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Abstract

The paper proposes an alternative way to observe and extract the multiple matches games
of sports, i.e.: tennis tournament in the Athlete’s Historical Relative Performance Index and
its representation as graph. The finding of the small world topology is elaborated along with
further statistical patterns in the fashion of the weighted and directed network. The
explanation of the sport tournament system as a highly optimized system is hypothetically
proposed. Finally, some elaborations regarding to further directions of the usability of the
proposed methodology is discussed.

Keywords: small-world network, sports and tournaments, historical relative performance
index of athletes.



1. Introduction

The role of network analysis has been somewhat becoming a very interesting topics,
since this method allows us to see the circumstances of observed phenomena in a whole
view (cf. Barabasi, 2003). Network analysis has been employed to observe the
interconnectedness of many things in our life where we can represent elements of the
system as nodes and the connections between them as the edges. The growing works of
complex network has discovered a lot of interesting patterns and statistical properties that
invites major interdisciplinary researches (Albert & Barabdsi, 2002). It has been broadly
accepted that network representation of system analysis and information extraction from
wide varieties of data can be useful for further insights and to reveal complexities beneath
the system. There have been a lot of application of this nature of analytical works observing
social system, e.g.: stock market network visualizations (Situngkir, 2005), network of
business and innovation (Khanafiah & Situngkir, 2006), political parties relations and inter-
connection representation (Situngkir, 2004), and even more.

One of the most interesting fields with abundant data is the world of sports. Sports
now cannot be separated with the modern life: not only for its use to keep us health and as
good fields for learning about fairness and honesty, moreover, modern life has treated
sports as a media of entertainment and even an important symbol of national pride of
which citizens achieving high grade of international stage of sports.

The task represents in this report is an alternative to extract useful information in
the world of sport with multiple matches and head-to-head game plays important role. The
games in professional tennis is an interesting discourse with abundant availability of data
and interesting statistics. In this short paper, we extract some of them?, i.e.: the games of
head-to-head games in Professional Tennis Tournament of Grand Slams held yearly with
four games of tournaments (United States Open, Australian Open, Wimbledon, and French
Open), all of them represents specifically different tennis court yard: the hard-court, grass-
court, and clay-court respectively®.

The paper is structured in the fashion of step-by-step observation of the matches in
each tournaments in all of the sets of the games in the graph representation of un-weighted
and un-directed, un-weighted and directed, and eventually the weighted and directed
graphs. In the next section, we describe the complex network of the interconnectedness of
the world tennis players that interestingly reveals the so-called small world topology. The
next sections we analyze the statistical properties of the network and discuss things related
to the tournament system and its highly optimizations that exhibits the power law
distributions on some aspects in the professional tennis tournaments. The paper ends with
some discussions on possible further directions to the analysis of games of sport and
tournaments, and eventually to possible gain fruits from the proposed methodology.

! The data is publicly available online at the Wikipedia Internet Encyclopedia, URL:
http://en.wikipedia.org/wiki/Grand_Slam_(tennis). We use the single male match statistics in all of the
tournaments in the period of 1980-2006, and the single female matches in the period of 1995-2006 (both with
exception of Australia Open which includes the result of 2007).

2 We realize that there are some other important tennis tournaments, e.g.: the ATP and WTP tour, team cups
(the Davis Cup, Fed Cups), as well as a lot more exhibition tournaments, but we have choose the tournaments
in the Grand Slam for some resource-related constraints.



3. The Topology of the Network of Athletes

In each tournament played, professional tennis players meet in the head to head
game in the nature of the applied competition system. There is somehow a kind of path
must be won by an athlete to the top of the rank. The score of each set of game, however,
reflect the dynamics within the game: the way in which each opposing sides try to beat each
other. As it will be described later in the next section, we build the athlete’s network by
using the sum of all performance of all athletes in series of tournaments in the proposed
historical performance index. The better a player perform relative to her opponents, the
better values of the index she has in the global view. In this perspective, however, winning is
not always representing the whole thing within a game: as a weaker player could resist in a
tight game, it would interestingly resist her performance index relative to other athletes.

First of first, our network of athletes would be in the term of whether or not a player
ever met with other players. A player is considered to be connected to other player if they
have ever met in a game of tournament. The improvement and development of any
tournament systems in the world of sports aims to preserve sets of the game that would
only let the best player turns out to be the champion. There has been a lot of sports
tournament system available and applicable today regarding to many constraints, e.g.: the
length of the tournament season, etc (cf. Coakley, 1999). Most of the competitive system
does not afford to let all players meet all other players, therefore from series of games in
various tournaments, only the best players are connected to most numbers of other players.

For example, as the world professional tennis champion, Andre Agassi (USA) must
have met large numbers of other players from around the world whose various skills and
performances in order to be able to arrive at the grand final sessions and become the
champion by winning the peak of the game in all of those tournaments. Thus, the more
connected athletes are the most likely to be the best players. However, qualitatively
speaking this is plausible for their performance in the large numbers of internationally
recognized games consequently give positive feedback to enhance their maturity in other
games. The famous term of “the richer gets richer” somehow entitles another meaning by
representation of the word “rich” as the “richness in experience” by performance in the
official games of sport. We realize this by understanding that game of sports is a complex
thing in the perspective of athlete. The performance of sport is not merely calculable from
the performance while in the training sessions but also dependent to their psychological
circumstances as well as physiological ones. A good player is not only good at training field,
but also in the middle of (must be faced) stress in the well-recognized sport events. The best
players perform the best respect to all intertwining aspects. However, this grows the
interesting part of the world sport tournaments and become the complex sources of the
uncertainty of the game result.

Our observation to this kind of network structure could bring us to two analytical
parts: the global topology of the emerging network and the representation of the nodes and
links in the graph. If we consider the graph of athletes in a lot of tournaments, Qg, as

defined by Qg = (A, E), where ¢ (i=12,..,N)is the set of N players and E ={g;} is the
connections between players who has ever met in one of a game in the series of
tournaments. Here, we have a certain functione; = f(a,a;), f(a,,a;) #0 indicates that
there is a link between player g and a;, and vice versa. We will discuss later about this

function since in this section, our focus right now is on the topology of the players’
interconnectedness. In this simplistic case, the two connected players are adjacent and the



degree of a given player is the number of edges that connects it other players. We do the
observation on the head-to-head game among world professional tennis male and female
players in the Grand Slam from the year of 1980-2006 and 1995-2006 respectively. Here, the
Grand Slam world tennis championship are made by four once in a year tournaments, the
Australia Open, Wimbledon Championship, French Open, and the US Open. Interestingly,
from the glance view, we can see (fig. 1) that the yielded graph is highly clustered and likely
short average paths between two players in the network. These two properties are well-
known as the Small World graph topology.

Small world topology has been discovered in the representation of various complex
network of the real world. Interdisciplinary works have revealed the similar network
topology in biological and chemical networks (Alon, et. al., 1999), human language and the
use of words in sentences (Cancho & Solé, 2001), scientific collaborative networks
(Newman, 2001), transportation networks (Li & Cai, 2007), power grids (Watts & Strogatz,
1998), the world wide web (Albert, et. al., 1999), biological metabolism (Fell & Wagner,
2000), ecological and food-web networks (Dunne, et. al., 2002), movie star collaborations
(Amaral, et. al., 2000), web of human sexual contacts (Liljeros, et. al. 2001), and even more
networks representations of the real world systems (Barabasi, 2003).

Figure 1. The small world topology of the interconnectedness among
Female tennis players in Grand Slam Tournaments 1995-2006.

Small World Network can be recognized as a graph representation in which most
vertices are not neighbors of one another, but most of them can be reached from every
other by a small number of steps. As it showed by Watts & Strogatz (1988), the small world
graph can be identified by observing the clustering coefficient (C ) of the network and the

average shortest path length between vertices ([d] ) along with the the scaling properties in
their degree distribution.

Topologically speaking, if we denote the set of links ¢, (i,j=12,...,N) where g; =1
if an edge exists and ¢; =0 otherwise and that the average number of links per athlete is k

and we can indicate by T'; ={j|e; =e; =1} the set of immediate neighbors of an athlete



a €A, i={L2,..,N}. Thus, here we want to observe two main properties of the small

world network, i.e.:
v’ Clustering coefficient, defined as the proportion of links between vertices within its
neighborhood divided by the number of links that could possibly exist between
them. In other words, it measures the average fraction of pairs of neighbors of a
node that are also neighbors of each other. Mathematically speaking, the clustering
coefficient of each player i, thus can be written as

“T |(Ze., Ll—z,<k kD (1)

where

rj=ctk,2) =28

(2)

since the topology represented here is an undirected graph of which identical g;
and ;. Thus, the general clustering coefficient of the network can be written as the

average over all players A,
1 N
C :chi (3)

v’ Average shortest path length between vertices. Let us denote 4(i, j) =min(d;) as
the minimum path length that links two players &,a; € A;, the average path length

of a player to another can be written as

Z Srin (1, 1)

(4)

and thus the total average path length in the network,

1 N
_Wzd' (5)

v’ Degree Distribution. Some of the small world graphs exhibit the scaling properties in
their degree distribution. In other words, the probability of a node with degree k
scales over the power law

P(k) ~ kia (6)



The first two properties described above are the standard parameters to indicate the
small world network. The small world structures are highly structured (indicated by C >>)
but the interconnectedness of the vertices are relatively high (indicated by d <<) both
relatively to the random graph with the similar structural properties. However, in our
observation to both networks of male and female single head-to-head in each tournament
within the Professional Tennis Grand Slams, the three properties are interestingly exhibited.
Table 1 summarizes the result of our observation.

Table 1.
The exhibited pattern in Tennis Player Network from the Grand Slam Tournaments
(Australia Open, US Open, French Open, and Wimbledon)

C Crandom d Grandom a

Qg (male)

ON(EIWFINM 0.1717  0.014 2.67 3.13 1.73

IMale Tennis Player Degree Distribution

pik)

k

pik)

k
Figure 2
The power laws of the degree distributions in the network of world professional tennis players
as extracted from the Grand Slam Tournaments with R=0.93687 (left) and R=0.94994 (right).

From table 1 it is obvious that relative to the similar random network, the clustering
coefficients of both male and female players are higher up to more than ten times
C > C,,.qon While the average degrees are not really that far d =d,_,,. This indicates the
small world topology of the world tennis players over the grand slams. Furthermore, figure
2 shows the power laws of the degree distributions P(k) over the network of male players
and female players in the tennis yards of the grand slams. This power laws reflect that the
scaling behavior over the numbers of athletes stay connected to most players — the new



players tend to connected to the existing player with a probability proportional to the
degree of such a node. In the terms of sports, probably we can say that the more an athlete
meets other athlete in the head to head game, the more of her chances becoming the top of
the world players and the tournament systems can now be seen as a highly optimized
system that only let this happen to the best players overall the tournaments.

The presence of the small world topology and the scaling behavior are somehow
reflects the nature of the tournament system applied in the competitions. The small amount
of average distances among athlete shows that most of the players are connected not very
far one another while the high clustering coefficients qualitatively reflect the classes of the
athletes based on their respective historical performances. However, only the best players
might be able to perform at the highest frequency of which opens the bigger possibilities
(and opportunities) to her for meeting other players in the head-to-head game.

Such power-law distributions — have been widely understood — arise at self-
organizing critical states, to which lots of systems would evolve in a consequence of
consecutive introducing random local perturbations, and in a consequence of spreading the
perturbations over those systems regarding to the simple dynamic rules in them (cf. Bak,
1996). Interestingly, we can interpret this understanding in such ways that the competition
among the world tennis players is in such states of homeostatic and robustness that any
perturbations came from newcomers, etc., do not easily to change its global structure (cf.
Watts & Strogatz, 1998, Barabdsi & Albert, 1999). However, as it has been noted in Jezewski
(2004), there is another scenario that possibly emerging such power-law behavior: it
appears when systems with certain distributions of initiating events undergo optimization
and resource constraints. Here, the highly optimized on the tournament and competitive
system exhibits the scaling patterns of the connectiveness between athletes. In such ways,
both explanations could not become counterintuitive.

4. The weighted and directed Athlete’s Performance Graph

The weight of the matrix is constructed as follows. Imagine we have some historical
tournaments with their respective results for each set of games. For example, we have two
competing teams, A and B, and each team would be represented by {A,A,,A} and

{B,,B,,B,} respectively. A game icould be comprised of a number of sets (7;), and the

relative strength of player X to player y can be calculated by the fraction of scores gained
by player X from the total scores hit throughout the game. However, in one tournament,
player X and player y might be met more than once. Thus, in a single tournament, we can
build an adjacency matrix of players ( K ) which elements are the aggregate fractions of the
scores gained by players,

1 N 1 () k(i)
Ky :ﬁz -0 Zk(i)+k(i) Ky €K (7)
X y

i i

where k, denotes the total score of player-x, N denotes how many times the two players
meets in the single tournament. The value of kXy would be in [0,1]. As the kXy —1, the

game is relatively more easier for player X. It obvious that player X won most sets of the
game when k, > 0.5 and vice versa.



Furthermore, from T series of historical tournaments, we have the relative strength
index between player and player y. Thus, we now have, the Historical Athlete’s Relative

Index between player X and player y over T tournaments that is calculated as,

.
@y =D &Kk (8)
t=1

and

T

30 -1 (9)

t=1
where g‘m is the weight factor of each tournament we put into account which is event-

dependent in the horizon of historical games®. Since, the Historical Athlete’s Relative Index
becomes the elements of an adjacency matrix (a,, € A) in the athlete’s network, any new

tournaments, with some possibilities of the newcomers in the event the new tournaments
may update the adjacency matrix A" as,

1 _0[><y+9glkxyI

axy_ 1+§| (10)

This updating rule from any new tournament in the history of the corresponding
sports gives us possibility to measure the relative strength of an athlete over time in our
athlete’s network. Here lies the interesting part of the dynamic Historical Athlete’s Relative
Performance Index (HRPI) with some further applications as described in Khanafiah, et. al.
(2007).

As it has also been shown in the historical performance of the proposed index, we
realize that any head-to-head game will always eventually yield a winner and a looser in a
game. The more sets won by a player when meet another one, should consequently raise
her performance index and this could be interpreted that she is relatively stronger. It is
tempting to represent this by using the network representation and observe the emerging
statistical facts. The small world analysis on directed graph has also been widely used, for
instance in the network structure of world wide web, etc. (see Almaas & Barabasi (2006) for
more).

We apply the similar methodology of the directed graph model to our tennis player
network similar to the one used in representing the internetworking graph model (Broder,
et. al., 2000). In this directed graph, the outward arcs from a node represent the mostly won
games with players with the inward ones. As we discover that player i won most sets of
games to player j, then we draw an arc of i — j; it is apparently calculable from the

historical performance index, as kij > 0.5, and vice versa.

* Obviously not all sport tournaments can be considered to be the same. For instance, the meeting between
player X and player Y in an Olympic round should be considered more important in the index relative to the

one in a regional based tournament. The more important one game, the greater the value of f(t) .



It is interesting that both the outward and inward interconnections among the tennis
players are also exhibiting the power-laws as shown in figure 3 and table 2.

Table 2.
The inward and outward degree distributions in Tennis Player Directed Network

inward degree outward degree
a R o R
QM EII 1.7676 0.90389 2.234  0.9566

graph

QN(WFION 1.389 0.86134 1.737 0.96774

outward arcs degree distribution in male player network inward arcs degree distribution iP male player network
T T

Pl
plk,.)

k

“out

102 outward arcs degree distribution in female player network
T T

pik,
Pk

Figure 3
The power laws of the degree distributions tennis player directed graph representation.

From table 2, we could see that the inward arcs degree distribution of our directed
graph exhibiting the steeper distribution relative to the outward ones for both female and
male competitive worlds. This naturally reflects the situation in the tennis yards: as most
tennis players come and go in the tournaments and not all of them but only some of the
best persistently attend the exclusive professional competitions. Once again, we can witness
how the tournament system actually optimized the network in such a way for the best
players of the world.

In order to see more closely to the competitive system, we calculate the strength of
the vertices in our graph by summing up the weights of the arcs connecting players (Yook,
et. al., 2001 and Barthélemy, et. al., 2005),

S = Zeij (11)

jeN
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Figure 4
The network of world professional tennis players of single male (above) and single female (below).
The inward arrows to a node represent relatively weaker performance from the
historical data of the grand slams.
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Interestingly, as it is shown in table 3 as well as figure 5, we can see that if we simply
interpret the total sums of all weights for each vertex as the relative strength of tennis
players, the distribution of the relative skill of tennis players in the yards of the grand slams
are also power laws. Only small parts of the athletes can perform the world-champion class
of tennis playing by beating as many as possible other players throughout many series of
games and tournaments and this obviously reflects the optimization of the sport systems.

Table 3.
The power law distributions of node’s strength in Tennis Player Directed Network

raph
grap R

Q) (male) 2.4093 0.96767
Q. (female) 1.7813 0.97389

Distribution of Strength of Male Tennis Player Distribution of Strength of Female Tennis Player

pis)
pis)

Figure 5
The power laws of the degree distributions of world tennis player directed graph representation.

From table 3, we could see the difference between the sloppiness of the
distributions. Possibly it came from the different sizes of the data used between the female
and male single games, since if it is not, it apparently showed the distinct competitiveness in
the single female and male games of the grand slams and probably in general professional
tennis competition.

6. Concluding Remarks

We represent an alternative way to extract the historical data of the sports
tournament and use the historical head-to-head game of the world series of professional
tennis Grand Slams. The graph representation is proposed by analytically observed the
statistical properties of the yielded network. The small world patterns and the well known
power law distributions of tennis player’s degree (in un-weighted and un-directed graphs),
the inward and outward degree distributions (in un-weighted and directed graphs), and the
strength of the node (in weighted and directed graphs) are shown to be persistent in the
graph representation. Along with the model is the Historical Performance Index as the way
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to measure the relative strength of each players to be represented as vertices and edges in
the network.

Hypothetically, the power-law distributions are exhibited as logical consequence of
the highly optimized tournaments system applied in the world tournament series as only
the best players could meet more other players in the historical data. Newcomers could
eventually become winner as well but most of them seated in the outer nodes in the
network for a losing player may not proceed to the further stages of the tournaments while
eventually reducing its connectivity with other players.

The methodology might be useful and applicable for further analysis of other
historical data from other sports of which the head-to-head games or multiple matches
incorporated in the tournament series. This proposal might be a first step for further
observations in the world of sports for the purpose of evaluation, tournament system
engineering, and even for the predictions of the results of sport games. This is an open and
analytically challenging directions for future work as well as possibility for expanding the
observational analysis on more data of other available tennis tournaments other than the
Grand Slams.
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