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Abstract

The popularity of JavaScript has lead to a large ecosystem

of third-party packages available via the npm software pack-

age registry. The open nature of npm has boosted its growth,

providing over 800,000 free and reusable software packages.

Unfortunately, this open nature also causes security risks, as

evidenced by recent incidents of single packages that broke

or attacked software running on millions of computers. This

paper studies security risks for users of npm by systematically

analyzing dependencies between packages, the maintainers

responsible for these packages, and publicly reported secu-

rity issues. Studying the potential for running vulnerable or

malicious code due to third-party dependencies, we find that

individual packages could impact large parts of the entire

ecosystem. Moreover, a very small number of maintainer ac-

counts could be used to inject malicious code into the majority

of all packages, a problem that has been increasing over time.

Studying the potential for accidentally using vulnerable code,

we find that lack of maintenance causes many packages to de-

pend on vulnerable code, even years after a vulnerability has

become public. Our results provide evidence that npm suffers

from single points of failure and that unmaintained pack-

ages threaten large code bases. We discuss several mitigation

techniques, such as trusted maintainers and total first-party

security, and analyze their potential effectiveness.

1 Introduction

JavaScript has become one of the most widely used program-

ming languages. To support JavaScript developers with third-

party code, the node package manager, or short npm, provides

hundreds of thousands of free and reusable code packages.

The npm platform consists of an online database for search-

ing packages suitable for given tasks and a package manager,

which resolves and automatically installs dependencies. Since

its inception in 2010, npm has steadily grown into a collection

of over 800,000 packages, as of February 2019, and will likely

grow beyond this number. As the primary source of third-party

JavaScript packages for the client-side, server-side, and other

platforms, npm is the centerpiece of a large and important

software ecosystem.

The npm ecosystem is open by design, allowing arbitrary

users to freely share and reuse code. Reusing a package is as

simple as invoking a single command, which will download

and install the package and all its transitive dependencies.

Sharing a package with the community is similarly easy, mak-

ing code available to all others without any restrictions or

checks. The openness of npm has enabled its growth, provid-

ing packages for any situation imaginable, ranging from small

utility packages to complex web server frameworks and user

interface libraries.

Perhaps unsurprisingly, npm’s openness comes with secu-

rity risks, as evidenced by several recent incidents that broke

or attacked software running on millions of computers. In

March 2016, the removal of a small utility package called

left-pad caused a large percentage of all packages to become

unavailable because they directly or indirectly depended on

left-pad.1 In July 2018, compromising the credentials of the

maintainer of the popular eslint-scope package enabled an

attacker to release a malicious version of the package, which

tried to send local files to a remote server.2

Are these incidents unfortunate individual cases or first

evidence of a more general problem? Given the popularity

of npm, better understanding its weak points is an important

step toward securing this software ecosystem. In this paper,

we systematically study security risks in the npm ecosystem

by analyzing package dependencies, maintainers of packages,

and publicly reported security issues. In particular, we study

the potential of individual packages and maintainers to impact

the security of large parts of the ecosystem, as well as the

ability of the ecosystem to handle security issues. Our analysis

is based on a set of metrics defined on the package dependency

graph and its evolution over time. Overall, our study involves

5,386,239 versions of packages, 199,327 maintainers, and

1https://www.infoworld.com/article/3047177/javascript/

how-one-yanked-javascript-package-wreaked-havoc.html
2https://github.com/eslint/eslint-scope/issues/39
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609 publicly known security issues.

The overall finding is that the densely connected nature of

the npm ecosystem introduces several weak spots. Specifi-

cally, our results include:

• Installing an average npm package introduces an implicit

trust on 79 third-party packages and 39 maintainers, cre-

ating a surprisingly large attack surface.

• Highly popular packages directly or indirectly influence

many other packages (often more than 100,000) and are

thus potential targets for injecting malware.

• Some maintainers have an impact on hundreds of thou-

sands of packages. As a result, a very small number

of compromised maintainer accounts suffices to inject

malware into the majority of all packages.

• The influence of individual packages and maintainers

has been continuously growing over the past few years,

aggravating the risk of malware injection attacks.

• A significant percentage (up to 40%) of all packages

depend on code with at least one publicly known vulner-

ability.

Overall, these findings are a call-to-arms for mitigating se-

curity risks on the npm ecosystem. As a first step, we discuss

several mitigation strategies and analyze their potential effec-

tiveness. One strategy would be a vetting process that yields

trusted maintainers. We show that about 140 of such maintain-

ers (out of a total of more than 150,000) could halve the risk

imposed by compromised maintainers. Another strategy we

discuss is to vet the code of new releases of certain packages.

We show that this strategy reduces the security risk slightly

slower than trusting the involved maintainers, but it still scales

reasonably well, i.e., trusting the top 300 packages reduces

the risk by half. If a given package passes the vetting process

for maintainers and code, we say it has “perfect first-party

security”. If all its transitive dependencies pass the vetting

processes we say that it has “perfect third-party security”.

If both conditions are met, we consider it a “fully secured

package”. While achieving this property for all the packages

in the ecosystem is infeasible, packages that are very often

downloaded or that have several dependents should aim to

achieve it.

2 Security Risks in the npm Ecosystem

To set the stage for our study, we describe some security-

relevant particularities of the npm ecosystem and introduce

several threat models.

2.1 Particularities of npm

Locked Dependencies In npm, dependencies are declared

in a configuration file called package.json, which specifies

the name of the dependent package and a version constraint.

The version constraint either gives a specific version, i.e., the

dependency is locked, or specifies a range of compatible ver-

sions, e.g., newer than version X. Each time an npm package

is installed, all its dependencies are resolved to a specific

version, which is automatically downloaded and installed.

Therefore, the same package installed on two different ma-

chines or at two different times may download different ver-

sions of a dependency. To solve this problem, npm introduced

package-lock.json, which developers can use to lock their tran-

sitive dependencies to a specific version until a new lock file

is generated. That is, each package in the dependency tree is

locked to a specific version. In this way, users ensure uniform

installation of their packages and coarse grained update of

their dependencies. However, a major shortcoming of this ap-

proach is that if a vulnerability is fixed for a given dependency,

the patched version is not installed until the package-lock.json

file is regenerated. In other words, developers have a choice

between uniform distribution of their code and up-to-date

dependencies. Often they choose the later, which leads to a

technical lag [12] between the latest available version of a

package and the one used by dependents.

Heavy Reuse Recent work [11, 18] provides preliminary

evidence that code reuse in npm differs significantly from

other ecosystems. One of the main characteristic of the npm

ecosystem is the high number of transitive dependencies. For

example, when using the core of the popular Spring web

framework in Java, a developer transitively depends on ten

other packages. In contrast, the Express.js web framework

transitively depends on 47 other packages.

Micropackages Related to the reuse culture, another inter-

esting characteristic of npm is the heavy reliance on packages

that consist of only few lines of source code, which we call

micropackages. Related work documents this trend and warns

about its dangers [1, 19]. These packages are an important

part of the ecosystem, yet they increase the surface for certain

attacks as much as functionality heavy packages. This exces-

sive fragmentation of the npm codebase can thus lead to very

high number of dependencies.

No Privilege Separation In contrast to, e.g., the Java se-

curity model in which a SecurityManager3 can restrict the

access to sensitive APIs, JavaScript does not provide any kind

of privilege separation between code loaded from different

packages. That is, any third-party package has the full privi-

leges of the entire application. This situation is compounded

by the fact that many npm packages run outside of a browser,

in particular on the Node.js platform, which does not provide

any kind of sandbox. Instead, any third-party package can

access, e.g., the file system and the network.

3https://docs.oracle.com/javase/6/docs/api/java/lang/

SecurityManager.html
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No Systematic Vetting The process of discovering vulner-

abilities in npm packages is still in its infancy. There currently

is no systematic vetting process for code published on npm.

Instead, known vulnerabilities are mostly reported by indi-

viduals, who find them through manual analysis or in recent

research work, e.g., injection vulnerabilities [30], regular ex-

pression denial of service [9,29], path traversals [16], binding

layer bugs [6].

Publishing Model In order to publish a package, a devel-

oper needs to first create an account on the npm website. Once

this prerequisite is met, adding a new package to the repos-

itory is as simple as running the “npm publish” command

in a folder containing a package.json file. The user who first

published the package is automatically added to the main-

tainers set and hence she can release future versions of that

package. She can also decide to add additional npm users as

maintainers. What is interesting to notice about this model

is that it does not require a link to a public version control

system, e.g., GitHub, hosting the code of the package. Nor

does it require that persons who develop the code on such

external repositories also have publishing rights on npm. This

disconnect between the two platforms has led to confusion4

in the past and to stealthy attacks that target npm accounts

without changes to the versioning system.

2.2 Threat Models

The idiosyncratic security properties of npm, as described

above, enable several scenarios for attacking users of npm

packages. The following discusses threat models that either

correspond to attacks that have already occurred or that we

consider to be possible in the future.

Malicious Packages (TM-mal) Adversaries may publish

packages containing malicious code on npm and hence trick

other users into installing or depending on such packages. In

2018, the eslint-scope incident mentioned earlier has been

an example of this threat. The package deployed its payload

at installation time through an automatically executed post-

installation script. Other, perhaps more stealthy methods for

hiding the malicious behavior could be envisioned, such as

downloading and executing payloads only at runtime under

certain conditions.

Strongly related to malicious packages are packages that

violate the user’s privacy by sending usage data to third par-

ties, e.g., insight5 or analytics-node6. While these libraries

are legitimate under specific conditions, some users may not

want to be tracked in this way. Even though the creators of

these packages clearly document the tracking functionality,

transitive dependents may not be aware that one of their de-

pendencies deploys tracking code.

4http://www.cs.tufts.edu/comp/116/archive/spring2018/

etolhurst.pdf
5https://www.npmjs.com/package/insight
6https://www.npmjs.com/package/analytics-node

Exploiting Unmaintained Legacy Code (TM-leg) As

with any larger code base, npm contains vulnerable code,

some of which is documented in public vulnerability

databases such as npm security advisories7 or Snyk vulnerabil-

ity DB8. As long as a vulnerable package remains unfixed, an

attacker can exploit it in applications that transitively depend

on the vulnerable code. Because packages may become aban-

doned due to developers inactivity [8] and because npm does

not offer a forking mechanism, some packages may never be

fixed. Even worse, the common practice of locking dependen-

cies may prevent applications from using fixed versions even

when they are available.

Package Takeover (TM-pkg) An adversary may convince

the current maintainers of a package to add her as a maintainer.

For example, in the recent event-stream incident9, the attacker

employed social engineering to obtain publishing rights on

the target package. The attacker then removed the original

maintainer and hence became the sole owner of the package.

A variant of this attack is when an attacker injects code into

the source base of the target package. For example, such code

injection may happen through a pull request, via compromised

development tools, or even due to the fact that the attacker

has commit rights on the repository of the package, but not

npm publishing rights. Once vulnerable or malicious code is

injected, the legitimate maintainer would publish the package

on npm, unaware of its security problems. Another takeover-

like attack is typosquatting, where an adversary publishes

malicious code under a package name similar to the name of

a legitimate, popular package. Whenever a user accidentally

mistypes a package name during installation, or a developer

mistypes the name of a package to depend on, the malicious

code will be installed. Previous work shows that typosquatting

attacks are easy to deploy and effective in practice [31].

Account Takeover (TM-acc) The security of a package

depends on the security of its maintainer accounts. An attacker

may compromise the credentials of a maintainer to deploy

insecure code under the maintainer’s name. At least one recent

incident (eslint-scope) is based on account takeover. While

we are not aware of how the account was hijacked in this

case, there are various paths toward account takeover, e.g.,

weak passwords, social engineering, reuse of compromised

passwords, and data breaches on npm.

Collusion Attack (TM-coll) The above scenarios all as-

sume a single point of failure. In addition, the npm ecosystem

may get attacked via multiple instances of the above threats.

Such a collusion attack may happen when multiple main-

tainers decide to conspire and to cause intentional harm, or

when multiple packages or maintainers are taken over by an

attacker.

7https://www.npmjs.com/advisories
8https://snyk.io/vuln/?type=npm
9https://github.com/dominictarr/event-stream/issues/116
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3 Methodology

To analyze how realistic the above threats are, we systemati-

cally study package dependencies, maintainers, and known

security vulnerabilities in npm. The following explains the

data and metrics we use for this study.

3.1 Data Used for the Study

Packages and Their Dependencies To understand the im-

pact of security problems across the ecosystem, we analyze

the dependencies between packages and their evolution.

Definition 3.1 Let t be a specific point in time, Pt be a set of

npm package names, and Et = {(pi, p j)|pi 6= p j ∈ Pt} a set

of directed edges between packages, where pi has a regular

dependency on p j. We call Gt = (Pt ,Et) the npm dependency

graph at a given time t.

We denote the universe of all packages ever published on

npm with P . By aggregating the meta information about pack-

ages, we can easily construct the dependency graph without

the need to download or install every package. Npm offers

an API endpoint for downloading this metadata for all the

releases of all packages ever published. In total we consider

676,539 nodes and 4,543,473 edges.

To analyze the evolution of packages we gather data about

all their releases. As a convention, for any time interval t,

such as years or months, we denote with t the snapshot at the

beginning of that time interval. For example, G2015 refers to

the dependency graph at the beginning of the year 2015. In

total we analyze 5,386,239 releases, therefore an average of

almost eight versions per package. Our observation period

ends in April 2018.

Maintainers Every package has one or more developers

responsible for publishing updates to the package.

Definition 3.2 For every p ∈ Pt , the set of maintainers M(p)
contains all users that have publishing rights for p.

Note that a specific user may appear as the maintainer of

multiple packages and that the union of all maintainers in the

ecosystem is denoted with M .

Vulnerabilities The npm community issues advisories or

public reports about vulnerabilities in specific npm packages.

These advisories specify if there is a patch available and which

releases of the package are affected by the vulnerability.

Definition 3.3 We say that a given package p ∈ P is vul-

nerable at a moment t if there exists a public advisory for

that package and if no patch was released for the described

vulnerability at an earlier moment t ′ < t.

We denote the set of vulnerable packages with V ⊂ P . In

total, we consider 609 advisories affecting 600 packages. We

extract the data from the publicly available npm advisories10.

10https://www.npmjs.com/advisories

3.2 Metrics

We introduce a set of metrics for studying the risk of attacks

on the npm ecosystem.

Packages and Their Dependencies The following mea-

sures the influence of a given package on other packages in

the ecosystem.

Definition 3.4 For every p ∈ Pt , the package reach PR(p)
represents the set of all the packages that have a transitive

dependency on p in Gt .

Note that the package itself is not included in this set. The

reach PR(p) contains names of packages in the ecosystem.

Therefore, the size of the set is bounded by the following

values 0 ≤ |PR(p)|< |Pt |.

Since |PR(p)| does not account for the ecosystem changes,

the metric may grow simply because the ecosystem grows.

To address this, we also consider the average package reach:

PRt =
∑∀p∈Pt

|PR(p)|

|Pt |
(1)

Using the bounds discussed before for PR(p), we can calcu-

late the ones for its average 0 ≤ PRt < |Pt |. The upper limit is

obtained for a fully connected graph in which all packages can

reach all the other packages and hence |PR(p)|= |Pt |−1,∀p.

If PRt grows monotonously, we say that the ecosystem is get-

ting more dense, and hence the average package influences

an increasingly large number of packages.

The inverse of package reach is a metric to quantify how

many packages are implicitly trusted when installing a partic-

ular package.

Definition 3.5 For every p ∈ Pt , the set of implicitly trusted

packages ITP(p) contains all the packages pi for which

p ∈ PR(pi).

Similarly to the previous case, we also consider the size of

the set |ITP(p)| and the average number of implicitly trusted

package ITPt , having the same bounds as their package reach

counterpart.

Even though the average metrics ITPt and PRt are equiv-

alent for a given graph, the distinction between their non-

averaged counterparts is very important from a security point

of view. To see why, consider the example in Figure 1. The

average PR = IT P is 5/6 = 0.83 both on the right and on the

left. However, on the left, a popular package p1 is dependent

upon by many others. Hence, the package reach of p1 is five,

and the number of implicitly trusted packages is one for each

of the other packages. On the right, though, the number of

implicitly trusted packages for p4 is three, as users of p4

implicitly trust packages p1, p2, and p3.
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p1

p3p2 p4 p5

p6

(a) Wide distribution of trust:

max(PR)= 5,max(ITP)= 1

p1

p2 p3

p4

p5p6

(b) Narrow distribution of trust:

max(PR) = 3,max(ITP) = 3

Figure 1: Dependency graphs with different maximum pack-

age reaches (PR) and different maximum numbers of trusted

packages (ITP).

Maintainers The number of implicitly trusted packages or

the package reach are important metrics for reasoning about

TM-pkg, but not about TM-acc. That is because users may de-

cide to split their functionality across multiple micropackages

for which they are the sole maintainers. To put it differently,

a large attack surface for TM-pkg does not imply one for

TM-acc.

Therefore, we define maintainer reach MRt(m) and implic-

itly trusted maintainers ITMt(p) for showing the influence of

maintainers.

Definition 3.6 Let m be an npm maintainer. The maintainer

reach MR(m) is the combined reach of all the maintainer’s

packages, MR(m) = ∪m∈M(p)PR(p)

Definition 3.7 For every p ∈ Pt , the set of implicitly trusted

maintainers ITM(p) contains all the maintainers that have

publishing rights on at least one implicitly trusted package,

ITM(p) = ∪pi∈ITP(p)M(pi).

The above metrics have the same bounds as their packages

counterparts. Once again, the distinction between the package

and the maintainer-level metrics is for shedding light on the

security relevance of human actors in the ecosystem.

Furthermore, to approximate the maximum damage that

colluding maintainers can incur on the ecosystem (TM-coll),

we define an order in which the colluding maintainers are

selected:

Definition 3.8 We call an ordered set of main-

tainers L ⊂ M a desirable collusion strat-

egy iff ∀mi ∈ L there is no mk 6= mi for which

∪ j<iMR(m j)∪MR(mi)< ∪ j<iMR(m j)∪MR(mk).

Therefore, the desirable collusion strategy is a hill climbing

algorithm in which at each step we choose the maintainer that

provides the highest local increase in package reach at that

point. We note that the problem of finding the set of n main-

tainers that cover the most packages is an NP-hard problem

called maximum coverage problem. Hence, we believe that

the proposed solution is a good enough approximation that

shows how vulnerable the ecosystem is to a collusion attack,

but that does not necessary yield the optimal solution.

Figure 2: Evolution of number of packages and maintainers.

Vulnerabilities For reasoning about TM-leg, we need to

estimate how much of the ecosystem depends on vulnerable

code:

Definition 3.9 Given all vulnerable packages pi ∈ Vt at

time t, we define the reach of vulnerable code at time t as

VRt = ∪pi∈Vt
PR(pi).

Of course the actual reach of vulnerable code can not

be fully calculated since it would rely on all vulnerabilities

present in npm modules, not only on the published ones. How-

ever, since in TM-leg we are interested in publicly known

vulnerabilities, we define our metric according to this sce-

nario. In these conditions, the speed at which vulnerabilities

are reported is an important factor to consider:

Definition 3.10 Given all vulnerable packages pi ∈ Vt at

time t, we define the vulnerability reporting rate VRRt at

time t as VRRt =
|Vt |
|Pt |

.

4 Results

We start by reporting the results on the nature of package level

dependencies and their evolution over time (corresponding

to TM-mal and TM-pkg). We then discuss the influence that

maintainers have in the ecosystem (related to TM-acc and

TM-coll). Finally, we explore the dangers of depending on

unpatched security vulnerabilities (addressing TM-leg).

4.1 Dependencies in the Ecosystem

To set the stage for a thorough analysis of security risks en-

tailed by the structure of the npm ecosystem, we start with

a general analysis of npm and its evolution. Since its incep-

tion in 2010, the npm ecosystem has grown from a small

collection of packages maintained by a few people to the

world’s largest software ecosystem. Figure 2 shows the evo-

lution of the number of packages available on npm and the
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Figure 3: Evolution of direct package dependencies and its

impact on transitive dependencies. Note the logarithmic scale

on the y-axis.

number of maintainers responsible for these packages. Both

numbers have been increasing super-linearly over the past

eight years. At the end of our measurement range, there is

a total of 676,539 packages, a number likely to exceed one

million in the near future. These packages are taken care of

by a total of 199,327 maintainers. The ratio of packages to

maintainers is stable across our observation period (ranging

between 2.81 and 3.51).

In many ways, this growth is good news for the JavaScript

community, as it increases the code available for reuse. How-

ever, the availability of many packages may also cause devel-

opers to depend on more and more third-party code, which

increases the attack surface for TM-pkg by giving individual

packages the ability to impact the security of many other pack-

ages. The following analyzes how the direct and transitive de-

pendencies of packages are evolving over time (Section 4.1.1)

and how many other packages individual packages reach via

dependencies (Section 4.1.2).

4.1.1 Direct and Transitive Dependencies

Figure 3 shows how many other packages an average npm

package depends on directly and transitively. The number

of direct dependencies has been increasing slightly from 1.3

in 2011 to 2.8 in 2018, which is perhaps unsurprising given

the availability of an increasing code base to reuse. The less

obvious observation is that a small, linear increase in direct

dependencies leads to a significant, super-linear increase in

transitive dependencies. As shown by the upper line in Fig-

ure 3, the number of transitive dependencies of an average

package has increased to a staggering 80 in 2018 (note the

logarithmic scale).

From a security perspective, it is important to note that each

directly or transitively depended on package becomes part of

the implicitly trusted code base. When installing a package,

each depended upon package runs its post-installation scripts

on the user’s machine – code executed with the user’s operat-

ing system-level permissions. When using the package, calls

into third-party modules may execute any of the code shipped

with the depended upon packages.

When installing an average npm package, a user implic-

itly trusts around 80 other packages due to transitive

dependencies.

One can observe in Figure 3 a chilling effect on the number

of dependencies around the year 2016 which will become

more apparent in the following graphs. Decan et al. [14]

hypothesize that this effect is due to the left-pad incident. In

order to confirm that this is not simply due to removal of more

than a hundred packages belonging to the left-pad’s owner, we

remove all the packages owned by this maintainer. We see no

significant difference for the trend in Figure 3 when removing

these packages, hence we conclude that indeed there is a

significant change in the structure of transitive dependencies

in the ecosystem around 2016.

4.1.2 Package Reach

The above analysis focuses on depended upon packages. We

now study the inverse phenomenon: packages impacted by in-

dividual packages, i.e., package reach as defined in Section 3.

Figure 4 shows how many other packages a single package

reaches via direct or indirect dependencies. The graph at the

top is for an average package, showing that it impacts about

230 other packages in 2018, a number that has been growing

since the creation of npm. The graph at the bottom shows the

package reach of the top-5 packages (top in terms of their

package reach, as of 2018). In 2018, these packages each

reach between 134,774 and 166,086 other packages, making

them an extremely attractive target for attackers.

To better understand how the reach of packages evolves

over time, Figure 5 shows the distribution of reached pack-

ages for multiple years. For example, the red line shows that

in 2018, about 24,500 packages have reached at least 10 other

packages, whereas only about 9,500 packages were so in-

fluential in 2015. Overall, the figure shows that more and

more packages are reaching a significant number of other

packages, increasing the attractiveness of attacks that rely on

dependencies.

Some highly popular packages reach more than 100,000

other packages, making them a prime target for attacks.

This problem has been aggravating over the past few

years.

The high reach of a package amplifies the effect of both

vulnerabilities (TM-leg) and of malicious code (TM-mal).

As an example for the latter, consider the event-stream inci-

dent discussed when introducing TM-acc in Section 2.2. By
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Figure 4: Evolution of package reach for an average package

(top) and the top-5 packages (bottom).

Figure 5: Distribution of package reach by individual pack-

ages, and how it changes over time. Note the log scale on the

vertical axis.

computing event-stream’s reach and comparing it with other

packages, we see that this package is just one of many possible

targets. As of April 1, 2018 (the end of our measurement pe-

riod), event-stream has a reach of 5,466. That is, the targeted

package is relatively popular, but still far from being the top-

most attractive package to compromise. In fact, 1,165 other

packages have a greater or equal reach than event-stream.

Variants of the event-stream attack could easily be re-

peated with other packages.

In order to perform a similar analysis for the eslint-scope

security incident, we need to use a slightly modified version

of package reach. This attack targeted a development tool,

namely eslint, hence, to fully estimate the attack surface we

need to consider dev dependencies in our definition of reach.

We do not normally consider this type of dependencies in our

measurements because they are not automatically installed

with a package, unlike regular dependencies. They are instead

used only by the developers of the packages. Therefore the

modified version of package reach considers both transitive

regular dependencies and direct dev dependencies.

We observe that eslint-scope has a modified reach of more

than 100,000 packages at the last observation point in the data

set. However, there are 347 other packages that have a higher

reach, showing that even more serious attacks may occur in

the future.

The attack on eslint-scope has targeted a package with

an influence not larger than that of hundreds of other

packages. It is likely that similar, or perhaps even worse,

attacks will happen and succeed in the future.

4.2 Analysis of Maintainers

We remind the reader that there is a significant difference

between npm maintainers and repository contributors, as dis-

cussed in Section 2.1. Even though contributors also have a

lot of control over the code that will eventually end up in an

npm package, they can not release a new version on npm, only

the maintainers have this capability. Hence, the discussion

that follows, about the security risks associated with maintain-

ers, should be considered a lower bound for the overall attack

surface.

Attacks corresponding to TM-acc in which maintainers are

targeted are not purely hypothetical as the infamous eslint-

scope incident discussed earlier shows. In this attack, a mali-

cious actor hijacked the account of an influential maintainer

and then published a version of eslint-scope containing ma-

licious code. This incident is a warning for how vulnerable

the ecosystem is to targeted attacks and how maintainers in-

fluence can be used to deploy malware at scale. We further

discuss the relation between packages and maintainers.
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Figure 6: Evolution of maintainers sorted by package count

per year.

4.2.1 Packages per Maintainer

Even though the ecosystem grows super-linearly as discussed

in Section 4.1, one would expect that this is caused mainly by

new developers joining the ecosystem. However, we observe

that the number of packages per maintainer also grows sug-

gesting that the current members of the platform are actively

publishing new packages. The average number of packages

controlled by a maintainer raises from 2.5 in 2012 to 3.5 in

2013 and almost 4.5 in 2018. Conversely, there are on aver-

age 1.35 maintainers in the lifetime of a package. The top

5,000 most popular packages have an average number of 2.83

maintainers. This is not unexpected, since multiple people are

involved in developing the most popular packages, while for

the majority of new packages there is only one developer.

Next, we study in more detail the evolution of the number

of packages a maintainer controls. Figure 6 shows the main-

tainer package count plotted versus the number of maintainers

having such a package count. Every line represents a year.

The scale is logarithmic to base 10. It shows that the majority

of maintainers maintain few packages, yet some maintain-

ers maintain over 100 packages. Over the years, the package

count for the maintainers increased consistently. In 2015, only

slightly more than 25,000 maintainers maintained more than

one package, whereas this number has more than tripled by

2018.

We further analyze five different maintainers in top 20

according to number of packages and plot the evolution of

their package count over the years in Figure 7. types is the

largest maintainer of type definitions for TypeScript, most

likely a username shared by multiple developers at Microsoft,

ehsalazar maintains many security placeholder packages, jon-

schlinkert and sindresorhus are maintaining many micropack-

ages and isaacs is the npm founder. From Figure 7 we can

see that for two of these maintainers the increase is super-

linear or even near exponential: types and kylemathews have

Figure 7: Evolution of package count for six popular main-

tainers.

sudden spikes where they added many packages in a short

time. We explain this by the tremendous increase in popular-

ity for TypeScript in the recent years and by the community

effort to prevent typosquatting attacks by reserving multiple

placeholder. The graph of the other maintainers is more linear,

but surprisingly it shows a continuous growth for all the six

maintainers.

The number of packages that both the influential and

the average maintainers control increased continuously

over the years.

4.2.2 Implicitly Trusted Maintainers

One may argue that the fact that maintainers publish new

packages is a sign of a healthy ecosystem and that it only

mimics its overall growth. However, we show that while that

may be true, we also see an increase in the general influence

of maintainers. That is, on average every package tends to

transitively rely on more and more maintainers over time.

In Figure 8 we show the evolution of IT Mt , the average

number of implicitly trusted maintainers. As can be seen,

IT Mt almost doubled in the last three years for the average

npm package, despite the plateau of the curve reached in 2016

which we again speculate it is caused by the left-pad incident.

This is a worrisome development since compromising any

of the maintainer accounts a package trusts may seriously

impact the security of that package, as discussed in TM-acc.

The positive aspect of the data in Figure 8 is that the growth

in the number of implicitly trusted maintainers seems to be

less steep for the top 10,000 packages compared to the whole

ecosystem. We hypothesize that the developers of popular

packages are aware of this problem and actively try to limit

the IT Mt . However, a value over 20 for the average popular

package is still high enough to be problematic.
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Figure 8: Evolution of average number of implicitly trusted

maintainers over years in all packages and in the most popular

ones.

Figure 9: Number of implicitly trusted maintainers for top

10,000 most popular packages.

The average npm package transitively relies on code

published by 40 maintainers. Popular packages rely on

only 20.

When breaking the average IT Mt discussed earlier into in-

dividual points in Figure 9, one can observe that the majority

of these packages can be influenced by more than one main-

tainer. This is surprising since most of the popular packages

are micropackages such as "inherits" or "left-pad" or libraries

with no dependencies like "moment" or "lodash". However,

only around 30% of these top packages have a maintainer cost

higher than 10. Out of these, though, there are 643 packages

influenced by more than a hundred maintainers.

More than 600 highly popular npm packages rely on

code published by at least 100 maintainers.

Figure 10: Distribution of maintainers reach in different years.

4.2.3 Maintainers Reach

In Figure 10, we plot the reach MRt of the maintainers in the

npm ecosystem. The reach has increased over the years at all

levels. For example, in 2015 there were 2,152 maintainers

that could affect more than 10 packages, and this number

increased to 4,041 in 2016, 6,680 in 2017 and finally reaching

an astonishingly high 10,534 in 2018. At the other end of

the distribution, there were 59 maintainers that could affect

more than 10,000 packages in 2015, 163 in 2016, 249 in

2017 and finally 391 in 2018. The speed of growth for MRt

is worrisome, showing that more and more developers have

control over thousands of packages. If an attacker manages

to compromise the account of any of the 391 most influential

maintainers, the community will experience a serious security

incident, reaching twice as many packages as in the event-

stream attack.

391 highly influential maintainers affect more than

10,000 packages, making them prime targets for attacks.

The problem has been aggravating over the past years.

Finally, we look at the scenario in which multiple popular

maintainers collude, according to the desirable collusion strat-

egy introduced in Section 3.2, to perform a large-scale attack

on the ecosystem, i.e., TM-col. In Figure 11 we show that

20 maintainers can reach more than half of the ecosystem.

Past that point every new maintainer joining does not increase

significantly the attack’s performance.

4.3 Security Advisories Evolution

Next, we study how often vulnerabilities are reported and

fixed in the npm ecosystem (TM-leg). Figure 13 shows

the number of reported vulnerabilities in the lifetime of the

ecosystem. The curve seems to resemble the evolution of

number of packages presented in Figure 2, with a steep in-

crease in the last two years. To explore this relation further

we plot in Figure 14 the evolution of the number of advisories
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Figure 11: Combined reach of 100 influential maintainers.

Figure 12: Total reach of packages for which there is at least

one unpatched advisory (vulnerability reach VRt ).

Figure 13: Evolution of the total and unpatched number of

advisories.

Figure 14: Evolution of VRRt , the rate of published vulnera-

bilities per 10,000 packages.

reported per 10,000 packages and we observe that it grows

from two in 2013 to almost eight in 2018. This is a sign of a

healthy security community that reports vulnerabilities at a

very good pace, keeping up with the growth of the ecosystem.

When analyzing the type of reported vulnerabilities in de-

tails, we observe that almost half of the advisories come from

two large-scale campaigns and not a broader community ef-

fort: First, there are 141 advisories published in January 2017

involving npm packages that download resources over HTTP,

instead of HTTPs. Second, there are 120 directory traver-

sal vulnerabilities reported as part of the research efforts of

Liang Gong [16]. Nevertheless, this shows the feasibility of

large-scale vulnerability detection and reporting on npm.

Publishing an advisory helps raise awareness of a security

problem in an npm package, but in order to keep the users

secure, there needs to be a patch available for a given advi-

sory. In Figure 13 we show the evolution of the number of

unpatched security vulnerabilities in npm, as defined in Sec-

tion 3. This trend is alarming, suggesting that two out of three

advisories are still unpatched, leaving the users at risk. When

manually inspecting some of the unpatched advisories we

notice that a large percentage of unpatched vulnerabilities are

actually advisories against malicious typosquatting packages

for which no fix can be available.

To better understand the real impact of the unpatched vul-

nerabilities we analyze how much of the ecosystem they im-

pact, i.e., vulnerability reach as introduced in Section 3.2. To

that end, we compute the reach of unpatched packages at

every point in time in Figure 12. At a first sight, this data

shows a much less grim picture than expected, suggesting

that the reach of vulnerable packages is dropping over time.

However, we notice that the effect of vulnerabilities tends

to be retroactive. That is, a vulnerability published in 2015

affects multiple versions of a package released prior to that

date, hence influencing the data points corresponding to the

years 2011-2014 in Figure 12. Therefore, the vulnerabilities
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Figure 15: Correlation between number of vulnerabilities and

number of dependencies.

that will be reported in the next couple of years may correct

for the downwards trend we see on the graph. Independent

of the downwards trend, the fact that for the majority of the

time the reach of vulnerable unpatched code is between 30%

and 40% is alarming.

Up to 40% of all packages rely on code known to be

vulnerable.

5 Potential Mitigations

The following section discusses ideas for mitigating some of

the security threats in the npm ecosystem. We here do not

provide fully developed solutions, but instead outline ideas

for future research, along with an initial assessment of their

potential and challenges involved in implementing them.

5.1 Raising Developer Awareness

One line of defense against the attacks described in this paper

is to make developers who use third-party packages more

aware of the risks entailed by depending on a particular pack-

age. Currently, npm shows for each package the number of

downloads, dependencies, dependents, and open issues in the

associated repository. However, the site does not show any

information about the transitive dependencies or about the

number of maintainers that may influence a package, i.e., our

ITP and ITM metrics. As initial evidence that including such

metrics indeed predicts the risk of security issues, Figure 15

shows the number of implicitly trusted packages versus the

number of vulnerabilities a package is affected by. We find

that the two values are correlated (Pearson correlation coeffi-

cient of 0.495), which is not totally unexpected since adding

more dependencies increases the chance of depending on vul-

nerable code. Showing such information, e.g., the ITP metric,

could help developers make more informed decisions about

which third-party packages to rely on.

Figure 16: Decrease in average number of implicitly trusted

maintainers and packages as the set of trusted maintainers or

packages increases.

5.2 Warning about Vulnerable Packages

To warn developers about unpatched vulnerabilities in their de-

pendencies, the npm audit tool has been introduced. It com-

pares all directly depended upon packages against a database

of known vulnerabilities, and warns a developer when depend-

ing upon a vulnerable version of a package. While being a

valuable step forward, the tool currently suffers from at least

three limitations. First, it only considers direct dependencies

but ignores any vulnerabilities in transitive dependencies. Sec-

ond, the tool is limited to known vulnerabilities, and hence its

effectiveness depends on how fast advisories are published.

Finally, this defense is insufficient against malware attacks.

5.3 Code Vetting

A proactive way of defending against both vulnerable and

malicious code is code vetting. Similar to other ecosystems,

such as mobile app stores, whenever a new release of a vetted

package is published, npm could analyze its code. If and only

if the analysis validates the new release, it is made available to

users. Since the vetting process may involve semi-automatic

or even manual steps, we believe that it is realistic to assume

that it will be deployed step by step in the ecosystem, starting

with the most popular packages. Figure 16 (orange curve)

illustrates the effect that such code vetting could have on

the ecosystem. The figure shows how the average number of

implicitly trusted packages, ITP, reduces with an increasing

number of vetted and therefore trusted packages. For exam-

ple, vetting the most dependent upon 1,500 packages would

reduce the ITP ten fold, and vetting 4,000 packages would

reduce it by a factor of 25.

An obvious question is how to implement such large-scale

code vetting, in particular, given that new versions of pack-

ages are released regularly. To estimate the cost of vetting new

releases, Figure 17 shows the average number of lines of code
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Figure 17: Number of lines of code that need to be vetted for

achieving a certain number of trusted packages.

that are changed per release of a package, and would need to

be vetted to maintain a specific number of trusted packages.

For example, vetting the changes made in a single new release

of the top 400 most popular packages requires to analyze over

100,000 changed lines of code. One way to scale code vet-

ting to this amount of code could be automated code analysis

tools. Recently, there have been several efforts for improving

the state of the art of security auditing for npm, both from

academia, e.g., Synode [30], BreakApp [32], NodeSec [16],

NoRegrets [25], Node.cure [10], and from industry practi-

tioners, e.g., Semmle11, r2c12, and DeepScan13. Orthogonal

to automated code analysis tools, the npm community could

establish crowd-sourced package vetting, e.g., in a hierarchi-

cally organized code distribution model similar to the Debian

ecosystem.

Another challenge for code vetting is that npm packages, in

contrast to apps in mobile app stores, are used across different

platforms with different security models. For example, XSS

vulnerabilities are relevant only when a package is used on the

client-side, whereas command injection via the execAPI [30]

is a concern only on the server-side. A code vetting process

could address this challenge by assigned platform-specific

labels, e.g., “vetted for client-side” and ”vetted for server-

side”, depending on which potential problems the vetting

reveals.

5.4 Training and Vetting Maintainers

Another line of proactive defense could be to systematically

train and vet highly influential maintainers. For example, this

process could validate the identity of maintainers, support

maintainers in understanding basic security principles, and

ensure that their accounts are protected by state-of-the-art

techniques, such as two-factor authentication. To assess the

11https://semmle.com/
12https://r2c.dev/
13https://deepscan.io/

effect that such a process would have, we simulate how train-

ing and vetting a particular number of trusted maintainers in-

fluences the average number of implicitly trusted maintainers,

ITM. The simulation assumes that the most influential main-

tainers are vetted first, and that once a maintainer is vetted

she is ignored in the computation of the ITM. The results of

this simulation (Figure 16) show a similar effect as for vetting

packages: Because some maintainers are highly influential,

vetting a relatively small number of maintainers can signifi-

cantly reduce security risks. For example, vetting around 140

maintainers cuts down the ITM in half, and vetting around

600 could even reduce ITM to less than five. These results

show that this mechanism scales reasonably well, but that hun-

dreds of maintainers need to be vetted to bring the average

number of implicitly trusted maintainers to a reasonable level.

Moreover, two-factor authentication has its own risks, e.g.,

when developers handle authentication tokens in an insecure

way14 or when attackers attempt to steal such tokens, as in

the eslint-scope incident.

6 Related Work

In this section we discuss the closest related work contained

mainly in two distinct research areas: JavaScript security and

software ecosystem studies. While some of this work studies

the npm ecosystem, to the best of our knowledge, we are

the first to analyze in depth the role maintainers play in the

ecosystem and the impact of different types of attacks, as well

as the potential impact of vetting code.

Server-side JavaScript Security There are many studies

that investigate problems with dependency management for

the JavaScript or other ecosystems. Abdalkareem et al. [2] in-

vestigate reasons why developers would use trivial packages.

They find that developers think that these packages are well

implemented and tested and that they increase productivity as

the developer does not need to implement such small features

herself. Another empirical study on micropackages by Kula

et al. [19] has similar results. They show that micropackages

have long dependency chains, something we also discovered

in some case studies of package reach. We also show that

these packages have a high potential of being a target of an

attack as they are dependent on by a lot of packages. Another

previously studied topic is breaking changes introduced by

dependencies. Bogart et al. [5] perform a case study inter-

viewing developers about breaking changes in three different

ecosystems. They find that npm’s community values a fast ap-

proach to new releases compared to the other ecosystems. De-

velopers of npm are more willing to adopt breaking changes

to fight technical debt. Furthermore, they find that the seman-

tic versioning rules are enforced more overtime than in the

beginning. Similarly, Decan et al. [11] analyze three package

14https://blog.npmjs.org/post/182015409750/

automated-token-revocation-for-when-you
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ecosystems, including npm, and evaluate whether dependency

constraints and semantic versioning are effective measures

for avoiding breaking changes. They find that both these mea-

sures are not perfect and that there is a need for better tooling.

One such tool can be the testing technique by Mezzetti et

al. [25] which automatically detects whether an update of a

package contains a breaking change in the API. With this

method, they can identify type-related breaking changes be-

tween two versions. They identify 26 breaking changes in 167

updates of important npm packages. Pfretzschner et al. [27]

describe four possible dependency-based attacks that exploit

weaknesses such as global variables or monkeypatching in

Node.js. They implement a detection of such attacks, but they

do not find any real-world exploits. One way to mitigate these

attacks is implemented by Vasilakis et al. [32] in BreakApp, a

tool that creates automatic compartments for each dependency

to enforce security policies. This increases security when us-

ing untrusted third-party packages. Furthermore, third-party

packages can have security vulnerabilities that can impact

all the dependents. Davis et al. [9] and Staicu et al. [29] find

denial of service vulnerabilities in regular expressions in the

npm ecosystem. In another study, Staicu et al. [30] find sev-

eral injection vulnerabilities due to the child_process module

or the eval function. Brown et al. [6] discuss bugs in the

binding layers of both server-side and client-side JavaScript

platforms, while Wang et al. [33] analyze concurrency bugs

in Node.js Finally, Gong [16] presents a dynamic analysis

system for identifying vulnerable and malicious code in npm.

He reports more than 300 previously unknown vulnerabilities,

some of which are clearly visible on the figures in Section 4.3.

Furthermore, there are studies that look at how frequent se-

curity vulnerabilities are in the npm ecosystem, how fast

packages fix these and how fast dependent packages upgrade

to a non-vulnerable version. Chatzidimitriou et al. [7] build

an infrastructure to measure the quality of the npm ecosystem

and to detect publicly disclosed vulnerabilities in package de-

pendencies. Decan et al. [13] perform a similar study but they

investigate the evolution of vulnerabilities over time. They

find that more than half of the dependent packages are still af-

fected by a vulnerability after the fix is released. However, we

show that the problem is even more serious because for more

than half of the npm packages there is no available patch.

Client-Side (JavaScript) Security Client-side security is a

vast and mature research area and it is out scope to extensively

survey it here. Instead, we focus on those studies that ana-

lyze dependencies in client-side code. Nikiforakis et al. [26]

present a study of remote inclusion of JavaScript libraries

in the most popular 10,000 websites. They show that an av-

erage website in their data set adds between 1.5 and 2 new

dependencies per year. Similar to our work, they then discuss

several threat models and attacks that can occur in this tightly

connected ecosystem. Lauinger et al. [20] study the inclusion

of libraries with known vulnerabilities in both popular and

average websites. They show that 37% of the websites in their

data set include at least one vulnerable library. This number

is suprisingly close to the reach we observe in npm for the

vulnerable code. However, one should take both these results

with a grain of salt since inclusion of vulnerable libraries does

not necessary lead to a security problem if the library is used

in a safe way. Libert et al. [22] perform a HTTP-level analysis

of third-party resource inclusions, i.e., dependencies. They

conclude that nine in ten websites leak data to third-parties

and that six in ten spwan third-party cookies.

Studies of Software Ecosystems Software ecosystem re-

search has been rapidly growing in the last year. Manikas [23]

surveys the related work and observes a maturing field at the

intersection of multiple other research areas. Nevertheless,

he identifies a set of challenges, for example, the problem

of generalizing specific ecosystem research to other ecosys-

tems or the lack of theories specific to software ecosystems.

Serebrenik et al. [28] perform a meta-analysis of the diffi-

cult tasks in software ecosystem research and identify six

types of challenges. For example, how to scale the analysis

to the massive amount of data, how to research the quality

and evolution of the ecosystem and how to dedicate more

attention to comparative studies. Mens [24] further looks at

the socio-technical view on software maintenance and evo-

lution. He argues that future research needs to study both

the technical and the social dimension of the ecosystem. Our

study follows this recommendation as it not only looks at the

influence of a package on the npm ecosystem, but also at the

influence of the maintainers. Several related work advocates

metrics borrowed from other fields. For example, Lertwit-

tayatrai et al. [21] use network analysis techniques to study

the topology of the JavaScript package ecosystem and to ex-

tract insights about dependencies and their relations. Another

study by Kabbedijk et al. [17] looks at the social aspect of

the Ruby software ecosystem by identifying different roles

maintainers have in the ecosystem, depending on the number

of developers they cooperate with and on the popularity of

their packages. Overall, the research field is rising with a lot

of studied software ecosystems in addition to the very popular

ones such as JavaScript which is the focus of our study.

Ecosystem Evolution Studying the evolution of an ecosys-

tem shows how fast it grows and whether developers still

contribute to it. Wittern et al. [34] study the whole JavaScript

ecosystem, including GitHub and npm until September 2015.

They focus on dependencies, the popularity of packages and

version numbering. They find that the ecosystem is steadily

growing and exhibiting a similar effect to a power law dis-

tribution as only a quarter of packages is dependent upon.

Comparing these numbers with our results, we see a con-

tinuous near-exponential growth in the number of released

packages and that only 20% of all packages are dependent

upon. A similar study that includes the JavaScript ecosystem

by Kikas et al. [18] collects data until May 2016 and focuses

on the evolution of dependencies and the vulnerability of the
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dependency network. They confirm the same general growth

as the previous study. Furthermore, they find packages that

have a high impact with up to 30% of other packages and ap-

plications affected. Our study gives an update on these studies

and additionally looks at the evolution of maintainers as they

are a possible vulnerability in the ecosystem. The dependency

network evolution was also studied for other ecosystems. De-

can et al. [14] compare the evolution of seven different pack-

age managers focusing on the dependency network. Npm is

the largest ecosystem in their comparison and they discover

that dependencies are frequently used in all these ecosystems

with similar connectedness between packages. Bloemen et

al. [4] look at software package dependencies of the Linux

distribution Gentoo where they use cluster analysis to explore

different categories of software. German et al. [15] study the

dependency network of the R language and the community

around its user-contributed packages. Bavota et al. [3] an-

alyze the large Apache ecosystem of Java libraries where

they find that while the number of projects grows linearly, the

number of dependencies between them grows exponentially.

Comparing this to the npm ecosystem, we find the number of

packages to grow super-linearly while the average number of

dependencies between them grows linearly.

7 Conclusions

We present a large-scale study of security threats resulting

from the densely connected structure of npm packages and

maintainers. The overall conclusion is that npm is a small

world with high risks. It is “small” in the sense that packages

are densely connected via dependencies. The security risk are

“high” in the sense that vulnerable or malicious code in a sin-

gle package may affect thousands of others, and that a single

misbehaving maintainer, e.g., due to a compromised account,

may have a huge negative impact. These findings show that

recent security incidents in the npm ecosystem are likely to

be the first signs of a larger problem, and not only unfortunate

individual cases. To mitigate the risks imposed by the current

situation, we analyze the potential effectiveness of several

mitigation strategies. We find that trusted maintainers and a

code vetting process for selected packages could significantly

reduce current risks.
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