges

to the research community, especially in designing suitable,

efficient, and well performing protocols. The practical analysis

and validation of such protocols often depends on synthetic

data, generated by some mobility model. The model has the

goal of simulating real life scenarios [1] that can be used to

tune networking protocols and to evaluate their performance.

Till a few years ago, the model of choice in academic research

was the Random Way-Point model (RWP) [2], simple and very

efficient to use in simulations.

Recently, with the aim of understanding human mobility [3],

[4], [5], [6], [7], many researchers have performed real-life

experiments by distributing wireless devices to people. From

the data gathered during the experiments, they have observed

the typical distribution of metrics such as inter-contact time

(time interval between two successive contacts of the same

people) and contact duration. Inter-contact time, which cor-

responds to how often people see each other, characterizes
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the opportunities of packet forwarding between nodes. Contact

duration, which limits the duration of each meeting between

people in mobile networks, limits the amount of data that can

be transferred. In [4], [5], the authors show that the distribution

of inter-contact time is a power-law. Later, in [6], it has been

observed that the distribution of inter-contact time is best

described as a power law in a first interval on the time scale

(12 hours or 1 day, in the experiments under analysis), then

truncated by an exponential cut-off. Conversely, [8] proves

that RWP yields exponential inter-contact time distribution.

Therefore, it has been established clearly that models like

RWP are not good to simulate human mobility, raising the

need of new, more realistic mobility models for mobile ad-

hoc networking.

In a recent work [9] the authors present small world in

motion (SWIM), a simple mobility model that generates small

worlds. The model is very simple to implement and very effi-

cient in simulations. The mobility pattern of the nodes is based

on a simple intuition on human mobility: People go more often

to places not very far from their home and where they can

meet a lot of other people. By implementing this simple rule,

SWIM is able to raise social behavior among nodes, which

we believe to be the base of human mobility in real life. The

authors validate the model using real traces and compared the

distribution of inter-contact time, contact duration and number

of contact distributions between nodes, showing that synthetic

data that SWIM generates match very well real data traces.

They show experimentally that SWIM generates traces whose

inter-contacts distribution’s head follows a power law, and

proved mathematically the exponential decaying of the tail

of such distribution. Furthermore, they show that SWIM can

predict well the performance of simple forwarding protocols.

They compare the performance of two forwarding protocols—

Epidemic Forwarding [10] and (a simplified version of) Del-

egation Forwarding [11]—on both real traces and synthetic

traces generated with SWIM. The performance of the two

protocols on the synthetic traces accurately approximates their

performance on real traces, supporting the claim that SWIM

is a good model for human mobility.

In this paper we investigate the way SWIM generates social

behavior among nodes and uses it to yield a social mobile

network: A network whose nodes indeed form social clusters

(communities). We describe how to use SWIM to create dif-

ferent target scenarios—conference, university campus, city—



that differ from the number of nodes involved, the shape, the

number and cardinality of the communities therein, the slope

of the power-law head of the inter-contact distribution, and

more. Moreover, we show how to obtain networks with a target

power-law exponential decay dichotomy of inter contact time,

and with a given membership of nodes to communities as

the ones observed in the real data traces. We simulate three

real scenarios and compare the synthetic data with the real

ones in terms of inter-contact, contact duration, number of

contacts, and presence of communities among nodes and find

out a very good matching. With the goal to check how more

sophisticated protocols—the ones that are based on community

sub-structures present on the network—perform on SWIM, we

use BUBBLE [12], the state of the art of the community-

based forwarding protocols for social mobile networks. We

compare BUBBLE’s performance on both real and synthetic

data traces and show that SWIM not only is able to extrapolate

key properties of human mobility but also is very accurate in

predicting performance of protocols based on complex social

human sub-structures.

The rest of the paper is organized as follows: Section II

briefly reports on current work in the field; in Section III we

briefly review the way SWIM operates, whereas in Section IV

we show how to use SWIM in order to generate a target

scenario. In Section V we concretize the findings of Section IV

by comparing three different real world traces with the re-

spective SWIM traces, in terms of creation of complex sub-

structures (communities), and distribution of inter-contacts,

contact duration and number of contacts among the nodes.

Later on, in Section VI we compare the performance of

BUBBLE on the real traces with the SWIM-generated traces,

and conclude with Section VII.

II. RELATED WORK

The problem of defining a mobility model for human

mobility is felt as an important one in the community and

in the literature. In the last few years there have been a

considerable number of papers on this topic. The mobility

model recently presented in [13] generates movement traces

using a model which is similar to a random walk, except

that the flight lengths and the pause times in destinations are

generated based on Levy Walks—with power law distribution.

In the past, Levy Walks have been shown to approximate well

the movements of animals. The model produces inter-contact

time distributions similar to real world traces. However, since

every node moves independently, the model does not generate

any social structure between the nodes. In [14], the authors

present a mobility model based on social network theory which

takes in input a social network and discuss the community

patterns and groups distribution in geographical terms. They

validate their synthetic data with real traces and show a good

matching between them.

The work in [15] presents a new mobility model for

clustered networks. Moreover, a closed-form expression for

the stationary distribution of node position is given. The model

captures the phenomenon of emerging clusters, observed in

real partitioned networks, and correlation between the spatial

speed distribution and the cluster formation.

In [16], the authors present a mobility model that simulates

the every day life of people that go to their work-places in the

morning, spend their day at work and go back to their homes

at evenings. Each one of this scenarios is a simulation per se.

The synthetic data they generate match well the distribution

of inter-contact time and contact durations of real traces.

Recently, in [17] the authors proposed the SLAW mobility

model, which is a modification of the Levy-walk based model,

where the human waypoints are modeled as fractals. The

model seems to match the inter-contact distribution of some

of the real traces, and to predict quite accurately performance

of simple forwarding protocols. Yet, no results are presented

in terms of contact and contact number distributions and in

the structure in communities of the resulting network, and it

seems to be hard to be used in theoretical analysis.

In a very recent work, Barabasi et al. [18] study the

trajectory of a very large (100,000) number of anonymized

mobile phone users whose position is tracked for a six-

months period. They observe that human trajectories show a

high degree of temporal and spatial regularity, each individ-

ual being characterized by a time independent characteristic

travel distance and a significant probability to return to a

few highly frequented locations. They also show that the

probability density function of individual travel distances are

heavy tailed and also are different for different groups of users

and similar inside each group. Furthermore, they plot also the

frequency of visiting different locations and show that it is

well approximated by a power law. All these observations are

in contrast with the random trajectories predicted by Levy

flight and random walk models, and support the intuition

behind SWIM [9], a mobility model recently proposed. This

model is very simple to simulate, matches well the statistical

properties of real traces gained from experiments done with

real devices, and in the same time, predicts well performance

of simple forwarding protocols for ad-hoc wireless networks

where devices are carried by mobile humans.

III. SMALL WORLD IN MOTION: A BRIEF OVERVIEW

A good mobility model should be simple, and, simultane-

ously, predict well the performance of networking protocols

on real mobile networks. Simplicity helps understand and

distill fundamental ingredients of “human” mobility, eases

implementation of the model and makes it a useful tool

in supporting theoretical work. A good model should also

generate traces with the same statistical properties that real

traces have. Statistical distribution of inter-contact time and

number of contacts, among others, are useful to characterize

the behavior of a mobile network. At the same time, the model

should be accurate in predicting protocol performance on real

networks: If a protocol performs well (or bad) in the model,

it should also perform well (or bad) in the real network, as

accurately as possible.

SWIM [9] is the first model to meet all these requirements

simultaneously. It is based on simple observations on our



everyday life: We usually prefer popular and nearby places

to “not frequented” and distant ones. The best supermarket or

the most popular restaurant that are also not far from where we

live, for example. Moreover, usually there are just a few places

where a person spends a long period of time (for example

home and work office or school), whereas there are lots of

places where she stays less, e.g. post office, bank, cafeteria,

etc. Lastly, our movement speed depends on the distance: We

walk to the buss stop, ride to the grocery store, and, fly to

get to another continent. These are the basic intuitions SWIM

is built upon: Trading-off proximity and popularity, adequate

distribution of waiting time and speed proportional to the

distance covered. More in detail, to each node is assigned a

so called home, which is a randomly and uniformly chosen

point over the network area. Then, the node itself assigns

to each possible destination a weight that grows with the

popularity of the place and decreases with the distance from

home. The weight represents the probability for the node to

chose that place as its next destination. The network area

is divided into many small contiguous cells that represent

possible destinations. Each cell has a squared area, and its

size depends on the transmitting range of the nodes: The size

of the cell is such that its diagonal is equal to the transmitting

radius of the nodes—so that a node within a given cell is able

to communicate with all other nodes within that same cell.

Each node builds a map of the network area, also calculates a

weight for each cell in the map, with the following formula:

w(C) = α ·distance(hA,C)+(1−α) · seen(C). (1)

where A is a network node, hA is the home point of A, C is the

given cell, distance(hA,C) is a function that decays as a power

law as the distance between node A and cell C increases, α is

a constant in [0;1], and seen(C) is the fraction of nodes A saw

in C the last time it was there. The value seen(C) is initially

zero, and it is updated each time A reaches C. The weight

represents the probability for the node to chose that place as

its next destination.

Once a node has chosen its next destination, it starts moving

towards it following a straight line and with a constant speed

that equals the movement distance. When reaching destination

the node decides how long to remain there. One of the key

observations is that in real life a person usually stays for a long

time only in a few places, whereas there are many places where

he spends a short period of time. Therefore, the distribution

of the waiting time follows a bounded power law.

The particular choices of the distance and seen function

affect the other parameters, especially α . The distance function

we use is the one proposed in [9]:

distance(x,C) =
1

(1+ k||x− y||)2
, (2)

where x is the position of the home of the current node, and

y is the position of the center of cell C. Moreover, we use as

seen(C) function the fraction of the nodes seen in cell C.

In [9] the parameter k is set to k = .05, which accounts

for the small size of the experiment area of the scenarios

Experimental data set Cambridge Infocom 05 Infocom 06

Device iMote iMote iMote
Network type Bluetooth Bluetooth Bluetooth

Duration (days) 11 3 3
Granularity (sec) 600 120 120
Devices number 36 41 78

Internal contacts number 10,873 22,459 191,336
Average Contacts/pair/day 0.345 4.6 6.7

TABLE I
THE THREE EXPERIMENTAL DATA SETS.

simulated. We have though noticed that in SWIM there are two

different ways of scaling: Either by changing the parameter k

or by changing the communication range of the nodes. Indeed,

the latter determines the size of network area. Moreover, the

parameter k in the distance function affects the probability of

choosing nearby cells. As can be noticed in Equation 2, bigger

values for k yield bigger values for the distance(x,C) function,

by giving more importance to the distance component of the

formula in Equation 1. In this work we aim to generate

simulated scenarios where node movements (contacts) are

highly related to their home-points on the network area. Thus,

we use a bigger value for the k parameter (we set k = 5). Then,

differently from [9], we get the scaling effect by decreasing

the communication range: We set it to be 0.04.

Since the weight that a node assigns to a place represents

the probability that the node chooses it as its next destination,

the value of α has a strong effect on the node’s decisions—the

larger is α , the more the node will tend to go to places near

its home. The smaller is α , the more the node will tend to go

to “popular” places.

Finally, SWIM takes in input the following parameters:

• n: the number of nodes in the network;

• r: the transmitting radius of the nodes;

• the simulation time in seconds;

• coefficient α that appears in Equation 1;

• distribution of the home-points;

• the distribution of the waiting time at destination (slope

of the power-law distribution and upper bound).

The output of the simulator is a text file containing records on

each main event occurrence (meet, depart, start, and, finish).

IV. SWIM MADE SIMPLE TO USE

In a number of research works ([4], [12], and others) it is

shown that the social relationships among the nodes in an ad-

hoc mobile network can efficiently and correctly be detected

by using the k-clique algorithm [19]. Moreover, [20], [21],

[22], [23], [18] show that the distribution of social community

members in cities follows a power law distribution. In this

section we show that SWIM generates synthetic networks that

have all these properties.

The α parameter of Equation 1 determines whether nodes

prefer popular sites (α −→ 0) or nearby ones (α −→ 1). Thus,

if the distribution of the home-points is uniform, small values

of α generates a preferential visiting of sites (sites that are

popular are visited by more and more nodes). Conversely,

big values of α give more preference to sites that are nearby



(a) Home-points uniformly dis-
tributed.

(b) Community membership distribution,
α = 0, home-points uniform.

(c) Home-points distributed with
preferential attachment.

(d) Community membership distribution,
α = 1, home-points with preferential attach-
ment.

Fig. 1. Distributions of home-points and respective community membership number after simulation. Waiting time slope 1.45, waiting time bound 1 day,
network of 1000 nodes, radius 0.01.

nodes’ home-points. Thus, node agglomerations (communi-

ties) with a power law distribution of members should be

obtained through SWIM in the two following different ways:

Either small values of α , and a uniform distribution of home-

points over the network area, or big values of α and a

distribution of home-points that follows a power-law. However,

the properties of the structure in communities are different. We

empirically prove these claims by conducting the following

experiments. In the first one, we set the α value to 0, and

uniformly distribute 1000 home-points that correspond to 1000

nodes over the network area. Then we let the simulation run,

and, at the end, we detect the communities generated using the

k-clique algorithm [19], and plot the cumulative distribution of

the membership number in a log-log scale. The result is exactly

what we expected: The community membership distribution

is very close to a power law (see Figures 1(a)) and 1(b)).

For the second method we operate in the following way: We

first distribute 13 nodes’ home-points in 13 different sites (we

want to generate a network with 13 communities), trying to

keep the mutual distance as big as possible. Then, we let the

other nodes choose their home-point site with a preferential

attachment (that is, in the process the probability of choosing a

cell as home-point depends linearly with the number of home-

points in the cell itself in that moment). The resulting initial

distribution of home-points is shown in Figure 1(c). Then we

run the simulation using α = 1, detect the communities and

plot the cumulative distribution of members number. Even in

this case the result is what we expected: The distribution of

the number of members of the communities detected by the

k-clique algorithm [19] is very close to a power law (see

Figure 1(d)).

Both methods (α = 0 uniform distribution of home-points,

and, α = 1 preferential attachment distribution of home-points)

raise community agglomeration among the nodes and, more-

over, the community membership number follows a power

law distribution. In the first case there is a higher mixing

of nodes in the network. Indeed, when α = 0 nodes prefer

popular sites, no matter where in the network these sites

are. In the second case, the nodes chose only in base of

the distance between home-points and sites. This generates

a “neighborhood effect”: nodes that are neighbors chose to

go to similar sites, and thus, tend to meet more frequently,

and thus, to belong to the same community. Indeed, when we

calculate the correlation between the distance among home

points and the community membership, we have the following

results: For α = 0 and uniform home-point distribution the

correlation is 0, whereas, for α = 1 and preferential attachment

distribution of home-points the correlation is −0.53. This gives

an important hint on how to generate traces with a given

community structure among nodes: Use large values of α and

distribute the home-points in such a way that nodes that should

be in the same community are neighbors. We will use this hint

in the next section, where we will show how SWIM simulates

real-scenario community structures.

As we already mentioned, the distribution of the inter-

contact times—intervals between two consecutive meetings

of the same couple of nodes—is important, not only because

it characterizes statistically the network, but also because it

impacts the design of opportunistic forwarding algorithms [7],

[5]. As shown in [5], the interval within which inter-contacts

follow a power law distribution, and the slope of this distribu-

tion strongly affects the performance of forwarding protocols.

Thus, a model that is able to yield, by simple tuning of a

few parameters, a mobile trace with a required inter-contact

distribution in terms of slope and power-law like head interval,

becomes more than valuable. This is SWIM’s case: From

our experimental testings we observe that the inter-contact

distribution can be controlled by the setting of the waiting

time slope and upper bound. The upper bound determines the

interval within which inter-contacts follow a power law distri-

bution, whereas the slope determines the slope of this distribu-

tion. For the sake of space here we show experimental results

related to the upper bound of the waiting time. As you can

see from Figure 2 the waiting-time upper bound determines

the exact interval within which inter-contacts follow a power-

law distribution. For values beyond the bounds, in all cases

the distribution decays exponentially. This also can be used to

simulate a mobile scenario with a given power-law exponential

dichotomy of inter-contacts among network members. In the

next section we will see how SWIM can be tuned to simulate

real scenarios in terms of communities structuring, community

membership, and distribution of statistical properties.



Fig. 2. Distribution of inter-contacts for different waiting-time upper bounds.
Waiting time slope 1.45, network of 1000 nodes, radius 0.01.

Simualted Scenario Cambridge Infocom 05 Infocom 06

Communication range 0.04 0.04 0.04
Duration (days) 11 3 3
Devices number 36 mobile 41 78 mobile

Value of α .95 .75 .75
Waiting time slope 1.45 1.45 1.45
Waiting time bound 24h 12h 12h

TABLE II
THE THREE SIMULATED DATASETS.

V. SWIM COMMUNITIES VS REAL COMMUNITIES

Here we show how to get a simulation of a mobile network

whose communities are the approximately the same of a

given real scenario. For this, we simulate 3 real scenarios,

whose traces were gathered during experiments done with real

devices carried by people. We will refer to these traces as

Cambridge, Infocom 05 and Infocom 06. Characteristics of

these data sets such as inter-contact and contact distribution

have been observed in several previous works [4], [24], [5]. In

Table I we show the statistical details of each trace, whereas

here below we describe each experiment scenario and provide

details on the communities present therein.

• In Cambridge [25] the authors used Intel iMotes to

collect the data. The iMotes were distributed to two

groups of students (Year1 and Year2) of the University

of Cambridge and were programmed to log contacts of

all visible mobile devices. Also, a number of stationary

nodes were deployed in various locations around the city

of Cambridge UK. The data of the stationary iMotes will

not be used in this paper. The number of mobile devices

used is 36 (plus 18 stationary devices). This data set

covers 11 days.

• In Infocom 05 [26] the same devices as in Cambridge

were distributed to students attending the Infocom 2005

student workshop. Participants belong to different so-

cial communities (depending on their country of origin,

research topic, etc.)The number of devices is 41. This

experiment covers approximately 3 days.

• In Infocom 06 the scenario was similar to Infocom 05

except that the scale is larger, with 78 participants.

Participants were selected so that 34 out of 78 form 4

subgroups by academic affiliation: ParisA with 10 partici-

pants, ParisB with 4 participants, Lausanne 5 participants,

and, Barcelona 15 participants. In addition, 20 long range

iMotes were deployed at several places in the conference

site to act as access points. However, the data from these

fixed nodes is not used in this paper.

The authors in [27] use the k-clique algorithm [19] to

uncover communities from the traces of the real experiments.

In the Cambridge scenario, they detect two main communities

of 11 members each, that correspond respectively to the

students of the first and the second year. In the Infocom 06

scenario they observe that mostly of the participants with the

same academic affiliation (Paris A, Paris B, Lausanne and

Barcelona) do belong to the same communities detected by the

k-clique algorithm. As for the Infocom 05 scenario, the authors

in [27] do not give details on the community detection. How-

ever, they give some information on the participants: There

are four groups based on academic affiliation, of respectively

10, 6, 4, 4 members each.

The next step of our study is to generate with SWIM each of

the real scenarios, and to see how the desired social-grouping

of the nodes can be gained. Let us start with Cambridge 05.

There are 36 students involved, grouped by academic year

in two groups: Year1 and Year2. As we mentioned, in the

real trace only 11 students per group form a community.

Hence, we “associate” 22 nodes to each of the community-

forming students in the real experiment. To each group we

assign a “center point” in the network area: p1 = (.05; .05)
and p2 = (.95; .95) (for respectively groups Year1 and Year2).

The members of each group is given a home point obtained

by perturbing the respective center point with a Gaussian

distribution of standard deviation of 0.01. The remaining 14

nodes is assigned a home point obtained with a uniform

distribution over the network area.

Unlike the Cambridge scenario, in the Infocom 05 scenario

we have no exact information on the communities detected,

but only on the initial affiliation of some of the members.

Hence, we base our experiments on this information: 4 groups

of respectively 10, 6, 4 and 4 members each. Therefore, to

simulate this scenario we divide our nodes in 4 groups of

as much members as in the real case. For each group we

assign a central point as follows: p1 = (.95; .95) for group 1,

p2 = (95; .05) for group 2, p3 = (.05; .95) for group 3, p4 =
(.05; .05) for group 4. The members of each group is given a

home point obtained by perturbing the respective center point

with a Gaussian distribution of standard deviation of 0.01. The

remaining nodes are assigned home-points chosen uniformly

and randomly over the network area.

Infocom 06 is similar to Infocom 05 but with exact

community member information: four communities (ParisA,

ParisB, Lausanne and Barcelona) of respectively 10, 4, 5,

and, 15 members each. Therefore, to simulate this scenario

we divide 34 nodes in 4 groups of as much members as

in the real case. For each group we assign a central point



(a) Simulated Cambridge 06. (b) Simulated Infocom 05. (c) Simulated Infocom 06.

Fig. 3. Communities detected in the synthetic traces.

as follows: p1 = (.01; .01) for Paris A, p2 = (.013; .013) for

Paris B, p3 = (.95; .01) for Lausanne, and, p4 = (.5; .95) for

Barcelona. Note that the members of the two Paris groups are

initially placed close, in order to simulate social connection

among them. The members of each group is given a home

point obtained by perturbing the respective center point with

a Gaussian distribution of standard deviation of 0.01. The

remaining nodes are assigned home-points chosen uniformly

and randomly over the network area.

The rest of the simulation input is showed in Table II. In

particular, the choice of the α value is done based on the

grade of relationship people typically have in conferences vs

university. We follow the suggestions of the authors in [9] and

use the same values of α for each scenario: .95 and .75 for

respectively the Cambridge and the Infocom’s scenarios. Also,

the choice of the waiting time bound is done based on the real

traces inter-contact time distribution’s head. In the Cambridge

case it follows a power law for up to 24 hours, whereas in

both Infocom scenarios it decays as power law for up to 12

hours.

In Figure 3 are shown the communities detected from the

synthetic traces. As can be seen, in each simulated scenario

the community-detection reflects very well the real scenario:

Nodes whose affiliation was emulated by assigning adjacent

home-points result being members of the same community

detected after the simulation. This means that SWIM preserves

initial “social relationships” among nodes in the same way as

a real social mobile network does.

In [9] the authors advocate SWIM’s merits by plotting

the cumulative distributions of inter-contacts, contact duration

and contact number among nodes. The matching between the

simulated and the real distributions is very good. In their work

they use a uniform distribution for the nodes’ home-points over

the network area. Here we changed this distribution in order

to be able to obtain a desired target social scenario. Therefore,

we still need to compare inter- contacts, contact-number and

contact-duration of the so modified SWIM traces with the real

ones. We present the relative results in Figures 4, 5, and 6.

As can be seen from the figures, even by changing the way

with which the home-points are assigned to nodes, SWIM still

yields synthetic traces with similar statistical properties to the

real ones. Moreover, as it can be seen from Figures 4(a), 5(a),

and 6(a), the head’s length of the inter-contacts distributions

is determined by the waiting-time upper bound used in each

of the simulations: 24h in the Cambridge case, and 12h in

both Infocom’s cases. In all of the three experiments, SWIM

proves to be an excellent way to generate synthetic traces

that approximate real traces in both community raising and

statistical properties. It is particularly interesting that the same

choice of parameters gets goods results for all the metrics

under consideration at the same time.

VI. PERFORMANCE OF COMPLEX PROTOCOLS ON SWIM

AND REAL TRACES

Generating synthetic traces that look real from a statistical

point of view and that have a community structure similar to

the one we can experience in the real experiments is definitely

important, but not enough. Our model has the ultimate goal

of being used to validate networking protocols. One important

parameter is how nodes in the same community interact

and, even more importantly, how communities overlap and

interplay. To evaluate the quality of SWIM to this respect,

we believe that the best is to see how it performs when

doing the job this model was created for—to give reliable

information on the performance of non-trivial, social based

protocols. SWIM has already been shown to be adequate in

predicting performance of Epidemic [10] and a simplified

version of Delegation Forwarding [11]. Both these protocols

are based on flooding techniques, and do not make use of

any social component of the network. Since we want to test

the adequacy of SWIM in predicting the performance of more

complex forwarding protocols, we use BUBBLE [12], whose

forwarding technique totally relies upon relationship among

network nodes, their belonging to communities, and upon

the overlapping nature of communities. BUBBLE works as

follows: Each node is assigned a global rank, that determines

the centrality of the node in the network, and a local rank for

each community it belongs to. When a message is generated

for a given destination, say D, then the message is first

forwarded towards nodes with higher and higher global rank,

till it reaches a relay that belongs to D′s community. Then, it



(a) Distribution of the inter-contact time in Cam-
bridge and in SWIM.

(b) Distribution of the contact duration for each pair
of nodes in Cambridge and in SWIM.

(c) Distribution of the number of contacts for each
pair of nodes in Cambridge and in SWIM.

Fig. 4. SWIM and Cambridge.

(a) Distribution of the inter-contact time in Info-
com 05 and in SWIM.

(b) Distribution of the contact duration for each pair
of nodes in Infocom 05 and in SWIM.

(c) Distribution of the number of contacts for each
pair of nodes in Infocom 05 and in SWIM.

Fig. 5. SWIM and Infocom 05.

(a) Distribution of the inter-contact time in Info-
com 06 and in SWIM.

(b) Distribution of the contact duration for each pair
of nodes in Infocom 06 and in SWIM.

(c) Distribution of the number of contacts for each
pair of nodes in Infocom 06 and in SWIM.

Fig. 6. SWIM and Infocom 06.

is forwarded towards nodes with higher and higher local rank

within D′s community, till it reaches D.

We computed the local/global ranks of nodes exactly as the

authors in [12]. For the global rank we generated a uniform

traffic set of 1000 messages, forwarded them with flooding

technique, and, counted for each node, the number of times

it belonged to the path of a delivered message. Similarly,

for the local ranks, the messages were generated to have

source/destination within a given community. The experiment

was repeated 10 times and the resulting global/local ranking

values were normalized and averaged.

We then run BUBBLE on both real and synthetic traces

generated with SWIM, and measure its performance in terms

of cost (total of replicas for delivered messages), and success

ratio, for different values of time to live (TTL) of messages.

The results are shown respectively in Figures 7 and 8. As you

can see, the results are more than satisfying. Most importantly,

this is not due to a customized tuning that has been optimized

for these forwarding protocols, it is just the same tuning of the

previous section that has been used to compute the statistical

properties of SWIM. This can be important methodologically:

To tune SWIM on a particular scenario with a given number

of communities, you can concentrate on a few well known and

important statistical properties like inter-contact time, number



(a) Cambridge and SWIM. (b) Infocom 05 and SWIM. (c) Infocom 06 and SWIM.

Fig. 7. Cost of BUBBLE on real traces and SWIM.

(a) Cambridge and SWIM. (b) Infocom 05 and SWIM. (c) Infocom 06 and SWIM.

Fig. 8. Success ratio of BUBBLE on real traces and SWIM.

of contacts, and duration of contacts. Then, you can have a

good confidence that the model is properly tuned and usable

to get meaningful estimation of the performance of complex

protocols for social mobile networks.

VII. CONCLUSIONS

In this paper we show how SWIM, a mobility model for ad

hoc networking that has been recently introduced, can generate

networks with a community structure. SWIM is simple, proves

to generate traces that look real, and, moreover, provides

an accurate estimation of the performance of sophisticated

forwarding protocols based on the community structure of the

network. SWIM can be used to improve our understanding

of human mobility, it can support theoretical work and it

can be very useful to evaluate the performance of networking

protocols in scenarios where the structure in communities of

the network is important and where the number of nodes can

scale up to very large mobile systems, for which we don’t

have real traces.
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