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Abstract

We consider the permutahedron, the convex hull of all permutations of {1, 2 · · · , n}. We show
how to obtain an extended formulation for the permutahedron from any sorting network. By
using the optimal Ajtai-Komlós-Szemerédi (AKS) sorting network, this extended formulation
has Θ(n log n) variables and constraints. Furthermore, from basic polyhedral arguments, we
show that any extended formulation has at least Ω(n log n) constraints.

For any integer n, the permutahedron Pn is defined as the convex hull of all permutations of
the set of numbers [n] := {1, · · · , n}. In terms of a system of linear inequalities, it can be described
by:

Pn = {x ∈ Rn : x([n]) = g(n)
x(S) ≤ g(|S|) ∀S : ∅ 6= S ⊂ [n]},

where

g(k) =
n∑

j=n+1−k

j =
(

n + 1
2

)
−

(
n + 1− k

2

)
.

Indeed, this is the base polyhedron corresponding to the submodular function f given by f(S) =
g(|S|), and therefore all vertices are obtained by taking a permutation σ of [n] and defining xσ(i) =
g(i)−g(i−1) = n+1−i for i ∈ [n]. The permutahedron Pn has n! vertices and 2n−2 facet-defining
inequalities. By using the equality x([n]) = g(n), one can also rewrite Pn as:

Pn = {x ∈ Rn : x([n]) = g(n)
x(S) ≥

(|S|+1
2

)
∀S : ∅ 6= S ⊂ [n]}.

This is the description we are using.
Given a polyhedron P ⊆ Rn, we say that a polyhedron Q ⊆ Rn+q is an extended formulation

for P if
P = projn(Q) := {x ∈ Rn|∃y ∈ Rq, (x, y) ∈ Q}.

Furthermore, we say that the extended formulation is compact if both q and the number of facets
of Q is polynomial in n. The definition of extended formulations is often in terms of systems of
linear inequalities and not directly stated in terms of the corresponding polyhedron; however, one
can simply consider a minimal description of Q.

Finding compact extended formulations is of great importance for integer programming. Com-
pact extended formulations are known for several combinatorial optimization polytopes, such as
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the spanning tree polytope or the arborescence polytope. We refer the reader to Conforti et al. [2]
for a recent survey of techniques and results for extended formulations. For the matching polytope,
Yannakakis [5] has shown that no compact symmetric extended formulation exists, and we refer the
reader to [5] for a precise definition of symmetric. The author is not aware of any combinatorial
optimization polytope for which a tight result on the number of facets necessary and sufficient for
an extended formulation is known.

We first show an elementary lower bound on the number of facets of any extended formulation
Q for any polyhedron P which, somewhat surprisingly, does not appear to be known. For any
polyhedron P , let v(P ) denote its number of vertices, f(P ) its number of faces (of any dimension),
and t(P ) its number of facets (largest dimensional faces).

Theorem 1. Let P be any polyhedron in Rn with v(P ) vertices. Then the number of facets t(Q)
of any extended formulation Q of P satisfies

t(Q) ≥ log2(v(P )).

Proof. Assume that Q ⊆ Rn+q is an extended formulation of P . Consider any face FP of P , and
let FQ = {(x, y) ∈ Q : x ∈ FP }. It is easy to argue that FQ is a face of Q. Indeed, if FP

corresponds to the valid inequality cT x ≤ b for P then FQ is the face defined by the valid inequality
cT x + 0T y ≤ b for Q. Therefore, the number of faces of P is at most the number f(Q) of faces of
Q, i.e. f(P ) ≤ f(Q). This implies that v(P ) ≤ f(P ) ≤ f(Q). Every face of a polyhedron Q is the
intersection of a subset of the facets of Q. Thus, we get that

f(Q) ≤ 2t(Q).

Therefore,
v(P ) ≤ f(P ) ≤ f(Q) ≤ 2t(Q),

implying that t(Q) ≥ log2(v(P )).

For the permutahedron Pn, the fact that v(Pn) = n! = 2Θ(n log n) therefore implies:

Corollary 2. Any extended formulation Q of the permutahedron Pn has at least Ω(n log n) facets.

We will now describe an extended formulation in Rn+q for the permutahedron Pn based on
sorting networks which has q = O(n log n) and O(n log n) facets, and thus this provides an optimum
(up to constant factor) extended formulation with regard to the number of facets.

Sorting networks have been introduced to formalize and describe efficient parallel algorithms
for sorting n numbers. The building blocks in a sorting network are comparators. Each comparator
takes 2 numbers a and b as inputs, and outputs max(a, b) and min(a, b) as outputs, see Figure
1. A sorting network N for sorting n numbers has n inputs, n outputs, and a number, say k, or
comparators. Any input of a comparator could be either an original input or an output of a previous
comparator, see Figure 2 for an example of a sorting network. Comparators are arranged in such a
way that for any set of numbers on the n inputs, the n outputs are sorted in nondecreasing fashion.
This is the key requirement of a sorting network. It is trivial to construct a sorting network with(
n
2

)
comparators, but there exists a variety of (fairly simple) sorting networks with k = O(n log2 n)

comparators, including Batcher’s bitonic sorting network or Shell sorting network, see for example
[3, Chapter 27]. In a major breakthrough more than 25 years ago, Ajtai, Komlós and Szemerédi
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Figure 1: A single comparator with inputs xi and xj and outputs xk = min(xi, xj) and xl =
max(xi, xj). The arrow indicates which output corresponds to the maximum value.
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Figure 2: A sorting network for n = 4 inputs and k = 5 comparators. The 2k + n = 14 wires
are labelled with variables so that the inputs are x1, · · · , x4 and the outputs are x11, · · · , x14. For
example, the third comparator takes x5 and x7 as inputs and sets x9 to be their maximum and x11

their minimum.

[1] (see also [4]) have constructed a sorting network (known as an AKS sorting network) with
O(n log n) comparators (although the constant in the O(·) notation is fairly large).

In a sorting network with k comparators, we have 2k + n wires, n of which are inputs, n are
outputs and 2k − n are simultaneously an output of a comparator and an input of another. We
denote by xi for 1 ≤ i ≤ 2k + n the value on these wires, where the indexing is such that the n
inputs are x1, x2, · · · , xn and the n outputs are (in this order) x2k+1, x2k+2, · · · , x2k+n. See Figure
2. By construction, a sorting network is such that, for any inputs x1, · · · , xn, the outputs satisfy
x2k+1 ≤ x2k+2 ≤ · · · ≤ x2k+n.

To any sorting network N with k comparators (and thus 2k+n wires), we construct a relaxation
of it, and this corresponds to a polyhedron Q(N) ⊂ R2k+n in the following way. We first impose
that the ith output is equal to i, i.e.

x2k+i = i i ∈ [n]. (1)

Furthermore, for comparator m with inputs xi(m) and xj(m) and outputs xk(m) = min(xi(m), xj(m))
and xl(m) = max(xi(m), xj(m)), we relax these min and max constraints to linear constraints in the
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following way:

xi(m) + xj(m) = xk(m) + xl(m) (2)

xk(m) ≤ xi(m) (3)

xk(m) ≤ xj(m). (4)

This implies that xk(m) ≤ min(xi(m), xj(m)) and xl(m) ≥ max(xi(m), xj(m)). We claim that, for any
sorting network, this relaxation provides an extended formulation of Pn.

Theorem 3. Given any sorting network N with n inputs and k comparators, the polyhedron
Q(N) ⊂ Rn+2k defined by the equations (1) for i ∈ [n], the equations (2) and the inequalities
(3) and (4) for m ∈ [k] satisfies:

projn(Q(N)) = Pn.

Thus, Q(N) is an extended formulation for Pn with k+n equalities and 2k inequalities in dimension
2k + n.

By using an AKS sorting network N , we obtain an extended formulation for the permutahedron
with dimension Θ(n log n) and with Θ(n log n) facets.

Proof. First, it is clear that Pn ⊆ projn(Q(N)). Indeed, by definition of the sorting network,
if we set the xi’s for i ∈ [n] to be any permutation of [n] then we can find values xj ’s for n +
1 ≤ j ≤ 2k + n such that x ∈ Q(N). Indeed, it suffices to set xk(m) = min(xi(m), xj(m)) and
xl(m) = max(xi(m), xj(m)) for each comparator m.

Before proving the converse, we need some notations. Given a ∈ Rn, we let ~a be the non-
decreasing sorting of a, i.e. ~a is such that there exists a permutation σ with ~ai = aσ(i) for i ∈ [n]
and ~ai ≤ ~aj for i ≤ j. For a, b ∈ Rn, we say that a majorizes b or a � b if

1.
∑

i∈[n] ai =
∑

i∈[n] bi,

2.
∑j

i=1 ~ai ≥
∑j

i=1
~bi for all j ∈ [n].

Majorization is a partial order, so that if a � b and b � c then a � c. Observe also that a � b
depends only on ~a and ~b and not at all on the permutations transforming a into ~a and b into ~b.

In the sorting network N , one can order the comparators linearly, say from 1 to k, such that an
input of comparator m cannot be an output of a later comparator m′ > m. Given this ordering, for
any 0 ≤ m ≤ k, let y(m) ∈ Rn denote the values on the n outputs of a truncated sorting network
with only the comparators with index ≤ m. In other words, we have that y(0) = (x1, x2, · · · , xn)
are the n inputs of the sorting network, and y(m) (for 1 ≤ m ≤ k) can be obtained from y(m−1) by
replacing xi(m) and xj(m) by xk(m) and xl(m). Observe that y(k) = (x2k+1, · · · , x2k+n).

We are now ready to prove that projn(Q(N)) ⊆ Pn. Consider any x ∈ Q(N), and define y(m)

as above for 0 ≤ m ≤ k. We claim that

y(m−1) � y(m),

for m ∈ [k]. Assuming this claim, this implies that

y(0) = (x1, x2, · · · , xn) � y(k) = (1, 2, · · · , n).
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But this means that (x1, x2, · · · , xn) satisfies all constraints defining Pn (namely,
∑

i∈[n] xi =
(
n+1

2

)
and

∑
i∈S xi =

(|S|+1
2

)
for all S ⊂ [n]) and thus we have projn(Q(N)) ⊆ Pn.

To prove the claim, observe the implications of replacing xi(m) and xj(m) by xk(m) and xl(m)

satisfying (2)–(4). Clearly condition 1. of the definition of majorization will be satisfied (because
of (2)) while condition 2. holds since the sum of the j smallest entries either stay the same when
going from y(m−1) to y(m) or decrease.

This work shows that no extended formulation for the permutahedron can have o(n log n) facets.
However, it leaves open the question of the smallest dimension for which an extended formulation
exists with O(n log n) facets (or even polynomially many). The AKS construction shows that
O(n log n) dimensions are sufficient, but is it necessary? An argument similar to Theorem 1 shows
that t(Q)n+q ≥ n! for any extended formulation Q of the permutahedron, but this is too weak. In
[5], Yannakakis provides a very nice characterization of the sum of the dimension and the number
of facets needed for an extended formulation of any polyhedron P in terms of the positive rank of
a slack matrix. This, however, does not provide any lower bound on just the dimension required
for a compact extended formulation.
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