by

Sandy P. Chimienti
Mathematics and Science Department
University of New Mexico
Gallup, NM 87301, USA

Mihaly Bencze
6, Hatmanului Street
2212 Sacele 3
Jud. Brasov, Romania

Abstract: This is an experimental geometry. All Hilbert's 20 axioms of the Euclidean GGeometry are denied in this vanguardist geometry of the real chaos! What is even more intriguing? F.Smarandache[5] has even found in 1969 a model of it!

Key Words: Hilbert's Axioms, Euclidean Geometry, Non-Euclidean Geometry, Smarandache Geometries, Geometrical Model

Introduction:
Here it is exposed the Smarandache Anti-Geometry:
It is possible to entirely de-formalize Hilbert's groups of axioms
of the Euclidean Geometry, and to construct a model such that none of his fixed axioms holds.

Let's consider the following things:

- a set of <points>: A, B, C, \ldots
- a set of <lines>: h, k, l, \ldots
- a set of <planes>: alpha, beta, gamma,
and
- a set of relationships among these elements: "are situated", "between", "parallel", "congruent", "continuous", etc.
Then, we can deny all Hilbert's twenty axioms [see David Hilbert, "Foundations of Geometry", translated by E. J. Townsend, 1950; and Roberto Bonola, "Non-Euclidean Geometry", 1938].
There exist cases, within a geometric model, when the same axiom is verified by certain points/lines/planes and denied by others.

GROUP I. ANTI-AXIOMS OF CONNECTION:

I. 1. Two distinct points A and B do not always completely determine a line.

Let's consider the following model MD: get an ordinary plane delta, but with an infinite hole in of the following shape:

```
        P
    p
    semi-plane deltal
I
a
n
e
.K
d
e
l
t
a semi-plane delta2.
Q
Plane delta is a reunion of two disjoint planar semi-planes;
f1 lies in MD, but f 2 does not; \(\mathrm{P}, \mathrm{Q}\) are two extreme points on f that belong to MD .
One defines a LINE \(l\) as a geodesic curve: if two points \(\mathrm{A}, \mathrm{B}\) that belong to MD lie in 1 , then the shortest curve lied in \(M D\) between \(A\) and \(B\) lies in 1 also.
If a line passes two times through the same point, then it is called double point (KNOT).
```

One defines a PLANE alpha as a surface such that for any two points A, B that lie in alpha and belong to MD there is a geodesic which passes through A, B and lies in alpha also.

Now, let's have two strings of the same length: one ties P and Q with the first string sl such that the curve sl is folded in two or more different planes and sl is under the plane delta; next, do the same with string $s 2$, tie Q with P, but over the plane delta and such that $s 2$ has a different form from sl ;
and a third string $s 3$, from P to Q , much longer than sl . s1, s2, s3 belong to MD.

Let I, J, K be three isolated points -- as some islands, i.e. not joined with any other point of MD , exterior to the plane delta.

This model has a measure, because the (pseudo-)line is the shortest way (lenth) to go from a point to another (when possible).

Question 37:
Of course, this model is not perfect, and is far from the best. Readers are asked to improve it, or to make up a new one that is better.
(Let A, B be two distinct points in deltal-f1. P and Q are two points on sl , but they do not completely determine a line, referring to the first axiom of Hilbert, because A-P-sl-Q are different from B-P-sl-Q.)
I.2. There is at least a line 1 and at least two distinct points A and B of 1 , such that A and B do not completely determine the line 1 .
(Line A-P-s1-Q are not completely determined by P and Q in the previous construction, because $\mathrm{B}-\mathrm{P}-\mathrm{s} 1-\mathrm{Q}$ is another line passing through P and Q too.)
1.3. Three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ not situated in the same line do not always completely determine a plane alpha
(Let A, B be two distinct points in deltal-f1, such that $\mathrm{A}, \mathrm{B}, \mathrm{P}$ are not co-linear. There are many planes containing these three points: deltal extended with any surface s containing $s 1$, but not cutting $s 2$ in between P and Q, for example.)
I.4. There is at least a plane, alpha, and at least three points A, B, C in it not lying in the same line, such that $\mathrm{A}, \mathrm{B}, \mathrm{C}$ do not completely determine the plane alpha.
(See the previous example.)
I.5. If two points A, B of a line 1 lie in a plane alpha, doesn't mean that every point of 1 lies in alpha.
(Let A be a point in delta 1-f1, and B another point on sl in between P and Q . Let alpha be the following plane: deltal extended with a surface s containing sl, but not cutting s2 in between P and Q , and tangent to delta 2 on a line QC, where C is a point in delta2-f2.
Let D be point in delta2- f 2 , not lying on the line QC . Now, A, B, D are lying on the same line A-P-s l-Q-D, A, B are in the plane alpha, but D do not.)
I.6. If two planes alpha, beta have a point A in common, doesn't mean they have at least a second point in common.
(Construct the following plane alpha: a closed surface containing sl and s 2 , and intersecting deltal in one point only, P. Then alpha and deltal have a single point in common.)
I.7. There exist lines where lies only one point, or planes where lie only two points, or space where lie only three points.
(Hilbert's 1.7 axiom may be contradicted if the model has discontinuities.
Let's consider the isolated points area.
The point I may be regarded as a line, because it's not possible to add any new point to I to form a line.
One constructs a surface that intersects the model only in the points I and J.)

GROUP II. ANTI-AXIOMS OF ORDER:

II. 1. If A, B, C are points of a line and B lies between A and C , doesn't mean that always B lies also between C and A .
[Let T lie in s1, and V lie in $s 2$, both of them closer to Q , but different from it. Then: $\mathrm{P}, \mathrm{T}, \mathrm{V}$ are points on the line $\mathrm{P}-\mathrm{s} 1-\mathrm{Q}-\mathrm{s} 2-\mathrm{P}$ (i.e. the closed curve that starts from the point P and lies in sl and passes through the point Q and lies back to 52 and ends in P), and T lies between P and V -- because PT and TV are both geodesics --, but T doesn't lie between V and P
-- because from V the line goes to P and then to T , therefore P lies between V and T .]
[By definition: a segment $A B$ is a system of points lying upon a line between A and B (the extremes are included).

Warning: AB may be different from BA ; for example:
the segment PQ formed by the system of points starting with P , ending with Q , and lying in sl , is different from the segment QP formed by the system of points starting with Q, ending with P, but belonging to s 2 .
Worse, $A B$ may be sometimes different from $A B$; for example:
the segment PQ formed by the system of points starting with P, ending with Q, and lying in $s l$, is different from the segment $P Q$ formed by the system of points starting with P, ending with Q,
II.2. If A and C are two points of a line, then: there does not always exist a point B lying between A and C ,
or there does not always exist a point D such that C lies between A and D.
[For example:
let F be a point on $f 7, F$ different from P, and G a point in deltal, G doesn't belong to fl ; draw the line 1 which passes through G and F; then:
there exists a point B lying between G and F -- because GF is an obvious segment --, but there is no point D such that F lies between G and D-- because GF is right bounded in F (GF may not be extended to the other side of F, because otherwise the line will not remain a geodesic anymore).]
II.3. There exist at least three points situated on a line such that:
one point lies between the other two, and another point lies also between the other two.
[For example:
let R, T be two distinct points, different
from P and Q, situated on the line $P-s 1-Q-s 2-P$, such that the lenghts $P R, R T, T P$ are all equal; then:
R lies between P and T,
and T lies between R and P;
also P lies between T and R.]
I.4. Four points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ of a line can not always be arranged:
such that B lies between A and C and also between A and D, and such that C lies between A and D and also between B and D.
[For examples:

- let R, T be two distinct points, different from P and Q, situated on the line $P-s l-Q-s 2-P$ such that the lenghts $P R, R Q, Q T, T P$ are all equal, therefore R belongs to $s 1$, and T belongs to $s 2$; then P, R, Q, T are situated on the same line: such that R lies between P and Q, but not between P and T
-- because the geodesic PT does not pass through R --,
and such that Q does not lie between P and T
-- because the geodesic PT does not pass through Q --,
but lies between R and T ;
- let A, B be two points in delta2-f2 such that A, Q, B are colinear, and C, D two points on $s 1, s 2$ respectively, all of the four points being different from P and Q; then A, B, C, D are points situated on the same line A-Q-s1-P-s2-Q-B, which is the same with line A-Q-s2-P-s1-Q-B, therefore we may have two different orders of these four points in the same time:
A, C, D, B and A, D, C, B.]
II.5. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be three points not lying in the same line, and 1 a line lying in the same plane $A B C$ and not passing through any of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Then, if the line 1 passes through a point of the segment $A B$, it doesn't mean that always the line 1 will pass through either a point of the segment $B C$ or a point of the segment AC.
[For example:
let $A B$ be a segment passing through P in the semi-plane deltal, and C a point lying in deltal too on the left side of the line $A B$; thus $\mathrm{A}, \mathrm{B}, \mathrm{C}$ do not lie on the same line; now, consider the line Q-s2-P-s1-Q-D, where D is a point lying in the semi-plane delta2 not on f : therefore this line passes through the point P of the segment AB , but do not pass through any point of the segment $B C$, nor through any point of the segment AC.]

In a plane alpha there can be drawn through a point A, lying outside of a line l, either no line, or only one line, or a finite number of lines, or an infinite number of lines which do not intersect the line l. (At least two of these situations should occur.) The line(s) is (are) called the parallel(s) to 1 through the given point A.
[For examples:

- let 10 be the line $\mathrm{N}-\mathrm{P}-\mathrm{sl}-\mathrm{Q}-\mathrm{R}$, where N is a point lying in deltal not on fl , and R is a similar point lying in delta 2 not on f 2 , and let A be a point lying on $s 2$, then: no parallel to 10 can be drawn through A (because any line passing through A, hence through $s 2$, will intersect s 1 , hence 10 , in P and Q);
- if the line 11 lies in deltal such that 11 does not intersect the frontier f7, then: through any point lying on the left side of 11 one and only one parallel will pass;
- let B be a point lying in $f 1$, different from P, and another point C lying in deltal, not on fl ; let A be a point lying in deltal outside of BC ; then: an infinite number of parallels to the line $B C$ can be drawn through the point A.

Theorem. There are at least two lines 11,12 of a plane, which do not meet a third line 13 of the same plane, but they meet each other, (i.e. if 11 is parallel to 13 , and 12 is parallel to 13 , and all of them are in the same plane, it's not necessary that 11 is parallel to 12).
[For example: consider three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ lying in fl , and different from P , and D a point in deltal not on fl ; draw the lines AD, BE and CE such that E is a point in deltal not on $f l$ and both $B E$ and $C E$ do not intersect $A D$; then: $B E$ is parallel to $A D, C E$ is also parallel to $A D$, but $B E$ is not parallel to $C E$ because the point E belong to both of them.]
IV.1. If A, B are two points on a line l , and A^{\prime} is a point upon the same or another line l^{\prime}, then: upon a given side of A^{\prime} on the line I^{\prime}, we can not always find only one point B^{\prime} so that the segment $A B$ is congruent to the segment $A^{\prime} B^{\prime}$.
[For examples:

- let $A B$ be segment lying in deltal and having no point in common with fl , and construct the line C-P-s1-Q-s2-P (noted by l') which is the same with C-P-s2-Q-sl-P, where C is a point lying in deltal not on fl nor on AB ; take a point A^{\prime} on l^{\prime}, in between C and P , such that $A^{\prime} P$ is smaller than $A B$; now, there exist two distinct points Bl^{\prime} on sl and $B 2^{\prime}$ on $s 2$, such that $A B 1^{\prime}$ is congruent to $A B$ and $A^{\prime} 2^{\prime}$ ' is congruent to $A B$, with $\mathrm{A}^{\prime} 1^{\prime}$ different from $\mathrm{A}^{\prime} \mathrm{B} 2^{\prime}$;
- but if we consider a line I^{\prime} lying in deltal and limited by the frontier fl on the right side (the limit point being noted by M), and take a point A^{\prime} on I^{\prime}, close to M , such that AM is less than $A^{\prime} B^{\prime}$, then: there is no point B^{\prime} on the right side of l^{\prime} so that $A^{\prime} B^{\prime}$ is congruent to AB .]

A segment may not be congruent to itself?
[For example: - let A be a point on sl, closer to P, and B a point on s 2 , closer to P also; A and B are lying on the same line $\mathrm{A}-\mathrm{Q}-\mathrm{B}-\mathrm{P}-\mathrm{A}$ which is the same with line A-P-B-Q-A, but AB meseared on the first representation of the line is strictly greater than $A B$ meseared on the second representation of their line.]
IV.2. If a segment $A B$ is congruent to the segment $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ and also to the segment $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime}$, then not always the segment $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ is congruent to the segment $A " B$ ".
[For example

- let AB be a segment lying in deltal-fl, and consider the line C-P-s1-Q-s2-P-D, where C, D are two distinct points in deltal-fl such that C, P, D are colinear. Suppose that the segment $A B$ is congruent to the segment CD (i.e. $\mathrm{C}-\mathrm{P}-\mathrm{s} 1-\mathrm{Q}-\mathrm{s} 2-\mathrm{P}-\mathrm{D}$).
Get also an obvious segment $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ in deltal-f1, different from the preceding ones, but congruent to AB .
Then the segment $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ is not congruent to the segment CD (considered as $\mathrm{C}-\mathrm{P}-\mathrm{D}$, i.e. not passing through Q .)

IV.3. If $A B, B C$ are two segments of the same line 1 which have no points in common aside from the point B , and $A^{\prime} \mathrm{B}^{\prime}, \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ are two segments of the same line or of another line l^{\prime} having no point other than B^{\prime} in common, such that $A B$ is congruent to $A^{\prime} B^{\prime}$ and BC is congruent to $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$, then not always the segment AC is congruent to $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$.

[For example:
let 1 be a line lying in deltal, not on fl , and $\mathrm{A}, \mathrm{B}, \mathrm{C}$ three distinct points on l , such that AC is greater than sl ; let l' be the following line: $A^{\prime}-\mathrm{P}-\mathrm{sl} 1-\mathrm{Q}-\mathrm{s} 2-\mathrm{P}$ where A^{\prime} lies in deltal, not on fl , and get B^{\prime} on sl such that $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ is congruent to $A B$, get C^{\prime} on s2 such that $B C$ is congruent to $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ (the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are thus chosen); then: the segment $A^{\prime} C^{\prime}$ which is first seen as $\mathrm{A}^{\prime}-\mathrm{P}-\mathrm{B}^{\prime}-\mathrm{Q}-\mathrm{C}^{\prime}$ is not congruent to AC , because $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ is the geodesic $\mathrm{A}^{\prime}-\mathrm{P}-\mathrm{C}^{\prime}$ (the shortest way from A^{\prime} to C^{\prime} does not pass through B^{\prime}) which is strictly less than AC .]

Definitions. Let h, k be two lines having a point O in common. Then the system ($\mathrm{h}, \mathrm{O}, \mathrm{k}$) is called the angle of the lines h and k in the point O .
(Because some of our lines are curves, we take the angle of the tangents to
the curves in their common point.)
The angle formed by the lines h and k situated in the same plane, noted by $<(\mathrm{h}, \mathrm{k})$, is equal to the arithmetic mean of the angles formed by h and k in all their common points.
IV.4. Let an angle (h, k) be given in the plane alpha, and let a line h ' be given in the plane beta.
Suppose that in the plane beta a definite side of the line h ' be assigned, and a point O^{\prime}.
Then in the plane beta there are one, or more, or even no half-line(s) k ' emanating from the point O^{\prime} such that the angle (h, k) is congruent to the angle ($\mathrm{h}^{\prime}, \mathrm{k}^{\prime}$), and at the same time the interior points of the angle (h^{\prime}, k^{\prime}) lie upon one or both sides of h '.
[Examples:

- Let A be a point in deltal-f1, and B, C two distinct points in delta2-f2; let h be the line A-P-sl-Q-B, and k be the line A-P-s2-Q-C; because h and k intersect in an infinite number of points (the segment AP), where they normally coincide -- i.e. in each such point their angle is congruent to zero, the angle (h, k) is congruent to zero. Now, let A^{\prime} be a point in deltal-fl, different from A, and B^{\prime} a point in delta2- $f 2$, different from B, and draw the line h^{\prime} as $A^{\prime}-\mathrm{P}-\mathrm{s} 1-\mathrm{Q}-\mathrm{B}^{\prime}$; there exist an infinite number of lines k^{\prime}, of the form $\mathrm{A}^{\prime}-\mathrm{P}-\mathrm{s} 2-\mathrm{Q}-\mathrm{C}^{\prime}$ (where C^{\prime} is any point in delta2-f2, not on the line QB^{\prime}), such that the angle (h, k) is congruent to ($\mathrm{h}^{\prime}, \mathrm{K}^{\prime}$), because (h^{\prime}, k^{\prime}) is also congruent to zero, and the line $A^{\prime}-\mathrm{P}-\mathrm{s} 2-\mathrm{Q}-\mathrm{C}^{\prime}$ is different from the line $A^{\prime}-P-s 2-Q-D^{\prime}$ if D^{\prime} is not on the line $Q C^{\prime}$.
- If h, k, and h^{\prime} are three lines in deltal-P, which intersect the frontier fl in at most one point, then there exist only one line k^{\prime} on a given part of h ' such that the angle (h, k) is congruent to the angle (h^{\prime}, k^{\prime}).
- *Is there any case when, with these hypotheses, no k ' exists?
- Not every angle is congruent to itself; for example:
$<(\mathrm{sl}, \mathrm{s} 2)$ is not congruent to $<(\mathrm{s} 1, \mathrm{~s} 2)$
[because one can construct two distinct lines:
P-s1-Q-A and P-s2-Q-A, where A is a point in delta2-f2, for the first angle, which becomes equal to zero;
and P-s1-Q-A and P-s2-Q-B, where B is another point in delta2-f2, B different from A, for the second angle, which becomes strictly greater than zero!].
IV. 5. If the angle (h, k) is congruent to the angle (h^{\prime}, k^{\prime}) and the angle ($h^{\prime \prime}, k^{\prime \prime}$), then the angle (h^{\prime}, k^{\prime}) is not always congruent to the angle ($h^{\prime \prime}, k^{\prime \prime}$).
(A similar construction to the previous one.)
IV. 6. Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be two triangles such that $A B$ is congruent to $A^{\prime} B^{\prime}$, $A C$ is congruent to $A^{\prime} \mathrm{C}^{\prime}$, $<\mathrm{BAC}$ is congruent to $<\mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{C}^{\prime}$.
Then not always
$\angle \mathrm{ABC}$ is congruent to $\angle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ and $\angle \mathrm{ACB}$ is congruent to $\angle \mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{B}^{\prime}$.
[For example:
Let M, N be two distinct points in delta2-f2, thus obtaining the triangle PMN;
Now take three points $\mathrm{R}, \mathrm{M}, \mathrm{N}$ in deltal-fl, such that RM ' is congruent to $\mathrm{PM}, \mathrm{RN}^{\prime}$ is congruent to RN , and the angle ($\mathrm{RM}^{\prime}, \mathrm{RN}^{\prime}$) is congruent to the angle (PM, PN). RMN' is an obvious triangle.
Of course, the two triangle are not congruent, because for example PM and PN cut each other twice -- in P and Q -- while RM^{\prime} and RN^{\prime} only once -- in R.
(These are geodesical triangles.)]
Definitions:

Two angles are called supplementary if they have the same vertex, one side in common, and the other sides not common form a line.

A right angle is an angle congruent to its supplementary angle.

Two triangles are congruent if its angles are congruent two by two, and its sides are congruent two by two.

Propositions:

A right angle is not always congruent to another right angle.

For example:
Let A-P-sl-Q be a line, with A lying in deltal-fl, and $B-P-s l-Q$ another line, with B lying in deltal-fl and B not lying in the line AP; we consider the tangent t at $s l$ in P, and B chosen in a way that $<(\mathrm{AP}, \mathrm{t})$ is not congruent to $<(\mathrm{BP}, \mathrm{t})$; let $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ be other points lying in deltal-fl such that $\angle \mathrm{APA}^{\prime}$ is congruent to $<\mathrm{A}^{\prime} \mathrm{P}-$-s $1-\mathrm{Q}$, and $\angle \mathrm{BPB}$ ' is congruent to $<\mathrm{BP}-\mathrm{sl}-\mathrm{Q}$.
Then:

- the angle APA' is right, because it is congruent to its supplementary (by construction); - the angle BPB' is also right, because it is congruent to its supplementary (by construction); - but $<\mathrm{APA}^{\prime}$ is not congruent to $<\mathrm{BPB}^{\prime}$, because the first one is half of the angle A-P-sl-Q, i.e. half of $<(A P, t)$, while the second one is half of the B-P-sl-Q, i.e. half of $<(B P, t)$.

The theorems of congruence for triangles [side, side, and angle in between; angle, angle, and common side; side, side, side] may not hold either in the Critical Zone ($\mathrm{s} 1, \mathrm{~s} 2, \mathrm{f} 1, \mathrm{f} 2$) of the Model.

Property:

The sum of the angles of a triangle can be:

- 180 degrees, if all its vertexes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are lying, for example, in deltal-f7;
- strictly less than 180 degrees [any value in the interval (0,180)],
for example:
let R, T be two points in delta2- $f 2$ such that Q does not lle in RT, and S another point on $s 2$;
then the triangle SRT has $<(\mathrm{SR}, \mathrm{ST})$ congruent to 0 because SR and ST have an infinite number of common points (the segment SQ), and $\angle Q T R+<T R Q$ congruent to $180-<\mathrm{TQR}$ [by construction we may vary $<\mathrm{TQR}$ in the interval (0,180)];
- even 0 degree!
let A be a point in deltal-fl, B a point in delta2-f2, and C a point on s 3 , very close to P ;
then $A B C$ is a non-degenerate triangle (because its
vertexes are non-colinear), but $<(A-P-s 1-Q-B, A-P-s 3-C)$
$=<(\mathrm{B}-\mathrm{Q}-\mathrm{s} 1-\mathrm{P}-\mathrm{A}, \mathrm{B}-\mathrm{Q}-\mathrm{s} 1-\mathrm{P}-\mathrm{s} 3-\mathrm{C})=<(\mathrm{C}-\mathrm{s} 3-\mathrm{P}-\mathrm{A}$, C-s3-P-sl-Q-B) $=0$
(one considers the lenth $\mathrm{C}-\mathrm{s} 3-\mathrm{P}-\mathrm{s} 1-\mathrm{Q}-\mathrm{B}$ strictly less than $\mathrm{C}-\mathrm{s} 3-\mathrm{B}$);
the area of this triangle is also 0 !
- more than 180 degrees,
for example:
let A, B be two points in deltal-fl, such that $<\mathrm{PAB}+<\mathrm{PBA}+<(\mathrm{s} 1, \mathrm{~s} 2$; in Q$)$ is strictly greater than 180 degrees; then the triangle $A B Q$, formed by the intersection of the lines $A-P-s 2-Q, Q-s l-P-B, A B$ will have the sum of its angles strictly greater than 180 degrees.

Definition:
A circle of center M is a totality of all points A for which the segments MA are congruent to one another.

For example, if the center is Q , and the lenth of the segments MA is chosen greater than the lenth of sl, then the circle is formed by the arc of circle centered in Q , of radius MA, and lying in delta2, plus another arc of circle centered in P, of radius MA-lenth of $s 1$, lying in deltal.

Let A, B be two points. Take the points $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4$, ... so that $A 1$ lies between A and $A 2, A 2$ lies between
$A 1$ and $A 3, A 3$ lies between $A 2$ and $A 4$, etc. and the segments AA1, A1A2 $, ~ A 2 A 3, A 3 A 4, \ldots$ are congruent to one another.
Then, among this series of points, not always there exists a certain point An such that B lies between A and $A n$.

For example:
let A be a point in deltal-fl, and B a point on fl, B different from P;
on the line $A B$ consider the points $A 1, A 2, A 3, A 4, \ldots$ in between A and B, such that $A A I, A 1 A 2, A 2 A 3, A 3 A 4$, etc. are congruent to one another; then we find that there is no point behind B (considering the direction from A to B), because B is a limit point (the line $A B$ ends in B).

The Bolzano's (intermediate value) theorem may not hold in the Critical Zone of the Model.

Can you readers find a better model for this anti-geometry?

References:

[1] Charles Ashbacher, "Smarandache Geometries", <Smarandache Notions Journal>, Vol. 8, No. 1-2-3, Fall 1997, pp. 212-215.
[2] Mike Mudge, "A Paradoxist Mathematician, His Function, Paradoxist Geometry, and Class of Paradoxes", <Smarandache Notions Journal>, Vol. 7, No. 1-2-3, August 1996, pp. 127-129.
reviewed by David E. Zitarelli, < Historia Mathematica>, Vol. 24, No. 1, p. 114, \#24.1.119, 1997.
[3] Marian Popescu, "A Model for the Smarandache Paradoxist Geometry", <Abstracts of Papers Presented to the American Mathematical Society Meetings>, Vol. 17, No. 1, Issue 103, 1996, p. 265.
[4] Florentin Smarandache, "Collected Papers" (Vol. II), University of Kishinev Press, Kishinev, pp. 5-28, 1997.
[5] Florentin Smarandache, "Paradoxist Mathematics" (lecture), Bloomsburg University, Mathematics Department, PA, USA, November 1985.

