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Small-world view of the amino acids that play a key role in protein folding
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We use geometrical considerations to provide a different perspective on the fact that a few selected amino
acids, the so-called ‘‘key residues,’’ act as nucleation centers for protein folding. By constructing graphs
corresponding to protein structures we show that they have the ‘‘small-world’’ feature of having a limited set
of vertices with large connectivity. These vertices correspond to the key residues that play the role of ‘‘hubs’’
in the network of interactions that stabilize the structure of the transition state.
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Although proteins are complex systems, experiments@1#
and theory@2,3# suggest that at least for some of them t
folding mechanism is simpler than expected. One aspec
this is the finding that a small number of amino acids play
essential role in folding@4–8#. By applying the small-world
network paradigm@9#, we obtain a different perspective o
this result and obtain a method for identifying the key am
acids.

Small-world networks@9–16# have recently been show
to be suitable for describing systems as diverse as chem
reaction networks@13#, neural networks@9#, food webs@14#,
social networks@9#, scientific collaborations@12#, disease
spreading@15#, and the World Wide Web@10,16#. In general,
network topologies are random, if each vertex is connec
randomly to other vertices, or they are regular, if each ver
is connected with a fixed number of vertices; two vertices
neighbors if they are connected by an edge. Watts and S
gatz@9# have shown that there exists a third possibility, c
responding to another regime of connectivity, which th
called asmall-world network. The networks that they de
scribe are the result of the random replacement of a frac
p of the edges of ad-dimensional regular lattice with new
random edges. This results in connections between ver
that are distant on the lattice. The latter dramatically red
the average path lengthL, whereL is equal to the number o
vertices that must be traversed to reach any other vertex f
a given one. Watts and Strogatz@9# characterized the small
world networks with two numbers, the average path lengtL
and the clustering coefficientC, which is the average fraction
of pairs of neighbors that are also neighbors of each othe
vertexk is connected toNk other vertices and the distributio
P(Nk) of the number of connections is either exponential,
in the original Watts and Strogatz model@9#, or obeys a
power law, as for example in the World Wide Web@16#.
Regular networks have largeL and largeC whereas random
networks have smallL and smallC. Small-world networks
have smallL and largeC @9#. In what follows we show that
protein structures form small-world networks and use t
result to identify key residues for the folding process@6#. The
existence of key residues is in accord with the nucleati
condensation model of protein folding@4,5,8,17#, in that they
play an essential role in the folding nuclei@6,18#. The small-
world character of networks in protein structures is shown
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arise from the presence of a relatively small number of v
tices with many connections@19,20#.

To apply the small-world concept to an ensemble of p
tein structures we represent the latter as a weighted g
@21#. In order to do so, we first construct the adjacency m
trix A. The elementAi j of A is given by the number of
structures in which residuesi and j are in contact divided by
the total number of structures in the ensemble. For a part
lar structure, two residues are defined to be in contact if th
Ca atoms are closer than a cutoff distanceRc @6#. From the
adjacency matrixA we construct the matrix of the distance
w by defining its elements aswi j 51/Ai j . For an individual
structure,wi j 51 if i andj are in contact and̀ otherwise. In
the general case, 1<wi j <`. Each protein residue corre
sponds to a vertex of the graph and each elementwi j corre-
sponds to a weighted edge between two vertices. Thegraph
path length Lis defined as

L5
1

Np
(
j . i

l i j , ~1!

where, in a graph ofN vertices, the sum runs over all th
Np5N(N21)/2 pairs of vertices andl i j is theminimal path
between verticesi and j. The minimal pathl i j is the mini-
mum over all the paths betweeni and j of the sum of the
weights of the edges traversed along each path. For gra
corresponding to individual structures we also defined
clustering coefficient C, as follows. If the vertexk has Nk
neighbors, the maximal number of edges between theNk
neighbors isNk(Nk21)/2. The clustering coefficient is

C5
1

N (
k

nk

Nk~Nk21!/2
, ~2!

wherenk is denoted by the actual number of edges that e
among the neighbors ofk.

We determine the distribution of values of the path leng
L and the clustering indexC for 978 representative protei
structures from the Protein Data Bank~PDB! @22# whose
sizes ranged fromN550 toN51021. The result is shown in
Fig. 1. The average value in the distribution forL is 4.1
60.9 and the average in the distribution ofC is 0.5860.04.
If N is the number of vertices andK is the average number o
©2002 The American Physical Society10-1
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neighbors in the graph,Lrandom; ln N/ln K (2.460.3) and
Crandom;K/N (0.0860.06) for random graphs while fo
regular graphs~1 lattices, Ref. @23#!, Lregular5N(N1K
22)/@2K(N21)# (10.467.0) and Cregular53(K
22)/@4(K21)# (0.6760.04). The differences between th
proteins and the random or regular lattices in Fig. 1 are
tistically significant—according to the Kolmogorov-Smirno
test@24# the probability to observe the differences by chan
is close to zero. These results show that the native pro
structures are characterized by intermediate values ofL and
C, and therefore, belong to the class of small-world grap
Interestingly, individual collapsed structures of homopo
mers and of clusters, for which the results are also show
Fig. 1, have values ofL and C that are similar to those o
native protein structures. The differences inL andC between
homopolymers, clusters, and proteins are probably not
nificant and may be due to the fact that somewhat differ
energy functions were used to model the various system

To determine the amino acid residues that make the m
important contribution to generating the small-world n
work, we use the ‘‘betweenness’’Bk , @25#, defined as the
number of pairs (i , j ) of vertices such that the shortest pa
betweeni and j passes throughk, normalized by the tota
number of pairs. Figure 2 shows theBk values as a function
of residue numberk for the native states and the transitio
state ensemble of six proteins. The former are based on x
or nuclear magnetic resonance structures and the latte
obtained by a Monte Carlo sampling procedure of Ref.@6#.
In this method residue-specific protein engineering exp
mental results (f values! @17# are interpreted in terms of th
fraction of native contacts that each residue forms in

FIG. 1. Distribution of the values of the path length and clu
tering index for 978 representative proteins; for each one, a si
structure from the PDB was used. Error bars represent the stan
deviations of the distributions. For comparison, we also plot d
points for random graphs, regular graphs, homopolymers,
atomic clusters. The conformations for homopolymers are obta
with the contact map dynamics of Ref.@27# and those of atomic
clusters with Lennard-Jones interactions by a Monte Carlo met
@28#. In the latter two cases, we considered sizes fromN550 to
N51021, a range comparable to that of single domain proteins
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transition state and this information is used to bias the s
pling of conformational space towards the region of the tr
sition state. There is a correlation betweenBk and the square
of the number of contacts ofk; for Rc58.5 Å, the value
used here, the correlation coefficient is about 0.8. Thus,Bk
measures the centrality of a residue and provides a correc
to the use of the number of contacts for describing the str
tural relevance of a residue; i.e., the key residues are
necessarily the residues with the largest number of cont
@6#.

For the transition states of all six proteins it is evident th
there is a small number~between 2 and 4! of residues~or
regions! that have largeBk values and that outside thes
regions, the values are 0.1 or less. Analysis of the transi
states of these proteins have shown that there are ce
residues, called key residues, which are critical for form
the nucleus that encodes the overall native structure@6#. The
key residues are indicated by small squares in Fig. 2. In
cases, they involve residues with largeBk . For five out of six
proteins, they correspond to residues with the largestBk . In
the sixth ~1aps!, there are three key residues, all of whic
have largeBk . Two of them~11 and 94! are the largestBk in
the given region and the third is in a region of largeBk
~residues 45–54! but is not the largest in that region. There
an additional region~residues 37–39! with Bk greater than
0.15, which does not contain a key residue. It correspond
strandb2 ~see Fig. 3!, which is the most buried one in th
native state. Experiments and the results of Ref.@6# indicate
that this strand is partially formed in the transition sta
although the interactions made by the residues inb2 are not
crucial for the nucleation process. It is likely that the cha
can form the folding nucleus only ifb2 is near its native
position. However, since it does not contain a key resid
the highBk value in the region 37–39 must be regarded a
false positive.

If we now examine theBk results for the native state~Fig.
2!, it is clear that there is a significantly larger number
residues with highBk values. This is not surprising becaus
only a portion of the native structure~i.e., the folding
nucleus! is essentially formed in the transition state e
semble, so that the variations in the rest of the struct
average out the highBk present in individual members of th
ensemble~see also below!. In the native state, fluctuations i
the number of neighbors are small and such averaging d
not occur. This leads to a larger number of highBk values.
For example, in the protein AcP@6# ~see Fig. 3!, all of the
five b strands and the twoa helices have a few residues th
are central in the native state graph. However, the resid
belonging to thea helices and those belonging to theb4
strand lose their importance in the transition state gra
~shown in Fig. 3!, in accordance with the description of th
transition state structure given in Ref.@6#, where it was
found that only strandsb1 , b3, andb5 are relevant for the
nucleation process.

Comparison of the native state and transition state res
shows that it is possible to predict the key residues from
knowledge of theBk values of the latter, but not the forme
The information is partially masked in the native state by
formation of the rest of the network that has both key a
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SMALL-WORLD VIEW OF THE AMINO ACIDS THAT . . . PHYSICAL REVIEW E 65 061910
FIG. 2. ‘‘Betweenness’’Bk in
the transition state for six protein
~thick lines!. Vertices with large
Bk are the most connected one
Key residues~obtained indepen-
dently by the method presented i
Ref. @6#! are indicated by squares
The Bk values in the native state
~thin lines! are shown for com-
parison. In the plot for protein 2pt
we show theB profile for a ho-
mopolymer of the same length a
the u point ~determined using the
method of Ref.@29#!.
or
s
th
n
th
s
re

o
f

re
a

el
t a
e

ior
ctiv-
ial
the
the
er
us-
ilar

ages
res

for
e

n
es
the
non-key interactions. As a consequence, the small-w
analysis of native states can be used to identify the region
which key residues are expected to be found. However,
native state also identifies ‘‘false positives,’’ namely, regio
that are highly connected in the native state but not in
transition state. For example, in the case of AcP discus
above there are five candidate regions of which only th
actually contain the key residues.

Individual compact structures of homopolymers and
atomic clusters haveB profiles similar to those of proteins o
comparable size and their graphs haveL andC values typical
of small-world networks. This is due to the fact that we a
dealing with systems of intrinsically finite size, so that in
collapsed polymer, a cluster or a globular protein, a relativ
small number of residues are buried in the core and mos
on the surface. Since theB profiles are a measure of th
average system connectivity, they are not very sensitive
06191
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the exact definition of contact. The similarity of the behav
of homopolymers and clusters suggests that chain conne
ity, per se, plays only a minor role in this respect. The cruc
difference between proteins and compact polymers is that
energy function of a protein selects one structure, that of
native state, with a non-negligible Boltzmann weight und
native conditions. Instead for most homopolymers and cl
ters, a large number of compact conformations have sim
probabilities. As a consequence, theB profiles for homopoly-
mers and clusters show no peaks when statistical aver
are taken. This difference is found also when one compa
the u point for homopolymers and the transition states
proteins. As an example, we show in Fig. 2 the averagB
profile for a homopolymer of the same length (N562) as
protein L ~2ptl!. This difference is due to the fact protei
folding takes place by a specific mechanism that involv
few key residues selected by evolution. In this sense
0-3
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different order of the transition for protein folding and h
mopolymer collapse plays only a minor role. The differen
between proteins and homopolymers is analogous to tha
tween magic and nonmagic clusters. Magic clusters@26# are
characterized by a single energy minimum whereas n

FIG. 3. Structure of the native state~left! and of the transition
state~right! of the protein 1aps@6#. The contact network is shown in
the transition state. The three key residues are indicated by sph
Secondary structures (a helices andb sheets! are indicated for the
native state.
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magic clusters have a highly degenerate ground state. At
temperatures, therefore, there are geometrical key posit
in a magic cluster. Due to symmetry under permutati
however, the identity of the atoms occupying them is n
conserved. This situation is similar to that of homologo
sequences with the same fold. The position in the structur
important, but the identity of the residues may change dur
evolution.

We have shown that structures of native proteins and
their transition states can be conveniently analyzed by us
the small-world networks approach. Since this feature is a
observed in collapsed homopolymers and in compact ato
clusters, it suggests that the small-world character arises
marily from the overall geometry~surface to volume ratio!.
What is special about proteins is that they have an essent
unique native structure and a structurally restricted ensem
representing the transition state. The betweenness in the
sition state ensembles is highest for the key residues
volved in formation of the nucleus for the folding reaction.
will be of interest to investigate whether the key residu
identified in this way also play an energetic role in select
the unique structure of the native state.
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