
Smart Application Development for IoT Asset Management Using Graph
Database Modeling and High-Availability Web Services

Holm Smidt
University of Hawai‘i at Mānoa

hsmidt@hawaii.edu

Matsu Thornton
University of Hawai‘i at Mānoa

matsut@hawaii.edu

Reza Ghorbani
University of Hawai‘i at Mānoa

rezag@hawaii.edu

Abstract

The rapid transition from purely physical or purely
virtual systems, as we know them, to increasingly
interconnected cyber-physical systems with high
integration of the Internet-of-Things demands a
paradigm shift in the development of information
systems–smart applications–for the planning and
operation of these systems. To address the demand
of managing the integration of connected devices
and enabling new business models from the heavily
interconnected systems, current architectural reference
models were considered and components of each
synthesized into a proposed software stack for
smart application development. This work lends its
implementation approach to the utility of graph theory
in modeling complex systems, and implements a graph
database for managing and maintaining connected
components that emphasize each component’s virtual
and physical connectivity, technical functionalities,
and state. The graph database microservice is then
integrated with a highly available web framework
and communication broker service in a multi-layered
software framework to integrate Internet-of-Things
devices and make services available over the web. The
framework’s–and respective components’–feasibility
and utility is demonstrated through a use case for
modeling, connecting, and controlling interconnected
homes in a modern smart grid, and abstracting
transactional device data for new business models, such
as demand response ancillary services.

1. Introduction

Graph databases are grounded in graph theory,
a proven tool for modeling complex, highly
interconnected systems, e.g. computer systems,
biological systems, and social network systems,
that uses graph structures such as nodes, edges,
and labels. Graph-theoretic approaches to system

modeling allow emphasis on component interactions
and interconnections rather than device level logic.
One particularly interesting and fitting application
for this approach is in power grid modeling, where
physical power lines are viewed as the connections
(edges) between power grid components (nodes). These
applications range from pure topological modeling
(see [1, 2, 3]) to extended topological methods that
integrate power flow considerations to conventional
network science modeling techniques (e.g. [4]) for grid
robustness analysis (e.g. [5, 6, 7]) and system design
(e.g. [8, 9, 10]).

Power grid systems are considered an integral
part of modern society. Their robustness and
efficiency not only impact our daily lives, but also
influence economy, politics, and the global environment
[11]. Power grids continually evolve over time
to accommodate and promote societal developments.
One of which being the transition of transmission
grids from traditional centralized utility-based power
generation to integrating distributed energy resources
(DER) such as photovoltaic (PV) systems, distributed
energy storage (DES) such as battery systems, and
demand response (DR). With the additional push
for the integration of smart Internet-of-Things (IoT)
devices, the smart grid is continually evolving into
an increasingly interconnected cyber-physical system
(CPS) that requires a paradigm shift in both its planning
and operation [12, 13]. The use of graph databases
as a sophisticated tool for modeling the connection
between system components–transformers, distribution
lines, DER, DES, IoT devices, grid operators, electricity
consumers, etc.–can aid in managing the rapidly
evolving smart grid [14].

This shift is driven by the need to move from
antiquated grid systems that are reliant upon
conventional generators whose control systems
are completely described by relatively simple
closed feedback control–steam valves and other
governors–compared to the developing smart grid
which is characterized by a vast and distributed network

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50614
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5787

of intermittent renewable generation and control
points. Advances in network coordinated computing,
communication, and mathematical modeling techniques
are enabled by far improved processor and software
technology. New algorithms which can take advantage
of these improvements have been developed for the
optimization of combined edge and centralized IoT
device networks and make upgrades to these distributed
systems available.

The power grid system is only one of many systems
that are integral to society and undergoing a fundamental
paradigm shift driven by the development of smart
applications with integration of IoT devices. Other
domains include, but are not limited to e-healthcare,
smart cities, and smart factories. Given the vast
interest in such smart applications, groups of researchers
have started developing architectural reference models
for integrating and connecting new technologies to
enable new business models. These models can
be specific to their application fields such as the
smart grid [15] and smart factories [16]. [17, 18]
discuss applications of these models that can be
applied generally and are overarching across several
application fields. Proposed models aim to not only
establish standards to ensure interoperability but also
provide guidance for software developers and architects
in the design of smart applications. A common
theme in proposed architectural models is the goal of
developing new business models that can leverage the
interconnectivity of assets (e.g. physical components,
IoT devices, stakeholders).

Given the challenge of managing a vast variety
and high number of components in typical CPS, and
the demand of economic pressures, our work makes
use of graph databases to develop applications which
will add value to existing and planned for assets by
leveraging connectivity. The further integration of
concurrency-oriented web frameworks addresses the
challenge of developing a single system for near
real-time machine-to-machine and human-computer
interaction. Specifically, the integration of connected
homes to the smart grid is considered as a use case,
to address the demand for modeling and managing
connected components in smart applications with high
proportions of IoT devices, and thus test the overall
feasibility of the proposed framework. The proposed
implementation uses neo4j for its graph database [19],
VerneMQ for its communications broker for providing
a publish/subscribe communication infrastructure for
IoT sensors and actuators [20], and the Phoenix
framework for web service development including soft
real-time IoT event processing, IoT device management
(monitoring and control), data querying, and access

control [21]. This work focuses on the framework’s
utility for challenges in smart grid applications, namely
device management and control, and system state
monitoring for residential DR ancillary services.

This paper is structured as follows: Section 2
introduces related work on smart grid simulation
frameworks for IoT integrated systems, as well as
reference model architectures. Section 3 outlines the
proposed system components in our implementation and
Section 4 illustrates its use for modeling connected
homes in the smart grid and simulating DR event
communications. Results and future work have then
been detailed in Sections 5 and 6 respectively.

2. Related work

2.1. ICT simulation platform for the smart
grid

Simulation platforms tailored to connected devices
in power grids are presented in [22, 23, 24] showing
that information and communication technology (ICT)
solutions can leverage the IoT for energy management
in smart cities. Simulations such as these are integral
in providing grid operators and policy makers with
the data they need to make informed decisions with
confidence. Further described in [25] is a simulation
testbed that leverages PSIM, an existing power modeling
software [26], by connecting existing tools to network
connected devices in order to test advanced optimization
algorithms against simulated grid events with both real
and simulated device nodes.

[22] proposed an ICT framework for smart homes
that addressed requirements that other frameworks for
embedded devices were lacking; that is, concurrent,
multi-user support through the Web, uniform access
to heterogeneous embedded devices, and acceptable
performance to name a few, were implemented
by using a web-oriented application framework.
More specifically, a RESTful application framework
consisting of a device layer for embedded device
management and control, a control layer as the central
processing unit of the system, and a presentation layer
to dynamically generate representations of available
services to the Web.

[23] similarly stresses the use of a multi-layered
software infrastructure to ensure interoperability of
heterogeneous devices. A publish/subscribe mechanism
is employed where sensors can publish to their
respective topics and then store data in a relational
database system (RDBS), which is organized in ten
tables for device data, list of deployed devices, network
information, and more.

[24] focused on interrelating historical device data,

Page 5788

building information models, geographical information
systems, and system information models to lower
energy consumption at the district level in smart cities.
Each of the four components is comprised of its
own datastore and is made available through RESTful
interfaces to other system services. The infrastructure
further implements both request/response (REST) and
publish/subscribe (Message Queue Telemetry Transport
(MQTT) [27]) communication approaches to interface
with heterogeneous sensors (the integration layer).
Ultimately, a simulation engine service can leverage
the described services and communication approaches
to define new control policies and test these policies
through simulations with various devices publishing and
subscribing to topics in soft real-time. The services are
made available to users through the application layer.

Existing simulation infrastructures showed the value
of ICT systems in energy grids; yet, they were designed
as islanded systems focused on specific optimization
problems.

2.2. Reference architectures

Ongoing developments of architectural reference
models are indicative of the many challenges faced
when developing interoperable smart applications.
Work by [15, 16, 17, 18] represent a selection of models
that have been in recent development and are relevant
to smart application architectures. These models
are being developed by different entities in different
countries but share the common goal of providing
guidance in realizing the needed paradigm shift in smart
application domains characterized by a high integration
of connected IoT components.

The architectural framework in development by
the IEEE P2413 working group [17] as well as the
Industrial Internet Reference Architecture (IIRA) [18]
have been proposed as frameworks abstracted from
the IoT domain, whereas the Reference Architecture
Model Industrie 4.0 (RAMI4.0) [16] and the Smart Grid
Architecture Model (SGAM) framework [15] have been
specifically developed for the smart factory and smart
grid domains, respectively.

By first describing IoT domains, defining
domain abstractions, and identifying cross-domain
commonalities, the IEEE P2413 is developing a
reference model that highlights the relationships
between the IoT domains. [17] uses a similar
approach to [18] in developing a framework using
the ISO/IEC/IEEE 42010:2011 Systems and Software
Engineering–Architecture Description’. This involves
framing the architecture based on stakeholders
(individual, team, organization), concerns (topics of

interest), viewpoints (conventions for construction,
interpretation and use of architecture views to
frame specific system concerns), and model kinds
(conventions for capturing type of model), and
representing it with architectural views and models.

IIRA, as described by [18], has formulated four
viewpoints as the basis for expressing system concerns
in Industrial IoT (IIoT) applications. These are:
the business viewpoint (stakeholder’s business vision),
the usage viewpoint (concerns of system usage), the
functional viewpoint (functional components), and the
implementation viewpoint (technologies to implement
functional viewpoint). The functional viewpoint is
further defined by five distinct functional domains,
the control, operations, information, application, and
business domains. The control domain is closely
connected to the physical system as it is typically
comprised of the sensors and actuators interacting with
the physical system. Work done by the Industrial
Internet Consortium [18], shows how information
is constantly exchanged, processed, and transformed
within and between layers, but generally information
becomes richer as it moves from the control domain
up to the business domain that entails functions for
end-to-end operations of IIoT systems. Parallels
between the functional viewpoint in the IIRA and
the RAMI4.0 and SGAM layers can easily be drawn
for interoperability comparisons as described in [28],
despite their in part parallel and islanded development.
RAMI4.0 is a three-dimensional model to represent the
Industrie 4.0 (I4.0) space that, like the IIRA, splits
complex projects into clusters of manageable parts
using a vertically multi-layered approach (business,
functional, information, communication, integration,
and asset layers) [16]. As RAMI4.0 reflects features
of the SGAM, one can also find these layers in the
SGAM model (with the exception that integration and
asset layers in RAMI4.0 are grouped into a component
layer). Both RAMI4.0 and SGAM layers can be mapped
in their meaning to viewpoint layers and functional
domains in the IIRA and vice versa (see [28]), as such,
for the remainder of this paper, when referring to layers
from one model, the same reference may be made to an
analogous layer in another framework.

RAMI4.0 introduces the concept of administration
shells that turn objects into I4.0 components. These
administration shells describe the virtual representation
and technical functionality of objects that are needed
for integrating, managing, and operating objects (e.g.
a machine in a smart factory). It is worth noting
that administration shells can be separated from the
actual component and agglomerated in a repository of
administration shells, and that I4.0 components can

Page 5789

contain several objects (e.g. complete electrical axis
system with controller, motors, sensors, etc.). Among
a rich set of I4.0 component characteristics (see [18]) is
the state model characteristic that informs on the latest
state the component is in at a stated time.

In contrast to RAMI4.0, the SGAM is designed
specifically for addressing challenges in the smart grid
and thus defines domains and hierarchical zones (i.e.
smart grid planes) for each of the vertical layers. The
five horizontal domains are generation, transmission,
distribution, DER, and customer premise, which allows
for example the mapping of hardware components in
the component layer and their functions in the function
layer to these five domains. A residential PV system
could thus be mapped vertically in the component layer
and horizontally as a DER. The reader may refer to
Section B.2.4 SGAM Mapping Example in [15] for
further examples.

These described models are said to undergo
ongoing changes as theoretical considerations for
these architectures are refined with implementation use
cases and evolving technology. The scope of these
architectures by far extend beyond the scope of the work
presented here; yet, select concepts were used as the
basis for design.

2.3. Graph databases and the IoT

[29] presented the use of neo4j for real-time
processing of IoT events in combination with Ejabberd
and Apache spark. D’silva et al.’s work emphasized the
interconnectivity of things and users and focused on a
scalable and pluggable solution for processing requests
from IoT devices and showed that graph databases
are viable solutions for modeling IoT networks. [29]
further pointed out that many operations in IoT systems
are performed at real-time and require tools that can
show connections quickly, and that many queries in
graph databases outperform similar queries that would
otherwise require JOIN operators in relational database
queries. [30] presented the utility of graph databases for
modeling relations in smart distribution systems and big
data analytics.

The proposed work extends existing approaches
by focusing on how graph structures can be used to
model and implement complex CPS. It is a method
which can abstract away complexity from vast webs
of interconnected features to create a useful structure
that can help to bring clarity to system architects
and provide the actual control and management
mechanisms. Consider the implications of IoT in
application. Systems are providing a vast amount of
telemetry data from a multitude of distributed resources

and banks of historical data, while the outputs of the
system include both virtual interaction and actuation as
well as physical interactions.

To give a physical context, consider a smart
grid. Say that there are inputs to the system which
include physical telemetry which might give localized
power demand, solar and other renewable generation
availability; less volatile variables such as fuel costs;
and analytics from other historical data. Then there
are the outputs of the system which can also include a
wide range of effects including physical actuation like
demand response control, or virtual interaction such as
financial transactions or even pure virtual manipulation
of state variables within constituent components’ own
processing systems. The result is a complicated web
of interaction where we can imagine any number of
relationships between not only inputs and outputs, but
also the intermediary effects of processing logic in
between.

Graph theory gives us a way to keep track of these
relationships in a relatively systematic fashion. In
considering overall goals for a system which is so
vast and complicated in interaction through the web
of relationships we see the prospect for producing a
viable method for control logic a daunting task. Taking
our smart-grid example, we could list several plausible
system goals such as maximizing system stability,
maximizing profit for a utility, or minimizing use of
fossil fuels. Most likely, it is a balance between several
of these types of goals. A full system deployment would
include optimization schema for the above tasks but
is beyond the scope of the work presented here. We
oversimplify the model to produce demonstration data
and a demonstration model which is used to show the
foundations of a viable system based on graph theory.
We imagine that these bases can be built upon to produce
a full scale and deployable model for interaction of IoT
devices for wide scale optimization.

3. Implementation

Following established and proven practices in [22,
23, 24], a multi-layered software infrastructure is
proposed as shown in Figure 1. The integration
layer is composed of various smart devices which
provide telemetry and control for the smart grid.
The service layer is composed of a graph database
(neo4j), the MQTT message broker (VerneMQ),
and the Phoenix server backend for routing and
control. Lastly, the Phoenix presentation layer provides
views and applications for user interaction. The
following discussion is limited to the implementation
of the service layer, as this layer provides the main

Page 5790

functionality in this framework. The service layer

Figure 1. Layered software architecture with

integration, service, and application layers.

in Figure 1 was further ideated by the functional
domains of the functional viewpoint presented in the
IIRA framework. The message broker enables the
communication between assets as described in the
control domain in [18]. The graph database service
provides functionalities of the IIRA operations layer
such as management, monitoring, and diagnostics
of devices. The graph database further implements
the administration shell repository described by the
RAMI4.0 model. Functions of devices and their virtual
connectivity can simply be queried from the graph. The
RAMI4.0 state model and the horizontal domains from
the SGAM are similarly represented and stored in the
graph as described in Section 3.1. The ‘routing &
control block’ in Figure 1 refers to the web server’s
ability to process IoT events and provide application
interfaces for described functionalities; this block draws
concepts from the information and application domains
in the IIRA functional viewpoint.

3.1. Graph database modeling

The CPS and its assets (physical components, IoT
components, etc.) are modeled as one graph using the
neo4j graph database, which implements the property
graph model [31]. As such, the graph consists of nodes
and relationships. Nodes are basic entities that can exist
in and of themselves. Relationships connect exactly two
nodes, the source node and the target node. Tokens are
nonempty strings of Unicode characters; nodes can have
sets of labels (one or more tokens) and relationships
have exactly one relationship type (exactly one token).
Both, nodes and relationships can have properties,
which are key-value pairs (one or more tokens). Graph
traversal describes how the graph database is being

traveled or in other words the navigation through a
graph to find paths. Figure 2 depicted an illustration of
three nodes connected by three relationships. Each node
has a different label (i.e. house, person, thermostat)
and different sets of properties (i.e. name, address,
communication protocols, etc.). Unlike with relational
databases, nodes (with the same or different labels)
don’t need to have the same set of properties; that is,
one person may have information on the type of devices
he/she is using whereas another person does not need to
have a dev property. Properties can be defined as strings,
lists, or numeric datatypes as indicated by the properties
of the :CONTR_TEMP relationship. Graph traversal can
be illustrated in Figure 2: if one wanted to know the
owner of the building the thermostat is in, one would
need to follow the :CONTR_TEMP relationship from the
thermostat node and then the :OWNED_BY relationship
from the returned node.

Cypher, the query language used in neo4j provides
declarative ways of querying the database using asci-art
syntax. The above described traversal, for example,
could be implemented in Cypher as

MATCH (t:Thermostat) - [:CONTR_TEMP]
-> () - [:OWNED_BY] -> (p)

RETURN p.name, p.fon

Figure 2. Sample graph illustrating concepts of

property graph models in neo4j.

The syntax in the query allows the user to declare
relationships between entities in the CPS model,
without necessarily being interested in the node in
between (i.e. the empty parentheses between the
two relationships will match any node if they have
the desired relationships). One thus builds the query
natively based on the connections between nodes.
This fundamentally different approach to leveraging
interconnections between assets in smart applications
could aid in addressing challenges in asset management.
Using the Bolt protocol, a connection oriented network
protocol over TCP connection integrated in neo4j, the
graph database microservice can be made available
securely and efficiently to other services.

Page 5791

To represent I4.0 administration shells, node
properties are leveraged. These properties can be
freely defined for any node, although maintaining
conventions for using the same property keys for the
same types of information is helpful, and used to
express technical functions and virtual integration of
components. Relationship properties are used for
expressing the components’ states by capturing the latest
sensor updates and the timestamp of the last update.
These states can either be sensor data published to
specific topics, or commands sent by users to control
actuators. States could also carry values computed
periodically based on rules and conventions applicable
for desired functionalities, e.g. periodically updated
electricity price. Node labels and properties are further
indicative of their domain in the overall smart grid
as referenced in SGAM (e.g. nodes representing
distribution lines, the distribution domain, can be easily
differentiated from PV systems, the DER domain).

3.2. Message broker

The second microservice is the highly available
MQTT message broker, that is built on the open source
VerneMQ MQTT broker. Built on the Erlang/OTP
(open telecom platform), a platform that has proven
its concurrency model and fault tolerance in the
operation of telecommunication networks, VerneMQ
was specifically designed for soft real-time, distributed
control and messaging applications while providing
fault-isolation and fault-tolerance [20]. A VerneMQ
plugin was developed to extend base functionality and
use so-called VerneMQ hooks to send JSON API
messages to the phoenix server when certain events
occur (e.g. client registration, on publish, on subscribe,
etc.). These JSON API requests are then being
processed by Phoenix to update the graph database.

For initial implementation, file-based authorization
and authentication was implemented. Access control
lists use patterns to define publish/subscribe access
to topics based on user keys and topic structures.
Usernames and passwords were added to the VerneMQ
password file for authentication purposes. Both
authentication and authorization can easily be
implemented using databases in larger scale systems or
production environments.

3.3. Web application

The web-application, developed using the Phoenix
framework, was designed to implement the following
subset of application functionalities:

• Connect to the graph database using the Bolt

protocol;

• Process incoming requests from the VerneMQ
plugin (REST API);

• Manage socket connections for subscribing and
publishing to MQTT topics;

• Manage socket connections for querying the
graph database.

The Phoenix framework follows a server-side
MVC pattern and is known for bringing concurrency
and functional programming to web application
development [32]. Phoenix is built using the functional
Elixir programming language and thus also runs on
the Erlang VM [21]. The functional approach to
web application development and use of concurrent
lightweight Elixir processes (not operating-system
processes) for handling real-time connections are
especially well-suited for smart applications that require
efficient socket connections for human-computer
interactions (e.g. live updates for monitoring) as well
as API-based machine-to-machine interactions (e.g.
processing of IoT events). In the Phoenix framework,
incoming requests are simply passed between layers
and transformed at each step by groups of functions,
so-called pipelines [32], making the handling of high
numbers of API requests for IoT events possible.

Incoming VerneMQ API requests may be piped from
the endpoint to the routing layer and from there sent
to the controller, which parses and processes the JSON
requests into Cypher queries. These queries can then
be executed in neo4j using the Bolt protocol that is
implemented using the Bolt.Sips Elixir driver [33]. This
event-processing functionality can be mapped back to
the concept of information processing in the information
domain in the IIRA model. One may envision
additional pipelines for requests besides updating the
graph database, such as also storing sensor updates and
control events in a database service. Other RESTful
services currently implemented include HTML forms
that can be used to test publishing of MQTT message
to the message broker.

In addition to the request/response scheme,
so-called channels are implemented for rich interactive
functionalities through socket connection, e.g.
visualization of graphs or continuous device control.
In Phoenix channels, clients connect to specific
channels and topics and can then send and receive
messages, which could entail functions such as database
querying or publishing of MQTT messages. The
channel implementation thus addresses the demand for
feature-rich asset management and simulations in smart
applications.

Page 5792

4. Use case

4.1. Smart home modeling

The proposed framework’s feasibility was tested by
constructing a simplified model of several residential
homes connected to several distribution lines. The
different nodes in this CPS model are thus physical
power grid components, buildings, gadgets, IoT devices,
DERs, and human actors. Each residential home
has a collection of gadgets (e.g. TV, air conditioner
(AC), refrigerator), smart devices (e.g. smart AC),
PV, battery storage, and a home energy management
system (HEMS). The relationships between components
describe physical or virtual connections between nodes,
as illustrated in Figure 3. Properties of nodes and
relationships are not shown in the model but select
properties are summarized in Table 1.

Figure 3. Sample model of a residential home with

DER, DES, HEMS, and smart AC unit installed.

The shown sets of properties for nodes and
relationships can be viewed as administration shells
of each component as they inform on capabilities
pertaining to asset management. The IoT device
information, device configuration and network
properties are stored in node properties, e.g. type,
functions, coms, sub, and pub, which can always be
updated, extended upon or streamlined using Cypher
queries. The component statuses in this use case are
further described by relationship properties, such as the
temperature property of the :SEN_TEMP relationship.
Data from an IoT device can be captured by and
represented through the relationships between the
device and its environment. This approach makes

it efficient to query device data given that each
relationship has exactly one relationship type, and
enables the graph to be used for both asset management
and capturing near real-time status of the CPS system.

Table 1. Select properties of nodes and relationships

in the graph.

entity
type

property
key

sample property value

THING name sac 1
THING type smart ac
THING functions [‘sense’, ‘control’]
THING coms [’MQTT’]
THING sub [‘thing/HI/RH 1/smart ac/

827ebe0f622/control’]
SEN TEMP temperature 24
SEN TEMP timestamp ‘2017-05-01 13:00:05’
SEN BAT soc 75
SEN BAT timestamp ‘2017-05-01 13:02:41’
P FEED wattage 2500
P FEED timestamp ‘2017-05-01 13:05:41’

An illustrative example is the smart AC unit, sac_1
that has the capabilities of monitoring temperature and
power, and regulating the power consumption of the
AC unit. It follows that there exist three relationships
connecting the smart AC device to the actual AC gadget.
Further, the sac_1’s node properties show that the
node can communicate over MQTT and that the device
publishes to the following MQTT topics:
thing/HI/RH 1/smart ac/b827ebe0f622/sense/power
thing/HI/RH 1/smart ac/b827ebe0f622/sense/temp

The properties of the two relationships
:SEN_CONS, and :SEN_TEMP then reflect the
latest published values, in other words the state,
of the sac_1 device with their timestamps (see
Table 1). Similarly, the :SEN_BAT, :SEN_PV, and
:SEN_LOAD relationships of the HEMS node carry
the state of the battery storage, PV generation, and
residential energy consumption. To abstract the state of
agglomerated system components, e.g. the total DER
feeding back to the grid connected to substations SST
A, one may use the following expressive Cypher query:

MATCH (:Res_Home) - [p:P_FEED] ->
() <- [:P_Line] -
(:Substation {name: 'SST A'})

WHERE p.ts >= timestamp()-600000
RETURN SUM(p.wattage)

The query first finds all :P_FEED relationships

Page 5793

going from residential homes to distribution lines
connected to substation A, assigns these relationships
the variable p, then filters those relationships that were
updated within the last ten minutes, and ultimately
returns the total power consumption described by these
relationships.

This illustrates the utility that originates from
emphasizing system connectivity in the system model.
Rather than having to JOIN information from different
tables, relationships are used to link heterogeneous
system entities. Soft real-time system monitoring and
management, as referenced in the operation domain in
the IIRA, is thus simplified and enables possibly new
approaches to DR management. The following query
could for example be used to extract information of
controllable, variable AC load in a neighborhood:

MATCH (n:THING) - [c:CONTR_CONS]
-> (g:Gadget) WHERE c.status = 0)

MATCH (n) - [s:SEN_CONS] -> (g) -
[:GADGET_IN] -> () <- [:P_CONS]
- (:Distr_Line {name: 'DL 1'})

RETURN SUM(s.wattage)

In two steps, one can first identify the loads that are
not being controlled yet and that indirectly connect to
distribution line DL 1’, and then sum the individual load
measurements representing the AC load. The returned
value can then be used for DR decision making in
simulations.

4.2. Data flow testing

To test the graph model with the message broker and
Phoenix-powered services, the IoT device integrations
layer was added to the software infrastructure. This
layer consisted of virtual nodes (i.e. simulated MQTT
clients), and an actual HEMS system. To add any
node to the system, its credentials must be registered
with the MQTT broker. Virtual nodes, nodes for the
sole purpose of simulating communication flows in the
system, were simulated using mqtt-client libraries and
node-red. Figure 4 showed an example of a virtual
node created on an Ubuntu virtual machine running
node-red. Simulated inputs and outputs, e.g. the
Raspberry Pi Sense HAT simulator node, were used for
system testing. This approach showed great efficacy in
productivity and in very rapidly simulating IoT nodes
in the application as it provides all needed options to
vary data input, data output, IoT device type, and node
credentials.

The HEMS system was integrated as an actual
IoT asset that contained a sensor suite with access to

Figure 4. Node-red flow simulating IoT devices and

testing the communication flow in the system

infrastructure.

hundreds of points of telemetry data including solar
power generation, battery state of charge, connected
load data, frequency parameters, and grid feedthrough
load. In addition to telemetry data, the HEMS controller
allows access to control functions which include
import/export of grid power, battery charge/discharge
control, and controllable relay positions. Network
connectivity was provided by a single board computer
with network access to MODBUS registers. A
Raspberry Pi gateway was used to read/write MODBUS
registers and forward/receive messages over MQTT to
the broker to update the graph model. Figure 5 showed
the implementation of a node-red flow on the Raspberry
Pi gateway. The gateway accessed the MODBUS on
an internal wireless area network, read its registers, and
then formatted and sent the data to the external message
broker over MQTT.

Figure 5. Node-red flow for reading HEMS data

from the Modbus and sending it over MQTT to the

broker.

To test the publishing of control events over MQTT
from the server to the integrations layer, a front-end
application view was integrated in the application layer
of the Phoenix application, shown in Figure 6. Using

Page 5794

Figure 6. Front-end interface for publishing MQTT

events from the Phoenix server.

forms, authorized users could publish control events to
desired topics and thus start a DR event simulation.
During event simulation, relevant publish/subscribe
events were stored in a relational database.

5. Results

The use case design demonstrated the overall
feasibility of the proposed framework by successfully
integrating a graph database, a message broker, and a
highly available server for smart grid network modeling
and management. Implemented services integrated
well together in updating graph models with device
data, querying the database over the Bolt protocol, and
sending control commands to the integration layer, thus
providing desired functionalities for the given use case.

Small scale implementation of simulated and
actual nodes showed high efficacy in polling the
graph database for desired pub/sub topics of IoT
devices, and listening/writing to these topics to update
control commands. To rapidly scale the number of
nodes in the system, one may either automate the
node-red deployment with text updates for various flows
(node-red flows are simply JSON objects), or utilize
mqtt-client libraries for preferred scripting languages
that pull simulated data and credentials from external
files or databases and publish MQTT messages.

The Phoenix framework proved to be a productive
and reliable tool in the development of web services
for smart applications based on its code structure (ease
of development) and use of concurrent lightweight
Elixir processes for handling requests in a clean and
functional approach. The native support for WebSocket
connections in the form of channels with channel
generators for increased productivity showed high

utility for applications involving the monitoring of soft
real-time system updates and the control of end-devices.

Combining the channel functionality with the use
of the neo4j graph database allowed to perform
relationship-based queries that would inform on
agglomerated system states over many IoT devices.
The further implementation of administrative shells for
IoT components through node properties in the graph
indicated high utility for systems with a wide range of
components.

6. Conclusion and future work

This work introduced a software stack for modeling
CPS using graph databases and using graph databases
in conjunction with a highly available communication
broker and web framework, and demonstrated its
potential for addressing current challenges of IoT asset
management and control that leverage and emphasize
the interconnectivity in developing smart application
domains. The framework’s multi-layered approach was
based on a variety of previously proposed frameworks,
but extended these through the integration of modern
concepts from architectural reference frameworks for
smart application domains and concepts rooted in graph
theory.

This paper detailed the implementation of the
three main service components, graph database,
communications broker, and web framework and
illustrated their integration in a use case scenario.
Results of this feasibility study showed promising utility
in modeling CPS using graph databases as well as using
the Phoenix framework for the development of web
services for IoT integrated information systems. That is,
the integration of the three main services in the proposed
framework can facilitate human-to-machine interaction
as well as machine-to-machine interaction, ease the
administration of cyber and physical devices using
administration shells, and thus ultimately enable new
business strategies that leverage the interconnectivity of
devices and actors in modern CPS.

To further show the systems utility, future work
will focus on a performance test and the integration
of different simulation engines that: a) can adequately
model contingency events or edge cases which test
robustness of a CPS control system using graph
theoretical approaches, e.g. how are new business
models, such as DR, effected by random node failure
due to network intermittence, b) provide a WebSocket
interface to integrating external internet hardware in
the loop simulation systems, such as proposed in [25],
and c) allow the simulation of system performance
under various loads. For the scope of this paper,

Page 5795

discussion was also limited to the implementation
of a MQTT message broker; yet, other important
IoT communication protocols need to be considered
for interoperability purposes. The authors anticipate
the integration of CoAP [34], which will simply
need additional routes, controllers, and channels for
processing CoAP requests in the Phoenix server.

References

[1] A.-L. Barabasi, Network science. Cambridge, United
Kingdom: Cambridge University Press, 2016.

[2] M. E. Newman, Networks: An Introduction. Oxford
University Press, 2010.

[3] D. J. Watts and S. H. Strogatz, “Collective dynamics
of’small-world’ networks,” Nature, vol. 393, no. 6684,
pp. 440–442, 1998.

[4] G. A. Pagani and M. Aiello, “The Power Grid as a
complex network: A survey,” Physica A: Statistical
Mechanics and its Applications, vol. 392, no. 11,
pp. 2688–2700, 2013.

[5] R. Albert, I. Albert, and G. L. Nakarado, “Structural
vulnerability of the North American power grid,”
Physical Review E - Statistical, Nonlinear, and Soft
Matter Physics, vol. 69, no. 2 2, pp. 1–4, 2004.

[6] Z. Wang, A. Scaglione, and R. J. Thomas, “Electrical
centrality measures for electric power grid vulnerability
analysis,” Proceedings of the IEEE Conference on
Decision and Control, pp. 5792–5797, 2010.

[7] E. Bompard, R. Napoli, and F. Xue, “Analysis
of structural vulnerabilities in power transmission
grids,” International Journal of Critical Infrastructure
Protection, vol. 2, no. 1-2, pp. 5–12, 2009.

[8] I. Sayeekumar, K. Ahmed, P. Karthikeyan, K. Sah, and
U. Raglend, “Graph Theory and its Applications in
Power Systems -AReview,” pp. 154–157, 2015.

[9] J. Quirós-tortós and S. Member, “A Graph Theory Based
New Approach for Power System Restoration,”

[10] S. Dutta and T. Overbye, “A graph-theoretic approach
for addressing trenching constraints in wind farm
collector system design,” 2013 IEEE Power and Energy
Conference at Illinois, PECI 2013, pp. 48–52, 2013.

[11] S. M. Amin, S. Massoud Amin, and S. M. Amin, “Smart
Grid: Overview, Issues and Opportunities. Advances
and Challenges in Sensing, Modeling, Simulation,
Optimization and Control,” Eur. J. Control, vol. 17,
no. September, pp. 547–567, 2011.

[12] Z. Wang, A. Scaglione, and R. J. Thomas, “The
node degree distribution in power grid and its
topology robustness under random and selective node
removals,” 2010 IEEE International Conference on
Communications Workshops, ICC 2010, no. 1, 2010.

[13] S. Lehnhoff and A. Nieße, “Recent trends in energy
informatics research,” it - Information Technology,
vol. 59, no. 1, pp. 1–3, 2017.

[14] A. Amato and S. Venticinque, “Big Data for Effective
Management of Smart Grids,” in Data Science and Big
Data: An Environment of Computational Intelligence
(C. S.-M. Witold Pedrycz, ed.), pp. 209–229, Springer.

[15] CEN/CENELEC/ETSI Joint Working Group on
Standards for Smart Grids, “CEN-CENELEC-ETSI
Smart Grid Coordination Group: Smart Grid Reference
Architecture,” no. November, pp. 1–107, 2012.

[16] VDI/VDE-Gesellschaft Mess- und
Automatisierungstechnik, “Status Report;Reference
Architecture Model Industrie 4.0 (RAMI4.0),” tech. rep.,
2015.

[17] O. Logvinov, B. Kraemer, C. Adams, J. Heiles,
G. Stuebing, M. L. Nielsen, and B. Mancuso, “Standard
for an Architectural Framework for the Internet of Things
(IoT) - IEEE P2413,” Tech. Rep. September, 2016.

[18] Industrial Internet Consortium, “The Industrial Internet
of Things Volume G1: Reference Architecture,” tech.
rep., 2017.

[19] “Neo4j, the world’s leading graph database.”
[20] “VerneMQ - A MQTT broker that is scalable, enterprise

ready, and open source.”
[21] “Phoenix Framework.”
[22] A. Kamilaris, A. Pitsillides, and V. Trifa, “The Smart

Home meets the Web of Things,” International Journal
of Ad Hoc and Ubiquitous Computing, vol. 7, no. 3,
pp. 145–154, 2011.

[23] E. Patti, A. Acquaviva, M. Jahn, F. Pramudianto,
R. Tomasi, D. Rabourdin, J. Virgone, and E. Macii,
“Event-Driven User-Centric Middleware for Energy
Efficient Buildings and Public Spaces,” IEEE Syst. J.,
vol. 10, no. 3, p. 11371146, 2016.

[24] F. G. Brundu, E. Patti, A. Osello, M. Del Giudice,
N. Rapetti, A. Krylovskiy, M. Jahn, V. Verda,
E. Guelpa, L. Rietto, and A. Acquaviva, “IoT Software
Infrastructure for Energy Management and Simulation
in Smart Cities,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 2, pp. 1–1, 2016.

[25] M. Thornton, H. Smidt, V. Schwarzer, M. Motalleb, and
R. Ghorbani, “Internet-of-Things Hardware-in-the-Loop
Simulation Testbed for Demand Response Ancillary
Services,” in Materials for Energy, Efficiency and
Sustainability, TechConnect Briefs 2017, pp. 66–69,
TechConnect, 2017.

[26] “Electronic Circuit Simulation Software — PSIM
Products.”

[27] “MQTT.”
[28] M. I. Pai, “Interoperability between IIC Architecture

& Industry 4.0 Reference Architecture for Industrial
Assets,” 2016.

[29] G. M. D’silva, S. Thakare, and V. A. Bharadi,
“Real-Time processing of IoT events using a software
as a service (SaaS) architecture with graph database,”
Proceedings - 2nd International Conference on
Computing, Communication, Control and Automation,
ICCUBEA 2016, 2017.

[30] T.-H. Dang-Ha, D. Roverso, and R. Olsson, “Graph
of Virtual Actors (GOVA): a Big Data Analytics
Architecture for IoT,” 2012.

[31] “Property Graph Model.”
[32] C. McCord, B. Tate, and J. Valim, Programming

Phoenix - Productive —¿ Reliable —¿ Fast. Pragmatic
Programmers, LLC, 2016.

[33] “Bolt.Sips.”
[34] “CoAP - Constrained Application Protocol —

Overview.”

Page 5796

