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Abstract: A disturbance in the interactions between distributed cortical regions may underlie the cogni-
tive and perceptual dysfunction associated with schizophrenia. In this article, nonlinear measures of
cortical interactions and graph-theoretical metrics of network topography are combined to investigate
this schizophrenia ‘‘disconnection hypothesis.’’ This is achieved by analyzing the spatiotemporal struc-
ture of resting state scalp EEG data previously acquired from 40 young subjects with a recent first epi-
sode of schizophrenia and 40 healthy matched controls. In each subject, a method of mapping the to-
pography of nonlinear interactions between cortical regions was applied to a widely distributed array
of these data. The resulting nonlinear correlation matrices were converted to weighted graphs. The
path length (a measure of large-scale network integration), clustering coefficient (a measure of ‘‘cliqu-
ishness’’), and hub structure of these graphs were used as metrics of the underlying brain network ac-
tivity. The graphs of both groups exhibited high levels of local clustering combined with comparatively
short path lengths—features consistent with a ‘‘small-world’’ topology—as well as the presence of
strong, central hubs. The graphs in the schizophrenia group displayed lower clustering and shorter
path lengths in comparison to the healthy group. Whilst still ‘‘small-world,’’ these effects are consistent
with a subtle randomization in the underlying network architecture—likely associated with a greater
number of links connecting disparate clusters. This randomization may underlie the cognitive distur-
bances characteristic of schizophrenia. Hum Brain Mapp 30:403–416, 2009. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Dynamic interactions between distributed cortical
regions may integrate the disparate aspects of a cognitive
process into a perceptual whole [Roskies, 1999]. A disrup-
tion of such interactions may therefore underlie the cogni-
tive [Andreasen, 1999; Friston and Frith, 1995; Lee et al.,
2003; Peled, 1999] and behavioral [Williams et al., 1999]
disturbances of schizophrenia. This ‘‘disconnection hypoth-
esis’’ resonates with Bleuler’s [1911/1950] observation that
schizophrenia interrupts ‘‘the associative threads which
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guide our thinking.’’ Disconnectivity has been implicated
in cortico-limbic [Das et al., in press], cortico-thalamic
[Tononi and Edelman, 2000], and cortico-thalamic-cerebel-
lar [Andreasen et al., 1996] circuits, and their structural
underpinnings [Bullmore et al., 1997; Woodruff et al.,
1997]. The term disconnectivity has hence been used to
infer disturbances in both spatial and temporal cortical
coordination. Whereas spatial disjunctions may underlie
the emergence of incongruent associations (such as ‘‘inap-
propriate affect’’), disturbances in temporal coordination
may lead to the disruptions in the stream of thoughts
(such as ‘‘derailment’’). Hence, the symptoms of schizo-
phrenia may not simply reflect a disconnection of concur-
rent cortical processes but also a disturbance in the tempo-
ral transition between sequential processes, namely ‘‘cogni-
tive dysmetria’’ [Andreasen et al., 1999]. Here we
investigate the disconnection hypothesis through nonlinear
and graph-theoretical analysis of resting state EEG
acquired during a first episode of schizophrenia. We
employ a measure which is sensitive to both the spatial
and temporal aspects of cortical interdependence, in order
to be optimally sensitive to the cognitive disturbances of
schizophrenia.
Our connectivity analysis is based upon the estimation

of ‘‘nonlinear interdependence’’ between pairs of electro-
des taken from a scalp-wide array. This measure assesses
the degree to which the current state of one dynamical sys-
tem predicts the future activity of another [Schiff et al.,
1996; Terry and Breakspear, 2003]. Past EEG studies of
schizophrenia have usually employed linear measures
[Haig et al., 2000; Spencer et al., 2003; Symond et al., 2005].
Nonlinear processes are strongly present during seizures
[Arnhold et al., 1999; Breakspear et al., 2006; Perez-Velaz-
quez and Khosravani, 2004], occur intermittently in
healthy resting state EEG [Breakspear and Terry, 2002a;
Stam et al., 1999] and may underlie motor coordination
[Jirsa et al., 1998; Meyer-Lindenberg et al., 2002]. Nonlinear
variation in symptom expression has been observed in
schizophrenia [Tschacher et al., 1997] and bipolar disorder
[Gottschalk et al., 1995]. Furthermore, nonlinear interac-
tions encompass interdependences between activity at dif-
ferent timescales [Breakspear, 2004; Friston, 2001; Rabino-
vich et al., 2006; Schanze and Eckhorn, 1997]. These con-
siderations motivate the use of nonlinear methods to
investigate the schizophrenia disconnection hypothesis
[Breakspear, 2006].
We previously employed these nonlinear techniques

across a restricted array of scalp electrodes to study cortical
interactions in schizophrenia in a resting state condition
[Breakspear et al., 2003]. Surprisingly, there was no signifi-
cant between-group difference in the occurrence of nonlin-
ear interdependence between any pair of recordings. How-
ever, we did observe a strong between-group difference in
the relative timing of nonlinear interdependence. Specifi-
cally, in schizophrenia, we observed an increase in the con-
current expression of interdependences. That is, there was a
bias towards clusters of cooccurring nonlinear interdepend-

ence in schizophrenia, and away from isolated pair-wise
occurrences. This bias became further pronounced hierarchi-
cally, up to the scale of the whole electrode array.
What is the nature of the underlying network structure of

nonlinear interdependence in schizophrenia? This question
requires additional techniques suited to the analysis of com-
plex network structure. In the present study we reanalyze
the above data set of resting state EEG by employing the
methods of graph theory (and after expanding our array to
cover the entire available array of scalp electrodes). A
graph, composed of nodes and edges, represents a network
(Fig. 1A,C). Graph-theoretical metrics such as clustering
coefficient, characteristic path length and centrality (Fig. 1B)
allow one to quantify both local and global attributes of net-
work topology. The clustering coefficient characterizes the
presence of highly interconnected groups of nodes
(‘‘cliques’’). Path length measures the average shortest dis-
tance between any two nodes. Centrality (or ‘‘betweenness’’)
detects ‘‘hubs’’—central nodes which participate in a large
proportion of shortest paths. These measures are ideal for
understanding complex networks such as the brain [Bassett
and Bullmore, 2006; Sporns and Zwi, 2004].
It has been proposed that the brain’s overall network

structure optimizes the interplay between the segregation
and integration of functionally specialized areas [Tononi
et al., 1994]. This interplay is well conceptualized by the
highly clustered, yet globally interconnected ‘‘small-world’’
networks [Watts and Strogatz, 1998]. Such networks have
been described in cortical anatomy [He et al., 2007; Sporns
and Zwi, 2004; Stephan et al., 2000] and in EEG and MEG
studies, where a disturbed small-world pattern has been
reported in patients with brain tumors [Bartolomei et al.,
2006], Alzheimer’s disease [Stam et al., 2007] and epilepsy
[Ponten et al., 2007], as reviewed in Bassett and Bullmore
[2006] and Stam and Reijneveld [2007]. Therefore, assum-
ing an optimal small-world-like topology in health, brain
network analysis may advance the schizophrenia discon-
nection hypothesis through a quantitative characterization
of disconnections as well an assessment of their impact on
global topographic properties of the cortical system. In
keeping with this, Micheloyannis et al. [2006] recently
reported a reduction in the small-world properties of corti-
cal networks in schizophrenia during the performance of a
two-back working memory task. In the present study we
address resting state networks, whose importance to cogni-
tive networks is a subject of increasing interest [e.g. Grei-
cius et al., 2003], hence complementing the findings from
this active (memory) task.

MATERIALS AND METHODS

The subjects and preliminary data analysis have been
previously described [Breakspear et al., 2003] but are pro-
vided here for completeness. Subject recruitment and data
acquisition was conducted at the Brain Dynamics Centre,
Westmead Hospital as part of the Western Sydney First
Episode Psychosis Project [Harris et al., 2005].
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Subjects and Clinical Assessment

Clinical subjects were 40 young individuals (26 male, 14
female) aged between 14 and 26 years (mean 5 19.6; SD 5
3.2) who had presented for the first time to health services
with psychotic symptoms that warranted a diagnosis of ei-

ther schizophrenia or schizophreniform disorder. Follow-
ing a semi-structured interview with the SCID, diagnosis
was made according to DSM-IV [American Psychiatric
Association, 1994] by means of a consensus conference (of
at least three qualified psychiatrists) that drew upon a clin-
ical interview and family, case manager and case note in-
formation. Subjects were clinically assessed usually on the
day of their EEG recording (and never more than three
days before) by trained psychiatrists (interrater reliability
>0.80) according to the positive and negative syndrome
scale (PANSS) [Kay et al., 1986]. This was a relatively
young and acutely ill clinical group (Table I). Inclusion cri-
teria were psychotic symptoms as defined by a rating of
four or more on items relating to psychosis on the PANSS.
The majority of subjects were receiving atypical antipsy-
chotic medications (mean 5 250 chlorpromazine equiva-
lents; SD 5 202). Four participants were on no medication.
The 40 healthy control subjects, recruited from similar de-
mographic regions, were matched for sex and age (to
within 24 months: mean 5 19.7; SD 5 3.9). The exclusion
criterion for controls was a history of psychiatric illness
(themselves or first-degree relative). Exclusion criteria for
all subjects were a history of neurological disease, head
injury, developmental delay, left handedness, and sub-
stance dependence. All subjects gave voluntary and
informed consent according to national health and medical
research council guidelines. The study had local institu-
tional ethics approval.

Acquisition of EEG

EEG data were acquired whilst subjects were instructed
to rest with eyes open and look at a stationary dot on a
monitor. An electrode cap was used to acquire data from
the international 10–20 system of scalp sites and linked
earlobes served as the reference. Skin resistance at each
site was <5 kX. EEG data were collected for 130 s at a rate
of 250 Hz through a SynAmpsTM amplifier and filtered
with a 50 Hz low-pass third order Butterworth filter. Arti-
facts caused by eye movement were corrected offline
according to the method of Gratton et al. [1983]. To avoid
confounding of interelectrode coherence by the effects of a
common reference electrode, close bielectrode derivations
were used [Nunez et al., 1997]. Seven bipolar deriva-

TABLE I. Average PANSS for the 40 clinical subjects

P1 P2 P3 P4 P5 P6 P7

3.05 2.32 2.57 2.33 1.93 2.83 2

N1 N2 N3 N4 N5 N6 N7

2.88 2.9 2.38 2.73 3.85 2.68 2.13

P1, delusions; P2, conceptual disorganization; P3, hallucinatory
behavior; P4, excitement; P5, grandiosity; P6, suspiciousness; P7,
hostility; N1, blunted affect; N2, emotional withdrawal; N3, poor
rapport; N4, passive/apathetic; N5, diminished abstract thinking;
N6, loss of spontaneity; N7, stereotypical thinking.

Figure 1.

(A) A graph is a basic representation of a network: as a mini-

mum it comprises a collection of nodes (numbered), connected

to each other by edges (lines). In weighted graphs, each edge is

assigned a value reflecting the strength of the connection (line

widths). (B) An illustration of network metrics used in this arti-

cle. The shortest path between Nodes 5 and 10 is shaded (note

that stronger weights correspond to shorter path lengths).

Node 6 (circled) is a ‘‘hub’’—a central node that is traversed by

�50% of shortest paths in the network. The binary clustering

coefficient for Node 3 equates to the number of edges connect-

ing neighbors of 3, as a proportion of the total possible number

of such edges. There are three present ‘‘neighbor–neighbor’’

edges (arrowheads) out of a possible six—yielding a binary clus-

tering coefficient of 0.5. A calculation of weighted clustering

coefficient will, in addition, incorporate weights of edges that

connect Node 3 to its neighbors (for example: given that edges

3$1 and 3$4 have greater weights than 3$2 and 3$5, this

will mean that the presence of edge 1$4 will increase the

weighted clustering coefficient to a greater extent than the pres-

ence of edge 2$5). (C) A weights matrix representation of the

graph in 1A. Squares represent connections between nodes

(edges); brightness of squares corresponds to edge weights.
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tions—representing left and right (frontal, temporal and
posterior) and central cortical regions—were included in
the analysis. All possible pair-wise interactions between
these were calculated. A schema of the location of these
bipolar derivations is presented in Figure 2.

Data Analysis

There are three steps to the analysis. In the first step, the
presence of transient nonlinear interdependence between
each pair of bipolar derivations was assessed over short
(2.048 s) windows of data. In the second step, the spatio-
temporal properties of these nonlinear interdependences
were represented as graphs. In the third step, structural
properties of such graphs—for each subject—were derived
and between-group comparisons of these graph properties
were then performed. Figure 2 presents a summary of the
data analysis methodology.

Step 1: Detection of dynamical interdependence
between electrode pairs

All pair-wise combinations of electrodes were examined
for evidence of nonlinear interdependence according to the
procedure modified from the algorithm of Schiff et al.
[1996]. The algorithm takes a geometric approach to time
series analysis, optimizing standard nonlinear forecasting
algorithms. Its validation, together with the rationale for
the choice of the analysis parameters, are described else-
where [Breakspear and Terry, 2002a,2002b; Terry and
Breakspear, 2003]. A brief description follows.

Each electrode pair yields two time series of 130 s dura-
tion for each subject. These time series were analyzed in se-
quential windows of 2.048 s duration. This window length
enables a robust detection of nonlinearity, whilst also being
sufficiently short to capture their transient temporal charac-
ter [Terry and Breakspear, 2003]. The power of two sample
length optimizes the computational speed. In each window,
two ‘‘nonlinear crossprediction errors’’ were calculated.
Each error reflects the ability of a nonlinear model con-
structed from one time series to predict the amount of
uncertainty in the other time series. Low errors indicate a
good crossprediction and hence nonlinear structure in the
relationship between the two time series. Using a nonpara-
metric bootstrap scheme (applied to the original data), an
ensemble of prediction errors is then calculated. These rep-
resent the null hypothesis that the values of the errors are
due to purely linear correlations between the two time se-
ries [Prichard and Theiler, 1994; Rombouts et al., 1995]. The
data is said to contain nonlinear interdependence if the
observed (experimentally derived) prediction error lies out-
side of the distribution of these ‘‘surrogate’’ errors. Nineteen
surrogates were constructed to allow for nonparametric sta-
tistical inference at 95% confidence within each window.

Step 2: The topography of nonlinear

interdependence across multiple sites

For each electrode pair and in each direction, this proce-
dure generated a second-level time series indicating the
presence or absence of nonlinear interdependence in each

Figure 2.

A summary of the data analysis methodology and a schematic representation of bipolar electrode

derivation positions and their pair-wise interactions. Key: left frontal (LtF) 5 F3C3 derivation,

right frontal (RtF) 5 F4C4, left temporal (LtT) 5 T3T5, right temporal (RtT) 5 T4T6, left occi-

pital (LtO) 5 O1P3, right occipital (RtO) 5 O2P4, Central (Cnt) 5 CzPz.
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successive epoch. For each subject there are 58 epochs and
21 sets of pairs, with two directions between each pair,
hence yielding 42-time series of length 58-time points (cor-
responding to 58 windows). These time series represent
the fluctuating nature of spatial interactions—as captured
through nonlinear techniques. The temporal character of
these interactions was captured by calculating the tempo-
ral cross-correlation functions between these time series
[Breakspear and Terry, 2002b]. This contrasts with the al-
ternative approach of calculating the average spatial inter-
dependence across all available time windows, thus
approximating the ‘‘expected’’ interdependence whilst fil-
tering out their specific temporal character.
For each subject this approach yields 861 unique correla-

tion coefficients (from the 42 3 42 correlation matrix).
Graph analytic techniques are applied to these 42 3 42
matrices. Each graph contains information about both the
spatial and temporal expression of nonlinear interdepend-
ence between cortical regions. There are 40 of these graphs
in both the control and clinical data sets.

Step 3: Graph-theoretical analysis

of the correlation matrices

Graph analysis was performed in Matlab (The Math-
Works, Inc.) with software written by one of the authors
(MR). Correlation matrices were converted to graphs by
applying a range of thresholds—from 10 to 30% of the
strongest edges preserved. This enabled comparison of the
structural pattern of graphs irrespective of the overall
between-group difference in the weights and across a
range of graph-connectedness (as there is no natural
threshold to use).
The weighted clustering coefficient [Barrat et al., 2004]

was calculated individually for each node and subsequently
averaged over the graph. It is a modified binary clustering
coefficient [Watts and Strogatz, 1998]. For any Node A, we
consider all neighbors of A (nodes directly connected to A)
and all neighbor–neighbor edges (connections between pairs
of neighbors). The binary clustering coefficient is the ratio
of all present neighbor–neighbor edges to the maximum
possible number of such edges. The weighted clustering
coefficient, in addition, incorporates the weights of node–
neighbor edges into the calculations (Fig. 1B). Both coeffi-
cients range from 0 to 1. Characteristic path length was cal-
culated by averaging the shortest path lengths between all
pairs of nodes, with the weights of edges taken to be inver-
sely proportional to the path length. Centrality [Freeman,
1977] was calculated individually for each node. For any
Node A, we first obtain the proportion of all B?C shortest
paths that traverse A. Subsequently we sum these propor-
tions over all B/C pairs and normalize by the number of
these pairs (hence centrality ranges from 0 to 1). Formal
definitions of the clustering coefficient, characteristic path
length and centrality are provided in the appendix.
We previously found that weak correlations of nonlinear

interdependence were not statistically significant [Break-

spear and Terry, 2002a]. Therefore by removing these
weak edges through thresholding we are better able to
elicit any underlying nonrandom structure. However,
removing too many edges will disconnect the graphs, thus
imposing limitations on the calculation of path length and
centrality. We overcame this problem for path lengths by
calculating the harmonic, rather than the arithmetic mean
[Marchiori and Latora, 2000; Newman, 2003]—this effec-
tively negates the effects of any disconnected node pairs.
However for calculations of centrality it is the number of
paths, rather than the path length, that is important. As a
graph disconnects into multiple components, the number
of paths sharply drops, thus obscuring individual node cen-
tralities. To enable a more accurate estimation of centrality
we constructed sparse and connected graphs through
retaining all ‘‘bridges’’—edges, which if removed, would
split the graph into more than one component—irrespective
of the weight of the bridge. This approach recognizes that
the underlying spatiotemporal brain networks are likely to
contain paths between all regions, and that their apparent
disconnections are an artifact of our sparse spatial data
sampling. The number of extra preserved bridges was not
statistically different between the two groups at any of the
examined thresholds, hence being an unlikely source of bias
for the estimation of node centrality.
To account for differences in weight and degree distribu-

tions between subjects—which may have a confounding
effect on graph metrics—all measures were compared to
those derived from corresponding ‘‘surrogate’’ random
graphs with equivalent weight and degree distributions
[Sporns and Zwi, 2004]. Surrogate random graphs were cre-
ated on a subject-wise basis as follows [Maslov and Snep-
pen, 2002]: pairs of edges ($) were randomly selected, such
that nodeA$nodeB and nodeC$nodeD. The pairs were then
rewired, such that nodeA$nodeD and nodeC$nodeB
(rewiring did not proceed if either of the putative new
edges already existed). This approach, in addition to pre-
serving the exact binary degree, closely approximated the
weighted degree of the original networks.
The comparison between observed and random graph

measures was achieved—within each subject—by calculating
a normalized graph statistic mnml according to the formula:
mnml 5 mobs/mrand; where m is any of the metrics considered,
mobs is the observed value and mrand is the average from 20
surrogate graphs [Milo et al., 2002]. Small-world networks
typically have Cnml � 1, and Lnml � 1 where C is clustering
and L path length. Therefore we used the index Cnml/Lnml to
evaluate the small-world-ness of a network [Humphries
et al., 2006]; for small-worlds we expect Cnml/Lnml � 1.

RESULTS

Average Correlation Coefficients and Average

Thresholded Correlation Matrices

Figure 3A shows the rank-ordered average correlation
coefficients for unthresholded correlation matrices of both
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groups. Two findings are of note. First, most correlation
coefficients range between 20.2 and 0.2: based on previous
analysis, these are likely to contain a high proportion of
chance values [Breakspear and Terry, 2002a]. Moreover,
they capture only a small amount of the common variance
(the square of the correlation coefficient <4%) in the
underlying dynamics. For the subsequent analysis we con-

sider the 10–30% of the strongest correlations which are
hence more likely to reflect the underlying network archi-
tecture. Second, there is a prominent increase in the corre-
lation coefficients in the schizophrenia group—this finding
is consistent with the results of Breakspear et al. [2003]
although expanded to a much larger data set studied here.
For the ensuing analysis, this between-group difference is

Figure 3.

(A) Edges from mean unthresholded correlation matrices of

both subject groups rank-ordered by values of correlation coeffi-

cients. There are a total of 861 unique correlations in each

unthresholded correlation matrix. The strongest 10–30% of

these coefficients are considered for subsequent graph analysis.

Correlation coefficients in schizophrenia are on average greater

than in the control group for a range of rank-ordered means.

(B) The average correlation matrices of both subject groups

thresholded such that only 15% of the strongest weights are

preserved. Both graphs are characterized by the presence of

clusters and intercluster edges; the number of intercluster edges

is greater in schizophrenia.
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controlled for by thresholding the graphs to have the same
number of edges and then normalizing each subject’s
graph against surrogate graphs with equivalent weight
distributions (i.e. constructed on a subject-wise basis).
Figure 3B shows the average correlation matrices for the

two groups, thresholded such that 15% of the strongest
edges are present. Our results were derived from graphs
of individual subjects; however the average matrices
roughly reproduce our findings and are illustrative of the
typical network structure in both groups. A feature of both
matrices is the presence of seven reasonably distinct clus-
ters along the diagonal, each consisting of six adjacent
nodes. Each cluster represents a group of interdepend-
ences originating from one bi-electrode derivation site.
Therefore, interdependences originating from the same site
are well correlated with each other. The location of off-di-
agonal edges near these clusters indicates that the first two
clusters (from the left upper corner), the next three clus-
ters, and the last two clusters are more interconnected
between each other, thus forming three bigger, but

‘‘looser,’’ clusters. These three clusters correspond to fron-
tal, centro-temporal and posterior interdependences
respectively. In addition both matrices feature fairly uni-
formly distributed peripheral edges (single edges well
away from the diagonal) which serve the role of interclus-
ter ‘‘shortcuts.’’ These features were present to a varying
extent in all subjects of both groups and are characteristic
of a small-world network structure. A crucial between-
group difference is the greater occurrence of peripheral
edges, and consequently a reduced amount of edges
within clusters, in the schizophrenia average graph. This is
suggestive of a network structure with lower clustering
and a shorter path length—a finding replicated by the con-
sequent quantitative analysis.

Clustering Coefficient, Characteristic

Path Length, and Centrality

Figure 4A,B show the average normalized clustering
coefficients and characteristic path lengths in both groups

Figure 4.

Mean normalized path length (A) and clustering coefficients (B) at thresholds 10–30%. (C) The

small-world index derived as Cnml/Lnml where Cnml is normalized clustering and Lnml is normalized

path length. Small-world networks typically have Cnml/Lnml � 1.

r Nonlinear Brain Activity in Schizophrenia r

r 409 r



plotted against thresholds of 10–30% of strongest edges.
The between-subject (within group) variance is used to
estimate the standard error of the mean. We note that
greater between-group separation occurs as more edges
were removed. However, this is also accompanied by
some increase in the standard error. The rapid increase of
the characteristic path length for the sparser graphs corre-
sponds to the onset of graph disconnection.
The schizophrenia group demonstrates shorter path

lengths and lower clustering coefficients across all thresh-
olds. Table II shows the statistical significance of these
between-group differences, assessed at each threshold by
means of a Wilcoxon rank sum test (as the distributions
were not Gaussian). The difference in path length is signif-
icant at P < 0.05 at all 21 thresholds. The difference in
clustering is significant at 16 of the 21 thresholds. It is im-
portant to note that the graph measures derived from
graphs with different thresholds are far from independent
measures. Hence we provide the uncorrected P-values at
each threshold. However, by calculating the area under
the curve for each measure—a nonparametric means of
assessing effects which vary across a range of dependent
measures—we find robust between group differences. For
the clustering coefficient the mean (6SEM) for the control
group was 56.2 (62.5), and for the schizophrenia group
49.3 (62.3), corresponding to a significant between group
effect (P 5 0.025). The corresponding values for the path
length were 25.7 (60.45) and 24.3 (60.41), a strong
between group difference (P 5 0.0092). This reduction in
both path length and clustering coefficient is consistent

with a randomization of the small-world network structure
in schizophrenia [Watts and Strogatz, 1998], a point which
we discuss in more detail below.
Another notable finding is that networks in both groups

manifest small-world properties. At all thresholds the clus-
tering coefficient is considerably larger than in the corre-
sponding random graphs, whereas the path length stays
reasonably close to the random graph path length. This is
formally illustrated by the small-world index (Fig. 4C). We
observe that the small-world effect is more prominent in
the sparser graphs. Conversely, as more edges are
retained, the small-world indices from both groups con-
verge towards the null value of 1 (i.e. equivalent to a ran-
dom network). This is consistent with our prior argument
that weaker edges are more likely to contain chance
(random) effects. The between group difference in this
index is relatively weak (in comparison to the individual
graph metrics) because the reduction in clustering coeffi-
cient in the schizophrenia group is largely offset by the
corresponding reduction in path length.
The finding of a randomized network structure in the

schizophrenia group is further supported by a between-
group comparison of centrality (obtained from connected
graphs, as discussed in the Methods). To ensure the analy-
sis is sensitive to the presence of hubs, even if the hub loca-
tion varies between subjects, centrality indices were rank-
ordered within each subject. Figure 5A shows rank-ordered
node centralities at threshold 12%, with comparative cen-
tralities of surrogate random networks. First, note that in
distinction to the surrogate graphs, both the healthy and
clinical data feature a considerably more heterogeneous cen-
trality distribution, with the presence of a few prominent
central hubs in each subject. This distribution roughly fol-
lows a power-law, which is consistent with previous analy-
ses of the centrality [Newman, 2003], but has not been pre-
viously reported in schizophrenia. Repeating our analysis
without the rank-ordering step annuls this property (Fig.
5B), arguing that there was no consistent topographical hub
distribution across different subjects. Secondly, hub central-
ity in schizophrenia is significantly lower in comparison to
the control group. Lower centrality of hubs corresponds to
a greater diversity of shortest paths in the networks, which
may occur as a result of a greater number of intercluster
shortcuts. This is further supported by the observation that
centrality of hubs—and the corresponding between-group
difference—decreases as graphs become less sparse (the dif-
ference becomes nonsignificant at the 16% threshold).

Correlation of Schizophrenia Network Structure

With Medication Dose and Symptom Ratings

Table III shows the values of Pearson’s correlation coeffi-
cient for an exploratory analysis of the relationship
between the clinical subjects’ antipsychotic dose (in chlor-
promazine equivalents) and symptom ratings (PANSS)
against path lengths and clustering coefficients—at thresh-
old 20%. Path lengths were not significantly correlated

TABLE II. Clustering coefficient and path length

Threshold Clustering coefficient Path length

0.10 0.081 0.007
0.11 0.044 0.016
0.12 0.031 0.014
0.13 0.037 0.007
0.14 0.027 0.021
0.15 0.081 0.015
0.16 0.060 0.010
0.17 0.071 0.011
0.18 0.037 0.012
0.19 0.041 0.006
0.20 0.036 0.005
0.21 0.041 0.006
0.22 0.057 0.008
0.23 0.046 0.005
0.24 0.019 0.005
0.25 0.029 0.004
0.26 0.025 0.005
0.27 0.017 0.006
0.28 0.029 0.004
0.29 0.022 0.004
0.30 0.032 0.005
AUC 0.025 0.0092

Between-group P-values as a function of the fraction if edges pre-
served (Wilcoxon rank-sum test). AUC, area under curve analysis.
Significant results are in bold.

r Rubinov et al. r

r 410 r



with medication dose at this threshold. Clustering coeffi-
cients, however, showed a significant positive correlation
(P 5 0.009): that is, medication dose was correlated against
the between-group effect on this graph metric. Given that

medication dose is related to disease expression, these cor-
relations were recalculated using the partial correlation
coefficient, with separate partialling out of the aggregate
positive and negative symptom ratings. The significance of
correlations remained unchanged (Table IV), suggesting
that disease severity was not a confounder. There were
few significant correlations between PANSS and graph
indices. These included positive correlations between path
length and N6 (P 5 0.031) and N7 (P 5 0.016), as well as a
positive correlation between clustering and P1 (P 5 0.022).

Comparison of Weighted and Unweighted

Network Structure

To determine whether the distribution of the weights in
our graphs provides information additional to the network
topology, we recalculated the graph metrics after convert-
ing the matrices into binary graphs, achieved by setting
supra-threshold edges to one. Figure 6A shows the nor-
malized path length of binary graphs. A notable difference,
when compared with weighted networks (Fig. 4A), is the
overall reduction in path length in both groups, and a less
prominent between-group difference—especially as the
graphs become more densely connected. This is clearly
illustrated at thresholds 20–30% (Fig. 6B)—the between-
group effect remains robust in the weighted graphs, but is
not present in the binary networks. Path length differences
in binary graphs were only statistically significant at four
out of 21 thresholds (10–13%).
Figure 6C,D show the clustering coefficient and central-

ity indices recalculated for binary graphs. Clustering in
both groups, and the between-group clustering difference
was similarly reduced in unweighted networks, but to a
lesser extent. The difference in clustering coefficient was
statistically significant at 12 out of 21 thresholds (11–14%,
19%, 21%, 24–29%). These additional analyses show that
the weighted graph metrics behave in a qualitatively simi-
lar manner to the more-often used binary graphs but have

Figure 5.

(A) Mean rank-ordered centrality indices of individual nodes in

both groups at threshold 12%. Centrality was obtained from con-

nected sparse graphs using a bridge-preservation thresholding

algorithm, as described in the Methods. Simple thresholding leads

to disconnected graphs, significantly reducing the number of paths,

thus obscuring individual node centralities (not shown). (B) Mean

centrality indices in 5A, plotted without rank-ordering by node.

TABLE III. Correlation of network structure with medication dose (Med) and PANSS at threshold 0.20

Clustering coefficient Correlation coefficient P value Path length Correlation coefficient P value

Med 0.406 0.009 Med 0.259 0.107
P1 0.361 0.022 P1 0.084 0.607
P2 0.031 0.851 P2 0.154 0.342
P3 0.028 0.866 P3 20.012 0.939
P4 20.010 0.951 P4 20.060 0.324
P5 20.033 0.840 P5 20.067 0.682
P6 0.119 0.466 P6 0.024 0.882
P7 0.117 0.474 P7 0.133 0.412
N1 0.166 0.305 N1 0.282 0.078
N2 20.028 0.863 N2 0.112 0.492
N3 0.137 0.400 N3 0.270 0.092
N4 0.022 0.891 N4 0.241 0.134
N5 0.184 0.256 N5 0.285 0.075
N6 0.109 0.505 N6 0.342 0.031
N7 20.015 0.927 N7 0.380 0.016

Significant correlations are in bold.
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TABLE IV. Partial correlation coefficients between network metrics

and medication dose (Med) at threshold 0.20, with partialling out of

aggregate positive (PSS) or aggregate negative (NSS) symptom ratings

Clustering coefficient vs. Med Path length vs. Med

Controlled
for PSS

Controlled
for NSS

Controlled
for PSS

Controlled
for NSS

Correlation coefficient 0.409 0.413 0.259 0.293
P value 0.010 0.009 0.112 0.070

Significant correlations are in bold.

Figure 6.

(A) Mean normalized path length for binary graphs of both subject groups. (B) A comparison of

binary and weighted path lengths at thresholds 20–30%. (C) Mean normalized clustering coeffi-

cients for binary graphs of both subject groups. (D) Mean rank-ordered centrality indices for bi-

nary graphs of both subject groups at threshold 12%.
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a much greater discriminatory capacity over a wider range
of thresholds. Although trends are still apparent in the bi-
nary graphs, retaining the weights of edges is clearly impor-
tant to our between-group statistical analyses. Therefore the
subtle organization of the weights in our graphs provides
information additional to the overall topography of edges.

DISCUSSION

We present a detailed analysis of the nonlinear expres-
sion of functional connectivity in schizophrenia, by com-
bining time series and graph-theoretical methods. By cal-
culating the covariation of nonlinear interdependence in
multivariate data, the present method captures the com-
plex topography of cortical interactions, as mapped into
scalp EEG, during a resting state condition. Graph meas-
ures characterized this topography, reducing the original
EEG data set into a few summary statistics. We hence find
lower clustering, shorter path lengths and lower centrality
of major hubs in the schizophrenia networks. All of these
findings are consistent with a subtle randomization of the
networks, moving edges away from clustered cliques, cre-
ating shortcuts between clusters and hence reducing the
centrality of hubs. These findings complement a recent
study of linear and nonlinear effects in schizophrenia dur-
ing a working memory task [Micheloyannis et al., 2006]
and are interpreted in two contexts: the schizophrenia dis-
connection hypothesis, and the study of functional connec-
tivity with graph-theoretical methods.
Our primary purpose was to employ nonlinear measures

of interdependence to test the schizophrenia ‘‘discon-
nection hypothesis’’ [Andreasen, 1999; Friston and Frith,
1995; Lee et al., 2003; Peled, 1999]. However, instead of
considering synchronous activity between pairs of cortical
areas (a straightforward interpretation of functional con-
nectivity), we studied the temporal correlation of such
activities. The nodes in our graphs constitute interdepend-
ences between two cortical regions (‘‘first-order’’ connectiv-
ities); the edges correspond to the correlations between
pairs of such interdependences (‘‘second-order’’ connectiv-
ities). This measure is sensitive to the location and relative
timing of cortical interactions (which are averaged out in
first order analyses). By capturing the patterns of synchro-
nous brain activity at a larger, supra-regional scale, it is
therefore directed at the evaluation of higher-order inte-
grative processes, rather than of simple inter-regional com-
munication. An increase in the temporal correlation of
interdependences was previously reported in schizophre-
nia, across mostly adjacent interdependence pairs [Break-
spear et al., 2003]. Here we confirm this pattern in an
expanded dataset, which incorporates a greater number of
nonadjacent (disjoint) interdependence pairs. In addition
we report that the increase in these correlations in schizo-
phrenia is associated with a randomization in their topo-
graphical pattern (‘‘network structure’’). The essence of
this randomization may be reflected by the average matri-
ces of both networks (Fig. 3B). An important difference

between the matrices is the relative increase in the number
of intercluster edges in schizophrenia and hence the
decrease of edges present inside clusters. These intercluster
edges represent the simultaneous occurrence of pairs of
‘‘disjoint’’ nonlinear brain activities. Their increased num-
ber corresponds to an increased concurrent occurrence of
‘‘remote’’ dynamical interactions. Put alternatively, these
edges reflect a temporal ‘‘binding’’ (cooccurrence) of non-
linear effects which are both spatially and temporally dis-
joint in healthy subjects. Peled [1999] proposed that the
symptoms in schizophrenia may reflect the breakdown of
multiple constraint organization (MCO) in the brain,
whereby all subcomponents of a system comply with ‘‘con-
straints’’ exerted by other components. One type of MCO
breakdown involves the presence of false connections,
which ‘‘enable the formation of associations that were
impossible before constraints were violated’’ [Peled, 1999].
Lee et al. [2003] introduced the notion of ‘‘overbinding’’—
the formation of excessive connections that are effectively
random—and, in addition, do not distinguish external
from internal sources. Our results offer support for these
proposals, consistent with Friston and Frith’s [1995] notion
of a ‘‘subtle but pernicious’’ disturbance.
Our finding of small-world properties in cortical net-

work activity accords with recent analyses of fMRI
[Achard et al., 2006; Salvador et al., 2005] and MEG data
[Bassett et al., 2006] in addition to computational simula-
tions of cortical activity [Honey et al., 2007]. Recent graph
analyses of functional connectivity in EEG reported a ran-
domization of such network structure in brain tumors
[Bartolomei et al., 2006] and a loss of small-world network
properties in Alzheimer’s disease [Stam et al., 2007], inter-
ictal state of temporal lobe epilepsy [Ponten et al., 2007]
and schizophrenia [Micheloyannis et al., 2006]. The latter
study examined the graph properties of linear and nonlin-
ear ‘‘first-order’’ connectivities in band-pass filtered data.
The analysis was hence directed towards different proper-
ties of EEG data than the present study. The Micheloyan-
nis study reported a lower clustering coefficient—as in the
present study—but a longer path length in schizophrenia.
A direct comparison between these frequency band spe-
cific findings and our current analysis is not possible.
However, both analyses also argue that schizophrenia is
associated with differences in neuronal dynamics
expressed at the scale of the whole brain.
An intriguing finding of the present study is the signifi-

cant correlation between clustering coefficients and anti-
psychotic medication dose within the clinical group. This
correlation was in the opposite direction of the main inter-
group effect, and was independent of crude measures of
disease severity (aggregate positive and aggregate negative
symptom ratings). There was no clear delineation of sub-
jects into subgroups based on network structure, to
account for such a correlation. This result suggests that
medication is unlikely to be a confounding factor and may
on the contrary exert a ‘‘normalizing’’ influence against the
randomization in network structure.
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We did not find any meaningful correlations between
network structure and symptom ratings on the PANSS.
We previously found a lack of fit in this group to either a
three-factor or a four-factor model, following a principal
components analysis of the symptom ratings [Breakspear
et al., 2003]. Both these observations may speak to the
acute nature and recent onset of the illness in the group.
More specific associations between symptom profiles and
patterns of disconnection may emerge with illness chronic-
ity, as suggested by linear connectivity studies showing
global loss of synchrony in first episode schizophrenia
that—with illness chronicity—acquires specific associations
with positive and negative symptom profiles [e.g. Lee
et al., 2003; Symond et al., 2005].
Other possible confounding factors, including group dif-

ferences in arousal and eye movement were addressed in
Breakspear et al. [2003]. Here, we readdressed the possibil-
ity of confounding by eye movement, as follows: we reana-
lyzed the networks after excluding frontal region data
(Nodes 1–12 in Fig. 3B), and thereby reducing any poten-
tial contributions of ocular artifacts. Such a maneuver
decreased the number of edges by approximately one half;
however, in spite of this, the schizophrenia group net-
works continued to manifest lower clustering and shorter
path lengths at all thresholds. This observation further
reduces the possibility of confounding by eye movement.
Previous graph analyses of functional connectivity have,

for the most part, considered binary graphs. Weighted
graph analysis is a recent development in the study of com-
plex networks [Barrat et al., 2004; Boccaletti et al., 2006]. We
found that weighted network analysis revealed a much
stronger between-group difference in measurements of both
characteristic path length and clustering coefficient (see Fig.
6). This may be explained by the fact that, in more densely
connected graphs, there exists a greater presence of weaker
edges (corresponding to less significant correlations). In
weighted graphs weak edges are less likely to participate in
shortest paths, and are therefore less likely to facilitate erro-
neous long-distance shortcuts which obscure path length
differences. Likewise, weak edges have a comparatively
smaller influence on the weighted clustering coefficient. In
binary graphs all edges have equivalent weights, and the
addition of more edges may enable an abundance of short
paths and nonclustered neighborhoods, which reduces the
overall network metrics, and obscures the between-group
difference in our data. In other words, weighted analysis
may naturally ‘‘filter out’’ the noise of weaker edges in cal-
culations of path length and clustering coefficient. This
argues for the use of weighted rather than the more popu-
lar binary graph analyses in future studies.
We found that individual subjects had strongly central

hubs. However, we did not observe a robust topographic
distribution of hubs across subjects (compare Fig. 5A,B).
This may reflect the nature of a ‘‘no task’’ resting state
data set, whereby the range of putative cognitive activity
between subjects—varying from visual imagery through
episodic memory retrieval to executive planning—is far

less constrained than during an active cognitive task. De-
spite this, recent analyses of resting state fMRI data sets
do show a remarkably robust pattern of ‘‘default mode’’
activity [Damoiseaux et al., 2006]. However, such networks
have very slow oscillations of �0.05 Hz [Achard et al.,
2006] in comparison to the relatively fast time scales of
nonlinear EEG activity of 10–40Hz [Breakspear and Terry,
2002a] which may be more closely related to cognitive ac-
tivity and hence more variable in resting state data.
Hence—according to the present analysis—individual sub-
jects’ EEG do express hubs during a resting state acquisi-
tion, albeit in subject-specific patterns. The schizophrenia
group manifested comparatively less central hubs, consist-
ent with a partial randomization of network topography.
In summary, we report a significant random shift in the

network structure of resting state EEG in schizophrenia
subjects. We interpret this finding as the presence of
abnormal synchrony between spatially and temporally dis-
joint nonlinear activities. These findings do not directly
support a ‘‘first pass’’ interpretation of the schizophrenia
disconnection hypothesis—whereby cortical regions are
simply ‘‘uncoupled’’—but do support a more complex
view of connectivity, whereby cortical interactions are
finely balanced between integration and segregation across
a hierarchy of scales. This notion is consistent with a
recent functional neuroimaging study of Das et al. (in
press) which reported a reversal of normal cortical-sub-
cortical interactions. Taken together, these findings hence
suggest that schizophrenia is associated with a disturbance
in the subtle balance of such hierarchical interactions, up
to the scale of the whole brain.
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APPENDIX

MATHEMATICAL DETAILS OF WEIGHTED

GRAPH ANALYSIS

The present study utilized weighted, undirected graphs.
A weighted, undirected graph GW ¼ ðV;E;WÞ consists of
three sets: a nonempty set of vertices, or nodes, V (com-
prising N nodes); a set of edges E; and a set of edge
weights W. Nodes i and j (here and in the following i; j 2 V)
are said to be adjacent (aij ¼ 1) when there exists an edge
between i and j; and nonadjacent (aij ¼ 0) otherwise, with
aij ¼ aji and aii ¼ 0 for all i and j. All adjacent i and j are
assigned an edge weight wij, with 0 < wij � 1 and wij ¼ wji;
all nonadjacent i and j have wij ¼ 0.

Clustering Coefficient [Barrat et al., 2004]

The binary clustering coefficient ci
w of a node i, is

the likelihood of ajh ¼ 1, if aij ¼ aih ¼ 1. Thus,
ci ¼ 1

kiðki�1Þ
P

j6¼h2V aijaihajh, where ki is the number of neigh-
bors (degree) of i, ki ¼

P
j2V aij. The weighted clustering

coefficient cwi , incorporates node-neighbor weights as,
cwi ¼ 1

siðki�1Þ
P

j;h2V
ðwijþwihÞ

2 aijaihajh, where si is the weighted
degree (strength) of i, si ¼

P
j2V wij. The average clustering

coefficient C, is obtained as, C ¼ 1
N

P
i2V ci.

Characteristic Path Length

[Marchiori and Latora, 2000]

We obtained shortest path lengths dij between nodes i
and j, by taking distance to be inversely proportional to
weight. For disconnected nodes, we assumed dij ¼ 1. The
characteristic path length L, was derived as a harmonic
mean of the individual shortest path lengths, L ¼ NðN�1ÞP

i; j2V 1=dij
.

Betweenness Centrality [Freeman, 1977]

Betweenness centrality bi of a node i, is the sum of the
ratios of the number of shortest paths traversing i,
bi ¼

P
i6¼j6¼h2V

njhðiÞ
njh

, where njh is the number of shortest
paths between j and h, and njhðiÞ is the number of shortest
paths between j and h that traverse i. Betweenness was
normalized as, bnml

i ¼ bi
ðN�1ÞðN�2Þ :
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