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Abstract

Temporal convolution has been widely used for video

classification. However, it is performed on spatio-temporal

contexts in a limited view, which often weakens its capac-

ity of learning video representation. To alleviate this prob-

lem, we propose a concise and novel SmallBig network,

with the cooperation of small and big views. For the cur-

rent time step, the small view branch is used to learn the

core semantics, while the big view branch is used to cap-

ture the contextual semantics. Unlike traditional tempo-

ral convolution, the big view branch can provide the small

view branch with the most activated video features from

a broader 3D receptive field. Via aggregating such big-

view contexts, the small view branch can learn more ro-

bust and discriminative spatio-temporal representations for

video classification. Furthermore, we propose to share

convolution in the small and big view branch, which im-

proves model compactness as well as alleviates overfit-

ting. As a result, our SmallBigNet achieves a comparable

model size like 2D CNNs, while boosting accuracy like 3D

CNNs. We conduct extensive experiments on the large-scale

video benchmarks, e.g., Kinetics400, Something-Something

V1 and V2. Our SmallBig network outperforms a number

of recent state-of-the-art approaches, in terms of accuracy

and/or efficiency. The codes and models will be available

on https://github.com/xhl-video/SmallBigNet.

1. Introduction

3D convolution has been widely used for deep video

classification [1, 23]. In particular, spatio-temporal factor-

ization is preferable to reduce computation cost as well as

overfitting [23, 32]. However, temporal convolution in this

form is usually operated on a limited view, which often con-
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tains unrelated video contexts. As shown in Fig.1(a), tem-

poral convolution (e.g., 3 × 1 × 1) is performed over the

yellow tube of a High Jump video. Apparently, for the blue

box at t, the yellow boxes at t − 1 and t + 1 provides al-

most useless even harmful contexts. For example, the yel-

low box at t − 1 contains the arm of the athlete. However,

the arm movement is not quite critical to recognize High

Jump. Hence, the context at t − 1 tends to be redundant.

Furthermore, the yellow box at t + 1 contains the upper

body of another sitting person, without any clues about the

moving athlete. Hence, the context at t + 1 tends to be

noisy. By aggregating these contexts with the blue box at

t, temporal convolution often leads to a weak and unstable

spatio-temporal representation that is not discriminative to

recognize High Jump.

To tackle the problem above, we creatively introduce a

novel and concise SmallBig unit in Fig.1(b), where the big

view branch can flexibly provide the small view branch with

discriminative contexts from a larger spatio-temporal recep-

tive field. Via aggregating such contextual clues, the small

view branch tends to learn key spatio-temporal representa-

tions for video classification. Note that, our SmallBig de-

sign is different from the SlowFast design [7], in terms of

both motivation and mechanism. In particular, SlowFast is

motivated by mimicking two-stream fusion. Hence, it feeds

input frames of two temporal rates to build up two 3D CNNs

(i.e., slow and fast pathways), and applies lateral connec-

tions to integrate them into a unified framework. Alterna-

tively, our SmallBig is motivated by releasing the contextual

receptive fields of 3D CNN itself. Hence, we introduce two

distinct views (i.e., small and big branches), and discover

the most activated context of big view to enhance the core

representations of small view.

More specifically, we propose two distinct operations in

our SmallBig unit. First, we perform 3D max pooling in the

big view branch, which can discover the most activated con-

texts from a broader 3D tube to enhance the process of the

small view branch. For example, we treat the blue box at t
as center, and find its corresponding 3 × 3 × 3 yellow tube
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Figure 1. Motivation. As shown in Subplot (a), temporal convolution is operated on a limited view (yellow tube), which often contains

useless video contexts, e.g., the yellow box at t+ 1 contains the upper body of another sitting person, without any clues about the moving

athlete. Aggregating such contexts would be harmful to recognize High Jump. To alleviate it, we propose a novel and concise SmallBig unit

with two views, where the big view branch can provide the small view branch with the most activated contexts in a broader 3D receptive

field. Such cooperation allows our SmallBig unit to learn more discriminative spatio-temporal representations for video classification.

from t− 1 to t+1 in Fig.1(b). Subsequently, we apply max

pooling over this tube to identify its most activated features,

i.e., the red box at t+1. As we can see, this box contains the

take-off pose of the athlete. Clearly, it provides more dis-

criminative cues to recognize High Jump, comparing to the

yellow boxes applied in the limited view of temporal convo-

lution (Fig. 1(a)). Second, we propose to share convolution

parameters between the small and big view branches. This

operation improves the compactness of our SmallBig unit,

while boosting accuracy.

Finally, we build up our SmallBig network (Small-

BigNet) in a ResNet style. By progressively applying a

number of SmallBig units in a residual block, we enlarge

the cooperative power of two views with richer contexts

from a broader 3D receptive field. As a result, our Small-

Big network can gradually learn a key spatio-temporal rep-

resentation for video classification, when the layer is going

deeper. To evaluate it, we perform extensive experiments on

the widely-used video benchmarks, e.g., Kinetics400 [13],

Something-Something V1 and V2 [10]. Under the same

setting, our SmallBig network outperforms the recent state-

of-the-art methods, in terms of accuracy and/or efficiency.

2. Related Works

2D CNNs for Video Classification. Over the past years,

video classification has been mainly driven by deep learning

frameworks [1, 7, 21, 27, 28, 31]. One of the widely-used

2D frameworks is two-stream CNNs [21], which can learn

video representations respectively from RGB and optical

flows. To further boost performance, a number of exten-

sions have been proposed by deep descriptors [25], spatio-

temporal fusions [8, 9], key volume mining [34], attention

[26], sequential modeling with RNNs [6, 18, 20], temporal

segment networks [27], temporal relational networks [33],

temporal shift module [15], etc. In particular, temporal

shift module (TSM) [15] moves feature along the tempo-

ral dimension, which achieves the performance of 3D CNN

but maintains the complexity of 2D CNN. However, it may

lack the comprehensive capacity of understanding spatio-

temporal dynamics in videos. Alternatively, our SmallBig

design can effectively exploit the most-activated contexts

from a broader 3D view, and learn key spatio-temporal rep-

resentations with cooperation of two different views.

3D CNNs for Video Classification. 3D CNNs have

become popular for spatio-temporal learning, by treating

time as the third dimension of convolutions [11, 12, 22].

However, such operation introduces many more parameters,

which makes 3D convolution harder to train. To alleviate

such problem, I3D [1] has been proposed by inflating 2D

convolution into 3D. But still, the heavy computation bur-

den limits the power of these full 3D CNNs. Recent studies

have shown that factorizing 3D convolution is preferable

to reduce complexity as well as boost accuracy, e.g., P3D

[19], R(2+1)D [23], S3D-G [32], etc. However, temporal

convolution in these approaches is performed on a limited

view, where the unrelated contexts often reduce its capacity

of learning video representations.

Learning Long-Term Video Dependency. Alterna-

tively, learning long-term dependency has been highlighted

for video classification [4, 5, 16, 28, 29, 30]. One of the

most popular models is the nonlocal network [28]. How-

ever, this approach mainly aggregates global relations to as-
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sist video classification, which may not fully exploit fine

contexts in the local tube. On the contrary, our approach

gradually enlarges contextual receptive fields in a SmallBig

block. Hence, it allows us to learn key video representa-

tion progressively from local view to global view. Finally,

a SlowFast network has been proposed in [7]. The key dif-

ference is that, it uses input frames of two temporal rates

to mimic two-stream fusion of 3D CNNs, while our Small-

Big uses two spatio-temporal views on a 3D CNN itself to

exploit contexts for enhancing core video features.

3. SmallBig Unit

In this section, we first analyze temporal convolution,

and then explain how to design our SmallBig unit.

Temporal Convolution. Without loss of generality, we

use a widely-used 3×1×1 temporal convolution filter as il-

lustration. Specifically, we denote x
(h,w)
t as a feature vector

at spatial location of (h,w) and temporal frame of t. Ad-

ditionally, we denote Θ = [Θα, Θβ , Θγ ] as parameters in

this 3× 1× 1 convolution filter. As shown in Fig.1(a), tem-

poral convolution applies Θ to encode video dynamics from

t− 1 to t+ 1, w.r.t., each spatial location (h,w),

y
(h,w)
t = TemConv(Θ, x

(h,w)
t , {x

(h,w)
t−1 , x

(h,w)
t+1 }),

= Θβx
(h,w)
t + [Θαx

(h,w)
t−1 +Θγx

(h,w)
t+1 ], (1)

where y
(h,w)
t is the output vector of spatio-temporal rep-

resentation. As mentioned in the introduction, temporal

convolution is performed with spatio-temporal contexts of

x
(h,w)
t−1 and x

(h,w)
t+1 . Such limited view often weakens the

discriminative power of y
(h,w)
t .

SmallBig Unit. To address the problem above, we pro-

pose to discover the contexts of x
(h,w)
t from a broader

spatio-temporal receptive field. This leads to a novel and

concise SmallBig unit with parameters Ψ = [Ψρ, Ψν ],

y
(h,w)
t = SmallBig(Ψ, x

(h,w)
t , {x

(i,j)
k }),

= Ψρx
(h,w)
t

︸ ︷︷ ︸

small view

+ΨνMaxPool({x
(i,j)
k })

︸ ︷︷ ︸

big view

. (2)

Next, we mainly explain two key operations in this unit.

1) 3D Max Pooling Over Big View. To further release

the spatio-temporal location constraints of contexts, we pro-

pose to work on a broader Tǫ×Hǫ×Wǫ tube (e.g., 3×3×3)

centered at (t, h, w). In particular, we perform max pooling

over the feature vectors {x
(i,j)
k } in this 3D tube. As a result,

we can identify the most activated contextual feature from a

bigger view. Compared to x
(h,w)
t−1 and x

(h,w)
t+1 in the temporal

convolution, this max-pooled feature is often more discrim-

inative to capture key video dynamics, e.g., take-off pose of

athlete in the red box of Fig.1(b). By aggregating such con-

texts for x
(h,w)
t , our SmallBig unit can reduce redundancy

and promote robustness of spatio-temporal learning.

2) Parameter Sharing Between Small & Big Views.

After obtaining the most activated contextual feature, we

apply 1× 1× 1 pointwise convolution filters Ψρ and Ψν to

further encode the representation in the small and big view

branches. Specifically, we propose to share the parameters

between filters of two views, i.e., Ψρ = Ψν , in order to

increase model compactness. Via this operation, the size of

our SmallBig unit is reduced as that of 2D convolution. In

this case, our SmallBig unit can efficiently enhance y
(h,w)
t

with cooperation of two views.

4. Exemplar: SmallBig-ResNet

After introducing the SmallBig unit, we illustrate how

to adapt it into a residual style block, and then build up a

SmallBig network from ResNet23 (or ResNet50).

SmallBig Blocks. As shown in Fig.2, we first intro-

duce two widely-used residual blocks for comparison, i.e.,

2D convolution in Subplot(a) and 3D convolution in Sub-

plot(b), where 2D convolution consists of three layers, i.e.,

two 1 × 1 × 1 and one 1 × 3 × 3. For 3D convolution, we

follow [28] to apply inflation [1] on the first 1×1×1, which

leads to a 3× 1× 1 temporal convolution.

For our SmallBig blocks, we adapt the layers of 2D

convolution gradually into the SmallBig unit, as shown in

Subplot(c)-(e). Note that, for a typical SmallBig block in

Subplot(e), we set the pooling size as T × 3 × 3 in the

big view branch of last layer, where T is the total num-

ber of sampled video frames. The main reason is that, after

3×3×3 max pooling in the big view branch of middle layer,

1×3×3 convolution further enlarges spatial receptive field.

To balance spatio-temporal view, we further enlarge tempo-

ral receptive field in the big view branch of last layer.

Finally, we introduce an extra SmallBig unit on top of

a typical SmallBig block, which leads to a full SmallBig

block in Subplot(f). In the big view branch of the ex-

tra SmallBig unit, we operate max pooling over the global

spatio-temporal tube of T × H × W . In this way, the

full SmallBig block can progressively integrate the most

activated contexts from local view to global view. Fur-

thermore, the pooling operation in this extra unit actually

produces a global feature vector (after conv), which is ir-

relevant to spatio-temporal location. Hence, we naturally

adapt this vector as attention (with sigmoid), and apply it

for channel-wise product aggregation. Lastly, besides of

parameter sharing between two views, we propose to use

the bottleneck-like design in this extra SmallBig unit, e.g.,

input : output channels is 4:1 for its 1st convolution, while

input : output channels is 1:4 for its 2nd convolution. This is

used to reduce computation cost of our full SmallBig block.
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Figure 2. SmallBig Blocks. C: Convolution. M: Max pooling. We design a number of SmallBig blocks by adapting all the 2D convolution

layers progressively as the SmallBig unit. More explanations can be found in Section 4.

Layer Output Size

conv1 1× 7× 7, 64, stride 1× 2× 2 8× 112× 112
pool1 1× 3× 3 max, stride 1× 2× 2 8× 56× 56

res2





1× 1× 1, 64
1× 3× 3, 64
1× 1× 1, 256



× 1 (or 3) 8× 56× 56

res3





1× 1× 1, 256
1× 3× 3, 256
1× 1× 1, 512



× 2 (or 4) 8× 28× 28

res4





1× 1× 1, 512
1× 3× 3, 512
1× 1× 1, 1024



× 3 (or 6) 8× 14× 14

res5





1× 1× 1, 1024
1× 3× 3, 1024
1× 1× 1, 2048



× 1 (or 3) 8× 7× 7

global average pool, fc 1× 1× 1
Table 1. 2D backbone of our SmallBig network: ResNet23 (or

ResNet50). We construct SmallBig-ResNet by adapting each 2D

residual block as a SmallBig block such as Fig.2(c)-(f). The input

is 8 × 224 × 224, which is sampled from a 64-frame clip with

temporal stride of 8.

SmallBig-ResNet. After building up the SmallBig

blocks, we construct SmallBig network from ResNet23 (or

ResNet50) in Table 1. The size of input clip is 8×224×224.

For each 2D residual block, we replace it with any of our

SmallBig blocks in Fig.2(c)-(f). Note that, the number of

parameters in SmallBig-ResNet is comparable to that of 2D

ResNet, due to parameter sharing. Moreover, the param-

eters of SmallBig-ResNet can be directly initialized from

those of 2D ResNet, which has been well pretrained on Im-

ageNet. This simplifies the initialization issue and boosts

our SmallBig-ResNet in practice.

5. Further Discussion: SmallBig vs. Nonlocal

As mentioned before, our SmallBig design is related to

the well-known nonlocal operation [28], which also lever-

ages the spatio-temporal contexts in a broader view. Hence,

we further discuss differences between our design and this

SOTA architecture. For convenience, we denote {x
(i,j)
k }all

as all the feature vectors in the global tube of T ×H ×W .

For x
(h,w)
t at (t, h, w), the nonlocal operation actually finds

its highly similar contexts from {x
(i,j)
k }all. Specifically, we

rewrite this operation as a formulation of two views with

parameter V = [Vθ, Vφ, Vg, Vo],

y
(h,w)
t = NonLocal(V, x

(h,w)
t , {x

(i,j)
k }all)

= x
(h,w)
t +Vo

∑

all
f(x

(h,w)
t ,x

(i,j)
k )g(x

(i,j)
k )

= x
(h,w)
t +Vo

∑

all
s
(i,j)
k Vgx

(i,j)
k

= x
(h,w)
t

︸ ︷︷ ︸

small view

+VoVg

∑

all
s
(i,j)
k x

(i,j)
k

︸ ︷︷ ︸

big view

. (3)

s
(i,j)
k is the similarity score between x

(h,w)
t and x

(i,j)
k . It

is computed from a kernel function, e.g., embedded Gaus-

sian f(x
(h,w)
t ,x

(i,j)
k ) = exp[(Vθx

(h,w)
t )⊤(Vφx

(i,j)
k )]/Cx

with a normalization term Cx. Additionally, g(x
(i,j)
k ) =

Vgx
(i,j)
k is a linear transformation of x

(i,j)
k . Hence, we

move Vg out of summation
∑

.

Via comparing the big view branch in Eq.(2) and (3),

we find that both mechanisms exhibit the spirit of visual

attention. However, our SmallBig design contains the dis-

tinctive characteristics as follows. First, the goals of visual
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attention are different. The nonlocal operation uses simi-

larity comparison as soft attention, which aims at finding

the similar contexts for x
(h,w)
t . Such contexts implicitly as-

sist video classification by modeling spatio-temporal depen-

dency. Alternatively, our SmallBig unit uses max pooling

as hard attention, which aims at finding the key contexts

around x
(h,w)
t . Such contexts are more explicit and dis-

criminative to boost classification accuracy, since they are

highly activated to recognize different video classes. Sec-

ond, the receptive fields of visual attention are different.

The nonlocal operation directly works on the global spatio-

temporal tube to learn long-term relations, which may ig-

nore key video details for classification. Alternatively, our

SmallBig unit works on the local spatio-temporal tube to

capture fine video clues. More importantly, we gradually

enlarge the receptive field of big view branch in the Small-

Big block, allowing us to learn video representation pro-

gressively from local view to global view. Our experiments

also show that the SmallBig network steadily outperforms

the nonlocal network.

6. Experiment

Data Sets. We perform the experiments on the large-

scale video benchmarks, i.e., Kinetics400 [13], Something-

Something V1 and V2 [10]. Kinetics400 consists of around

300k videos from 400 categories. Something-Something

V1/V2 consists of around 108k/220k videos from 174 cate-

gories. We mainly evaluate all the models on the validation

set, where we report Top1 & Top5 accuracy (%) and GFlops

to comprehensively evaluate accuracy and efficiency.

Training. For all the data sets, we follow [28] to use

the spatial size of 224 × 224, which is randomly cropped

from a scaled video whose shorter side is randomly sampled

in [256, 320] pixels. For Kinetics400, the input clip con-

sists of 8 frames, which are sampled from 64 consecutive

frames with temporal stride 8. We train our models with 110

epochs, where we set the weight decay as 1e-4, and utilize

the cosine schedule of learning rate decay. For SmallBig-

ResNet23, we set the initial learning rate as 0.02 and the

batch size as 128. For SmallBig-ResNet50/101, we set the

initial leaning rate as 0.00625 and the batch size as 128. For

Something-Something V1 and V2, we divide a video into

8 segments and then randomly choose one frame in each

segment. We train our models with 50 epochs. The ini-

tial learning rate is 0.01, and it decays at 30, 40, 45 epochs

respectively. Finally, we apply batch normalization individ-

ually for each view (right after convolution). All the models

are pretrained on ImageNet, including BN in the small view

branch of each layer. For BN in the big view branch, we

initialize its scale parameter as zero. This design makes the

initial state of our SmallBig network as the original ResNet.

Inference. Following [7, 28], we rescale the video

frames with the shorter side 256 and take three crops (left,

middle, right) of size 256× 256 to cover the spatial dimen-

sions. Unless stated otherwise, we uniformly sample 10/2

clips for Kinetics400 / Something-Something V1 and V2.

We average their softmax scores for video-level prediction.

6.1. Evaluation on Kinetics400

In the following, we perform extensive ablation studies

to investigate various distinct characteristics in our Small-

Big network. Then, we further evaluate accuracy and effi-

ciency of our SmallBig networks by a comprehensive com-

parison with the recent state-of-the-art approaches.

Effectiveness of SmallBig. We apply ResNet23 (R23)

of Table 1 as backbone, and adapt the SmallBig block

(3× 1× 1) of Fig.2(c) into all the residual stages. For com-

parison, we also adapt the 3D block (3× 1× 1) of Fig.2(b)

in the same way. As shown in Table 2, our SmallBig-R23

outperforms its 2D and 3D counterparts. Note that, even

though we do not further enlarge the spatio-temporal re-

ceptive field in the big view branch, our SmallBig block

(3 × 1 × 1) still achieves a better result than the 3D block

(3 × 1 × 1). It illustrates that, the most activated contexts

found by max pooling is a preferable guidance to learn key

video representation, compared to temporal convolution.

Stage of using SmallBig blocks. We use the above

SmallBig-R23 (3 × 1 × 1) to evaluate which stage may be

important for SmallBig design. In Table 3, we gradually re-

cover our SmallBig blocks as the original 2D blocks, from

bottom to top. As expected, the middle blocks (e.g., res4)

are often more important than the bottom and top blocks.

The main reason is that, the receptive field is too small (or

big) in the bottom (or top) blocks, enlarging 3D view tends

to find useless (or similar) contexts. On the contrary, the

middle blocks contain the middle-level semantics with a

reasonable spatio-temporal receptive field. Hence, the con-

texts in these blocks would be more discriminative. In our

following experiments, we use SmallBig blocks in all the

residual stages to achieve the best accuracy.

Broader receptive field in the big view branch. For

SmallBig-R23 (3 × 1 × 1), we further extend 3D receptive

field in its big view branch. As shown in Table 4, the accu-

racy first increases and then decreases. It may be because

the diversity of contexts is reduced, when we directly per-

form max pooling on too big view. As a result, SmallBig-

R23 achieves the best performance with 3×3×3 in Fig.2(d).

More SmallBig layers. The above experiment in Table

4 indicates that, it is not reasonable to enlarge the 3D recep-

tive field directly to a very big view. Hence, we adapt more

layers in each residual block to be our SmallBig unit, allow-

ing to extend the 3D receptive field gradually from local to

global view. As shown in Table 5, the accuracy is consis-

tently getting better, when more convolution layers are pro-

gressively changed as SmallBig. As expected, the setting of
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R23 Top1 Top5

2D 64.1 85.4

3D: 3×1×1 68.3 88.2

SmallBig: 3×1×1 69.0 88.6

Table 2. Effectiveness of SmallBig.

We apply ResNet23 (R23) as 2D back-

bone, and adapt 3D block (3×1×1) of

Fig.2(b) and SmallBig block (3×1×1)

of Fig.2(c) in all the residual stages.

SmallBig-R23 Top1 Top5

R23 64.1 85.4

SmallBig: res2+3+4+5 69.0 88.6

SmallBig: res3+4+5 68.8 88.5

SmallBig: res4+5 68.6 88.5

SmallBig: res5 64.5 85.6

Table 3. Stage of using SmallBig blocks.

As expected, the middle blocks (e.g., res4)

are often more important than others.

SmallBig-R23 Top1 Top5

R23 64.1 85.4

SmallBig: 3×1×1 69.0 88.6

SmallBig: 3×3×3 69.5 89.0

SmallBig: 3×5×5 69.1 88.5

SmallBig: 3×7×7 68.6 88.3

SmallBig: T×3×3 69.3 88.5

Table 4. Broader receptive field in the

big view branch.

SmallBig-R23 Top1 Top5

R23 64.1 85.4

SmallBig: 3×3×3(1st layer) 69.5 89.0

SmallBig: 3×3×3(1st layer)+T×3×3(3rd layer) 70.8 89.3

SmallBig: Typical 71.4 90.0

SmallBig: Full 72.6 90.3

Table 5. More SmallBig layers. The accuracy is consistently better,

when more layers are progressively changed as our SmallBig design.

For SmallBig: Typical or Full, all blocks refer to Fig.2(e) or (f).

SmallBig-R23 Params GFlops Top1 Top5

R23 11.3M 17 64.1 85.4

Avg Pool 13.4M 31 72.2 90.0

Max Pool 13.4M 31 72.6 90.3

Without Share 22.1M 31 71.6 89.6

With Share 13.4M 31 72.6 90.3

Single BN 13.3M 17 64.6 85.8

Individual BN 13.4M 31 72.6 90.3

Table 6. Detailed designs of SmallBig.

Model Params GFlops Top1 Top5

R23 11.3M 17 64.1 85.4

NonLocal-R23 18.7M 34 70.2 89.1

SmallBig-R23 13.4M 31 72.6 90.3

Table 7. SmallBig vs. NonLocal. Our SmallBig-R23

outperforms NonLocal-R23, showing the superiority of

our SmallBig design when finding contexts.

Backbone Top1 Top5

R23 64.1 85.4

SmallBig-R23 72.6 90.3

R50 70.4 89.1

SmallBig-R50 76.3 92.5

Table 8. Backbone. Our SmallBig-

R23 even outperforms R50.

SmallBig-R50 Top1 Top5

Extra Unit: Simple 75.8 92.1

Extra Unit: Default 76.3 92.5

Table 9. Extra unit in SmallBig

(Full). For comparison, we re-

place the extra unit in Fig.2(f) by

a simplified version.

SmallBig-R23 (Full) achieves the best performance, where

all the SmallBig blocks refer to Fig.2(f). In the following,

we use the full setting in our experiments.

Detailed designs of SmallBig. We use SmallBig-R23

(Full) to further investigate the detailed designs of Small-

Big in Table 6. Avg Pool vs Max Pool. We apply different

pooling operations in the big view branch. The performance

of max pooling is better. Hence, we choose it in our ex-

periments. Without Sharing vs With Sharing. We apply

different parameter sharing strategies for convolution in our

SmallBig unit. As expected, parameter sharing can reduce

the model size of our SmallBig-R23 as the original R23. Its

accuracy is even slightly better than the non-sharing case.

Hence, we share parameters between small and big view

branches. Single BN vs Individual BN. As mentioned

in the implementation details, we apply BN individually

for each view, i.e., BN(conv(small))+BN(conv(big)). This

would introduce extra flops. To further reduce complex-

ity, we apply a single BN directly on the output representa-

tion, i.e., BN(conv(small)+conv(big)). Due to the linearity

of convolution and sum operations, this operation is equiv-

alent to BN(conv(small+big)), which only requires a single

convolution and decreases flops as 2D CNN. As shown in

Table 6, single BN has higher efficiency but much lower ac-

curacy, while individual BN has higher accuracy but lower

efficiency. For consistency, we choose Individual BN to

achieve a better accuracy.

SmallBig vs. NonLocal. We compare our SmallBig de-

sign with the related NonLocal operation. Specifically, we

use a preferable setting of NonLocal as suggestion in [28],

where NL is added on all the residual blocks of res3 and

res4. As shown in Table 7, our SmallBig-R23 outperforms

NonLocal-R23. It illustrates that, to boost performance, it is

preferable to find the most activated contexts progressively

from local to global view, instead of finding dependent con-

texts directly on the global view.

Deeper backbone. We further investigate the perfor-

mance of our SmallBig network, with a deeper backbone,

e.g., ResNet50 (R50). As shown in Table 8, our SmallBig-

R23 even outperforms R50. It illustrates the power of our

SmallBig design. Furthermore, SmallBig-R50 outperforms

SmallBig-R23, showing the effectiveness of SmallBig in

deeper backbones.

Extra unit in SmallBig (Full). As shown in Fig.2(f),

we add an extra SmallBig unit with global pooling. Note

that, we apply channel-wise product aggregation in the ex-

tra unit. Hence, we design a Squeeze-and-Excitation ver-

sion for comparison. Specifically, we first perform global

spatio-temporal pooling, and then add two extra 1 × 1 × 1
convolutions. The resulting vector (after sigmoid) is used

as channel-wise attention for residual aggregation. In Ta-

ble 9, our default design outperforms this simplified design

in the extra unit. It illustrates that, our default extra unit is

a preferable choice of global spatio-temporal aggregation,
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Method Backbone Frame, Size Top1 Top5 GFlops×crops

STC[5] ResNeXt101 32, 112 68.7 88.5 N/A×N/A

ARTNet[24] R18 16, 112 69.2 88.3 5,875=23.5×250

MFNet[3] R34 16, 224 72.8 90.4 11×N/A

R(2+1)D[23] R34 8, 112 74.3 91.4 152×N/A

I3D[1] Inception 64, 224 71.1 89.3 108×N/A

S3D-G[32] Inception 64, 224 74.7 93.4 71.4×N/A

A2-Net[2] R50 8, 224 74.6 91.5 41×N/A

SlowOnly[7] R50 8, 224 74.9 91.5 1,257=41.9×30

GloRe[4] R50 8, 224 75.1 N/A 867=28.9×30

TSM[15] R50 8, 224 74.1 91.2 990=33×30

TEI[17] R50 8, 224 74.9 91.8 990=33×30

TSM[15] R50 16, 224 74.7 N/A 1,950=65×30

TEI[17] R50 16, 224 76.2 92.5 1,980=66×30

SlowFast[7] R50+R50 36=4+32, 224 75.6 92.1 1,083=36.1×30

NL I3D[28] R50 32, 224 74.9 91.6 N/A×N/A

NL I3D[28] R50 128, 224 76.5 92.6 8,460=282×30

Our SmallBig R50 8, 224 76.3 92.5 1,710=57×30

CoST[14] R101 8, 224 75.5 92.0 N/A×N/A

GloRe[4] R101 8, 224 76.1 N/A 1,635=54.5×30

CPNet[16] R101 32, 224 75.3 92.4 N/A×N/A

NL I3D[28] R101 32, 224 76.0 92.1 N/A×N/A

NL I3D[28] R101 128, 224 77.7 93.3 10,770=359×30

SlowFast[7] R101+R101 40=8+32, 224 77.9 93.2 3,180=106×30

SlowFast[7] R101+R101 80=16+64, 224 78.9 93.5 6,390=213×30

Our SmallBig R101 32, 224 77.4 93.3 5,016=418×12

Our SmallBigEn R50+R101 40=8+32, 224 78.7 93.7 5,700=475×12

Table 10. Comparisons with SOTA on Kinetics400 validation set

(RGB input). Our 8-frame SmallBig-R50 outperforms 32-frame

Nonlocal-R50 with a higher accuracy, and uses 4.9× less GFlops

than 128-frame Nonlocal-R50 but with a competitive accuracy.

Its accuracy is even slightly better than 32-frame Nonlocal-R101.

Moreover, with the comparable GFlops, our 8-frame SmallBig-

R50 outperforms 36-frame SlowFast-R50. All these results show

that, our SmallBig network is an accurate and efficient model for

video classification.

with cooperation of two views.

Comparison with the SOTA approaches. We make a

comprehensive comparison in Table 10, where our Small-

Big network outperforms the recent SOTA approaches.

First, our 8-frame SmallBig-R50 outperforms 32-frame

Nonlocal-R50 [28] (Top1 acc: 76.3 vs. 74.9), and it

uses 4.9× less GFlops than 128-frame Nonlocal-R50 but

achieves a competitive accuracy (Top1 acc: 76.3 vs. 76.5).

Moreover, it is even slightly better than 32-frame Nonlocal-

R101 (Top1 acc: 76.3 vs. 76.0). All these results clearly

illustrate that, our SmallBig network is a more accurate and

efficient approach than the nonlocal network, for modeling

contexts in video classification. Second, with the compa-

rable GFlops, our 8-frame SmallBig-R50 outperforms 36-

frame SlowFast-R50 [7] (Top1 acc: 76.3 vs. 75.6). It in-

dicates the importance of SmallBig in context exploitation

of 3D CNN itself. Additionally, we perform score fusion

over 8-frame SmallBig-R50 and 32-frame SmallBig-R101,

which mimics two-steam fusion with two temporal rates.

When testing, we use 4 clips and 3 crops per clip to main-

tain computation. Our SmallBigEn achieves a better ac-

curacy than SlowFast, using the same number of frames.

Finally, our 8-frame SmallBig-R50 outperforms 8-frame

TSM-R50 [15] (Top1 acc: 76.3 vs. 74.1). It shows that,

spatio-temporal learning of SmallBig is more effective than

temporal shift of TSM.

Method Backbone Frame,1Clip,1Crop
V1 V2

GFlops
Top1 Top5 Top1 Top5

TSN [33] Inception 8 19.5 - - - 16

TRNmultiscale [33] Inception 8 34.4 - - - 16

ECO [35] Incep+R18 8 39.6 - - - 32

ECO [35] Incep+R18 16 41.4 - - - 64

ECOEnLite [35] Incep+R18 92 46.4 - - - 267

TSM [15] R50 8 45.6 74.2 - - 33

TSM [15] R50 16 47.2 77.1 - - 65

TSMEn [15] R50 24=8+16 49.7 78.5 - - 98

Our SmallBig R50 8 47.0 77.1 59.7 86.7 52

Our SmallBig R50 16 49.3 79.5 62.3 88.5 105

Our SmallBigEn R50 24=8+16 50.4 80.5 63.3 88.8 157

Method Backbone Frame×Clip×Crop
V1 V2

GFlops
Top1 Top5 Top1 Top5

I3D [29] R50 64=32×2 41.6 72.2 - -

NL I3D [29] R50 64=32×2 44.4 76.0 - -

NL I3D + gcn [29] R50 64=32×2 46.1 76.8 - -

CPNet[16] R34 2,304 =24×16×6 - - 57.65 83.95 N/A

TSM [15] R50 48=8×2×3 - - 59.1 85.6

TSM [15] R50 96=16×2×3 - - 63.4 88.5

Our SmallBig R50 48=8×2×3 48.3 78.1 61.6 87.7

Our SmallBig R50 96=16×2×3 50.0 79.8 63.8 88.9 N/A

Our SmallBigEn R50 144=24×2×3 51.4 80.7 64.5 89.1

Table 11. Comparisons with SOTA on Something-Something V1

and V2 validation set (RGB input). For both V1 and V2, our

SmallBig-R50 achieves the best accuracy, w.r.t., single-clip &

center-crop and multi-clip & multi-crop. Moreover, our 8-frame

SmallBig-R50 even outperforms 48-frame TSM-R50 for V2. For

multi-clip & multi-crop, the goal is to report the best accuracy.

Hence, GFlops is not taken into account, as suggested by TSM.

6.2. Evaluation on Something­Something V1 & V2

Due to lower resolution and shorter video length in

Something-Something V1 and V2, we adopt the slow-

only baseline [7] for our SmallBig Net, where we add the

SmallBig-Extra unit in Fig.2(f) respectively on top of res3,

res4, and res5 stages of this baseline. Following [15],

we group the results according to the number of sampled

frames in the testing phase, i.e., the single-clip & center-

crop case and the multi-clip & multi-crop case. For the

multi-clip & multi-crop case, the goal is to report the best

performance. Hence, GFlops is not taken into account, as

suggested in [15]. The results are shown in Table 11. For

both V1 and V2, our SmallBig-R50 achieves the best ac-

curacy, w.r.t., single-clip & center-crop and multi-clip &

multi-crop. Moreover, our 8-frame SmallBig-R50 even out-

performs 48-frame TSM-R50 [15] for V2 (Top1 acc: 59.7

vs. 59.1). All these results further indicate that, our Small-

Big network can effectively boost video classification accu-

racy.

6.3. Visualization

We visualize and analyze the convolution features

learned by SmallBigNet. For comparison, we use the non-

local network [28] as a strong baseline. Specifically, we

feed 8 × 224 × 224 clips respectively into SmallBig-R23

and Nonlocal-R23, and then extract 8 × 28 × 28 convolu-

tion feature from res3.2 (after SmallBig and Nonlocal op-

erations). Finally, we average the feature maps along the

channel dimension, and show them on the original image.
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Figure 3. Visualization. Compared to the nonlocal network, our SmallBigNet can discover key video details (e.g., Making Jewelry) as well

as reduce noisy backgrounds (e.g., Pull Ups) for correct prediction. More explanations can be found in Section 6.3.

Fig.3 clearly demonstrates that, our SmallBig network can

discover the key video details as well as reduce the noisy

backgrounds, compared to the nonlocal network. From

this visualization, we also discover that the highly-activated

points in the feature map distribute very sparsely in nonlo-

cal, but ours can gather together. This further validates our

discussions in Section 5, where our SmallBig network is

preferable to learn highly-activated contexts for video clas-

sification.

Furthermore, we visualize small and big views from the

first layer. As expected, small view tends to capture dis-

criminative core semantics, while big view tends to discover

important contextual semantics. For Making Jewelry, small

view captures hand contour and jewelry object, while big

view highlights the regions that contain key hand actions.

For Pull Ups, small view captures key human parts and ob-

jects, while big view highlights the most activated action re-

gions. By aggregating big contextual view to enhance small

core view, our SmallBig network is preferable to aggregate

the core and contextual views for video classification and

can effectively learn spatio-temporal representations.

7. Conclusion

In this work, we propose a concise and novel SmallBig

network with cooperation of small and big views. In par-

ticular, we enlarge the spatio-temporal receptive field in the

big view branch, in order to find the most activated context

to enhance core representations in the small view branch.

Moreover, we propose a parameter sharing scheme in our

design, which allows us to make the SmallBig network

compact. Finally, all the experiments show that, our Small-

Big network is an accurate and efficient model for large-

scale video classification.
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