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mall-world networks have attracted much theoretical attention and are widely thought to enhance creativity. Yet empir-

ical studies of their evolution and evidence of their benefits remain scarce. We develop and exploit a novel database on
patent coauthorship to investigate the effects of collaboration networks on innovation. Our analysis reveals the existence
of regional small-world structures and the emergence and disappearance of giant components in patent collaboration net-
works. Using statistical models, we test and fail to find evidence that small-world structure (cohesive clusters connected
by occasional nonlocal ties) enhances innovative productivity within geographic regions. We do find that both shorter path
lengths and larger connected components correlate with increased innovation. We discuss the implications of our findings
for future social network research and theory as well as regional innovation policies.

Key words: small-world networks; innovation; regional advantage

Why are some regions more innovative than others?
This question merits study because innovation drives
productivity and, ultimately, economic growth (Solow
1957). Many answers have been put forward. Finance
researchers focus on the importance of venture capi-
tal to innovative risk-taking (Gompers and Lerner 1996,
Davila et al. 2003). Labor researchers cite the impor-
tance of skilled labor to innovation (Florida 2004) and
the creation of a regional infrastructure to support new
firm formation (Feldman 2001). Legal scholars and soci-
ologists (Gilson 1999, Hyde 2003, Stuart and Sorenson
2003) propose that lax enforcement of laws designed to
restrict the flow of people and ideas (including nondis-
closure and noncompetition agreements) contributes to
job mobility and higher levels of innovation. Many
descriptions of innovative regions cite social networks as
the crux of innovation (Marshall 1919, Piore and Sabel
1984, Almeida and Kogut 1999, Singh 2005). Silicon
Valley’s success, for example, has been attributed to
its informal networks of friendship and collaboration
(Saxenian 1994).

Despite the acknowledged importance of social net-
works to innovation, little research has systematically
investigated the relationship between network properties
and innovation within geographic regions.

The development and application of formal models
of macro structure facilitates our understanding of how
social networks influence regional productivity. Recent
theoretical research on macro networks has focused on

the properties of “small-world” networks (Watts and
Strogatz 1998, Watts 1999). Small-world networks are
defined as clusters of locally dense interaction con-
nected via a few bridging ties. Empirical research has
begun to investigate how small-world structure influ-
ences economic and sociological outcomes. The pre-
dominant hypothesis is that small-world networks should
enhance innovative creativity (Watts 1999; Hargadon
2003; Cowan and Jonard 2003, 2004; Baum et al. 2003;
Verspagen and Duysters 2003; Schilling and Phelps
2007; Uzzi and Spiro 2006). More innovation is argued
to occur because small-world networks enable dense and
clustered relationships to coexist with distant and more
diverse relationships. The dense and clustered relation-
ships enable trust and close collaboration, while dis-
tant ties bring fresh and nonredundant information to
the cluster. These attractive hypotheses remain relatively
untested (for exceptions, see Uzzi and Spiro 2006 on
Broadway musicals and Schilling and Phelps 2007 on
strategic alliances and patenting).

In this paper, we first review the nearly universal pre-
dictions that small worlds should enhance innovative
productivity, explain our differences with those predic-
tions, and develop our hypotheses. Next, we develop
and exploit a novel database on patent coauthorship
to investigate the effects of small world and collab-
oration networks on innovation. Because our data on
patent coauthorship ties have not been widely used or
characterized in the prior literature, we report our field
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studies on the nature, strength, and longevity of patent
coauthorship ties. Econometric tests of regional network
structure on subsequent patenting generally support our
arguments: (1) Clustering demonstrates no statistically
significant influence; (2) shorter path length exhibits a
positive and statistically significant influence; and (3) the
small-world interaction measure fails to demonstrate
a statistically significant effect. A simple measure of
the degree of connectedness between regional inventors
demonstrates a stronger correlation in significance and
magnitude with subsequent patenting than any small-
world structure. We discuss the importance of these
results for further theoretical and empirical research and
for regional innovation policy.

The Small Worlds of Inventors

The idea of small worlds first arose from the finding
that seemingly unrelated people are surprisingly close in
social space (Milgram 1967). Milgram randomly sam-
pled inhabitants of two small midwestern towns and
asked each study participant to forward a letter through
personal connections to a Boston address. Conditional
on the letter reaching the target, only six personal con-
tacts (on average) separated the participant and the tar-
get. Milgram’s result passed into urban folklore until
Watts and Strogatz (1998) offered a minimal model that
reproduced the macro features of the phenomenon.

Watts and Strogatz proposed that small-world net-
works exhibit tight clusters of local interaction linked
by occasional nonlocal interactions whereby any node in
the network could still easily reach any other node. Net-
work scholars generally agree that small-world networks
facilitate information flow, the spread of epidemics, and
the surprisingly short distances between linked sites
on the World Wide Web. Watts and Strogatz’s paper
prompted a flurry of theoretical modeling by physi-
cists and social scientists (Watts 1999; Newman and
Watts 1999; Barabasi and Albert 1999; Amaral et al.
2000; Cowan and Jonard 2003, 2004). Empirical studies
quickly followed and have found small-world proper-
ties in a variety of social network contexts, including
German corporate ownership (Kogut and Walker 2001),
American corporate boards (Davis et al. 2003), strate-
gic alliances (Verspagen and Duysters 2003), Canadian
investment bank syndicates (Baum et al. 2003), e-mail
networks (Dodds et al. 2003), Italian scientific and aca-
demic collaboration networks (Balconi et al. 2004), and
invisible scientific colleges (Goyal et al. 2004).

By Watts and Strogatz’s definition (1998), small-world
networks simultaneously exhibit high clustering and low
path length. In the context of inventor collaboration,
clustering increases when two inventors are more likely
to patent together, if both have patented with the same
third inventor. As a visual example, the boxed areas
in Figures 1 and 2 contain highly clustered inventors.

Highly clustered networks are less vulnerable to the
removal of a single inventor from the structure. The con-
cept is similar to cohesion (Uzzi and Spiro 2006) and
opposite to brokerage (Burt 2004). Path length measures
the social distance between any two inventors as the
minimum number of collaborative links between them.
For example, if Tom worked with Dick, Dick worked
with Harry, and Tom did not work with Harry, then the
path length between Tom and Harry would be two.

Watts and Strogatz (1998) integrated the ideas of clus-
tering and path length by considering the extremes of
regular and random graphs. Regular graphs, where each
node is connected to its k nearest neighbors, exhibit high
clustering and long path length. For example, for k =4,
your immediate neighbors would be directly connected,
both to you and one another. Distant neighbors, however,
would be connected through a large number of indirect
ties. In contrast, random graphs, where nodes are ran-
domly connected, exhibit low clustering and short path
length. In a purely random graph, you are as likely to
be connected to your immediate neighbors as to dis-
tant neighbors. Thus, local neighbors can be isolated and
distant neighbors connected through only a few indi-
rect ties. Between these two extremes are intermediate
small-world regimes—essentially regular graphs with a
small number of random connections. In these graphs,
high clustering (relative to a random graph) and low path
length (relative to a regular graph) coexist simultane-
ously. Figure 3 illustrates the extremes and the interme-
diate small-world regime.

An important limitation of small-world measures is
that the network must be fully connected (i.e., there must
exist a path between any two nodes). Real social net-
works often include isolates. We followed the conven-
tions of most research in this area (Newman 2000, Kogut
and Walker 2001, Davis et al. 2003, Verspagen and
Duysters 2003, Baum et al. 2003, Uzzi and Spiro 2006,
for an innovative exception, see Schilling and Phelps
2007 for development of a harmonic weighting method)
and focus on the largest fully connected component
within each region. The largest connected component is
the largest set of inventors in a region who can trace
a direct or indirect collaborative path to one another.
Watts (1999) argues: “The graph must be connected in
the sense that any vertex can be reached from any other
vertex by traversing a finite number of edges.... Dis-
connected graphs pose a problem because they neces-
sarily have [path length] L = infinity” (p. 499). Figures
1 and 2 illustrate the largest connected components of
patented inventors in Silicon Valley and Boston from
1986 to 1990. They provide an empirical illustration of
inventive small worlds that consist of clusters of cohe-
sive interaction, linked together by occasional bridging
connections.

These patent coauthorship networks provide a rich
opportunity to study how small worlds influence creativ-
ity, because these networks represent a primary conduit
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Figure 1

-8
Kozlovsky

[ 1BM corporation
[] Syntex (U.S.A.) Inc.
[] stanford University
] Xerox corporation

B Biocircuits corporation

Inventors of Silicon Valley’s Largest Component in 1986-1990 by Assignee and Importance of Inventions

Notes. Node sizes reflect the number of future prior art cites to an inventor, normalized by the number of collaborators (future prior art cites
correlate with value, see Albert et al. 1991). Tie width indicates number of collaborations, tie color indicates age of tie (red is five years
prior, blue is two to four years prior, and green is prior year), and colors indicate assignee. Boxed area provides example of highly clustered
inventors. Note that the figures do not illustrate the thousands of other (by definition) smaller components in each region; inventors need
not connect to any extant component — or even another node. They can connect to small components, such as dyads or triads, or work
their entire careers in complete isolation. Graphed in Pajek with Kamada-Kawai/Free algorithm (Batagelj and Mrvar 1998). Adapted from

Fleming and Marx (2006).

of information for inventors. Although inventors do use
nonsocial sources of novel information, detailed studies
indicate that they rely heavily on social sources (Allen
1977). Social sources are particularly important for the
transfer of tacit information.! Inventors are less likely
to read documentation, textbooks, or scientific litera-
ture and more likely to approach a friend or colleague
who has appropriate experience or does read the sci-
entific and technical literature. Because asking for help
by definition requires an admission of need, engineers
are careful about whom they approach (Borgatti and
Cross 2003). They tend to ask colleagues who recip-
rocate their requests or those who have little effect on
their career evaluation—for example, outside suppliers
and friends at other firms (Allen 1977). An engineer at
the design firm IDEO remarked, “Where 1 worked for
(sic) before, you just didn’t ask for help. It was a sign
of weakness” (Sutton and Hargadon 1996). Our field-
work corroborates these observations and reveals that

prior coauthors are prime candidates for information.
This evidence implies that an inventor’s past collabora-
tion network will strongly influence subsequent produc-
tivity and, therefore, provide a powerful context in which
to investigate how small worlds influence creativity and
innovation.

Small Worlds and Innovation

Organizational researchers have adopted the formal
models of small-world structure and argued that small
worlds improve creativity and innovation. These argu-
ments can be organized into the influences of cluster-
ing, path length, and their interaction. Uzzi and Spiro
(2006) focus on clustering and argue that it improves
creativity in musical productions “because clustering
promotes collaboration, resource pooling, and risk shar-
ing.” These beneficial effects result from the increased
trust that occurs within closed and embedded social con-
texts (Granovetter 1985, Uzzi and Spiro 2006, Obstfeld



RS
D)
‘;”6
24
£
5 E
© o
o
o c
=
©
e c
5
22
23
o
g =
o
-
© ®
nQ
c O
=
2T
O ®©
wn .2
£g
(&)
o
3o
==
® .9
= 0
S
°
2 E
S ©
o2
=T
O c
T ©
T
2
wn C
c 2
=l
)
2c
- O
£5
o0
= c
E -
C
(o]
8 e
35
<E
w_
IS
= C
e o
=
035
Z-c
=<

Fleming, King, and Juda: Small Worlds and Regional Innovation
Organization Science 18(6), pp. 938-954, © 2007 INFORMS

941

Figure 2 Inventors of Boston’s Largest Component in 1986—1990 by Assignee and Importance of Inventions

Perlman

Stewart

[] Digital equipment corporation
[ Hewlett-Packard company

Notes. Node sizes reflect the number of future prior art cites to an inventor, normalized by the number of collaborators. Tie width indicates
number of collaborations, tie color indicates age of tie (red is five years prior, blue is two to four years prior, and green is prior year), and
colors indicate assignee. Boxed area provides example of highly clustered inventors. Graphed in Pajek with Kamada-Kawai/Free algorithm

(Batagelj and Mrvar 1998). Adapted from Fleming and Marx (2006).

2005). Schilling and Phelps (2007) make similar argu-
ments for clustering and also propose that once informa-
tion crosses between clusters (made possible in a small
world because the clusters are connected), it flows more
easily within clusters. Uzzi and Spiro (2006) add that
the effect of clustering is nonmonotonic because extreme
clustering promotes recirculation of redundant informa-
tion. All the work that we reviewed on small worlds
and innovation (Cowan and Joward 2004, Uzzi and
Spiro 2006, Schilling and Phelps 2007, Hargadon 2003,
Verspagen and Duysters 2003) argued that decreased
path length should improve innovation because of easier
and improved information transfer.

Figure 3 Idealized Examples of Regular, Small-World, and
Random Networks (From Watts and Strogatz 1998)

Random

Regular Small-world

p=0
Increasing randomness
Notes. Only the middle configuration represents a small-world net-
work that simultaneously exhibits high clustering and short path
length. It is essentially a regular network with a few randomly
rewired connections. Reprinted by permission from Macmillan Pub-
lishers Ltd: Nature, 393, 440-442 (1998).

We agree with the path length argument and expect
that decreased path length will improve innovative pro-
ductivity. Inventors will almost always profit from expo-
sure to new information, although at some extreme
they may face cognitive overload and be better off
if they limited or filtered their exposure. Short path
lengths expose inventors to new information because
they connect them with different sources and nonlocal
perspectives. Short path lengths in a network indicate
that distant information—where distance can be techno-
logical, organizational, or geographical—is surprisingly
close in social space (Singh 2005). Supporting these
arguments, Cowan and Jonard (2004) develop an agent-
based model that demonstrates the benefit of decreased
path length for the diffusion of innovations. Without
this exposure to new information and perspectives from
others, inventors will become insular and less creative.
Faster diffusion of innovations and the juxtaposition of
diverse knowledge flows should increase the subsequent
innovative productivity of regions whose largest compo-
nents exhibit short average path length.

HypotHEsis 1 (H1). Decreased path length within a
region’s largest connected component will correlate pos-
itively with increased future patenting in the region.

Independent of the path length within components, the
formation of connections across components should also
improve regional innovative productivity. Similar to the
path length argument, the aggregation® of inventor com-
ponents increases subsequent innovativeness because it
enhances information flow and knowledge spillovers.
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Regions whose inventors stay isolated will lack a large
connected component. Isolates and small clusters will
be left without access to new ideas and results. Because
new results will remain unknown outside local contexts
where the breakthrough occurred, opportunities to apply
them will remain unexploited. A promising new combi-
nation will not occur because knowledge of a previous
combination will not diffuse into a new and potentially
fertile context. Network aggregation also enables greater
opportunities for technological brokerage between pre-
viously disconnected technological communities (Stuart
and Podolny 1999, Hargadon 2003, Burt 2004). The
connecting bridges encourage cross-disciplinary fertil-
ization, as is illustrated in Figure 1. As with decreased
path length, and for similar reasons, we expect that
the connection and aggregation of isolated components
will correlate positively with subsequent patenting in the
region.

HypoTHEsIs 2 (H2). The size of a region’s largest
connected component will correlate positively with
increased future patenting in the region.

We agree with many of the arguments for the bene-
fits of clustering but can cite alternative arguments for
its detrimental (Burt 2004) and contingent (Nerkar and
Paruchuri 2005, McEvily and Reagans 2005, Fleming
et al. 2007a) effects as well. The main problem, read-
ily acknowledged even by the proponents of clustering
(Uzzi and Spiro 2006), is that clustering can lead to insu-
larity, lack of exposure to new and diverse perspectives,
and ultimately decreased creativity. Clustering still has
benefits, however, and its optimal degree depends on a
variety of technical, psychological, and social dynamics.
Clustering probably improves productivity, for example,
in groups with scientific training that generate original
and pertinent knowledge as part of their inventive efforts.
The group in this case will benefit more from inter-
nal communication and focus than external search and
exploration. A similar situation would hold for nonsci-
entific inventors who were ahead in the invention of a
new-to-the-world technology. Because they would know
more internally than any other group in the world, their
marginal benefit from external connections would be
less. They might be distracted, and/or lose their creative
edge, if competitors gained access to their proprietary
lead, or pressured the group into less creative processes.
To the extent, however, that a group does not gener-
ate all the needed information internally, then clustering
becomes less efficient.

Psychological and social dynamics further modify the
optimal degree of clustering. Following the formation of
a new team, inventors typically become more produc-
tive as they build team cohesion, learn from one another,
and gain an appreciation of the location and abilities
of expertise within the team. Clustering at this early
stage probably improves inventive productivity. After

some time, however, a group that stops importing new
components, perspectives, or information (Katz 1982)
will grow stale and productivity will stall. The effect
will be contingent on the original diversity of training
and experience within the group. Greater initial diversity
would make clustering more helpful and delay the stall
in productivity. In contrast, if management hires similar
individuals, promotes in-group pressures for conformity
(Hunt et al. 2003), or does not encourage contrary opin-
ions and risk-taking, this will hasten the stall.

These examples illustrate how clustering can have a
multitude of contingent effects, depending on the tech-
nical challenge, modes of knowledge generation and
transfer, structural history, demographics, and norms of
interaction. This implies that the benefit of clustering
will vary greatly and conceivably—or even frequently—
turn negative. As illustrated in Figures 1 and 2, a sin-
gle firm or region might encompass a great variety of
contingencies, with the result that the average value of
clustering across the network would miss individual con-
tingencies. Each organization in the figures works in a
different technology (from pharmaceuticals to optics);
employs different strategies and goals (from profit mak-
ing to teaching and research); and provides different
incentives for collaboration, resource pooling, and risk
sharing. This locally contingent influence of clustering
makes it difficult to predict the influence of average
cohesion on the innovative productivity of the entire net-
work. We therefore make no predictions about the inde-
pendent influence of clustering on regional innovation.

Despite the difficulty of predicting the first-order
effect of clustering, it remains a crucial component of
small-world structure. The heart of the small-world and
creativity argument lies not in the first-order effects but
in the interaction of increased clustering and decreased
path length. A small-world network should be more
creative, to the extent that its clusters are tighter and
the path lengths between the clusters are shorter. Dense
clusters of collaboration within a larger network should
become more creative as the path lengths of the larger
network decrease. This occurs because inventors can
rely on their close collaborators to collect and inter-
pret increased amounts and diversity of external infor-
mation. Alternately, if path lengths are held constant,
the network should become more productive as cluster-
ing increases because increased information flow will
be exploited more effectively. As a result, embedded
clusters can maintain their productive focus without
becoming distracted or stale. Independent of any main or
additive effects of clustering or path length, an increase
of one in the presence of the other should still create a
positive interaction.

HypotHEsis 3 (H3). The interaction of decreased
path length and increased clustering within a region’s
largest connected component will correlate positively
with increased future patenting in the region.
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Figure 4 Regional Small-World Structures of U.S. Patented Inventors

Small-world structure of largest component

100 —

Boston

— Silicon Valley

1979 1981 1983 1985 1987

1980 1982 1984 1986 1988

1989 1991 1993 1995 1997 1999

1990 1992 1994 1996 1998

Notes. The small-world variable is calculated as clustering divided by path length for inventors within the largest component of each
region. It is without units, because clustering and path length are both normalized. The x axis indicates the last year in a five-year moving
window; the box plots illustrate quartile percentiles, upper and lower adjacency values, and outliers, for all 337 U.S. Metropolitan Statistical

Areas.

Data and Methods

Each U.S. patent lists (1) inventors (also referred to as
the authors), (2) assignee (i.e., the owner, typically a
firm or university, but also individuals), (3) technologi-
cal classes and subclasses, and (4) hometown(s) of the
inventors. The patent does not, however, provide con-
sistent listings of inventor names or unique identifiers
for the inventors. Using a variety of conditional match-
ing algorithms (described in the appendix), we identified
2,058,823 unique individual inventors and their patent
coauthors from all U.S. patents granted from 1975 to
2002 (a total of 2,862,967 patents). These data enabled
us to construct regional collaboration networks for mov-
ing five-year windows? in all 337 U.S. Metropolitan Sta-
tistical Areas (MSAs). An MSA is a geographic region
with a large population, together with adjacent commu-
nities, that has a high degree of economic and social
integration within that nucleus. Silicon Valley, for exam-
ple, encompasses San Jose and the surrounding cities in
Santa Clara County, California. Boston includes all of
eastern Massachusetts and a small part of southeastern
New Hampshire.

We identify small-world regimes following the liter-
ature’s empirical conventions (Kogut and Walker 2001,
Davis et al. 2003, Verspagen and Duysters 2003, Baum
et al. 2003) and calculate normalized clustering divided
by normalized path length for the largest connected com-
ponent in each geographical region.* We normalize the
measure to account for differing numbers of inventors
in different connected components. Because clustering
does not vary greatly according to component size, the
main importance of normalization is for path length.

Without normalization, a large network might appear to
have long path lengths relative to a small but poorly
connected network. For example, a few inventors con-
nected in a line might have a similar path length to the
inventors in Figures 1 and 2. We also restrict consider-
ation to each region’s largest component because small
worlds remain undefined across disconnected compo-
nents. Figure 4 shows how the small-world measure has
been increasing—thus demonstrating that inventor col-
laboration structure has become more small-world for
many MSAs, Silicon Valley in particular, since the early
1990s. Figure 5 graphs the aggregation measure over
time for all MSAs.

The Emergence of Innovative Small Worlds

To investigate the nature, characteristics, ties, and
dynamics of inventive small worlds, we interviewed
inventors in Silicon Valley and Boston from the 1986-
1990 timeframe as part of a larger qualitative study
(Fleming et al. 2007b).> That study sampled inventors
who linked—and did not link—smaller components into
the emerging giant component of Silicon Valley (and
based on his graphically compelling position in Figure
2, the person at the center of the disintegration of Digital
Equipment Corporation (DEC) in 1990).% Researchers
provided each inventor with an illustration of their col-
laborative network in 1990 and asked them if it was
accurate (or whether it missed important collaborations
that remained unpatented), the nature of the collaborative
tie, whether information flowed across the tie, whether
they had maintained personal or technical contact with
their patent coauthors, and the details of their collabora-
tive mobility.
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Figure 5 Regional Largest Component of U.S. Patented Inventors

Proportion of MSA inventors in largest component
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Notes. The measure is the largest proportion of the number of patented inventors in a region that can trace an indirect collaborative path
to one another. The x axis indicates the last year in a five-year moving window; the box plots illustrate quartile percentiles, upper and lower
adjacency values, and outliers, for all 337 U.S. Metropolitan Statistical Areas. Adapted from Fleming and Marx (2006).

The results of our interviews suggest that the aggre-
gation of Silicon Valley’s giant component in 1990
occurred primarily for three reasons. First, the IBM
Almaden Valley Labs provided a stable structural back-
bone for the region (the tan-colored nodes of the upper
right in Figure 1 denotes IBM inventors). At the time,
IBM still invested heavily in research and hiring. Sec-
ond, several Stanford University doctoral graduates took
employment at IBM (Risk 2003). This is shown by
the ties that connect the multicolored but predominantly
pink Stanford University nodes on the upper left part of
Figure 1. Specifically, William Risk connected Professor
Gordon Kino’s microscopy students and most of the
Gintzon Applied Physics Lab when he began patenting
at IBM in 1989 (Kino 2003). William Kozlovsky did
the same a year later when he departed from Professor
Robert Byer’s optical technology lab (Kozlovsky 2003).
The third linkage occurred across the now failed Bio-
Circuits, a pioneering startup that attempted to integrate
biology and engineering (Ribi 2003). The dark green
nodes connected by a web of green ties in the lower right
of Figure 1 illustrate the BioCircuits bridge between
IBM’s optical and computer technology and the pharma-
ceutical technology of Syntex. Glenda Choate provided
the pharmaceutical abutment for the bridge when she
moved to BioCircuits from Microgenics, a drug-testing
technology firm. The IBM abutment resulted from a
postdoctoral program that intentionally seeded local
industry with scientists after a 1- or 2-year appointment
at Almaden Valley Labs. Todd Guion, who worked for
BioCircuits after his IBM postdoctoral program, recom-
mended bringing in his former advisor, Campbell Scott,
to solve a particular optical problem (interviewed by

authors July 9, 2003). IBM reluctantly allowed Camp-
bell Scott to act as a scientific advisor—and patent with
BioCircuits—while maintaining his IBM employment.
For a variety of reasons, Boston failed to aggregate
in the same period despite similar numbers of inven-
tors, technologies, firms, and greater university patent-
ing. First, Boston lacked a stable structural backbone.
In Silicon Valley, IBM Almaden Valley Lab inventors
became the basis of the largest component in 1989
and have since remained within the largest component.
In Boston, dominance of the largest component passed
back and forth between Massachusetts Institute of Tech-
nology (MIT) and DEC. DEC dominated in 1990 and
1992; MIT dominated in the prior and intervening years
and permanently since 1993. The immediate cause of
this instability is dramatically illustrated by the expiring
red ties in the middle of Figure 2. Robert Stewart is the
only inventor to integrate the three major subcomponents
at DEC. Stewart (2004) said that his brokering role arose
from his popularity as a design reviewer across different
DEC product lines. The immediate cause of the upper
tie disintegrations was that many related patents were
filed just before product shipments (in this case, DEC’s
Nautilus project in early January 1986). The lower
left tie had been one of several collaborations between
Stewart and the research and development (R&D) and
networking groups, and happened to expire at the same
time. Second, graduate students (or at least those with
patents) did not leave MIT to join DEC. MIT gradu-
ated many electrical engineers, but DEC maintained an
official (if imperfect) hiring freeze during this period.
Instead, MIT graduates took nonlocal employment, often
with other academic institutions (Cohen 2003). Had they
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taken local employment, as the Stanford students did,
Boston’s largest components would have merged, similar
to what occurred in Silicon Valley. Finally, both regions
had little movement of established inventors from IBM
or DEC to other large, established firm components in
the region. Even though DEC was having problems dur-
ing this period, all four DEC inventors we interviewed
told us they were technically challenged and profession-
ally content. They did not feel it necessary to change
employers (Kaufman 2003, Koning 2003, Perlman 2003,
Stewart 2004).

Although the disintegration of large components, such
as occurred in Boston, has received little attention, the
dramatic emergence of a largest or giant component
such as happened in Silicon Valley (and happened in
Boston three years later) has been modeled robustly,
using a variety of assumptions and mechanisms. The
phenomenon is consistent with critical transitions and
percolation models (Amaral et al. 2000), the spread of
fads or epidemics (Newman and Watts 1999), and the
aggregation of isolated scientific collaborators (Newman
et al. 2002). Such a dominant largest component size is
not without precedent, for example, 50% of the entire
network for economics collaboration networks (Goyal
et al. 2004), and 90% and 100% for Canadian invest-
ment banks (Baum et al. 2003). In the current empirical
context, we observe that as inventors work within larger
components, the network reaches a critical point where
the isolated components aggregate into a giant compo-
nent. The significant and positive correlation between
the measures of Figures 1 and 2 (the small-world inter-
action and size of the largest component, r = 0.32,
p <0.001) indicates that, at least for inventor collabora-
tion networks, one cannot ignore the aggregation process
when studying the dynamics of small-world networks.

Characterization of Patent Collaboration Ties
Coauthorship ties provide attractive illustrations and
compelling stories of formation, but what do they rep-
resent, particularly with regard to information flow and
the effect of that flow on subsequent inventive pro-
ductivity? Singh (2005) reports significant information
flow between patent coauthors, as measured by cita-
tions from future patents linked by direct—and even
indirect—collaborative ties. The results hold even after
econometrically controlling for the greater likelihood of
a citation simply because the inventors work in similar
technologies. Singh goes on to demonstrate that a large
fraction of the geographical citation spillover (Jaffe et al.
1993) results from coauthorship networks. (Breschi and
Lissoni 2004 find similar results for European inventors.)
All but three of our 16 interviewees reported some
degree of technical interaction after a patent coauthor-
ship (Fleming et al. 2007b). Most important, given
our interest in spillovers and regional innovation, they
reported these interactions even when they no longer

worked at the same firm. Only three inventors denied
any technical communication across firm boundaries in
the years following a collaborative tie. Hans Ribi, CEO
of the failed BioCircuits company that bridged IBM and
the pharmaceutical component in the Valley, stated that
patents exist to protect intellectual property (Ribi 2003).
He argued that patents guarantee that information does
not flow across organizational boundaries after inventors
no longer work for the same firm. A prominent inventor
within the pharmaceutical abutment, Pyare Khanna, kept
his inventors in organizational silos to avoid such flows
(Khanna 2003; he is now CEO of a biotech startup).
Khanna’s negative and strong managerial reaction can be
interpreted as evidence that the potential for such flows
is real. A third inventor, Salvador Umatoy from Applied
Materials (not illustrated in the figures), also stated that
such flows did not exist, at least across firm bound-
aries (although he has only patented with colleagues at
Applied Materials and most of them remain with him at
the firm; Umatoy 2003).

These were the most negative responses to our ques-
tion about whether technical information flowed between
past collaborators. Other responses varied from tepid to
strong affirmation. University professors and their stu-
dents, in particular, maintain close ties at conferences,
and continue to visit each other long after their inven-
tive collaboration (Gordon Kino and William Risk had
met the week before the interview). Michael Froix (not
illustrated) quit Raychem in the late 1980s and became
a self-employed inventor within the Valley (Froix 2003).
According to his account, Froix relied on his friends
and former coauthors for infrastructural as well as infor-
mational support (for example, access to lab facilities
after hours).” The first three DEC inventors at the core
of Boston’s 1990 largest component (Charles Kaufman,
Paul Koning, and Radia Perlman, illustrated in Figure 2)
still maintain close contact and have continued collab-
orating on patents and scientific papers across the firm
boundaries of their subsequent employers; in fact, they
had all communicated just before our independent inter-
views (Kaufman 2003, Koning 2003, Perlman 2003).
Robert Stewart planned to see the collaborator to his
lower left the following weekend (Stewart 2004).

These descriptions and the network graphs in Fig-
ures 1 and 2 indicating the number of dyadic col-
laborations by tie width imply a wide distribution of
the strength of ties. This issue is important. Research
correlates weak ties with nonredundant information
(Granovetter 1973) and codified information transfer,
strong ties with tacit information transfer (Kogut and
Zander 1992, Szulanski 1996, Hansen 1999); cohesive
and redundant ties with more accurate information trans-
fer (Ahuja 2000, Sorenson and Stuart 2001, Reagans and
McEvily 2003); and intraboundary ties with advantaged
transfer of moderately complex information (Sorenson
et al. 2006). Some ties would be extremely weak even
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during their initial formation, for example, if two inven-
tors on a patent had hardly worked together. At the other
end of the distribution, some collaborative ties would be
exceptionally strong.

Whereas different types of small-world networks vary
in their capability to transfer different types of knowl-
edge, prior collaborative patenting ties are potentially
effective for all types of information, including het-
erogeneous and difficult to transfer information. With
redundant ties, Figures 1 and 2 indicate an impres-
sive cohesion within organizations, but also obvious
vulnerabilities across the boundaries, particularly if the
connections narrow to a single cut-point.> We discussed
this issue at length with Campbell Scott, the IBM sci-
entist who took part in the BioCircuits bridge (inter-
viewed by authors July 9, 2003). He said that he worked
with every member of the startup, even though his name
appears only with a subset of collaborators as patent
coauthors. It is therefore likely that patent data overstate
some ties and miss other redundant information paths.
Robert Stewart (2004) also explained that although he
was the integrating center of DEC’s patent network, he
had many nonpatent interactions with other inventors on
the other side of each bridge.

In summary, we argue that the amount of technical
information that flows along an observed collaborative
tie in later years varies greatly—from none to a great
deal. Given this distribution, we argue that, on average,
the information flow between former patent coauthors
is nonnegative and occasionally substantial. The distri-
bution of tie strength varies from exceptionally weak to
extremely strong, such that ties support a variety of dif-
ferent types of information flows. Because patent collab-
oration ties span a wide distribution of tie strengths and
characteristics, we do not make any assumption about
the content of information flow or the capability of a
tie to transmit information. Rather, we introduce mea-
sures of information heterogeneity and alternate diffu-
sion paths within our statistical models.

Statistical Models

To more systematically explore the relationship between
structure and innovative productivity, we modeled
regional patenting from 1980 to 2000 with fixed-effect
conditional likelihood estimators (Hausman et al. 1984).
Count models are appropriate because the dependent
variable, regional patent counts by year, takes on whole
number values. Using linear models for count data can
result in biased and inconsistent coefficient estimates
(Greene 2002). Negative binomial models are preferred
because our data demonstrate overdispersion (rejection
of Poisson model at p < 0.0001). Though it sacrifices
efficiency, a fixed-effects model is preferred because it
considers within-region variation only, i.e., it controls
for time-invariant, regionally idiosyncratic characteris-
tics. A Hausman test rejects random effects specification

at p < 0.0001. An additional benefit of the Hausman
model is that it allows dispersion to vary by region. We
ran all analyses in STATA Version 7.

Dependent Variable

The models estimated the influence of small-world and
largest component measures during moving five-year
windows on the number of successful patent applica-
tions in the following year. The count included all utility
patents granted to the region that had been applied for
within the subsequent year, up to the end of the data in
July 2002. Longer lags and different window sizes did
not demonstrate substantively different results.

Explanatory Variables

Watts and Strogatz (1998) calculate clustering by con-
sidering the number of “triples” or the pairs of an
inventor’s collaborators who work with one another. We
follow their approach (as has most subsequent empirical
research) and calculate individual clustering as the num-
ber of actual triples for an inventor, divided by the num-
ber of potential triples, and average the inventor scores
across the largest component (Clustering of LC). Inven-
tors with one or zero ties receive a clustering score of
zero. We normalized clustering by dividing the average
clustering by the theoretical clustering of a fully con-
nected regular graph (Watts and Strogatz 1998). Simi-
larly, we calculated normalized path length (Inverse Path
Length of LC) as the average path length divided by
the theoretical path length of a comparable fully con-
nected regular graph of size (N) and mean degree (z).
We approximate the theoretical path length for a regular
graph as N/2z when N > 2z, and as 2 — (z/(N — 1))
when N < 2z. We determine N and z empirically for the
largest component for each period and region.

Because the small-world measure requires path length
in the denominator, we inverted the measure. After cen-
tering the cluster and inverse path length variables to
facilitate interpretation of their effects (Friedrich 1982),
we calculated the small-world measure as clustering
multiplied by the inverse of path length (Clusterx Inverse
Length). To measure the extent of network aggregation,
we calculated the proportion of inventors within each
region who had a collaborative tie within the largest
component in the region (Size of LC). Inventors within
regions with small values of this variable remain more
isolated. We tested the robustness of all proportion mea-
sures with Herfindahl indices and found similar results.
The third author programmed network construction and
variable measurement in C.

Control Variables

The models include the log of the number of inventors
in the region (Ln inventors) to account for the number
of people actively engaged in invention. We logged all
count variables to account for their entry in exponential
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form into the models (and added 0.01 to variables with
a zero minimum). Ln extra-regional inventors measures
the number of inventors outside the region who coauthor
with the region’s inventors. Besides increasing the avail-
able resources, such collaborations provide additional
learning and nonlocal insight for a region (Gittleman
2003). Given the importance of institutions in the for-
mation of regional networks (particularly universities,
see Owen-Smith and Powell 2004, McEvily and Zaheer
2004), the models include the number of patents in a
region with a university assignee (Ln university patents).
Labor mobility is higher during changes in employment
levels (Angel 1989; measured as Ln employment; data
from University of Virginia 2004). To control for general
changes in wealth, the models include personal income
per capita PCPI (in thousands of dollars), deflated by
Bureau of Labor Statistics’ Consumer Price Index for
2002 (Bureau of Economic Analysis 2004). Minimum
values of the variable tended to occur early in the time
series within New Mexico and Arizona. Ideally, the
models would include the amount of research and devel-
opment spending in each region, but this remains impos-
sible to measure. Even though R&D data are available
for publicly traded firms, the data are not broken down
by region (even within firms’ internal accounting data),
nor are private firm data available. Proxies such as tech-
nical professional employment would also be desirable,
but are not available as a time series over the years of
our study (Acs et al. 2002). Given that location patterns
of R&D laboratories tend to be stable over time (Acs
et al. 2002), the fixed effects models should account for
much of the variation.

Because regions vary in their adoption and generation
of new technologies, the models include the age of each
region’s technology (Technology age: measured by the
average of the sequential prior art patent numbers cited
by patents within a region). Technology Herfindahl con-
trols for technological heterogeneity and diversity within
each MSA by indexing the U.S. Patent Office technology
classes by patent. The Patent Office divides all patents
into approximately 400 technological classes, for exam-
ple, class 437 (Semiconductor Device Manufacturing:
Process) and 935 (Genetic Engineering: Recombinant
DNA Technology, Hybrid). The models include the aver-
age number of assignees for each inventor in a region
over the five-year period (Assignees/inventor). This is a
direct measure of employee movement and its poten-
tial influence on network formation and creative efficacy.
It also controls for the potentially greater fertility of ties
that span organizations. An alternate control measure of
the number of cross-organizational ties returned simi-
lar results. To account for the overall number of ties
between inventors, the models include Tie density. We
calculated density as the actual number of ties divided by
the potential number of ties (actual ties/number of inven-
tors in the region, choose 2). To measure the influence of

alternate sources of collaborative norms and information
diffusion mechanisms, we first determined the largest
employer within each region’s largest component and
then calculated the proportion of inventors who worked
for that employer (Largest org in LC). We also found
no substantive difference with restricted models of only
homogenous largest components (for example, regions
where the networks are similar to Figure 2, where the
largest component is predominantly DEC).

One empirical challenge with coauthorship data is that
coauthors are clustered by definition (that is, all coinven-
tors listed on any one patent will automatically be clus-
tered with one another). This is common to all affiliation
data—for example, musical collaborations, projects, or
attendance at meetings—and creates a bipartite graph.
As a result, the empirical measure of clustering can be
biased. Newman (2001) develops a simulation model
that estimates unipartite clustering from a bipartite graph
based on the distribution of affiliation events (in this
case, patents) and individuals (in this case, inventors) of
the original graph. Uzzi and Spiro (2006) use Newman’s
simulations to estimate the clustering coefficient of a
similarly distributed random graph, but we prefer a more
direct approach of including controls for the number of
patents and inventors within the graph (Ln LC inven-
tors and Ln LC patents). Simple inclusion of controls
allows more parsimonious modeling of the data and
avoids the distributional and parametric assumptions of
the Newman model. Although not shown, all models
included categorical variables for each year with the
exception of 1980 to control for systematic trends in
patenting. 61 regions did not patent during the years of
observation, and economic data were unavailable for 835
early observations. Models with all patent data demon-
strate similar results (that is, including data points with-
out economic data). Tables 1 and 2 list summary and
correlation statistics, respectively.

Table 1 Summary Statistics (n =6,242)

Variable Mean Std. dev. Min Max
Patents year t+ 1 231.00 528.49 0.00 9,162.00
Ln regional inventors 5.34 1.54 0.70 10.55
Ln extra-regional inventors 413 2.73 —4.61 9.82
Ln employment 11.63 1.14 9.28 16.12
PCPI (000s) 19.99 5.04 0.00 50.94
Ln university patents —-0.04 3.53 —4.61 7.41
Technology age 3.88 0.45 2.29 5.13
Technology Herfindahl 0.05 0.04 0.01 0.50
Ave assignees/inventor 1.16 0.09 1.00 2.00
Average tie density 0.01 0.02 0.00 0.42
Ln LC inventors 3.27 1.50 0.70 9.93
Ln LC patents 2.92 1.88 0.01 10.12
Largest org in LC 0.67 0.24 0.04 1.00
Clustering in LC 0.02 025 —-0.98 0.35
Inverse path length in LC -0.07 4.82 —1.90 130.73
Size of LC 0.11 0.10 0.01 0.75
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Table 2 Correlation Statistics (n=6,242)

1 2 3 4 5 6 7 8 9 10 i 12 13 14 15

(1) Patents year t + 1

(2) Ln regional inventors 0.65

(3) Ln extra-regional 0.38 0.45
inventors

(4) Ln employment 061 085 046

(5) PCPI (000s) 040 050 0.22 040

(6) Ln university patents 048 074 040 063 037

(7) Technology age 031 047 0.09 027 052 048

(8) Technology Herfindahl —0.22 —0.54 —0.33 —0.44 —0.22 —0.44 —-0.20

(9) Ave assigneesfinventor 023 037 006 024 043 038 0.67 —-0.16

(10) Tie density —0.23 -0.64 —0.34 -049 -0.28 —044 —-022 058 —-0.18

(11) Ln LC inventors 065 084 042 065 051 063 060 —037 046 —0.42

(12) Ln LC patents 059 081 041 062 045 057 052 -034 043 —045 093

(13) Largest org in LC -0.28 -0.33 -0.18 —-0.27 -0.18 —-0.29 —0.19 0.18 —0.37 021 —-0.31 -0.34

(14) Clustering in LC -0.10 -0.16 —0.09 -0.14 0.083 —-0.05 008 0.00 004 0.17 -0.13 —-0.35 0.11

(15) Inverse path 064 044 016 032 025 030 026 -014 021 -016 062 055 —0.18 —0.07
length in LC

(16) Size of LC 0.03 -0.20 -0.16 —0.27 -0.05 -0.19 0.15 036 008 045 028 023 006 0.00 0.40

Results very rich regions, such as New York City, do not. The

Table 3 presents the modeling results. The models in-
clude explanatory terms individually, then the small-
world interaction, followed by a full model. Not
surprisingly, the number of inventors, both within and
outside the region, demonstrated large positive and sta-
tistically significant effects. General employment in the
region exhibits no significant influence, and personal
income generally exhibits negative significance. This is
probably because some very poor regions patent a great
deal (for example, New Mexico, where Pueblo Commu-
nities and National Research Labs colocate) and some

number of university patents is not statistically signifi-
cant, which might occur if graduate students leave the
region for employment elsewhere. Regions with newer
and less diverse technologies patent more, and both
results are statistically significant. Regions with a higher
number of assignees per inventor and tie density do not
demonstrate significantly different rates of subsequent
patenting. The presence of a single, large organization,
however, demonstrates significantly increased rates of
subsequent patenting. Of the bipartite controls (Ln LC
inventors and Ln LC patents), only the number of patents

Table 3 Conditional Fixed-Effect Negative Binomial Models of Patenting in Year ¢ + 1, by Metropolitan Statistical Area 1980-2000+
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Model 1 Model 2 Model 3 Model 4 Model 5

Ln regional inventors 0.4708** (0.0193) 0.4623** (0.0193) 0.4633** (0.0193) 0.4717*+(0.0191) 0.4661* (0.0192)
Ln extra-regional inventors 0.0663** (0.0015) 0.0661*** (0.0015) 0.0661*** (0.0015) 0.0666** (0.0015) 0.0663** (0.0015)
Ln employment 0.0051 (0.0251) 0.0218 (0.0254) 0.0225 (0.0255) 0.0202 (0.0254) 0.0271  (0.0256)
PCPI (000s) —0.0089** (0.0015) —0.0089*** (0.0015) —0.0093** (0.0016) —0.0090** (0.0015) —0.0093*** (0.0016)
Ln university patents —0.0029 (0.0023) -—0.0024 (0.0023) —0.0024 (0.0023) —0.0025 (0.0023) —0.0022 (0.0023)
Technology age 0.2561** (0.0363) 0.2501*** (0.0363) 0.2493** (0.0363) 0.2678** (0.0364) 0.2589** (0.0366)
Technology Herfindahl 1.3974* (0.2004) 1.3897** (0.2004) 1.3981* (0.2005) 1.3369** (0.2008) 1.3653** (0.2010)
Ave assignees/inventor —0.0994 (0.0748) -0.0866 (0.0749) -—-0.0833 (0.0749) —0.0998 (0.0744) -0.0867 (0.0747)
Tie density 1.0436 (0.7074) 0.9565 (0.7076) 1.0173 (0.7077) 0.6905 (0.7126) 0.8329 (0.7134)
Ln LC inventors —0.0026 (0.0091) -0.0175* (0.0080) -—-0.0124 (0.0096) —0.0263** (0.0092) —0.0213* (0.0105)
Ln LC patents 0.0371** (0.0079) 0.0423** (0.0061) 0.0374*+ (0.0079) 0.0409** (0.0061) 0.0363** (0.0079)
Largest org in LC 0.0337* (0.0156) 0.0354* (0.0155) 0.0359* (0.0157) 0.0348* (0.0156) 0.0355* (0.0157)
Clustering in LC —0.0240 (0.0241) —0.0217  (0.0243) —0.0237 (0.0243)
Inverse path length in LC 0.0016*** (0.0004) 0.0016*** (0.0004) 0.0012* (0.0004)
Clustering * Inverse length 0.0027 (0.0030) 0.0024  (0.0030)
Size of LC 0.2191** (0.0594) 0.1384* (0.0671)
Constant —0.6305* (0.2719) —0.7261* (0.2728) —0.7356* (0.2729) —0.8030** (0.2756) —0.8172** (0.2756)
Max likelihood —24,358.22 —24,350.52 —24,349.80 —24,351.94 —24,347.68

n 6,242 6,242 6,242 6,242 6,242

Notes. Dependent variables in year t + 1; independent variables calculated from years t — 4 to t. All models include yearly indicator
variables with 1980 omitted.
*:p<0.1, *: p<0.05 *: p<0.01, *: p<0.001, standard errors in parentheses.
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in the largest component consistently correlates signifi-
cantly (and positively) with future patenting. The lack of
result for employee mobility (as proxied by the assignees
per inventor variable) is surprising, as personnel move-
ment across firms should arguably increase creativity.
As demonstrated below, however, greater creativity may
result from simple connection and aggregation of inven-
tor networks.

Clustering correlates with a consistently negative but
insignificant correlation with subsequent patenting. All
of the count models demonstrated a positive and sig-
nificant influence of decreased path length on the next
year’s patent counts. To correctly form the interaction of
clustering divided by path length, we center and enter
the inverse of normalized path length; a positive effect
of the variable indicates a positive influence of shorter
path length. The effect is robust but small: A one stan-
dard deviation decrease in path length corresponds to a
0.6% increase in patenting.” The small-world interaction
never demonstrates even marginal significance. The size
of the largest component variable demonstrates a large
and positive correlation of 1.4% with subsequent patent-
ing. We infer from these results that clustering and the
small-world interaction are of much less consequence
to subsequent patenting than decreased path length and
the size of the largest component. These results are con-
sistent with career models of patenting at the inventor
level, which demonstrate a negative influence of clus-
tering on generative creativity and a very small positive
interaction of clustering and external ties (Fleming et al.
2007b).

These results support the first two hypotheses on
path length and aggregation: (1) Shorter path length
and (2) larger connected components correlate with an
increase in subsequent patenting. The small-world effect
is not observed in our patent data, and so the third
hypothesis, on the small-world interaction of clustering
divided by path length, fails to receive empirical support.

Discussion

These models should be interpreted cautiously for sev-
eral reasons. First, if the influence of clustering on
creativity depends strongly on local contingencies, it is
difficult to generalize across a network of different clus-
ters, let alone different creative endeavors. Contempora-
neous evaluations of Broadway musicals (Uzzi and Spiro
2006) and patent counts in subsequent years (Schilling
and Phelps 2007) represent different realms and make
it difficult to directly compare results. Second, given
that small worlds are connected by definition, we can
only regress the largest component’s structure against
regional patenting. This may be a reasonable approxima-
tion in regions with small, connected inventor commu-
nities or large, aggregated communities, such as Boston
or Silicon Valley because the largest component will

comprise a large fraction of all inventors in a region.
Still, as illustrated in Figure 5, most inventor com-
munities remain fragmented, and the resultant decrease
in the size of the largest component will increase the
standard errors of the small-world structure estimates.
Methods to develop a weighted average across discon-
nected components (Schilling and Phelps 2007) provide
one alternative, but potentially conflate the influences
of small-world structure and simple connection. Third,
given that the small-world measure averages cluster-
ing and path lengths, the possibility of aggregation bias
exists (Robinson 1950). Other biases due to unobserved
linkages may also exist: For example, while one miss-
ing tie may not greatly bias the clustering measure, it
might have a large impact on the path length and size of
the largest component. While the regressions covered all
regions, our deeper analyses covered only Silicon Val-
ley and Boston. Other regions, such as San Francisco,
California; Rochester, New York; and Pittsburgh, Penn-
sylvania, also underwent dramatic transitions. While San
Francisco closely followed Silicon Valley, Rochester,
and Pittsburgh split apart. Our understanding of phase
transitions would benefit from qualitative study. Finally,
given the difficulty of finding a natural experiment on
small worlds or instrumental variables at the regional
level of analysis, the results should be regarded as pri-
marily descriptive.

These results motivate the exploration of several
issues in future empirical research on small worlds.
First, given that the regressions’ strongest results come
from the size of the largest component, future models
of small worlds need to include it at least as a con-
trol variable. If the simple size measure continues to
demonstrate stronger influence than the internal struc-
tural measures, it would appear that the current focus on
small-world structure and creativity is misplaced. Sup-
porting this possibility, the path length variable lost its
significance in a robustness check that used weighted
citations instead of patents as a dependent variable (all
other results remained essentially unchanged). We inter-
pret this result as indicating that the importance of
path length rapidly decreases with longer paths. This
is consistent with Singh (2005) who demonstrated that
diffusion along collaborative paths drops off rapidly.
One theoretical implication of the loss of path length
significance is that individual gatekeepers may be of
less importance than the redundant connections that
begin to form as the size of the largest component
increases. For example, Figure 1 illustrates an increas-
ingly redundant core of connections, in which a single
connecting gatekeeper becomes redundant. (Although
not presented, graphs of bigger largest components illus-
trate even thicker and more redundant cores.)

Second, future work should proceed simultaneously
at the individual and regional level to fully capture the
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complex dynamics of the process. Indeed, all small-
world research might benefit from proceeding along
micro and macro fronts simultaneously. Micro analy-
sis would allow modeling of local contingencies and
make the macro results less vulnerable to aggrega-
tion (Robinson 1950) and unipartite graph (Newman
2001) biases. To illustrate the value of such a combined
approach, assume that researchers perform only macro
studies. Further assume that clustering has a negative
influence on creativity by itself, but that the marginal
influence of clustering is positive when the participants
bring diverse creative backgrounds to the collaboration.
In other words, assume that clustering has not only a
first-order negative effect, but also a positive interaction
with a measure of the group’s creative diversity (Fleming
et al. 2007b demonstrate such effects). If the highly clus-
tered groups in regions with high average clustering also
have diverse creative backgrounds, and particularly if
average diversity in the region remained unmeasured,
then clustering might incorrectly appear to have a posi-
tive effect overall.

Micro studies would provide additional benefits. Con-
sider the complex question about whether ties across
institutions (universities and firms, for example) or
industries provide more fertile inventions. Such a mech-
anism could provide many of the creative benefits of
a small world and be masked by macro measures such
as the size of the largest component and path length.
An appropriate instrument for an individual would pro-
vide a natural experiment or control for the inherent
endogeneity of such a mechanism (for example, did the
inventor create the tie to take advantage of a previously
identified opportunity, or did the tie enable the flow
of fresh information that triggered more fertile inven-
tions?). Consistent results at multiple levels of analysis
would strengthen the inference and the foundation for
subsequent theory building.

Third, future work should develop more nuanced and
longitudinal measures of creativity. Although clustering
may inhibit seminal creativity, it may aid in the diffusion
of ideas (Fleming et al. 2007b). This simple observa-
tion might resolve the differing results on clustering and
creativity. Building on this point, measures need to be
carefully defined from a deep understanding of the con-
textual dynamics. To motivate this concern in the current
research and to more fully understand its limitations,
consider inventive creativity versus inventive productiv-
ity. Small worlds and network aggregation, because they
make local inventors more aware of outside work, prob-
ably increase competitive pressures, particularly if they
cross firm boundaries. While the influence of compe-
tition and pressure on creativity remains controversial
(Amabile et al. 2002), it is possible that small worlds
increase productivity, as measured by patent counts, at
the expense of breakthrough creativity. Because most

patents represent only incremental and relatively uncre-
ative improvements, better measures of creativity versus
productivity are needed to resolve this question.

In addition to the implications for research, the results
have implications for policy and management. Figures 4
and 5 reveal large differences and rapid changes in
the connectivity of regional collaboration networks. For
example, even though Boston and Silicon Valley are sim-
ilarly dynamic technological regions, our data support
Saxenian’s assertion that the Valley is much more con-
nected (though the emergence of the giant component
comes after the main focus of her study, see Saxenian
1994). Managers already take note of spillovers when
they locate in a region (Feinberg and Gupta 2004). An
understanding of the local collaborative networks may
provide an additional benefit to entrepreneurs who found
firms in their home region (Sorenson and Audia 2000).
Location in a connected region means quicker access to
better qualified personnel, a greater likelihood of univer-
sity and scientific research, and most important, faster
access to technological spillovers. But it also means a
decision to live life in the fast lane. Personnel are proba-
bly more expensive, can leave more easily, and are prob-
ably better connected—even during employment—with
externally employed professionals in the region.

We are also struck by the importance—completely
unintended by its founders—of the IBM postdoctoral
hiring program in creating the Silicon Valley structure.
Campbell Scott and William Risk stated that IBM’s main
motivations for hiring postdoctorals included less expen-
sive labor and new ideas (IBM rarely hired postdoc-
torals permanently unless their contributions were out-
standing). IBM apparently also wished to seed the Val-
ley with friendly professionals. The explanation makes
more sense in light of the firm’s dominant position, when
the program was originally set up. The program had
not been intended to provide spillovers, in either direc-
tion, across the firm’s boundaries. Spillovers obviously
occurred between IBM and BioCircuits, but these were
of no competitive threat to the larger firm. Scott said
that he did learn some biology while visiting at Bio-
Circuits, and that he is applying this learning as IBM
moves into life science technologies. In the spirit of
unintended innovative benefits for all involved, managers
might recreate these positive benefits with institutions,
such as the IBM postdoctoral hiring program, while also
taking care to avoid competitively harmful spillovers.

Our results should also be of interest to regional pol-
icymakers who seek to enhance social welfare. Even
though the emergence of small worlds does not appear
to greatly improve innovation, decreased path length and
component aggregation correlate strongly with subse-
quent patenting. Simple prescriptions to encourage per-
sonnel movement and knowledge spillovers will not be
popular with firms, however, and might dampen man-
agerial enthusiasm to locate in the region. Such benefits,
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unfortunately, appear to come at the expense of private
firms. The conflict between regional welfare and firms’
protection of their intellectual property strikes us as an
important topic for future research.

Conclusion

Despite attracting significant theoretical and more re-
cently, empirical attention, our understanding of the
dynamics and impact of small-world networks remains
incomplete. Using the patent collaboration histories of
over 2 million inventors, we showed that large, tech-
nologically dynamic regions undergo dramatic aggre-
gations of isolated inventor components into giant
components. Contrary to the growing consensus that
small worlds should always improve innovative produc-
tivity, we argued that universal predictions remain prob-
lematic due mainly to the locally contingent effects of
clustering. Count models of network structure and sub-
sequent patenting support these arguments. Decreased
path length and increased aggregation increased subse-
quent patenting. The small-world interaction of cluster-
ing divided by path length demonstrated no statistically
significant influence on subsequent inventive productiv-
ity, once the region’s network aggregation was taken into
account. While we hesitate to make strong claims based
on a null result, it appears that small-world structure is
less important than the basic degree of connection within
a region.

This research makes several theoretical, methodologi-
cal, and empirical contributions to our understanding of
small-world networks and regional innovation. Theoret-
ical contributions include the separation of the compo-
nents of the small-world argument and recognition that
the structure of a network may have less influence on
innovation than the fact that a connected network exists.
Methodological contributions include the use of the new
relationship measure of patent coauthorship; its charac-
terization through interviews; and the use of large sam-
ple databases, visual analysis, and hierarchical clustering
algorithms to identify representative inventors for field
study. Empirical contributions include the identification
and visualization of critical junctures in network evolu-
tion, and the first analysis of the effect of small worlds
on whole network productivity (as opposed to the effects
on firms or groups within a small-world network).

Our results suggest a possible tension between
regional policy planners and managers. Ironically, while
network aggregation improves regional productivity, it
also makes it more likely that firms will suffer unwanted
knowledge spillovers. Our discovery that collaboration
networks are growing, along with the quantitative and
qualitative evidence that spillovers occur quite easily
along current and historical collaborative ties, implies
that managers must pay increasing attention to the incen-
tives, socialization, and collaborative opportunities of
their primary inventors.
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Appendix. Matching Algorithm

We extracted source data on all U.S. utility patents granted
from 1975 to 2002 (U.S. Patent Office 2003) and MSA data
for 2003 (ZIPList5 MSA 2003). Every patent includes the
inventor’s last name(s) (with varying degrees of first and
middle names or initials), home town, detailed information
about the technology in class and subclass references (over
100,000 subclasses exist), and the owner or assignee of the
patent (if not owned by the inventor, generally a firm, or
less often a university). The U.S. Patent Office indexes source
data by patent number, not by inventor. We therefore devised
an inventor-matching algorithm to determine each inventor’s
patents and other inventors with whom the focal inventor coau-
thored at least one patent. The database includes 2,058,823
inventors and 2,862,967 patents.

The matching algorithm refines previous approaches (New-
man 2001). If last names match, first initials and middle ini-
tials (if given) then must match. Whole first names and whole
middle names (if given) then are compared. If all comparisons
are positive, the algorithm then requires an additional non-
name similarity: hometown (and city and state), corporation
(via assignee codes), or technology (via technology subclas-
sifications). We also implemented a common name parameter
that ignored the additional match requirement if the last name
comprised less than 0.05% of the U.S. population, as deter-
mined by the 1995 U.S. census. For 26 randomly selected
inventors, the algorithm correctly assigned 215 of 226 patents
(as determined by resume searches and personal contact). The
11 incorrectly determined patents were assigned to four iso-
lated nodes (that is, they did not create spurious cut-points).
Given the sensitivity of the measures to cut-points, false nega-
tives remain preferable to false positives or incorrectly match-
ing two different inventors.

Endnotes

'Even though we study patent collaboration networks, which
are based on the codified publication of patent records, much
information remains tacit, private, and not communicated. This
occurs because written documents can rarely capture all the
richness of a technology and because inventors and their firms
often withhold information contained in patents for strategic
reasons.

>We define network aggregation as the process whereby pre-
viously isolated components become connected, in the current
empirical case, through collaborative mobility. The term is
intentionally dissimilar to the word agglomeration used in the
economics literature, which refers to economies that firms gain
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by clustering together and sharing pooled labor availability,
infrastructure, suppliers, and other services.

3Alternate window sizes had little effect on illustrated pro-
cesses (surprisingly, even the cut-point or crucial bridging
inventors), substantive trends as illustrated in Figures 3 and 4,
and econometric results. The illustrations include inventors
both within and outside the MSA and the models control for
each of these quantities independently.

“The small-world measure lacks units because the normalized
measures of clustering and path length lack units.

SWe chose the period 1986-1990 because it encompasses the
initial differentiation that eventually turned into the runaway
aggregation of Silicon Valley. Boston, in contrast, demon-
strated no appreciable change until three to five years later.
The regions also demonstrated remarkably similar trends in
several factors, including patents, inventors, isolated inven-
tors, corporate ownership of patents, number of collaborators,
tie density, age and diversity of technologies, and number of
assignees per inventor (a measure of personnel movement).
There remain a few differences: Boston has more university
patents and its inventors cite nonpatent references more heav-
ily (Fleming et al. 2007b).

®The study focused on the connection dynamics of the six
largest components in Silicon Valley and Boston in the 1986—
1990 time-frame. The top six were chosen because the first,
second, and sixth components aggregated in the Valley, com-
pared with no aggregation of the top six components in
Boston. The inventors that linked smaller components into a
giant component were identified and interviewed, along with
similar “counter-factual” nonlinking inventors. The nonlinking
inventors were chosen by minimizing their distance to a link-
ing inventor with a hierarchical clustering algorithm, along a
variety of personal and network variables (see Fleming et al.
2007b for details). Despite our best efforts to find inventors
with similar social structure, selection bias remains possible,
since inventors that left firms and bridged components may
differ from those that did not. They may, for example, be less
risk averse and perceive the processes of invention and infor-
mation flow differently.

"Froix stressed that this support was not financial; that is, he
paid for any incremental expenses he caused during his use of
laboratory facilities.

8A cut-point is an actor or node in a graph whose removal
would separate the graph into two subcomponents (Wasserman
and Faust 1994, pp. 112-114). In the case of Campbell Scott,
it would separate the IBM and pharmaceutical components of
the Silicon Valley graph.

“We estimate effect sizes from model 5 unless otherwise noted.
For the path length example, effect size from model 5 is
0.0012 and the standard deviation of the measure is 4.82.
Hence, ¢(*0012+482) = 1,0058, and 100 * (1.0058 — 1) = 0.6%.

References

Acs, Z., L. Anselin, A. Varga. 2002. Patents and innovation counts as
measures of regional production of new knowledge. Res. Policy
31 1069-1085.

Ahuja, G. 2000. Collaboration networks, structural holes, and inno-
vation: A longitudinal study. Admin. Sci. Quart. 45(3) 425-457.

Albert, M. B., F. Narin, D. Avery, P. McAllister. 1991. Direct vali-
dation of citation counts as indicators of industrially important
patents. Res. Policy 20 251-259.

Allen, T. J. 1977. Managing the Flow of Technology: Technology
Transfer and the Dissemination of Technological Information
Within the R&D Organization. MIT Press, Cambridge, MA.

Almeida, P, B. Kogut. 1999. Localization of knowledge and the
mobility of engineers in regional networks. Management Sci.
45(7) 905-917.

Amabile, T., C. N. Hadley, S. J. Kramer. 2002. Creativity under the
gun. Special issue on the innovative enterprise: Turning ideas
into profits. Harvard Bus. Rev. 80(8) 52-61.

Amaral, L., A. Scala, M. Barthelemy, H. Stanley. 2000. Classes
of small-world networks. Proc. National Acad. Sci. 97(21)
11149-11152.

Angel, D. 1989. The labor market for engineers in the U.S. semicon-
ductor industry. Econom. Geography 65(2) 99-112.

Balconi, M., S. Breschi, F. Lissoni. 2004. Networks of inventors and
the role of academia: An exploration of Italian patent data. Res.
Policy 33 127-145.

Barabasi, A., R. Albert. 1999. Emergence of scaling in random net-
works. Science 286 509-512.

Batagelj, V., A. P. Mrvar. 1998. A program for large network anal-
ysis. Connections 21, 47-57. Pajek v. 0.91, 2003. http://vlado.
fmf.uni-lj.si/pub/networks/pajek/.

Baum, J. A. C., A. V. Shipilov, T. J. Rowley. 2003. Where do small
worlds come from? Indust. Corporate Change 12 697-725.

Borgatti, S. P, R. Cross. 2003. A relational view of information seek-
ing and learning in social networks. Management Sci. 49(4)
432-445,

Breschi, S., F. Lissoni. 2004. knowledge networks from patent data:
Methodological issues and research targets. Working Paper 150,
Centro di Ricerca sui Processi di Innovazione e Internazionaliz-
zazione.

Bureau of Economic Analysis. 2004. Bureau of economic
analysis, regional economic accounts local area personal
income. http://www.bea.doc.gov/bea/regional/reis/. Deflation
data http://www.census.gov/hhes/income/income02/cpiurs.html.

Burt, R. 2004. Structural holes and good ideas. Amer. J. Sociol. 110
349-399.

Cohen, R. 2003. Interview by author. Cambridge, MA (November 12).

Cowan, R., N. Jonard. 2003. The dynamics of collective invention.
J. Econom. Behav. Organ. 52 513-532.

Cowan, R., N. Jonard. 2004. Network structure and the diffusion of
knowledge. J. Econom. Dynam. Control 28 1557-1575.

Davila, A., G. Foster, et al. (2003). Venture capital financing and the
growth of startup firms. J. Bus. Venturing 18(6) 689-708.

Davis, G. F,, M. Yoo, W. E. Baker. 2003. The small world of
the American corporate elite, 1982-2001. Strategic Organ. 1
301-326.

Dodds, P., R. Muhamad, D. Watts. 2003. An experimental study of
search in global social networks. Science 301 827-829.

Feinberg, S. E., A. K. Gupta. 2004. Knowledge spillovers and the
assignment of R&D responsibilities to foreign subsidiaries.
Strategic Management J. 25 823-845.

Feldman, M. 2001. The entrepreneurial event revisited: Firm for-
mation in a regional context. Indust. Corporate Change 10(4)
861-892.

Fleming, L., M. Marx. 2006. Managing creativity in small worlds.
California Management Rev. 48(4) 6-27.



—_~
&,
p—

o
s
S

5 E
© o
Ke)
o c
9
©
2
>
@0
23
> 2
O +
o
—
© ©
nQ
o
b
&
O ®©
_Q.‘Q
£y
32
S
.-QQ-
T c
@ 9
S 3
52
2 E
c O
o2
o2
T ©
T
i)
0 £
c .2
=

()}
2c
- O
£ >

O O
T S
E -
c
[e]
8 e
S =
[elNe]
<E
w_
©
= C
e o
=
Q35
Z-c
=<

Fleming, King, and Juda: Small Worlds and Regional Innovation
Organization Science 18(6), pp. 938-954, © 2007 INFORMS

953

Fleming, L., S. Mingo, D. Chen. 2007a. Collaborative brokerage,
geuevative creativity, and creative success. Admin. Sci. Quart.
52 443-475.

Fleming, L., L. Colfer, A. Marin, J. McPhie. 2007b. Why the val-
ley went first: Aggregation and emergence in regional inventor
networks. W. Powell, J. Padgett, eds. Market Emergence and
Transformation. Santa Fe Institute, Santa Fe, NM. Forthcoming.

Florida, R. 2004. America’s looming creativity crisis. Harvard Bus.
Rev. 82(10) 122124, 126, 128.

Friedrich, R. 1982. In defense of multiplicative terms in multiple
regression equations. Amer. J. Political Sci. 26(4) 797-833.

Froix, M. 2003. Personal interview by author. Palo Alto, CA (July 8).

Gilson, R. J. 1999. The legal infrastructure of high technology indus-
trial districts: Silicon Valley, Route 128, and covenants not to
compete. New York University Law Rev. 74 575-629.

Gittleman, M. 2003. Does geography matter for science based firms?
Epistemic communities and the geography of patenting and
research in biotechnology. Working paper, Stern School of
Business.

Gompers, P, J. Lerner. 1996. The use of covenants: An empirical
analysis of venture partnership agreements. J. Law Econom. 39
463-498.

Goyal, S., M. Leij, J. Moraga-Gonzalez. 2004. Economics: An emerg-
ing small world? Tinbergen Institute Discussion Paper TI12004-
001/1.

Granovetter, M. 1973. The strength of weak ties. Amer. J. Sociol. 78
1360-1380.

Granovetter, M. 1985. Economic action and social structure: The
problem of embeddedness. Amer. J. Sociol. 91(3) 481-510.

Greene, W. 2002. Econometric Analysis. Prentice Hall, New York.

Hansen, M. 1999. The search-transfer problem: The role of weak ties
in sharing knowledge across organization subunits. Admin. Sci.
Quart. 44(1) 82-112.

Hargadon, A. 2003. How Breakthroughs Happen: The Surprising
Truth About How Companies Innovate. Harvard Business School
Press, Boston, MA.

Hausman, J., B. Hall, Z. Griliches. 1984. Econometric models for
count data with an application to the patents R&D relationship.
Econometrica 52 909-938.

Hunt, M., T. Ogden, M. Neale. 2003. Who’s really sharing? Effects of
social and expert status on knowledge exchange within groups.
Management Sci. 49(4) 464-4717.

Hyde, A. 2003. Working in Silicon Valley: Economics and Legal Anal-
ysis of a High-Velocity Labor Market. M.E. Sharpe, Armonk,
NY.

Jaffe, A. B., M. Trajtenberg, R. Hendeson. 1993. Geographic local-
ization of knowledge spillovers as evidenced by patent citations.
Quart. J. Econom. 434 578-598.

Katz, A. 1982. The effects of group longevity on project communi-
cation and performance. Admin. Sci. Quart. 27 81-104.

Kaufman, C. 2003. Interview by author. Westford, MA (August).
Khanna, P. 2003. Interview by author. Fremont, CA (July 10).
Kino, G. 2003. Interview by author. Stanford, CA (July 8).

Kogut, B., G. Walker. 2001. The small world of Germany and the
durability of national networks. Amer. Sociol. Rev. 66 317-335.

Kogut, B., U. Zander. 1992. Knowledge of the firm, combinative
capabilities, and the replication of technology. Organ. Sci. 3
383-397.

Koning, P. 2003. Interview by author. Cambridge, MA (August).

Kozlovsky, W. 2003. Interview by author. Stanford, CA (Decem-
ber 11).

Marshall, A. 1919. Industry and Trade. MacMillan, London.

McEvily, W., R. Reagans. 2005. Networks and knowledge trans-
fer: The search-transfer problem reconsidered. Working paper,
Tepper School of Business.

McEvily, W., A. Zaheer. 2004. Architects of trust: The role of network
facilitators in geographical clusters. R. Kramer, K. Cook, eds.
Trust and Distrust in Organizations. Rusell Sage Foundation,
New York.

Milgram, S. 1967. The small world problem. Psych. Today 1 60-67.

Nerkar, A., S. Paruchuri. 2005. Evolution of R&D capabilities: The
role or knowledge networks within the firm. Management Sci.
51(5) 771-785.

Newman, M. 2001. The structure of scientific collaboration networks.
Proc. National Acad. Sci. of the United States of America 98
404-409.

Newman, M., D. Watts. 1999. Scaling and percolation in the small-
world network model. Physical Rev. Part E 60 7332-7342.
Newman, M., D. Watts, S. Strogatz. 2002. Random graph models of
social networks. Proc. National Acad. Sci. of the United States

of America 99 2566-2572.

Obstfeld, D. 2005. Social networks, the tertius iungens orientation,
and involvement in innovation. Admin. Sci. Quart. 50 100-130.

Owen-Smith, J., W. W. Powell. 2004. Knowledge networks as chan-
nels and conduits: The effects of spillovers in the Boston
biotechnology community. Organ. Sci. 15(1) 5-21.

Perlman, R. 2003. Interview with author. Cambridge, MA (August).

Piore, M., C. Sabel. 1984. The Second Industrial Divide: Possibilities
for Prosperity. Basic Books, New York.

Reagans, R., B. McEvily. 2003. Network structure and knowledge
transfer: The effects of cohesion and range. Admin. Sci. Quart.
48 240-267.

Ribi, H. 2003. Interview by author. Cambridge, MA to Burlingame,
CA (June 12).

Risk, W. 2003. Interview by author. San Jose, CA (July 9).

Robinson, W. 1950. Ecological correlations and the behavior of indi-
viduals. Amer. Sociol. Rev. 15(3) 351-357.

Saxenian, A. 1994. Regional Advantage. Harvard University Press,
Cambridge, MA.

Schilling, M. A., C. C. Phelps. 2007. Interfirm collaboration networks:
The impact of large-scale network structure on firm innovation.
Management Sci. 53 1113-1126.

Singh, J. 2005. Collaborative networks as determinants of knowledge
diffusion patterns. Management Sci. 51 756-770.

Solow, R. 1957. Technical change and the aggregate production func-
tion. Rev. Econom. Statist. 39 312-320.

Sorenson, O., P. Audia. 2000. The social structure of entrepreneurial
activity: Geographic concentration of footwear production in the
U.S., 1940-1989. Amer. J. Sociol. 106 324-362.

Sorenson, O., T. Stuart. 2001. Syndication networks and spatial dis-
tribution of venture capital investments. Amer. J. Sociol. 106(6)
1546-1588.

Sorenson, O., J. Rivkin, Fleming. 2006. Complexity, networks and
knowledge flow. Res. Policy 35 994-1017.

Stewart, R. 2004. Interview by author. Cambridge, MA (June 17).

Stuart, T., J. Podolny. 1996. Local search and the evolution of tech-
nological capabilities. Strategic Management J. (Summer).

Stuart, T., J. Podolny. 1999. Positional causes and correlates of
strategic alliances in the semiconductor industry. S. Andrews,
D. Knoke, eds. Research in the Sociology of Organizations. JAI
Press, Greenwich, CT, 161-182.



o~
&,
p .
o °
c w0
5 €
DL
© o
L
o S
9
©
2
=
@0
23
Spe
O
o
=
© ©
n 2
o
]
&
O ®©
o2
£y
32
>
_QQ-
Ec
@ L
S 3
52
e E
T O
o2
o2
T ©
T
1]
0 £
c .2
=
o
2c
- O
=]
o) O
= 2
a -
c
O o
°8
8 e
S =
o O
<E
w_
©
= C
e o
=
035
z-c
=<

954

Fleming, King, and Juda: Small Worlds and Regional Innovation
Organization Science 18(6), pp. 938-954, © 2007 INFORMS

Stuart, T., O. Sorenson. 2003. Liquidity events and the geographic
distribution of entrepreneurial activity. Admin. Sci. Quart. 48
175-201.

Sutton, R., A. Hargadon. 1996. Brainstorming groups in context:

Effectiveness in a product design firm. Admin. Sci. Quart. 41(4)
685-718.

Szulanski, G. 1996. Exploring internal stickiness: Impediments to the
transfer of best transfer within the firm. Strategic Management J.
17 27-43.

Umatoy, S. 2003. Interview by author. San Jose, CA, July 9.

University of Virginia. 2004. County business patterns online.
Geospatial and Statistical Data Center, University of Virginia
Library. http://fisher.lib.virginia.edu/collections/stats/cbp/.

U.S. Patent Office. 2003. Patents BIB (January).

Uzzi, B., J. Spiro. 2006. Collaboration and creativity: The small world
problem. Amer. J. Sociol. 111(2) 447-504.

Verspagen, B., G. Duysters. 2003. The small worlds of strategic tech-
nology alliances. Technovation 23.

Wasserman, S., K. Faust. 1994. Social Network Analysis: Meth-
ods and Applications. Cambridge University Press, Cam-
bridge, MA.

Watts, D. 1999. Networks, dynamics, and the small-world phe-
nomenon. Amer. J. Sociol. 105 493-527.

Watts, D., S. Strogatz. 1998. Collective dynamics of small-world net-
works. Nature 393 440-442.

ZIPList5 MSA. 2003. CD Light, LLC. http://www.zipinfo.com/
products/z5msa/z5msa.htm.



